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A B S T R A C T   

Built-environment factors potentially alleviate or aggravate traffic safety problems in urban areas. This paper 
aims to investigate the relationships of these factors with vehicle-bicycle and vehicle-vehicle property damage 
only (PDO) and killed and severe injury (KSI) crashes in urban areas. For this purpose, an area-level analysis 
using 100x100m2 cells, along with a Spatial Hurdle Negative Binomial regression model were employed. The 
study area is composed of a selection of municipalities in the Netherlands-Randstad Area where major land-use 
developments have occurred since the 1970s. The study was conducted by developing a rich dataset composed of 
various national and local databases. The findings reveal that built-environment factors and land-use policies 
have substantial impacts on safety, which cannot be neglected. The factors explaining the land-use density and 
diversity in the area (e.g., urbanity and function mixing levels), as well as the land-use design characteristics 
(indicated by average age of the neighborhoods), traffic and road network characteristics, and proximity to 
different destinations influence the probability, frequency, and severity of crashes in urban areas. Furthermore, 
low socioeconomic levels are associated with a higher frequency of traffic crashes.   

1. Introduction 

Traffic safety policy and research have mostly focused on road 
network measures and road design, vehicle safety, and road user 
behavior in the past decades. However, the role of built-environment 
factors in traffic safety has not yet been fully examined. For the 
Netherlands, this is rather surprising given the importance attributed to 
urban spatial planning and it being one of the most planned countries in 
the world. Despite the considerable improvements that have taken place 
in traffic safety in urban areas over the decades, one-third of road fa-
talities still occur in the built-up areas of the Netherlands (SWOV, 2021). 
Considering the aim of construction of on average 75,000 new homes 
per year until 2025 (MinIenW, 2018), understanding the relationships 
between the built-environment factors and traffic safety is invaluable to 
improving traffic safety. 

Built-environment characteristics are usually represented by in-
dicators called “5Ds”, namely (population) density, (land-use) diversity, 
(land-use) design, distance to transit, and accessibility to destinations (Ewing 
& Cervero, 2010). Different built-environment factors can increase or 
decrease traffic crashes as they contribute to variations in exposure, 

speeds, and conflicts between road users (Ewing & Dumbaugh, 2009; 
Merlin et al., 2020b; Saha et al., 2020). Previous studies about the effects 
of built-environment factors on traffic crashes have mainly accounted 
for the impacts of the road network characteristics and a limited number 
of other built-environment factors. The studies have resulted in mixed 
and sometimes contradicting findings on the magnitude and direction of 
the effects of the built-environment factors on traffic crashes. Some 
studies, for example, show an increase in population and employment 
density is associated with a higher frequency of vehicle and bicycle 
crashes (even after controlling for exposure) but a lower frequency of 
severe crashes (Obelheiro et al., 2020; Osama & Sayed, 2017). However, 
at the same time, higher residential density areas promote walking and 
cycling and reduce car-use which can lead to a decline in all types of 
traffic crashes including both vehicle only and bicycle involved crashes 
(Osama & Sayed, 2017; Saha et al., 2020; Schepers et al., 2019). 
Furthermore, some land-use characteristics such as commercial and 
educational zones have been reported to negatively affect cyclist safety 
(Mukoko & Pulugurtha, 2019; Osama & Sayed, 2017). High land-use 
diversity (i.e., mixed land-use index (MXI)) was shown to decrease 
(KSI) crash frequency in vehicle-only and vehicle-bicycle crashes (Chen 
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& Shen, 2016). This is because higher MXI leads to shorter travel dis-
tances which results in reduced car-use and consequently risk exposure 
specifically for the cyclists (Chen & Shen, 2016; Schepers et al., 2019). 
Proximity to facilities such as transit stops, commercial and service lo-
cations, on the other hand, were shown to increase the risk of crashes 
that involve vehicles and/or bicycles (Kim et al., 2010; Osama & Sayed, 
2017; Schepers, 2021b; Vandenbulcke et al., 2014; Wei & Lovegrove, 
2013). However, Kim et al. (2011) suggested that increased proximity to 
roads is associated with reduced crash severity. 

This paper analyses the impact of a comprehensive set of built- 
environment variables on vehicle-only and bicycle-involved types of 
crashes. Most literature focuses on determining the impact of a specific 
of limited set of built-environment factors on different crash types. Only 
a few studies have examined the impact of a comprehensive set of built- 
environment factors on traffic safety. For instance, Obelheiro et al. 
(2020) analyzed the impact of built-environment factors on the number 
of crashes at newly developed traffic safety zones. However, the authors 
focused only on the “road network and infrastructure design” indicated 
by the density of different types of intersections, traffic signals, and the 
proportion of different types of roads. Similarly, Yu and Xu (2018) 
employed the “nonmotorized infrastructure design” features indicated 
by the ratio of sidewalk/bike lane length to the street length. Ukkusuri 
et al. (2012) accounted for different built-environment factors at the 
census tracts. However, only a limited number of land-use factors such 
as land-use density were utilized. Nonetheless, none of these studies 
examined the effects of the “land-use design” characteristics on traffic 
safety. As an exception, Xie et al. (2019) studied the effects of land-use 
changes and showed that conversions of the business, commercial and 
residential land-use classes could increase the severe crash frequency in 
urban areas. 

Disregarding the above-mentioned collective effects of built- 
environment factors can potentially lead to an under/overestimation 
of their importance due to the unobserved effects of missing variables. 
Moreover, these factors do not have the same effect on different types of 
crashes (e.g., motor-vehicle vs. bicycle crashes). However, literature 
falls short of identifying and comparing the variations in the magnitude 
of these effects. For example, it is still not clear how different levels of 
MXI affect vehicle-bicycle crashes compared to vehicle-vehicle crashes. 
Similarly, the effects of proximity to different facilities on the severity 
level of crashes remain unclear. 

From another perspective, built-environment characteristics change 
over time and space as a result of different land-use and transport pol-
icies. These changes naturally affect travel behavior and, in turn, traffic 
safety. For example, the Netherlands underwent major developments 
during the 1970s and 1990s, with policies such as “Dutch New Towns” 
(1960–1985) and “VINEX Areas” (1993). Safer road network designs, 
accessible public transport, and short distances to services (e.g., super-
markets) were some of the goals for the development of these newer 
areas. These spatial policies and developments together with transport 
planning have played a role in the declining numbers of fatal crashes 
(Schepers, 2021a; b; Schepers et al., 2019). Nonetheless, these changes 
add to the complexity of the problem of understanding the effect of the 
built-environment factors on safety because the homogeneity across 
different areas is lost. 

To address the issues summarized in the preceding paragraphs, this 
study developed and utilized a wide-ranging set of built-environment, 
land-use, road network, and socioeconomic variables that have an ef-
fect on traffic safety. Moreover, the study accounts for real traffic 
exposure and transportation infrastructure characteristics in the anal-
ysis. To be specific, property damage only (PDO) and fatality/severe 
injury (KSI) Vehicle-Bicycle (V&B) and Vehicle-Vehicle (V&V) crashes 
were investigated. For this purpose, a rich dataset was compiled by 
integrating various national and local databases covering several do-
mains ranging from built-environment characteristics to traffic features. 
A square grid-based macro-level analysis was adopted. The spatial 
contiguity effects of the built-environment factors were particularly 

considered in the analysis to address the spatial heterogeneities and 
dependencies. The compiled rich dataset was analyzed using a Hurdle 
Negative Binomial model which can handle count datasets involving an 
excessive number of zero outcomes (a common issue in crash count 
data) (Hosseinpour et al., 2013). The analysis was conducted for a case 
study area covering a selection of municipalities in the most urbanized 
part of the Netherlands, the “Randstad Area” which has experienced 
several changes in the built-environment over the decades. 

The contribution of this paper to the literature is threefold. Firstly, 
the study examines the collective effects of a comprehensive set of built- 
environment factors on traffic safety, exploiting a rich dataset compiled 
from different national and local databases. Secondly, the study com-
pares the contribution of similar built-environment characteristics on 
both V&B and V&V crashes in PDO and KSI types. Thirdly, the study 
presents a spatial-statistical modeling approach that can address prev-
alent area-based modeling issues such as crash assignment (Kocatepe 
et al., 2019), spatial dependency and heterogeneity (Ziakopoulos & 
Yannis, 2020), and an excessive number of zeros in the crash counts 
(Lord & Mannering, 2010). 

2. Study Area, geographical unit Selection, and modeling 
approaches 

2.1. Study Area 

This study particularly focuses on the urban parts of the cities that 
are demarcated as built-up and recreational areas by the Central Bureau 
of Statistics in the Netherlands (CBS, 2015) (Fig. 1-a). Furthermore, as 
this study only focuses on urban traffic crashes, motorways (i.e., inter-
city roads and trunk links) and crashes that happened on these roads 
were excluded from the analysis. 

The case study was conducted in the Randstad Area which is the most 
urbanised area in the Netherlands and includes the four major cities in 
the country, i.e., Amsterdam, Rotterdam, The Hague, and Utrecht 
(Fig. 1-b). These cities include new urban centers and housing de-
velopments that have been expanded from the city center towards the 
city boundaries since the 1970 s. Several new towns (built in the 1970 s), 
such as Almere and Houten were also included in the analysis (Fig. 1-c). 
The built-environment characteristics of these new urban areas (built 
after the 1970 s) mainly differ from historic city centers in terms of 
destination accessibility, distance to transit and infrastructure design 
with seperated road space for different urban transport modes (Bach 
et al., 2006). 

2.2. Geographical units of analysis 

Analyzing traffic crash data requires specific considerations 
regarding the level and scale of the analysis, as well as the specification 
of the crash data. From the existing methods adopted to analyze the 
impacts of the “built-environment factors” on safety the area-level 
analysis is one of the most promising approaches. Depending on the 
study approach and availability of data, alternative units of analysis 
such as traffic analysis zones (TAZs) (Obelheiro et al., 2020; Osama & 
Sayed, 2017), administrative areas (e.g., census tracts or postcode areas 
(Abdel-Aty et al., 2013; Osama & Sayed, 2017; Saha et al., 2020)), or 
uniform formats (e.g., hexagons (Cui et al., 2021) and square grids 
(Gladhill & Monsere, 2012; Kim et al., 2010)) have been selected in the 
literature. 

The uniform formats such as square grids are more advantageous 
than administrative areas considering that boundaries of these areas are 
demarcated by the roads where crashes occur. Therefore, there is always 
a problem of “crash assignment” when administrative areas are used 
(Gladhill & Monsere, 2012; Kocatepe et al., 2019). Utilizing the square 
grids as the unit of analysis allows the inclusion of all crashes without 
the need to give special consideration to crashes on “boundaries”. 
Moreover, the uniform units allow the researcher to control for the unit 
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size. Due to the practicality of this method, the availability of 100 ×
100m2 grid cells (100-cells), and the availability of extensive land-use 
and socioeconomic and demographic data in this format (CBS, 2017a) 
we divided the study area into 100-cells (Fig. 1-a). 

2.3. Modeling spatial spillover effects 

A major concern in traffic safety analysis is related to spatial de-
pendency and heterogeneity biases. These biases affect the performance 
of crash analysis due to unobserved factors associated with the locations 
of crashes (Xu & Huang, 2015). To alleviate these issues, two alternative 
approaches are proposed in the literature (Cai et al., 2016): 1) spatial 

Fig. 1. (a) Representation of the studied urban areas (built-up and recreational) in the 100-cells; (b) Selected municipalities in Randstad region- the Netherlands; (c) 
Year of housing developments (weighted average) in the 100-cells. 
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autocorrelation effects: accounting for the effects of the unobserved 
exogenous variables by involving spatial autocorrelation among the 
units of analysis; 2) spatial spillover effects: accounting for the effects of 
the observed exogenous variables (e.g., built-environment factors) 
influencing the dependent variable (e.g., crash frequency) at the tar-
geted and neighboring areas. The spatial spillover effect approach is 
appealing for macro-level studies due to the ease of modeling and its 
superior interpretability and communicability features (Cai et al., 2016). 

To test the spatial dependency and heterogeneity, the Global Mor-
an’s I-tests (Ziakopoulos & Yannis, 2020) were conducted. The total 
number of PDO and KSI crashes in V&B and V&V types were tested. The 
tests results revealed that spatial autocorrelations exist between the 
crash frequencies of the neighboring analysis units. Therefore, we 
accounted for the spillover effects in the models. For this purpose, 
“queen contiguity” was used to identify the neighboring cells for each 
cell (eight neighbors in the case of square cells – Fig. 2). Then, the 
average values of identified “spillover variables” for these eight neigh-
boring cells were computed and assigned to each cell. These neighboring 
variables were included as independent variables in the statistical 
models. 

2.4. Hurdle Negative Binomial model 

Several counts/continuous modeling techniques have been applied 
to analyze the crash frequencies and rates (Lord & Mannering, 2010). 
Crash data commonly include an excessive number of zeros due to the 
lack of crashes in the majority of the entities (e.g., roadway segments). 
The use of data with “excessive zeros” in modeling which does not 
address this issue can result in incorrect and invalid parameter estima-
tions (Lord & Mannering, 2010). To address this problem, models such 
as the Tobit model for continuous dependent variables (e.g., crash rates) 
(Anastasopoulos et al., 2012; Chen et al., 2021; Ulak et al., 2018), as well 
as Hurdle and zero-inflated (ZI) models for discrete dependent variables 
(e.g., crash counts) (Cai et al., 2016; Chen et al., 2022; Katrakazas et al., 
2021), have been proposed. Additionally, novel resampling data anal-
ysis methods are also introduced for handling unbalanced data in acci-
dent analysis studies. These methods are applied for developing 
predictive models using synthetic data for uncommon crash types (e.g., 
bus-involved crashes) and in the presence of excessive zeros (Arian-
nezhad et al., 2021; Chen et al., 2022; Morris & Yang, 2021; Yahaya 
et al., 2019). 

The superiority of the dual-state models compared to the conven-
tional Poisson and NB models has been previously considered for both 

area-based and network-based analysis (Cai et al., 2016; Hosseinpour 
et al., 2013). The major difference between the ZI and the Hurdle models 
is that the latter only accounts for the sampling (i.e., random) zeros, 
whilst the ZI model accounts for both sampling zeros and structural 
zeros (Hosseinpour et al., 2013). The structural zeros indicate an 
“impossibility” of crash occurrence (e.g., when there is no traffic), which 
disregards the fact that traffic crashes can happen on any road regardless 
of the safety level (Hosseinpour et al., 2013; Yu et al., 2019). Therefore, 
the Hurdle model is considered the more appropriate approach in this 
study. 

The Hurdle models are modified two-part count models of which the 
first part is a binary model that handles whether the dependent variable 
crosses the “hurdle” (i.e., whether a crash happens in a cell) and the 
second part consists of a count model which is truncated at zero (Mul-
lahy, 1986). Alternative probability distributions such as Poisson, NB, 
and lognormal can be used in the count part of the model depending on 
the goodness-of-fit to the data (Cai et al., 2016; He et al., 2019; Ma et al., 
2015). Hurdle model was utilized in traffic safety analysis by Hossein-
pour et al. (2013) to investigate the effects of the road network char-
acteristics on pedestrian-vehicle crash frequencies on the roads. Even 
though, they showed that the HP models offer better modeling perfor-
mance compared to the HNB models. In this study, we used Hurdle NB 
Regression models, as not only the NB distribution can be generalized to 
Poisson distribution but also comparisons of the performance of the 
Hurdle Poisson (HP) and Hurdle NB (HNB) models showed a better 
goodness-of-fit for the HNB model. The HNB model can be described as 
Eq. (1): 

f (yi) =

{
pi, yi = 0

(1 − pi)g(yi), yi = 1, 2,⋯ (1)  

g(yi|μi, α) = Γ(yi + α− 1)

Γ(yi + 1)Γ(α− 1)
(

α− 1

α− 1 + μi
)

α− 1
(

μi

α− 1 + μi
)

yi (2)  

where pi specifies the probability of crash occurrence in the analysis unit 
(0 < pi < 1); pi can have Logit (or Probit) distribution and yi indicates 
the number of events in the units of analysis; g

(
yi
)

is the negative 
Binomial distribution with mean μi and NB dispersion parameter α (Eq. 
(2)). The model parameters are estimated by the Maximum Likelihood 
method, where the specification of the likelihood function has the 
advantage of separately maximizing both the count and the hurdle 
components of the model (Zeileis et al., 2008). In this study, we used R 
software, “pscl” package (Jackman et al., 2015) for estimating the model 
parameters. 

3. Data processing approach 

For the analysis, a rich dataset was compiled using several sources. 
The final set of variables in this dataset and summary statistics of these 
variables are listed in Table 1. The variables in this table are grouped 
into seven categories based on the characteristics of the variables. In 
each cell, crashes (based on the type) were summed up to calculate the 
total number of crashes (Fig. 3). In addition, line and polygon features 
intersecting with each cell were also aggregated (Figs. 4 and 5). That is, 
for example, roadways that fall into a cell were combined to find the 
length of each roadway type (e.g., residential, etc.) in that cell. Then, the 
proportion of different types of roads in each cell was calculated and 
assigned to the cell. For this purpose, Eq. (3) was used. 

Rr
i =

∑n

j=1
lr
ij/

∑k

r=1

∑n

j=1
lr
ij (3)  

where Rr
i indicates the proportion of road type r in the corresponding 

cell i; lrij is the length of road segment j with type r in cell i. For polygon 
features, such as the area of different land-use classes, a simple 
proportioning method (Eq. (4)) was used. Fig. 2. Queen contiguity (light orange cells are considered neighbors of the 

blue cell in the center). 
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Table 1 
Descriptive Statistics of the explanatory and response variables used in the models.  

Type of variable Abbreviations V&B-Models Variables 
NV&B = 48,474 

V&V-Models Variables 
NV&V = 53,579 

Description of the variable 
(Determined in the corresponding 100-cell) 

source 

min max mean s.d. min max mean s.d. 

Crash outcome PDO 0.00 15.00 0.11 0.46 0.00 81.00 0.49 1.83 Number of PDO crashes. (BRON, 2015-2019) 
KSI 0.00 9.00 0.05 0.27 0.00 8.00 0.04 0.24 Number of KSI crashes. 

Weighted average year of construction of housing 
properties 

Before 1900 0.00 1.00 0.02 0.16 0.00 1.00 0.02 0.15 Ave. year is before1900 (True = 1, False = 0). (BAG 2020) 
1900–1950 0.00 1.00 0.14 0.35 0.00 1.00 0.13 0.34 Ave. year is between 1900 and 1950 (True = 1, False 

= 0). 
1950–1970 0.00 1.00 0.12 0.32 0.00 1.00 0.11 0.31 Ave. year is between 1950 and 1970 (True = 1, False 

= 0). 
1970–1990 0.00 1.00 0.18 0.38 0.00 1.00 0.16 0.37 Ave. year is between 1970 and 1990 (True = 1, False 

= 0). 
After 1990 0.00 1.00 0.24 0.42 0.00 1.00 0.22 0.41 Ave. year is after 1990 (True = 1, False = 0). 

Demographic and socioeconomic #Households 0.00 7.55 0.31 0.42 0.00 7.55 0.28 0.41 Number of households (x100). (CBS, 2017a, 2017b) 
∝Household with 
Child 

0.00 1.00 0.18 0.23 0.00 1.00 0.16 0.23 Proportion of households with children. 

%Rental Houses 0.00 1.00 0.44 0.30 0.00 1.00 0.42 0.31 Percentage of rental housing properties. 
Value of Houses 0.00 1.47 0.22 0.15 0.00 1.47 0.21 0.16 Average value of housing properties (x 1 Million 

Euro). 
%High Income 0.00 0.80 0.17 0.16 0.00 0.80 0.16 0.16 Percentage of high-income households. 

Traffic variables log(VKT) − 10.20 10.44 5.54 1.39 − 10.20 10.82 5.52 1.41 Log (total average daily VKT). (Geofabrik, 2019;  
(Jedlička et al., 

2015)  
Rijkswaterstraat, 

2018, 2019a) 
Regional traffic 
model outputs: 

Amsterdam (2020), 
metropolitan region 
of Rotterdam-The 

Hague (2017), 
Province of Utrecht 
(2015), and city of 

Almere (2017) 

Speed Limit = 30 0.00 1.00 0.56 0.50 – – – – Maximum speed limit = 30 (True = 1, False = 0). 
Speed Limit = 50 0.00 1.00 0.33 0.47 0.00 1.00 0.30 0.46 Maximum speed limit = 50 (True = 1, False = 0). 
Speed Limit > 50 – – – – 0.00 1.00 0.14 0.35 Maximum speed limit > 50 (True = 1, False = 0). 
∝Primary Roads – – – – 0.00 1.00 0.02 0.13 Proportion of Primary roads. 
∝Secondary Roads 0.00 1.00 0.07 0.21 0.00 1.00 0.07 0.21 The proportion of Secondary roads. 
∝Tertiary Roads 0.00 1.00 0.09 0.23 0.00 1.00 0.08 0.22 The proportion of Tertiary roads. 
∝Residential Roads 0.00 1.00 0.43 0.42 0.00 1.00 0.39 0.42 The proportion of Residential roads. 

Land-use types and indices ∝Accommodation 
Area 

0.00 2.14 0.00 0.04 0.00 2.14 0.00 0.04 Proportion of Accommodation (e.g., hotels, hostels) 
areas. 

(Leefomgeving, 
2019) 

∝Sport Area 0.00 2.73 0.00 0.02 0.00 2.73 0.00 0.02 Proportion of Sports facility areas. 
∝Shop Area 0.00 2.21 0.01 0.07 0.00 3.40 0.01 0.07 Proportion of Shop areas. 
∝Meeting Area 0.00 8.44 0.01 0.08 0.00 8.44 0.01 0.08 Proportion of Meeting (e.g., cinema, church, etc.) 

areas. 
∝Office Area 0.00 8.68 0.03 0.17 0.00 8.68 0.03 0.16 Proportion of Office areas. 
MXI 0.00 1.00 0.60 0.41 0.00 1.00 0.55 0.42 Mixed land-use function index. 
Urbanity 0.00 4.98 1.03 0.87 0.00 4.98 0.97 0.87 Urbanity (number of registered address density ×

100). 
(CBS, 2017b) 

Proximity characteristics Secondary school 0.00 10.00 0.72 1.01 – – – – 1/distance to secondary schools. (CBS, 2017a) 
Train Station 0.00 10.00 0.35 0.52 – – – – 1/distance to train stations. 
Grocery Shops 0.00 10.00 1.71 2.12 0.00 10.00 1.56 2.08 1/distance to supermarkets and daily shops. 
Main Roads 0.00 10.00 0.43 0.53 0.00 10.00 0.39 0.52 1/distance to main roads. 

(continued on next page) 
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Sl
i =

1
1002

∑n

j=1
(
Sl

ij

Bj
.aij) (4)  

where Sl
i is the proportion of the polygon feature S type l in the cell i; Sl

ij 

is the area of the Sl
i in building block j; Bj is the total area of the building 

block j, and aij is the area of the building block j that intersects with cell i. 
These values were then used to estimate the mixed land-use index 

(MXI) of the cells, which indicates the ratio of housing function areas to 
all other functions (Van Den Hoek, 2008). It is worth noting that the 
utilized MXI uses a floor-space area of the land-use functions provided in 
the RUDIFUN database (Leefomgeving, 2019) rather than the ground- 
space area. This results in more accurate MXI values (Harbers et al., 
2019). 

3.1. Motor-vehicle and cycling volumes data preparation 

One major issue in traffic safety studies is the lack of reliable expo-
sure variables, e.g., traffic volume, data for the minor roads (Schepers, 
2021b). Previous studies usually utilized “proxy variables” such as the 
trip production measures (i.e., population or employment), (bicycle) 
lane-kilometer, mode choice, or accessibility to train to account for the 
traffic exposure (Chen, 2015; Merlin et al., 2020b; Obelheiro et al., 
2020; Wang et al., 2019). This means that traffic and cycling exposures 
were not explicitly controlled for whilst analyzing the effects of built- 
environment factors. Although it is clear that such proxy variables can 
lead to less accurate estimates of these effects, use of these variables can 
give a fair indication of the traffic/cycling volumes in the absence of 
high quality traffic volume data. 

In this research, we used databases from different sources such as 
Open Transport Map (OTM) (Jackman et al., 2015) and Open Street Map 
(OSM) (Geofabrik, 2019). Furthermore, traffic count data were obtained 
from the traffic models of municipalities of Amsterdam, the metropolitan 
region of Rotterdam-The Hague, the Province of Utrecht, and the city of 
Almere. However, the traffic models had two shortcomings: 1) the traffic 
models provide weekday counts and do not model weekend counts, and 
2) the traffic models mainly provide the vehicle counts on the major 
urban roads (arterials/distributor roads) and do not cover minor roads 
(e.g., residential or access roads), which constitute a major portion of the 
road network in urban areas. 

To remedy these shortcomings, we used regression models (Table 2) 
based on the data for the selected cities from a database called “IN-
tensities on WEgVAkken” (INWEVA) provided by the ministry of infra-
structure and the environment (Rijkswaterstraat, 2019a). This database 
consists of traffic intensities on major roads both for weekdays and 
weekends based on different vehicle categories. These models were used 
to estimate the vehicle counts at the weekend (WEn) based on the 
weekday (WDn) data. Estimated traffic volumes were then assigned to 
the minor roads. Finally, traffic volumes were used to calculate the total 
vehicle-kilometre-travelled (VKT) values in the cell i, using Eq. (5). 

VKTi =
∑n

j=1
vij.lij (5)  

where VKTi is the total VKT in cell i; vij is the average daily vehicle count 
on the road link j in the cell i; lij is the length of the road link j (in km) 
located in cell i. 

For bicycle volume and average cycling speed, this study used data 
including the number of registered bicycle rides per road section during 
the entire Bicycle Counting Week (BCW) in 2016. This project had 
almost 51,000 participants in the Netherlands and was carried out from 
the 19th to 25th September 2016 (Nationale Fietstelweek, 2016). To 
check the validity of the BCW data, Van Petegem et al. (2021) conducted 
an analysis using data from manual bicycle counts, detector loops, and 
the BCW data in Amsterdam. The statistical tests found a high correla-
tion between BCW data and manual counts (Pearson correlation = 0.78). Ta
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Fig. 3. Representation of the location of the V&V crash points in the 100-cells in the city of Rotterdam.  

Fig. 4. Representation of the road network in the city of Rotterdam.  
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Moreover, Uijtdewilligen et al. (Accepted for publication) found that the 
ratio between the detector loops and BCW data is equal to 41.12. Thus, 
we calibrated the daily bicycle counts obtained from BCW by using a 
factor of 41.12. Similar to the VKT, the total Bicycle-Kilometer-Traveled 
(BKT) in the cells were calculated after this calibration. 

3.2. Distance variables indicating the proximity to facilities 

Proximity to facilities was evaluated using variables showing the 
distance to certain facilities. Information on the distance of each cell to 
the main roads was of interest in the V&V crash analysis because more 
motorized vehicles can be expected in the cells with a shorter distance to 
the main roads. In addition, the average distances to supermarkets and 
food-product shops were included as previous research in the 
Netherlands showed that these facilities are one of the main car/bicycle- 

trip destinations (Veenstra et al., 2010). The average distance to 
different types of (secondary) schools and train stations was also 
included in the V&B crash analysis as cycling is especially prevalent in 
the Netherlands for trips to education facilities (Mobiliteitsbeleid, 
2017b) and access/egress to train stations (Mobiliteitsbeleid, 2017a). 

3.3. Crash data 

This study uses data obtained from the database with crashes re-
ported by the police (BRON, 2015-2019). Note that crash data 
commonly suffers from underreporting of minor injuries and PDO 
crashes and BRON crash dataset is no exception to this (SWOV, 2016). In 
general, severe crashes involving motor vehicles have a higher regis-
tration rate than less severe crashes and crashes which do not involve 
motor vehicles. Therefore, KSI crashes, defined as crashes with fatalities 
and/or injuries leading to hospitalization, are analyzed separately. 

It is also worth mentioning that there can be inaccuracies in crash 
locations depending on the record type. In BRON data, crash locations 
are registered at four accuracy levels: 1) exact coordinates, 2) intersection 
level, 3) street level, and 4) municipality level (the least accurate level) 
(Please see (Rijkswaterstaat-CIV, 2021) for more details). In the BRON 
(2015-2019) data used in this study area, only 2.3% of crashes were 
registered at the municipality level. However, this part of the data was 
not discarded, due to its negligible share. 

Despite these potential inaccuracies, the BRON dataset is still a high- 
quality dataset and the only available source of traffic crashes in the 
Netherlands. Of the final set of 100-cells included in the analysis, one 
cell had 491 registered V&V-PDO crashes and was discarded after a 
manual inspection due to erroneous records. 

4. Results 

4.1. Crash types and descriptive statistics 

A total of 7,622 V & B crashes including 5,149 PDO and 2,473 KSI 
types were analyzed in this study. 26,443 PDO and 2,066 KSI crashes 

Fig. 5. Representation of land-use function mixing of the building blocks overlaid in the cells, in Rotterdam.  

Table 2 
Regression models for weekend/weekday vehicle count on major roads in the 
selected cities.  

n City Regression model Adjusted 
R2 

Sample 
size 

1 Amsterdam log(WE) = − 1.21 +
1.08 * log(WD) 

0.92 477 

2 Rotterdam log(WE) = − 1.26 +
1.08 * log(WD) 

0.93 560 

3 The Hauge log(WE) = − 0.09 +
0.98 * log(WD) 

0.99 189 

4 Utrecht log(WE) = − 1.36 +
1.09 * log(WD) 

0.98 349 

5 Almere log(WE) = − 0.58 +
1.03 * log(WD) 

0.97 186 

6 Amersfoort log(WE) = − 1.09 +
1.08 * log(WD) 

0.99 179 

7 Houten, Nieuwegein log(WE) = − 1.13 +
1.07 * log(WD) 

0.99 100 

8 Zoetermeer, Lansingerland, 
Capelle, Barendrecht 

log(WE) = − 0.04 +
0.98 * log(WD) 

0.97 151  
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involving motor-vehicles only (V&V) were included in the analysis. 
Fig. 6 shows that the majority of cells included in the analysis had zero 
crashes. 

Figure 7 shows that the maximum number of V&B-PDO and V&B-KSI 
in 2015–2019 are 15 and 9 crashes respectively. For V&V crashes, the 
maximum number for PDO and KSI crashes are 81 and 8 respectively. 

4.2. Modeling results 

Spatial Hurdle Negative Binomial models were conducted to analyze 
the traffic crashes. Tables 3 and 4 present regression coefficients (β), 
standard error (SE), and the p-value of parameters of the count and zero- 
hurdle parts of the models as well as the goodness-of-fit (i.e., Log- 
Likelihood) of the models. In terms of comparing the modeling perfor-
mances, we should note that the KSI crash models (AICKSI-V&B =

15,366.10and AICKSI-V&V = 13,917.21) had a better performance than 
the PDO crash models (AICPDO-V&B = 24,888.37and AICPDO-V&V =

69,450.99). 
Figures 8 and 9 show the “standardized coefficients” (Siegel, 2016) 

for significant variables (95% CI). Standardized coefficients were chosen 
because they are scale-less and unit-less, making them more useful than 
regular coefficients for comparing the direction and specifically the 
magnitude of effects (Zhao et al., 2021). 

In Figs. 8 and 9, the plain and diagonal shaded blue bars reflect the 
impacts of the factors on the PDO-crash “frequency” and “probability” 
respectively. “Frequency” refers to the expected number of crashes in 
the 100-cells and “probability” refers to the expected chance of 
observing one or more crashes in the 100-cells within a 5-year period. 
The orange bars, on the other hand, show the same values for KSI- 
crashes. Fig. 8 shows that a greater frequency of V&B crashes is ex-
pected in the areas with a larger number of old housing (built before 
1900). A comparison between the size of the blue and orange bars re-
veals that the magnitude of this impact was smaller for PDO crashes than 
KSI ones. The age of the buildings implies policy changes towards land- 
use and roadway design, rather than the effects of the buildings them-
selves. That is, the weighted average year of build for residential 

properties in the 100-cells can be treated as a proxy variable reflecting 
the variety in the design of the built-environment, which affects traffic 
safety. 

In Fig. 8, it is also clear that the size of the plain orange bar corre-
sponding to the 30 km/h variable is larger than the same bar for the 50 
km/h. This indicates that 50 km/h roads have a larger impact on KSI 
crashes than 30 km/h roads. Whereas 30 km/h is more influential on 
PDO crashes than 50 km/h roads. These figures provide a clear illus-
tration of the scale-free effects of variables on crashes and a comparison 
of these effects. However, the reader should refer to Tables 3 and 4 to see 
the unstandardized coefficients of these variables. 

4.2.1. Effects of built-environment characteristics 
The results show that fewer V&B crashes are likely in areas with a 

higher proportion of households with children (Fig. 8). This result was 
expected as the speed limit of the access roads in residential areas with 
housing for families is set at 30 km/h (15 km/h in home zones where the 
cyclists and pedestrians have priority over cars which makes the areas 
safer for pedestrians and cyclists). Moreover, relatively many families 
with children live in the VINEX areas that are designed (and also found) 
to be safer locations for cyclists. 

Three groups of land-use characteristics affect traffic safety, land-use 
density, land-use mixture, and land-use classes (Xu et al., 2020). Our 
findings reveal that increasing the level of urbanization (indicated by 
the density of the registered addresses in the cells) raises the probability 
and frequency of traffic crashes. This might be due to the higher popu-
lation and the conflicts caused by an increased rate of trip attractions/ 
generations in these areas. In contrast, a reduced crash probability was 
expected and found at a higher level of MXI (representing land-use di-
versity). This relationship was also found in the literature (Chen & Shen, 
2016). This relationship can be explained by the fact that locations (i.e., 
origins and destinations) are closer to each other in areas with larger 
MXI, which encourages the residents to walk or cycle. 

Furthermore, the results show that the ages of the built-up areas used 
as proxy variables for various land-use designs impact traffic safety. 
These variables also indicate the implementation of different land-use 

Fig. 6. Comparing the percentage of the cells with zero crashes and not-zero crashes.  

M. Asadi et al.                                                                                                                                                                                                                                   



Accident Analysis and Prevention 172 (2022) 106683

10

policies which is very intriguing. As the results illustrate, areas built 
after 1950 are safer for cyclists. Also, the results imply that the older the 
area (i.e., built between 1900 and 1970), the higher the frequency of 
V&V-KSI crashes. These findings verify the results of Schepers (2021b) 
and Schepers et al. (2019) who found that the development of the Dutch 
new towns (in the 1970 s) and VINEX areas (in the 1990s) has had a 
positive impact in reducing road deaths. 

Higher proximity to grocery stores increases the frequency and/or 
probability of KSI crashes in the area. In addition, the shorter the dis-
tance to the lower-ranked 50 km/h municipal roads (indicated by 
“distance to the main road” (Leeuwen & Venema, 2021)) the lower the 
probability of KSI crash occurrence. This result is in line with the find-
ings of Merlin et al. (2020a) who showed that cumulative higher 
accessibility to traffic volume on arterials and freeways within a 30-mi-
nutes travel time thresholds had a positive correlation with crash fre-
quency of all (injury and modes) types. The short distance to the main 
roads may indicate a better-designed infrastructure using new policies 
which consider traffic safety. Higher proximity to the main roads also 
indicates a longer distance to the city center. In these areas, the road 
network is less dense and modes other than motor-vehicles are less 
frequent. All these characteristics might lower traffic conflicts and 
crashes. 

Figure 8 also illustrates that high proximity to schools increases the 
frequency of severe V&B crashes. These findings are consistent with 
studies in the Netherlands (Schepers, 2021b) and other regions 
(Hadayeghi et al., 2007) indicating that severe V&B crashes were more 
probable in the areas proximal to schools. One reason for this might be 
the tendency of secondary school students to cycle in groups (i.e., bunch 
cycling). Such behavior has been found to increase the risk of sports 
cycling crashes in the Netherlands (Wijlhuizen et al., 2016). Also, 
shorter distances to schools are common in areas with older buildings 
which were found to be riskier areas for cyclists. 

4.2.2. Effects of traffic and infrastructure characteristics 
The major role of exposure variables (i.e., VKT and BKT) in 

increasing the frequency and probability of crashes can be seen in Figs. 8 
and 9. These findings broadly support the work of previous studies on 
traffic crashes (Mukoko & Pulugurtha, 2019; Tagar & Pulugurtha, 
2021). Comparisons between the coefficients of BKT and VKT (Fig. 8 for 
KSI crashes) reflect “the safety-in-number effect”. The ratio of these 
coefficients (VKT/BKT = 2.10/1.67) is fairly compatible with what was 
found by Elvik and Bjørnskau (2017) (motor vehicle volume/bicycle 
volume = 0.5/0.43). However, as Table 3 shows, the actual numerical 
estimates substantially vary in the Hurdle and count parts of the models. 

The primary source of such variation in the safety-in-numbers effect in 
these models could be the models’ specifications and utilized explana-
tory variables (Elvik & Goel, 2019). The results also show that the im-
pacts of exposure variables on KSI crashes were considerably larger than 
their impacts on PDO crashes. 

Based on Fig. 8, KSI crashes are more frequent (and probable) in 
areas with 50 km/h speed limit roads compared to areas with 30 km/h 
roads. Such results were consistent with the fact that almost 80% of road 
deaths in Dutch cities occurred on roads with a 50 km/h (or 70 km/h) 
speed limit (Schepers, 2021a). Nonetheless, Fig. 9 shows that severe 
V&V crashes are less likely to occur in areas with high-speed (>50 km/ 
h) roads. A similar result was found in the literature (Bao et al., 2021) 
indicating the possibility of drivers’ violence from the posted speed 
limits at the lower speeds as well as the complexity of driving conditions 
because of mixed traffic and more access points at these roads (Tignor & 
Warren, 1990). In line with previous studies (e.g., Adams & Aldred, 
2020; Obelheiro et al., 2020; Schepers, 2021b) we found that a higher 
proportion of arterial and secondary roads is associated with an 
increased number/probability of the crashes. Moreover, the figures 
reflect that a higher density of residential and minor roads in the areas 
leads to a higher crash frequency in all types. 

Interestingly, high cycling speeds were (on average) observed to 
reduce the frequency of V&B-PDO crashes. This relationship can be 
reasoned as higher cycling speed is possible on cycling paths where there 
are no conflicts with motorized traffic. Also, the average cycling speeds 
should be lower at intersections where more conflicts and consequently 
more crashes are expected. 

Regarding the effects of the cycling facilities, the results confirm 
what was found in other studies indicating that V&B crashes are 
concentrated on the arterial roads that are adjacent to the high volume 
and high-speed roads (Schepers et al., 2013; Schepers et al., 2011). In 
this study, these facilities are characterized by suggested cycling lanes 
and other cycling roads (i.e., mixed traffic roads). Moreover, based on 
Fig. 8 the separated cycle paths may negatively affect the V&B crashes 
compared to the suggested cycle lanes and mixed traffic roads. This 
result seems to contradict the findings of Van Petegem et al. (2021) and 
other previous studies showing that separated cycle paths are usually 
safer than cycle lanes adjacent to 50 km/h streets and mixed traffic 
streets (Adams & Aldred, 2020; Aldred et al., 2021). Although the 
separated cycle paths prevent conflict with motor-vehicles, the presence 
of busy side roads, parked vehicles besides the cycle paths, as well as 
large intersections that need to be crossed can increase the probability 
and frequency of V&B crashes (Vandenbulcke et al., 2014). 

Fig. 7. Histogram graphs of the total number of V&B and V&V types of PDO and KSI crashes, in the cells.  
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4.2.3. Effects of socioeconomic and demographic characteristics 
To identify the effects of socioeconomic levels on safety, variables 

including the percentage of rental properties, average of housing values, 
and the percentage of the high-income population were used in the 
model. Figs. 8 and 9 show the effects of these variables indicating that 
areas with high socioeconomic levels are safer places, confirming pre-
vious findings (Najaf et al., 2018; Osama & Sayed, 2017; Xie et al., 
2019). 

Our results show that severe V&B crashes are less likely in areas with 
a higher proportion of households with children. However, the associ-
ations between the number of households in the area and the analyzed 
crashes remained unclear in our study. It is also good to note that, we 
excluded demographic variables such as gender and age as they were 
highly correlated with the total number of households and the per-
centage of households with children in the study area. 

4.2.4. Effects of characteristics of the neighboring areas (spillover effects) 
As for the role of neighboring variables which reflect spatial spillover 

effects, the results suggest that an increase in VKT in neighboring cells 
increases the probability (and to some extent the frequency) of PDO 
crashes. In contrast, high vehicle/bicycle volumes in neighboring cells 
were associated with a reduction in the frequency of severe V&B crashes 
and an increase in PDO-V&V crashes. This is rather counterintuitive but 
could indicate that the targeted areas are less likely to have high bicycle 
exposure. It is also worth noting that a higher proportion of shopping 
areas in the surrounding cells may raise the number of KSI crashes. 

5. New insights, discussion, and future directions 

5.1. New insights 

Previous studies about the effects of built-environment factors on 
traffic crashes have shown mixed and contradicting outcomes on the 
magnitude of the effects of the built-environment factors. This study 
examined the effects of a comprehensive set of built-environment factors 
on vehicle-only and bicycle-vehicle crashes in the built-up areas. The 

Table 3 
Results of the SHNBR Model on V&B crashes; Count model coefficients (truncated NB with log link) and Zero hurdle model coefficients (binomial with logit link).  

Groups Explanatory 
variables 

PDO Crash (Log-likelihood: ¡12,360 on 85 Df) 
Theta: count = 0.68 

KSI Crash (Log-likelihood: ¡7,598 on 85 Df) 
Theta: count = 1.21 

Count Model Zero hurdle model Count Model Zero hurdle model 

β SE Pr(>| 
z|) 

β SE Pr(>| 
z|) 

β SE Pr(>| 
z|) 

β SE Pr(>| 
z|)  

(Intercept) − 4.52 0.66 0.00 − 7.87 0.29 ≈0.00 − 5.31 1.04 0.00 − 8.4 0.36 ≈0.00 
Population density #Households 0.12 0.09 0.16 − 0.07 0.06 0.21 − 0.02 0.14 0.89 − 0.16 0.07 0.03 

∝Household with 
Child 

− 2.03 4.67 0.66 0.84 1.75 0.63 − 13.49 11.06 0.22 − 6.08 2.98 0.04 

Land-use density ∝Accommodation 
Area 

0.31 0.40 0.44 1.15 0.36 0.00 − 0.83 1.00 0.40 0.33 0.42 0.43 

∝Sport Area − 2.08 2.11 0.32 0.35 0.75 0.64 − 4.86 4.68 0.30 0.5 0.84 0.55 
∝Shop Area 0.88 0.44 0.05 0.19 0.25 0.45 0.54 0.83 0.52 0.11 0.33 0.74 
∝Meeting Area 0.37 0.36 0.31 0.25 0.18 0.16 0.04 0.58 0.94 0.32 0.2 0.11 
∝Office Area − 0.09 0.16 0.56 0.02 0.10 0.87 − 0.39 0.35 0.26 − 0.2 0.15 0.18 
Urbanity 0.10 0.05 0.06 0.29 0.03 ≈0.00 0.28 0.09 0.00 0.18 0.04 0.00 

Land-use diversity MXI − 0.03 0.12 0.83 − 0.37 0.10 0.00 − 0.10 0.28 0.72 − 0.14 0.12 0.26 
Land-use Design Before 1900 0.37 0.19 0.05 0.32 0.12 0.01 − 0.10 0.29 0.74 0.3 0.15 0.05 

1900–1950 0.03 0.17 0.84 0.05 0.10 0.61 − 0.31 0.26 0.24 0.22 0.12 0.07 
1950–1970 0.25 0.17 0.16 0.11 0.10 0.28 − 0.46 0.28 0.10 0.19 0.12 0.12 
1970–1990 0.06 0.18 0.73 0.10 0.10 0.3 − 0.57 0.29 0.05 − 0.03 0.12 0.79 
After 1990 0.01 0.18 0.95 0.20 0.10 0.04 − 0.71 0.30 0.02 − 0.06 0.12 0.62 

Proximity to Train Station 0.01 0.05 0.84 0.03 0.03 0.29 0.12 0.08 0.13 0.01 0.04 0.74 
Secondary Schools 0.05 0.03 0.09 0.08 0.02 0.00 0.03 0.05 0.48 0.04 0.02 0.11 
Grocery Shopping 0.03 0.01 0.02 0.07 0.01 0.00 0.02 0.03 0.56 0.05 0.01 0.00 
Main Roads − 0.19 0.12 0.12 − 0.15 0.07 0.04 − 0.04 0.19 0.83 − 0.08 0.08 0.34 

Traffic & Infrastructure 
characteristics 

log(VKT) 0.17 0.06 0.00 0.47 0.03 ≈0.00 0.18 0.10 0.08 0.46 0.04 ≈0.00 
Speed Limit ≤ 30 0.46 0.31 0.14 0.63 0.12 0.00 1.10 0.48 0.02 0.16 0.14 0.24 
Speed Limit ≤ 50 0.52 0.30 0.09 0.74 0.12 0.00 0.93 0.45 0.04 0.47 0.12 0.00 
∝Secondary Roads 0.36 0.22 0.10 − 0.03 0.12 0.81 0.90 0.33 0.01 0.1 0.14 0.46 
∝Tertiary Roads 0.15 0.19 0.45 0.50 0.11 0.00 0.26 0.30 0.38 0.81 0.13 0.00 
∝Residential Roads − 0.22 0.17 0.19 0.64 0.09 0.00 0.06 0.31 0.83 0.65 0.11 0.00 

Cycling Activities & 
Infrastructure 

log(BKT) 0.25 0.05 0.00 0.20 0.02 ≈0.00 0.18 0.08 0.02 0.2 0.02 ≈0.00 
Cycling Speed − 0.01 0.01 0.17 − 0.01 0.00 0.09 − 0.03 0.02 0.03 − 0.01 0.01 0.14 
∝Separated Cycle Path 1.87 0.47 0.00 4.58 0.28 ≈0.00 1.87 0.72 0.01 4.13 0.34 ≈0.00 
∝Suggested Cycle 
lanes 

1.94 0.75 0.01 6.31 0.52 ≈0.00 2.92 1.15 0.01 6.59 0.58 ≈0.00 

∝Mixed traffic 0.53 0.47 0.25 3.15 0.25 ≈0.00 1.01 0.77 0.19 3.14 0.31 ≈0.00 
Socioeconomic characteristics ∝Rental Houses 0.48 0.21 0.02 0.51 0.10 0.00 0.46 0.32 0.14 0.4 0.13 0.00 

Housing Value − 0.91 0.43 0.03 − 0.13 0.20 0.52 − 1.84 0.69 0.01 − 0.26 0.24 0.28 
∝High Income − 0.92 0.53 0.08 − 0.25 0.22 0.26 1.27 0.84 0.13 − 0.23 0.28 0.4 

Neighboring variables #Households − 0.21 0.12 0.08 − 0.09 0.04 0.05 − 0.63 0.21 0.00 0.01 0.09 0.88 
∝Shop Area 0.25 0.50 0.61 1.32 0.32 0.00 − 0.41 1.13 0.72 0.70 0.41 0.09 
∝Office Area 0.04 0.20 0.83 0.29 0.15 0.06 − 0.16 0.36 0.66 0.24 0.18 0.20 
Proximity to Main 
Roads 

− 0.04 0.15 0.79 0.12 0.08 0.16 0.22 0.21 0.29 − 0.01 0.10 0.95 

∝Secondary Roads − 0.72 0.69 0.29 0.62 0.38 0.10 − 1.38 1.14 0.22 − 0.12 0.47 0.80 
∝Tertiary Roads 0.45 0.69 0.51 0.87 0.39 0.03 1.63 1.10 0.14 0.28 0.5 0.58 
∝Residential Roads 0.79 0.78 0.31 0.17 0.43 0.70 − 0.06 1.31 0.96 0.05 0.54 0.93 
log(VKT) 0.03 0.09 0.74 − 0.09 0.04 0.05 0.12 0.14 0.39 − 0.01 0.05 0.93 
log(BKT) − 0.38 0.26 0.14 − 0.09 0.03 0.00 − 0.03 0.11 0.79 − 0.03 0.04 0.37  
Log(theta) − 0.38 0.26 0.14 – – – 0.19 0.52 0.71 – – –  
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new insights yeilding from the results of this study are as follows:  

1. Land use variables are often highly correlated which can result in 
biased effects on traffic crashes. By including land-use variables 
indicating the urbanity level, we observed that the proportion of 
different land-use types,e.g., accommodation, shop, etc., become less 
influential on the crash frequency and probability. Furthermore, we 
did not find significant associations between crash frequency (and 
probability) and the proportion of meeting and sports areas (which 
can be considered as leisure areas).  

2. The effects of building density outweigh the effects of population 
density. This indicates that the contribution of number and location 
of human activities (i.e., buildings) and therefore land-use policies in 
traffic safety is greater than the number of residents in an area.  

3. The majority of the built-environment factors have similar impacts in 
terms of increasing or decreasing V&B and V&V crashes. However, 
this study gives new insights about the magnitude of these impacts 
that vary based on the severity level of the crash and also the 
vulnerability level of the involved parties. For example, a greater 
level of MXI reduces the number of both types of crashes. In this 
study, we also observed that this impact on V&B crashes 
(
⃒
⃒std.coeffMXI

V&B
⃒
⃒ = 0.45) is larger than that on V&V crashes 

(
⃒
⃒std.coeffMXI

V&V
⃒
⃒ = 0.40).  

4. A greater proportion of residential roads and separated cycling paths 
increases the probability (and frequency) of V&B crashes in Dutch 
cities. This result differs from findings of previous studies in other 
countries. E.g., Osama and Sayed (2017) found that an increase in 
the proportion of local roads and separate bicycle paths had reduced 
the number of V&B crashes in Vancouver, Canada. Findings for the 
Netherlands are likely to differ given the design and density of the 
cycling facilities and high bicycle volumes in Dutch cities (Uijtde-
willigen et al., Accepted for publication). 

5.2. Discussion 

The newly designed built-up areas, namely New Towns and VINEX 
areas developed in the 1970s and 1990s respectively, have improved the 
safety of cyclists in Dutch cities. Nonetheless, it is worth mentioning that 
another traffic safety policy, the Sustainable Safety Policy, was adopted 
after the 1990s, focusing on designing safer roadways (SWOV, 2018) 
and improving traffic safety (Weijermars & Wegman, 2011). As 
mentioned, we found some associations between traffic safety and the 
proxy variables indicating the implementation of different spatial and 
transport policies. This reveals that distinguishing the effects of such 
policies on traffic safety would be an interesting subject for future 
research. Contrary to cyclist safety, the above-mentioned urban policies 
might be less effective in reducing the frequency of serious car crashes. 

Table 4 
Results of the SHNBR Model on V&V crashes; Count model coefficients (truncated NB with log link) and Zero hurdle model coefficients (binomial with logit link).  

Groups Explanatory 
variables 

PDO Crash (Log-likelihood: ¡34,650 on 71 Df) 
Theta: count = 0.21 

KSI Crash (Log-likelihood: ¡6,888 on 71 Df) 
Theta: count = 0.00 

Count Model Zero hurdle model Count Model Zero hurdle model 

β SE Pr(>| 
z|) 

β SE Pr(>| 
z|) 

β SE Pr(>| 
z|) 

β SE Pr(>| 
z|)  

(Intercept) − 5.74 0.26 ≈0.00 − 7.77 0.15 ≈0.00 − 21.45 1172.70 0.99 − 9.96 0.31 ≈0.00 
Population Density #Households − 0.09 0.06 0.13 0.01 0.04 0.75 − 0.28 0.26 0.28 − 0.09 0.08 0.26 

∝Household with 
Child 

− 1.65 1.70 0.33 − 2.03 1.25 0.1 − 10.85 10.96 0.32 − 1.97 2.91 0.50 

Land-use Density ∝Accommodation 
Area 

0.62 0.32 0.05 0.8 0.3 0.01 − 5.04 4.56 0.27 0.25 0.51 0.62 

∝Sport Area 0.48 1.21 0.69 − 0.03 0.65 0.96 5.02 5.34 0.35 − 0.38 1.36 0.78 
∝Shop Area 0.74 0.26 0.00 0.87 0.22 0 − 1.71 1.50 0.25 0.51 0.35 0.15 
∝Meeting Area 0.04 0.22 0.86 0.2 0.14 0.15 − 1.48 1.24 0.23 0.20 0.25 0.41 
∝Office Area 0.03 0.11 0.82 − 0.24 0.09 0.01 0.50 0.43 0.24 − 0.23 0.16 0.16 
Urbanity 0.22 0.03 0.00 0.26 0.02 ≈0.00 0.33 0.12 0.01 0.17 0.04 0.00 

Land-use Diversity MXI − 0.24 0.09 0.01 − 0.37 0.06 0 0.05 0.33 0.88 − 0.23 0.16 0.16 
Land-use Design Built before 1900 − 0.32 0.12 0.01 0.25 0.09 0.01 − 0.74 0.55 0.18 0.42 0.18 0.02 

Built in 1900–1950 − 0.05 0.09 0.57 0.43 0.07 0 − 0.08 0.33 0.81 0.28 0.12 0.03 
Built in 1950–1970 − 0.03 0.09 0.74 0.55 0.06 ≈0.00 − 0.17 0.34 0.60 0.30 0.12 0.02 
Built in 1970–1990 − 0.17 0.09 0.06 0.3 0.06 0 − 0.12 0.33 0.72 0.18 0.12 0.16 
Built after 1990 0.01 0.09 0.95 0.22 0.06 0 0.30 0.31 0.33 0.11 0.12 0.34 

Proximity to Grocery Shopping 0.04 0.01 0.00 0.09 0.01 ≈0.00 0.02 0.04 0.68 0.05 0.01 0 
Main Roads − 0.06 0.05 0.18 − 0.08 0.04 0.05 − 0.17 0.19 0.38 − 0.17 0.08 0.04 

Traffic & Infrastructure 
characteristics 

log(VKT) 0.48 0.03 ≈0.00 0.81 0.02 ≈0.00 0.31 0.11 0.01 0.94 0.04 ≈0.00 
Speed Limit = 50 0.27 0.05 0.00 0.23 0.04 0 − 0.11 0.25 0.67 0.43 0.08 0.00 
Speed Limit > 50 0.39 0.08 0.00 − 0.12 0.05 0.02 0.16 0.31 0.60 0.23 0.11 0.04 
∝Primary Roads 0.71 0.13 0.00 0.38 0.09 0 0.69 0.44 0.12 0.40 0.15 0.01 
∝Secondary Roads 0.77 0.10 0.00 0.45 0.07 0 1.05 0.39 0.01 0.57 0.13 0.00 
∝Tertiary Roads 0.41 0.11 0.00 0.85 0.07 ≈0.00 0.55 0.43 0.20 0.64 0.14 0.00 
∝Residential Roads 0.30 0.09 0.00 0.73 0.06 ≈0.00 0.76 0.42 0.07 0.74 0.13 0.00 

Socioeconomic 
characteristics 

∝Rental Houses 0.23 0.09 0.01 0.44 0.06 0 − 0.44 0.31 0.16 0.40 0.12 0.00 
Housing Value − 1.31 0.19 0.00 − 0.6 0.12 0 − 0.63 0.73 0.39 − 1.49 0.29 0.00 
∝High Income − 0.32 0.20 0.11 − 0.99 0.13 0 − 0.61 0.78 0.43 − 0.33 0.30 0.26 

Neighboring characteristics #Households − 0.14 0.07 0.06 0.18 0.05 0 − 0.10 0.27 0.70 0.02 0.1 0.80 
∝Shop Area 0.16 0.29 0.57 1.65 0.32 0 − 0.85 1.32 0.52 − 0.51 0.47 0.27 
∝Office Area 0.17 0.15 0.23 0.77 0.13 0 − 0.24 0.52 0.65 0.46 0.19 0.01 
Proximity to Main 
Roads 

− 0.01 0.06 0.89 0.11 0.05 0.04 0.21 0.22 0.33 0.05 0.10 0.58 

∝Secondary Roads − 0.12 0.35 0.73 1.52 0.24 0 − 2.44 1.42 0.09 1.39 0.48 0.00 
∝Tertiary Roads 0.30 0.36 0.41 0.19 0.26 0.46 0.91 1.31 0.49 1.68 0.50 0.00 
∝Residential Roads 0.83 0.42 0.05 1.06 0.28 0 − 0.88 1.61 0.58 2.01 0.56 0.00 
log(VKT) 0.20 0.04 0.00 0.03 0.03 0.16 0.39 0.16 0.02 − 0.08 0.06 0.18  
Log(theta) − 1.57 0.14 ≈0.00 – – – − 15.51 1172.70 0.99 – – –  
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Interestingly, older neighborhoods (e.g., built before 1900) appear to be 
safer than other areas. This is probably because these areas are usually 
located in the city centers (i.e., historic places); hence interactions be-
tween vehicles and bikes are fewer and less severe. 

Newly designed areas were also devised to increase the accessibility 
of neighborhoods. In practice, accessibility is improved by shortening 
travel distances to various facilities, such as attraction locations and 
transport systems facilities. Although better accessibility is always 

desirable, our findings revealed that higher proximity to some “attrac-
tions” such as grocery stores and schools aggravate traffic safety. Whilst, 
Merlin et al. (2020a) found a negative significant relationship between 
increased proximity to job locations from the residential location of the 
crash victim and vehicle crash frequency (per capita), only within a 10- 
minutes threshold (i.e., cumulative job-accessibility). They explained 
such a relationship based on the positive impacts of reduced distances to 
work on declined VKT. This raises a valid concern that needs to be 

Fig. 8. Comparison between the standardized Count/Zero-Model coefficients of the V&B crashes.  
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addressed by future research investigating the reasons behind such a 
deterioration in safety. Future studies should also investigate the im-
pacts of accessibility indicators on traffic safety (and vice versa) to 
provide greater insight into the relationships between accessibility and 
traffic safety. 

5.3. Limitations and future directions 

This study adopted square grid cells to evaluate the impacts of the 
built-environment and land-use factors on traffic safety. The potential 
effects of this choice (i.e., square cells) on the results were not investi-
gated as such an inquiry is beyond the scope of this paper. For example, 
the hexagon units could be a better alternative as they have the mini-
mum total perimeter length which results in the least boundary effects 

Fig. 9. Comparison between standardized Count/Zero-Model coefficients of the V&V crashes.  

M. Asadi et al.                                                                                                                                                                                                                                   



Accident Analysis and Prevention 172 (2022) 106683

15

(Cui et al., 2021). Future research could focus on identifying the effects 
of using alternative spatial units such as honeycomb and hexagon cells, 
building blocks, neighborhoods, or postcode areas. 

A limitation in this study was the crash data, which were compiled 
based on police reports which are known to underreport traffic crashes 
with minor injuries and to have inaccuracies in reporting the location of 
crashes. To alleviate this problem, safety officials are currently working 
on compiling crash data based on ambulance reports (Rijkswaterstraat, 
2019b). Future traffic safety research in the Netherlands could benefit 
from such more accurate data in terms of the severity level of the 
crashes. This data is planned to become available in the coming years at 
the national level, based on a national action plan on traffic safety 
(Rijkswaterstraat, 2019b). 

From the methodological perspective, the scope of this study is 
limited in terms of evaluating the unobserved spatial heterogeneity, as 
well as the spatial and temporal autocorrelations. Therefore, future 
research could take advantage of using Spatial Error and Random 
Parameter modeling approaches as used in previous studies (e.g., (Cui 
et al., 2021; Huang et al., 2018; Ulak et al., 2018; Wang et al., 2019; Xu 
et al., 2020; P. Xu & Huang, 2015; Ziakopoulos & Yannis, 2020)). 
Moreover, future studies may investigate the built-environment and 
traffic related factors that can contribute to the temporal heterogeneity 
in traffic crash frequency. Some examples for such time-varying 
explanatory factors are variation in traffic volumes and operation 
speeds (R. Yu et al., 2019), as well as variation in the role of commercial 
and residential areas during the hours of the day and days of a week. 

Data processing and methodology approaches introduced in this 
study can be utilized for analyzing traffic crashes in different cities. 
However, the findings of this research are based on the data in the 
Netherlands. Thus, the results of this study cannot be directly general-
ized to other regions, such as urban areas in the US. Because the land-use 
and road infrastructure characteristics in the selected study area are 
different from other areas, especially in terms of the availability and 
design of the cycling infrastructure. Moreover, differences in these 
characteristics lead to differences in travel behavior and traffic/cycling 
volumes. 

6. Conclusions 

Various built-environment factors contribute to traffic safety in 
urban areas. However, there is a scarcity of literature on the effects of 
these factors on the severity and number of traffic crashes in the 
Netherlands. This study exploits a rich dataset to investigate how and to 
what extent different built-environment factors are associated with 
frequency and probability of vehicle-vehicle and bicycle-vehicle 
crashes. An area-level analysis utilizing 100 × 100 m2 cells along with 
Hurdle NB regression models was adopted to analyze PDO and KSI crash 
types. To account for the observed spatial correlation effects, the spill-
over effects of neighboring cells were included in the analysis. 

The results of the HNB models show that in addition to road network 
and traffic characteristics, built-environment factors play a role in the 
number of crashes (i.e., crash frequency) as well as the chance of 
occurring a crash (i.e., crash probability), in the analysis units. It is 
noticeable that impacts of the built-environment factors are more 
dominant in KSI crashes compared to PDO crashes. Moreover, we 
observed that newly developed urban areas (built after 1990), that have 
different spatial designs, are safer for road-users (particularly cyclists). 
Increased land-use diversity (represented by MXI) is significantly asso-
ciated with its positive impact on improving traffic safety. Whilst, a 
higher land-use density (represented by urbanity level) has negative 
effects on traffic safety. Population density, on the other hand, does not 
have significant effects although it was expected to have an impact on 
frequency and/or probability of traffic crashes in the analysis units. The 
modeling approach also addresses spatial dependency and heterogene-
ity through spatial spillover effects. Results indicate that traffic and 
land-use characteristics in surrounding areas (e.g., vehicle/bicycle 

volumes, proportion of shopping areas) are associated with traffic safety 
in the targeted analysis unit. 

One of the major contributions of this study is analyzing the collec-
tive impacts of a comprehensive set of built-environment variables along 
with the traffic and infrastructure-related factors. This comprehensive 
variable set became the cornerstone to examining a cumbersome topic in 
traffic safety: identifying the relationship between traffic safety and the 
built-environment. 
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