Birth-death fluid queues and orthogonal polynomials

Werner R. W. Scheinhardt ${ }^{1}$

Received: 6 February 2022 / Accepted: 28 February 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

1 Introduction We consider a fluid queue as, e.g., in [1], but driven by a birth-death process $\{X(t), t \geq 0\}$ which has an infinite state space $\mathbb{N}=\{0,1, \ldots\}$. The birth and death rates λ_{i} and $\mu_{i+1}, i \in \mathbb{N}$, are such that $p_{i}=\lim _{t \rightarrow \infty} P[X(t)=i]=$ $\pi_{i} /\left(\sum_{j \in \mathbb{N}} \pi_{j}\right)$ exists, where

$$
\pi_{i}=\prod_{j=0}^{i-1} \frac{\lambda_{j}}{\mu_{j+1}}, i \in \mathbb{N}, \quad \text { with } \sum_{i \in \mathbb{N}} \pi_{i}<\infty \text { and } \sum_{i \in \mathbb{N}}\left(\lambda_{i} \pi_{i}\right)^{-1}=\infty .
$$

Let $C(t) \geq 0$ be the content of the fluid queue at time t. We denote the fluid rates by $r_{i}, i \in \mathbb{N}$, that is, we have $d / d t C(t)=r_{i}$ at times t when $X(t)=i$ (unless $C(t)=0$ and $\left.r_{i}<0\right)$. Assuming that $\sum_{i \in \mathbb{N}} r_{i} \pi_{i}<0$, the joint process $\{(X(t), C(t)), t \geq 0\}$ is known to be positive recurrent so that its stationary distribution exists, given by the functions

$$
F_{i}(y) \equiv \lim _{t \rightarrow \infty} P[X(t)=i, C(t) \leq y], \quad y \geq 0, i \in \mathbb{N}
$$

and our goal is to find expressions for these functions in terms of λ_{i}, μ_{i+1} and $r_{i}, i \in \mathbb{N}$.
If the state space is finite, say $\{0, \ldots, N-1\}$ for some $N \geq 2$, the $F_{i}(y)$ can be found by solving a system of linear differential equations, given by $F^{\prime}(y)=F(y) Q R^{-1}$, where $F(y)$ is a row vector with entries $F_{i}(y), Q$ is the (tri-diagonal) generator matrix of $\{X(t)\}$, and $R=\operatorname{diag}\left(r_{0}, \ldots, r_{N-1}\right)$; we assume $r_{i} \neq 0$ for all i, so that R^{-1} exists. Thus, the solution $F(y)$ can be expressed in terms of eigenvalues and (left) eigenvectors of $Q R^{-1}$, with coefficients determined by boundary conditions, and we might wonder what happens as N increases to infinity.

[^0]In [6, 7], it was shown how the birth-death structure of $\{X(t)\}$ in many cases allows structural expressions for $F_{i}(y)$ by using the theory of orthogonal polynomials (inspired by results in [4]). Interestingly, the form of these expressions varies considerably, depending on N_{+}, the number of so-called upstates (i.e., states i for which $r_{i}>0$), and N_{-}, the number of downstates (states i for which $r_{i}<0$). It is clear that at least one of N_{+}and N_{-}equals infinity, and the structural results in [6,7] are precisely about the cases in which one of them is finite (and the other is infinite).

When we have finitely many upstates $\left(N_{+}<\infty\right)$, the solution can be found by taking a limit $N \rightarrow \infty$ in a suitable sequence of finite-state models with state space $\{0,1, \ldots, N-1\}$. The expression for $F_{i}(y)$ then takes the form of a finite summation, as in

$$
\begin{equation*}
F_{i}(y)=p_{i}+\sum_{j=0}^{N_{+}-1} c_{j} v_{i}^{(j)} \exp \left\{\xi_{j} y\right\} \tag{1}
\end{equation*}
$$

Here, ξ_{j} are limits of eigenvalues of $Q R^{-1}$ in the finite-state models, $v_{i}^{(j)}$ are elements of the corresponding limiting left 'eigenvectors', and the c_{j} are coefficients that can be determined from boundary conditions. See [6,Section 2.4] for more details, where also an example is presented with $N_{+}=1$ and explicit expressions for $\xi_{0}, v_{i}^{(0)}$ and c_{0}.

On the other hand, when we have finitely many downstates $\left(N_{-}<\infty\right)$ the analysis is more involved and we end up with an integral expression for $F_{i}(y)$ given by

$$
\begin{equation*}
F_{i}(y)=p_{i}+\frac{\pi_{i}}{r_{i}} \int_{-\infty}^{0-} e^{x y} P_{i}(x) R(x) \psi(\mathrm{d} x) . \tag{2}
\end{equation*}
$$

Here, the $P_{i}(x), i \in \mathbb{N}$, are polynomials that are orthogonal with respect to ψ, which is actually a signed measure (due to the negative entries in R, unlike the situation in [4]). The function $R(x)$ is a linear combination of the N_{-}polynomials $P_{i}(x)$ corresponding to downstates. See [6,Section 2.5] for more details, where also an example is presented with $N_{-}=1$ and explicit expressions for $P_{i}(x), \psi$ and $R(x)$.

2 Problem statement Although the presentation in [6, 7] was quite satisfying, some questions remained:

- For the case $N_{-}<\infty$, can examples (i.e., sequences λ_{i}, μ_{i+1} and $r_{i}, i \in \mathbb{N}$) be found, other than the one presented in [6, 7], for which the corresponding signed measure, and hence $F_{i}(y)$, can be found explicitly?
- Can a more generic structural result for $F_{i}(y)$ be given along the lines of [6, 7], not necessarily assuming that either $N_{+}<\infty$ as in (1) or $N_{-}<\infty$ as in (2)?

3 Discussion

Examples for the case $N_{-}<\infty$

In the example in [6] where ψ is identified, $\{X(t)\}$ is the queue size of an $M / M / 1$ queue, so $\lambda_{i} \equiv \lambda$ and $\mu_{i+1} \equiv \mu, i \in \mathbb{N}$, while $r_{0}<0$ and $r_{i} \equiv r>0, i \neq 0$. For that case, the polynomials $P_{i}(x)$ can be transformed to a sequence of perturbed Chebyshev polynomials, for which the orthogonalizing (positive) measure is known using results in [2]. Inverse transformation then gives the form of the (signed) measure ψ, and hence
the form of $F_{i}(y)$. Interestingly, in this particular example the support of ψ on \mathbb{R}^{-}has a continuum separated from zero and possibly a single isolated point mass. For other parameters λ_{i}, μ_{i+1} and $r_{i}, i \in \mathbb{N}$, one might follow the same procedure and hope to find (transformed) polynomials with a known corresponding (positive) measure. If parameters can be found for which this works, the results will probably be interesting since many different shapes of ψ, and thus outcomes for $F_{i}(y)$, could emerge.

Generic result, including the case $N_{+}=N_{-}=\infty$
Though the expressions in (1) and (2) look different, each of them can be seen as a limit for $N \rightarrow \infty$ in some sequence of fluid queues with finite state space $\{0,1, \ldots, N-1\}$ while fixing, respectively, N_{+}or N_{-}to some (finite) value. In each of these models, the solution is given in the same form as (1), since we always have a single eigenvalue 0 (corresponding to the term p_{i}), N_{+}negative eigenvalues (corresponding to the summation), and $N_{-}-1$ positive eigenvalues (which do not play a role in the solution). This explains the form of (1) when fixing N_{+}and letting N (and hence N_{-}) grow large, but it also explains the form of (2) when fixing N_{-}and letting N (and hence N_{+}) grow large. In the latter case, we have a fixed number of positive eigenvalues (which do not play a role in the solution), and an increasing number of negative eigenvalues, which form the negative part of the support of the corresponding measure as $N \rightarrow \infty$.

In fact, (1) could be viewed as a special case of (2), noting that when $N_{+}<\infty$ the negative part of the support of ψ only consists of N_{+}(limits of) eigenvalues. For each of these values, say $\xi_{j}, j=0, \ldots, N_{+}-1$, the role of the components $v_{i}^{(j)}$ is then played by the constants $\frac{\pi_{i}}{r_{i}} P_{i}\left(\xi_{j}\right)$, and the role of the coefficient c_{j} by $R\left(\xi_{j}\right) \psi\left(\left\{\xi_{j}\right\}\right)$. Thus, one might expect that also for the case $N_{+}=N_{-}=\infty$ an expression such as (2) would hold.

References

1. Anick, D., Mitra, D., Sondhi, M.: Stochastic theory of a data-handling system with multiple sources. Bell Syst. Tech. J. 61(8), 1871-1894 (1982)
2. Chihara, T.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)
3. Chihara, T., Scheinhardt, W., Coolen, F., Littlejohn, L., Marcellán, F.: Some remembrances of Erik van Doorn. Newsletter of the SIAM Activity Group on OPSF 27(1), 6-10 (2020). https://math.nist.gov/ opsf/nl271.pdf
4. Karlin, S., McGregor, J.: The differential equations of birth-and-death processes, and the Stieltjes moment problem. Trans. Am. Math. Soc. 85, 489-546 (1957)
5. Littlejohn, L.: Obituary for Erik van Doorn. Newsletter of the SIAM Activity Group on OPSF 26(6), 6-7 (2019). https://math.nist.gov/opsf/n1266.pdf
6. Scheinhardt, W.: Markov-modulated and Feedback Fluid Queues. Ph.D. thesis, University of Twente, The Netherlands (1998)
7. van Doorn, E.A.., Scheinhardt, W.R.W.: A fluid queue driven by an infinite-state birth-death process. In: Ramaswami, V., Wirth, P. (eds.) Teletraffic Contributions for the Information Age, Proceedings of ITC 15, pp. 465-475. Elsevier, Amsterdam (1997)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: This work is dedicated to the memory of Erik A. van Doorn (August 12, 1949-November 1, 2019). For an obituary and some remembrances of him and his work, see $[3,5]$. His encouraging supervision and close involvement resulted among other things in [7] and [6]. I will always be grateful I had the privilege of being one of his students.
 \triangle Werner R. W. Scheinhardt
 w.r.w.scheinhardt@utwente.nl

 1 Department of Applied Mathematics, University of Twente, Enschede, The Netherlands

