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1 IntroductionWe consider a fluid queue as, e.g., in [1], but driven by a birth–death
process {X(t), t ≥ 0} which has an infinite state space N = {0, 1, . . .}. The birth
and death rates λi and μi+1, i ∈ N, are such that pi = limt→∞ P[X(t) = i] =
πi/

(∑
j∈N π j

)
exists, where

πi =
i−1∏
j=0

λ j

μ j+1
, i ∈ N, with

∑
i∈N

πi < ∞ and
∑
i∈N

(λiπi )
−1 = ∞.

Let C(t) ≥ 0 be the content of the fluid queue at time t . We denote the fluid rates by
ri , i ∈ N, that is, we have d/dt C(t) = ri at times t when X(t) = i (unless C(t) = 0
and ri < 0). Assuming that

∑
i∈N riπi < 0, the joint process {(X(t),C(t)), t ≥ 0} is

known to be positive recurrent so that its stationary distribution exists, given by the
functions

Fi (y) ≡ lim
t→∞ P[X(t) = i, C(t) ≤ y], y ≥ 0, i ∈ N,

and our goal is to find expressions for these functions in terms ofλi , μi+1 and ri , i ∈ N.
If the state space is finite, say {0, . . . , N−1} for some N ≥ 2, the Fi (y) can be found

by solving a system of linear differential equations, given by F ′(y) = F(y)QR−1,
where F(y) is a row vector with entries Fi (y), Q is the (tri-diagonal) generator matrix
of {X(t)}, and R = diag(r0, . . . , rN−1); we assume ri 	= 0 for all i , so that R−1

exists. Thus, the solution F(y) can be expressed in terms of eigenvalues and (left)
eigenvectors of QR−1, with coefficients determined by boundary conditions, and we
might wonder what happens as N increases to infinity.

This work is dedicated to the memory of Erik A. van Doorn (August 12, 1949–November 1, 2019). For an
obituary and some remembrances of him and his work, see [3, 5]. His encouraging supervision and close
involvement resulted among other things in [7] and [6]. I will always be grateful I had the privilege of
being one of his students.
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In [6, 7], it was shown how the birth–death structure of {X(t)} in many cases
allows structural expressions for Fi (y) by using the theory of orthogonal polynomials
(inspired by results in [4]). Interestingly, the form of these expressions varies consid-
erably, depending on N+, the number of so-called upstates (i.e., states i for which
ri > 0), and N−, the number of downstates (states i for which ri < 0). It is clear
that at least one of N+ and N− equals infinity, and the structural results in [6, 7] are
precisely about the cases in which one of them is finite (and the other is infinite).

When we have finitely many upstates (N+ < ∞), the solution can be found by
taking a limit N → ∞ in a suitable sequence of finite-state models with state space
{0, 1, . . . , N −1}. The expression for Fi (y) then takes the form of a finite summation,
as in

Fi (y) = pi +
N+−1∑
j=0

c jv
( j)
i exp{ξ j y}. (1)

Here, ξ j are limits of eigenvalues of QR−1 in the finite-state models, v( j)
i are elements

of the corresponding limiting left ‘eigenvectors’, and the c j are coefficients that can
be determined from boundary conditions. See [6,Section 2.4] for more details, where
also an example is presented with N+ = 1 and explicit expressions for ξ0, v

(0)
i and c0.

On the other hand, when we have finitely many downstates (N− < ∞) the analysis
is more involved and we end up with an integral expression for Fi (y) given by

Fi (y) = pi + πi

ri

∫ 0−

−∞
exy Pi (x)R(x)ψ(dx). (2)

Here, the Pi (x), i ∈ N, are polynomials that are orthogonal with respect toψ , which is
actually a signed measure (due to the negative entries in R, unlike the situation in [4]).
The function R(x) is a linear combination of the N− polynomials Pi (x) corresponding
to downstates. See [6,Section 2.5] for more details, where also an example is presented
with N− = 1 and explicit expressions for Pi (x), ψ and R(x).

2 Problem statement Although the presentation in [6, 7] was quite satisfying, some
questions remained:

– For the case N− < ∞, can examples (i.e., sequences λi , μi+1 and ri , i ∈ N) be
found, other than the one presented in [6, 7], for which the corresponding signed
measure, and hence Fi (y), can be found explicitly?

– Can a more generic structural result for Fi (y) be given along the lines of [6, 7],
not necessarily assuming that either N+ < ∞ as in (1) or N− < ∞ as in (2)?

3 Discussion

Examples for the case N− < ∞N− < ∞N− < ∞
In the example in [6] where ψ is identified, {X(t)} is the queue size of an M/M/1
queue, so λi ≡ λ and μi+1 ≡ μ, i ∈ N, while r0 < 0 and ri ≡ r > 0, i 	= 0. For that
case, the polynomials Pi (x) can be transformed to a sequence of perturbed Chebyshev
polynomials, for which the orthogonalizing (positive) measure is known using results
in [2]. Inverse transformation then gives the form of the (signed)measureψ , and hence
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the form of Fi (y). Interestingly, in this particular example the support of ψ onR− has
a continuum separated from zero and possibly a single isolated point mass. For other
parameters λi , μi+1 and ri , i ∈ N, one might follow the same procedure and hope
to find (transformed) polynomials with a known corresponding (positive) measure. If
parameters can be found for which this works, the results will probably be interesting
since many different shapes of ψ , and thus outcomes for Fi (y), could emerge.

Generic result, including the case N+ = N− = ∞N+ = N− = ∞N+ = N− = ∞
Though the expressions in (1) and (2) look different, each of them can be seen as a limit
for N → ∞ in some sequence of fluid queues with finite state space {0, 1, . . . , N −1}
while fixing, respectively, N+ or N− to some (finite) value. In each of these models,
the solution is given in the same form as (1), since we always have a single eigenvalue
0 (corresponding to the term pi ), N+ negative eigenvalues (corresponding to the
summation), and N−−1 positive eigenvalues (which do not play a role in the solution).
This explains the form of (1) when fixing N+ and letting N (and hence N−) grow large,
but it also explains the form of (2) when fixing N− and letting N (and hence N+) grow
large. In the latter case, we have a fixed number of positive eigenvalues (which do not
play a role in the solution), and an increasing number of negative eigenvalues, which
form the negative part of the support of the corresponding measure as N → ∞.

In fact, (1) could be viewed as a special case of (2), noting that when N+ < ∞ the
negative part of the support of ψ only consists of N+ (limits of) eigenvalues. For each
of these values, say ξ j , j = 0, . . . , N+ − 1, the role of the components v

( j)
i is then

played by the constants πi
ri
Pi (ξ j ), and the role of the coefficient c j by R(ξ j )ψ({ξ j }).

Thus, one might expect that also for the case N+ = N− = ∞ an expression such as
(2) would hold.
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