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ORIGINAL REPORT

ACCURATE ESTIMATION OF UPPER LIMB ORTHOSIS WEAR TIME USING 
MINIATURE TEMPERATURE LOGGERS

Claudia J. W. HAARMAN, MSc1,2, Edsko E. G. HEKMAN, MSc1, Johan S. RIETMAN, MD, PhD1,3 and Herman van der 
KOOIJ, PhD1

From the 1Department of Biomechanical Engineering, University of Twente, Enschede, 2Hankamp Rehab, Enschede and 3Roessingh 
Research and Development, Enschede, The Netherlands

Objective: To propose and validate a new method 
for estimating upper limb orthosis wear time using 
miniature temperature loggers attached to loca-
tions on the upper body.
Design: Observational study.
Subjects: Fifteen healthy participants.
Methods: Four temperature loggers were attached 
to the arm and chest with straps. Participants were 
asked to remove and re-attach the straps at spe-
cified time-points. The labelled temperature data 
obtained were used to train a decision tree classi-
fication algorithm to estimate wear time. The final 
performance (mean error and 95% confidence in-
terval) of the trained classifier and the wear time 
estimation were assessed with a hold-out data-set. 
Results: The trained algorithm can correctly classify 
unseen temperature data with a mean classification 
error between 1.1% and 3.1% for the arm, and bet-
ween 1.8% and 4.0% for the chest, depending on 
the sampling time of the temperature logger. This 
resulted in mean wear time errors between 0.5% 
and 8.3% for the arm, and 0.13% and 13.0% for 
the chest.
Conclusion: The proposed method based on a clas-
sifier can accurately estimate upper limb orthosis 
wear time. This method could enable healthcare 
professionals to gain insight into the wear time of 
any upper limb orthosis.

 treatment adherence with wearing upper limb orthoses. 
Physicians or therapists assume that the patient adheres 
to their prescribed treatment, but the actual wear time 
may deviate strongly from the prescribed time. The rate 
of non-use may be as high as one-third of all devices 
provided (1). To evaluate the efficacy of a treatment 
that involves an orthosis, a reliable estimation of the 
wear time is required.

Subjective methods, such as diaries or questionnaires, 
are low-cost and easy to implement, but are vulnerable 
to reporting bias (e.g. social desirability or recall errors) 
(2, 3). These subjective methods lack accuracy, as most 
patients tend to overestimate the degree of actual wear 
time (4). Objective methods, such as measuring force 
(5–7), acceleration (8) or temperature (2, 4, 7, 9–11), 
have been proposed to overcome these problems.

Of these proposed methods, temperature seems to 
be most suitable for measuring orthosis wear time, 
because of the small size of the sensors, low cost, ease 
of implementation in existing orthoses, and ability to 
take measurements over a prolonged period (up to a 
few months) without human intervention. Currently, 
no algorithms have been developed to estimate upper 
limb orthosis wear time using temperature sensors. 
Previous efforts to estimate wear time have focused 
mainly on orthopaedic footwear (2, 9) and spinal cor-
rection braces (4, 7). In these applications, orthoses are 
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Measuring orthosis wear time using temperature sensors p. 2 of 10

typically worn for long, consecutive periods (from a 
few hours up to 23 h/day). The device is thus donned 
and doffed only once or twice per day. In contrast, 
upper limb orthoses are generally donned and dof-
fed more frequently; for example when performing 
rehabilitation exercises at home (e.g. 3 times a day for 
20 min), or when performing specific daily activities. 
Algorithms developed previously rely on absolute 
temperature thresholds (4, 7), or peak detection 
algorithms to discriminate between on and off states 
(9). Reported accuracies in these studies range from 
86% to 99%, but these results may not be valid if the 
sensors are applied to other body parts, are donned 
and doffed more frequently, or if the sensors are not 
worn directly on the skin.

The aim of this study is to propose and validate a new 
method to estimate orthotic device wear time using 
temperature sensors attached to locations on the upper 
body. The method should accurately estimate wear 
time during frequent donning and doffing, and while 
not wearing the sensors directly on the skin. A decision 
tree classification algorithm was trained using labelled 
temperature data obtained from healthy participants, 
and its performance assessed using unseen test data. 
Instead of using only a single temperature sensor, the 
study investigated whether a dual sensor configuration 
(1 sensor directed away from the body and the other 
directed towards the body) improved the performance 
of the wear time estimation algorithm. A further aim 
was to investigate the effect of sampling time on the 
performance of the algorithm.

METHODS

Temperature sensor data loggers
Thermochron® iButtons® (Maxim Integrated, San Jose, 
CA, USA) are miniature data loggers that measure and 
store temperature (Fig. 1A). The sensors are 17 mm in 
diameter and 6 mm high, and thus are a suitable size 
for integration into an orthotic device. The DS1922L 
Thermochron® can store up to 8,192 values with a reso-
lution of 0.5°C. Its sampling time can be programmed 
from 1 s up to 273 h. With a sampling time of 1 min, 
the device can store up to approximately 5.5 days of 
consecutive temperature readings. When the sampling 
time of the sensor is increased, longer measurements 
can be performed before data has to be retrieved. Table 
I shows the maximum periods of unsupervised data 
collection for different sampling times. Under normal 
operating conditions (1-min logging interval, and a 
temperature of 30°C), the DS1922L battery lasts for 
at least 1 year.

The temperature loggers are secured to the body 
with 2 elastic straps. One strap is positioned around 
the chest and the other around the forearm (Fig. 1B). 

Table I. Maximum duration of one measurement when different 
temperature logger sampling times are programmed

Sampling time Maximum measurement duration

1 min 5.5 days
5 min 28.4 days (~4 weeks)
10 min 56.9 days (~8 weeks)
15 min 85.3 days (~12 weeks)

Fig. 1. (A) DS1922L Thermochron® iButton®. (B) Close-up of the adjustable strap with 2 sensors mounted in a 3D-printed case; 1 sensor facing 
towards the body (Sin), and the other sensor facing away from the body (Sout). (C) Placement of the straps on the forearm and chest. (D) Screenshot 
of smartphone app.
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Temperature sensors are attached to each strap by 
means of a custom 3D-printed case (Fig. 1C). One 
sensor is positioned facing towards the body (Sin), such 
that it touches the participant’s clothing. The other 
sensor is positioned facing away from the body (Sout). 
In order to provide a comfortable interface, the length 
of the straps is adjusted for each participant.

Smartphone app
To simulate donning and doffing of an orthosis, the 
participant was asked to remove and re-attach the 
temperature sensors at specified time-points. For 
this, a custom Android smartphone application was 
developed, which cues the participant and registers 
whether the action has been completed. Based on the 
timestamps logged by the smartphone app, a label 
was assigned to each temperature data-point that con-
tains its true state. The app notified participants with 
an audio signal when it was time to don or doff the 
straps. Fig. 1D shows a screenshot of the instruction 
a participant receives after a notification. To record 
sufficient transitions between use and non-use states 
(to represent frequent donning and doffing of the 
orthosis), the intervals between 2 notifications were 
randomly programmed between 15 and 60 min. The 
smartphone time was synchronized with the sensor 
time prior to each measurement.

Measurement protocol
From each participant approximately 24 h of measu-
rement data were collected, consisting of 8 h of active 
sensor donning and doffing and 16 h of non-use. Both 
straps (with sensors attached to them) were worn on 
top of the participant’s clothing. During the period in 
which they actively don and doff the sensors (8 h), par-
ticipants were instructed to carry out their normal daily 
routines. Prior to the measurements, participants were 
instructed to pay attention to the correct sensor orien-
tation (the same sensor should always face towards 
the body). They were also instructed to immediately 
confirm their action in the smartphone app after sensor 
donning or doffing, to minimize the difference between 
the time of the actual change and the time logged by 
the smartphone. Participants were allowed to doff the 
sensors temporarily (e.g. during a clothes change). 
Unexpected doffing periods that lasted more than 30 
s had to be noted. After each measurement session, 
temperature data from the sensors and timestamp data 
from the smartphone app were transferred to a com-
puter for further processing and analysis.

Participants
A total of 15 healthy subjects (7 males and 8  females), 
with a median age of 35 years (range 24–67 years) 

participated in the study. Inclusion criteria inclu-
ded the ability to follow simple instructions. The 
study was approved by the ethics committee of the 
University of Twente (reference number 2020.39). 
Written informed consent was obtained from all 
subjects before the study.

Data processing
Each temperature sample was assigned a label 0 
(“off”) or 1 (“on”) according to the timestamps log-
ged by the smartphone app when the sensors were 
donned and doffed. Seventy percent of the measu-
rement data was randomly assigned to a training set 
and 30% to a test set. Stratification was applied to 
maintain an equal distribution of the classes within 
these 2 sets.

In this study, the data were captured with a sampling 
time of 1 min. The obtained data-sets were down-
sampled by a factor, n, leaving only every nth sample 
in the data-set. Thus, multiple data-sets with different 
sampling times were obtained from the original mea-
surement data to allow for an in-depth evaluation of 
the algorithm performance at different sampling times. 
The chosen down-sampling factors (n) are: 1, 5, 10 
and 15, corresponding to sampling times (ts) of: 1, 5, 
10 and 15 min.

Depending on the configuration used, different 
features can be calculated and the selected featu-
res were used during data processing. The study 
investigated whether a dual sensor configuration 
can better estimate wear time compared with a 
single sensor configuration. In a single sensor con-
figuration, temperature readings from only 1 sensor, 
directed towards the body (Tin), are available. A 
derived feature is the temperature difference of this 
sensor from its previous reading (dTindt). In a dual 
sensor configuration, temperature readings from a 
sensor directed away from the body (Tout) are also 
available. Thus, the temperature difference between 
the 2 sensors (∆T) can also be computed. Table II 
summarizes the features that were calculated from 
the measurement data. Table III lists the selected 
features that were used for data processing in the 
single and dual sensor configuration. 

Binary classification
In total, 16 different data-sets were constructed based 
on the collected measurement data (Fig. 2). A decision 
tree classifier was trained to map temperature data 
(input) to corresponding device states (output) based 
on example input-output pairs. This can be conside-
red a binary classification problem, as there are only 
2 classes to be discriminated for each sample in the 
data-set: use (“on”) or non-use (“off”). A well-trained 
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model correctly predicts these classes (“on” and 
“off”) for each data point obtained during a certain 
measurement period. Any inconsistency between the 
predicted state (predicted by the trained model) and 
the true state (recorded by the smartphone app) will 
decrease the accuracy with which the class can be 
correctly determined.

Classifier training and performance evaluation
The classification error rate (eclass), or misclassifica-
tion rate, is defined as the number of incorrect pre-
dictions, divided by the total number of predictions. 
Fig. 3 shows an overview of the classifier training and 
performance evaluation procedure. Stratified K-fold 
cross-validation was used to evaluate and optimize 
the performance (error rate) of the classification 
algorithm. For this, the training data was split into 
k subsets (folds). In each fold the class ratios were 
maintained. For every iteration a different fold was 
held out as a validation set. The mean classification 
error rate was then determined over all iterations 
and the model parameters resulting in the best mean 
performance were selected

For each data-set (different sampling times and body 
location), and for the 2 feature subsets (representing a 
single or dual sensor configuration), the classification 
error rates and the 95% confidence intervals (95% 
CI) of the trained model were determined using the 
held-out test set, containing 30% of the original data. 
The 95% CIs were calculated using the following 
equation (1):

( )
= ∗

−
CI

e e
n

1.96
* 1class class

 (1)
where eclass is the classification error rate.

Wear time estimation (interval data-set)
The cumulative wear time (Twear) is the total time that 
the orthotic device is worn during a certain measure-
ment period, and is calculated by multiplying the total 

number of data points labelled “on” by the sampling 
time. The estimated cumulative wear time (Test) is cal-
culated by multiplying the total number of data points 
with the classification label “on” by the sampling time. 

The wear time error is then defined as the ratio 
between the estimated and true wear times. The wear 
time error can be positive (overestimation of the wear 
time) or negative (underestimation of the wear time). 
For each data-set mean the wear time errors including 
their 95% CIs were estimated by bootstrapping the 
test set (sample size = 80%, iterations = 1000). Boot-
strapping is a sampling method to estimate a quantity 
of a population (12). For this, the test set is randomly 
sampled many times with replacement. 

Each bootstrap sample represents 1 realization of a 
test set. The resulting mean wear time errors were then 
calculated, and the 95% CIs were obtained that bound 
the estimated skill of the trained model. Differences 
between mean wear time errors of the single and 
dual sensor configuration are statistically significant 
(p < 0.05) if the degree of overlap of the 95% CIs is 
< 50% of the mean margin of error (MOE). The MOE 
is defined as half the CI width (13).

Wear time estimation (continuous use data-set)
The performance of the trained model to estimate the 
wear time was also evaluated when sensors were not 
frequently donned and doffed, but worn for a single 
long, consecutive period per day. For this purpose, 5 
additional data-sets were obtained from healthy partici-
pants who only donned and doffed the sensors once (at 
the beginning and end of an 8-h period of use) during 
a 24-h measurement session. Temperature and times-
tamp data from these measurements were processed 
and provided as test sets to the trained classifier. The 

Table II. Features that were extracted from the measurement data 

Feature Abbreviation Equation

Sensor temperature T in
Tout

Temperature difference between current 
and previous data point

dTindt T in(i) – Tin(i–1) 

Temperature between 2 sensors ΔT Tin(i) – Tout(i)

Table III. Selected features for the single and dual sensor 
configuration 

Sensor configuration Selected features

Single Tin + dTindt
Dual Tin + dTindt + ΔT

Fig. 2. Construction of different 16 data-sets based on collected 
measurement data. For all participants 16 data-sets are created, 
differentiating between location (arm or chest), sensor configuration 
(single or dual) and sampling time (1, 5, 10 and 15 min).
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Measuring orthosis wear time using temperature sensors p. 5 of 10

wear time error was calculated in a similar manner as 
for the original test set.

RESULTS

Data-sets
In total, 22.427 data samples were collected from 15 
participants. Unbalanced data-sets (unequal distribu-
tion of classes “on” and “off”) were obtained due to the 
nature of the data collection (8 h of repeated donning 
and doffing, during a 24-h measurement period). Two 
participants reported intervals with inconsistent sensor 
orientation during their measurement. In 1 occasion 
the participant noticed that the donning action was 
not confirmed in the app. The corresponding samples 
were removed from their data-set to maintain internal 
consistency, leaving 22,224 data points for classifica-
tion. Fig. 4 shows a plot of the 8-h measurement time-
period with periods of repeated donning and doffing 
for a typical participant. This figure shows data from 
both temperature sensors Tin (black circle) and Tout (red 
cross), which were mounted on the forearm, for increa-
sing sampling times (top to bottom). The grey areas 
indicate the intervals that the sensors were marked 
“on” in the smartphone app. As can be seen from the 
data, after donning, the temperature increases slowly 
until the temperature of the contact surface is reached, 
while after doffing, the temperature slowly returns to 
the ambient temperature. It can also be seen from the 
graphs that the temperature Tin was higher than the 
temperature Tout throughout the entire measurement 
period, which lasted over 8 h.

Classifier performance
The classifier performance was evaluated by cross-
validating the training set and determining the mean of 
the calculated classifier errors. In Fig. 5 the classifica-
tion errors (%) are presented for the arm (left) and chest 
(right), and for the single (o) and dual (x) sensor configu-
ration and different sampling times. Error bars indicate 
the 95% CIs of the classification error. Overall, the mean 
classification error increased for increasing sampling 
times. Classification errors of the chest sensor(s) were, 
in all cases, higher than the errors of the arm sensor(s). 
Fig. 5 shows that the lowest classification errors (1.4% 
and 1.1%) were seen when the sensor(s) were moun-
ted to the arm and sampled every 1 min. The highest 
classification errors (4.0% and 3.0%) were made when 
the sensor(s) were mounted to the chest and sampled 
every 15 min. For all data-sets, the classification errors 
in the dual sensor configuration were lower than in the 
single sensor configuration. In addition, the classifier 
performance on unseen data (test set containing 30% of 
held-out data) was also reported (x) in Fig. 5.

Wear time estimation (interval data-set)
Besides the classifier performance, the wear time esti-
mation performance was also obtained by comparing 
the estimated wear times of the test set with the true 
wear times. In Fig. 6 (top) the mean wear time errors 
(%) and their 95% CIs are shown for each data-set.

For the arm, the mean wear time errors were – 2.3%, 
– 0.5%, – 0.1% and 4.9%, respectively, for a 1, 5, 10 and 
15 min sampling time. For the chest, these mean errors 
were 1.5%, – 0.4%, – 1.9% and – 11.5% for a 1, 5, 10 

Fig. 3. Graphical overview the classifier training and optimization, and performance evaluation procedure. For each of the 16 data-sets (e.g. single 
sensor mounted to the chest, and a 5-min sampling time) the temperature data of all 15 participants were used to construct a data-set. Seventy 
percent of the data were used to train the classifier and the other 30% were used to evaluate the classifier performance of the trained model.
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Measuring orthosis wear time using temperature sensors p. 6 of 10

and 15 min sampling time, respectively. The 95% CIs 
increased with increasing sampling times, meaning 
that the range of plausible values for the true wear time 
error increased. The mean wear time errors between 
the single (o) and dual (x) sensor configuration were 
not significantly different, as their 95% CIs overlap 
sufficiently (13).

Wear time estimation (continuous use data-set)
To evaluate the performance of the trained classifica-
tion model for alternative use cases, an alternative 
test set was presented to the trained model. The test 
set consists of data from 5 participants who wore the 
sensors for 8 h consecutively, and then doffed the 
sensors. In total, 24 h of data were collected from each 

Fig. 4. Typical temperature data from the inward (black dots) and outward (red crosses) directed sensors on the arm, for different sampling 
intervals. The top figure shows the original temperature data, the other figures show the down-sampled measurement data (5, 10 and 15 min). 
The grey areas indicate the intervals that the sensors were marked “on” in the smartphone app.
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Measuring orthosis wear time using temperature sensors p. 7 of 10

participant. For this test set the mean wear time errors 
were obtained after bootstrapping, based on the trained 
classification algorithm. Fig. 6 (bottom) shows these 
wear time errors. It can be seen that the algorithm in 
all cases overestimates the actual wear times (positive 
error). Also, the mean errors were larger than for the 
15–60 min use intervals test set.

The mean wear time errors were 4.3%, 3.8%, 8.5% 
and 15.3%, respectively, for 1, 5, 10 and 15 min samp-
ling times. For the chest, these mean errors were 5.4%, 
5.7%, 5.2% and 11.6%, respectively, for 1, 5, 10 and 
15 min sampling times. The 95% CIs, however, were 
smaller than for the other test set, which indicates a 
smaller range of plausible values of the true error. 
The differences between the mean wear time errors 
between the single (o) and dual (x) sensor configura-
tion were statistically significant in 4 out of 8 data-sets 
(see Fig. 6, bottom).

DISCUSSION

Obtaining information about upper limb orthotic device 
wear time can improve treatment outcomes. This study 
proposed a new method, based on a trained decision 
tree classification algorithm, to estimate the wear time, 
using miniature temperature loggers attached to the 

arm and chest, and evaluated its performance. Data 
were captured during periods of frequent donning and 
doffing of the sensors, and while wearing the sensors 
on top of the clothing, mounted on the arm and chest. 
The study showed that the trained algorithm can cor-
rectly classify unseen temperature data with a mean 
classification error of between 1.1% and 3.1% for the 
arm, and between 1.8% and 4.0% for the chest. This 
results in mean wear time errors of between 0.5% and 
8.3% for the arm, and between 0.13% and 13.0% for 
the chest. The wide availability and low cost (approx-
imately 30 USD) of the selected miniature temperature 
logger makes it an affordable solution for healthcare 
professionals to gain insight into the wear time of any 
prescribed (commercial) upper limb orthosis.

This study investigated whether the wear time can be 
better predicted when 2 sensors (dual sensor configura-
tion) are used, compared with one sensor (single sensor 
configuration). For the 15–60 min interval use case, 
the algorithm performed equally well for the single 
and dual sensor configuration. For the 8-h continuous 
use case, the dual sensor configuration performed 
significantly better for the arm (1 and 5 min sampling 
times) and chest (1 min sampling time), and worse for 
the arm (15 min sampling time) compared with the 
single sensor configuration. In the other conditions, the 

Fig. 5. Mean classification errors for the arm (left) and chest (right) obtained after cross-validating the training set. Results are shown for the 
single (o) and dual (x) sensor configuration as well as for different sampling times. The error bars represent the 95% confidence intervals (95% 
Cis). Classification errors resulting from the test set are indicated with (□).
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Measuring orthosis wear time using temperature sensors p. 8 of 10

algorithm performed equally well for the single and 
dual sensor configuration. The added value of using 
2 sensors is thus dependent on the use case, sampling 
time and body location. In general, we can conclude 
that, in most conditions, there is no practical benefit of 
using 2 sensors, as this will only increase the volume 
and cost of the solution, while not resulting in a signi-
ficantly better wear time estimation.

Compared with subjective alternatives, such as 
diaries or questionnaires where patients tend to 
overestimate their wear time by as much as 200% 
(14), the proposed method is a preferable choice. A 
direct comparison between the results of this study 
and other studies using objective methods based on 

temperature sensors is difficult, as the use cases differ 
to a great extent. However, some general remarks can 
be made, as follows. 

Firstly, we have shown that we can accurately esti-
mate wear times without the need for direct contact 
between the sensor and the skin. This enables a wide 
application of our method, as many upper limb ortho-
ses, such as arm slings, are often worn on top of clo-
thing instead of directly on the skin. The temperature 
sensor can therefore be easily applied to many types 
of (commercial) upper limb orthoses. In other studies, 
the sensor was embedded in the thermoplastic of an 
orthosis or insole of a shoe, limiting the potential use 
for different orthoses. 

Fig. 6. Test set performance for the single (o) and dual (x) sensor configuration. The mean wear time errors were calculated from sensors that 
were worn during 15–60-min use intervals (top) and 8 h of consecutive use (bottom), on the arm (left) or chest (right). Error bars represent the 
95% CIs of the wear time error, obtained after bootstrapping the test set. Significant differences between the single and dual sensor configuration 
are indicated with (*).
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Secondly, we have shown that our algorithm is able 
to accurately estimate wear time, even during periods 
of frequent donning and doffing. Temperature sensors 
need time to warm up when donned or cool down when 
doffed. These periods of transition may be difficult to 
detect otherwise, but our algorithm was able to capture 
these effects, as indicated by the reported classification 
errors. In other studies, results during frequent donning 
and doffing are not available as their use case was dif-
ferent (prolonged, continuous use).

Thirdly, the performance of our algorithm was eva-
luated with unseen test data, leading to unbiased results 
that show the actual classification and wear time esti-
mation errors. Other studies trained and evaluated their 
model on the same data-set, leading to overestimated 
algorithm accuracies.

Depending on the use case, the wear time prescrip-
tion generally includes a range of several hours, e.g. 2 
times a day for half an hour, to 20–23 h/day consecuti-
vely. As an example, a wear time error of 5% results in 
an absolute error of 12 min when the orthosis is worn 
for 4 h during a 24-h period. The choice for an accep-
table level of wear time estimation accuracy is up to 
the physician or therapist, but, in general, knowledge 
of wear time to within 90% accuracy is sufficient. For 
short sampling intervals, reported wear time estimation 
errors in this work are well within this requirement.

Our method allows monitoring of the patient’s adhe-
rence for a prolonged period (up to a few months), 
without supervision, return to the clinic, or recharging 
of the device, depending on the chosen sampling time. 
This will further increase the chance of successful 
implementation in the current clinical practice. For 
longer sampling times, the amount of data that can 
be stored on the sensor increases, but the estimated 
wear time error and estimation error range (indicated 
by the 95% CIs) also increase. The therapist or phy-
sician using this technology should be aware of these 
implications for the margin of error when choosing a 
sampling time.

The timestamps logged by the smartphone app were 
used to label the measurement data (“on” or “off”). 
Participants were instructed to respond in a timely 
manner to the notification and immediately confirm 
their action (“don” or “doff”) once done. Theoretically, 
there could have been a difference between the actual 
and reported timestamps, which could have negatively 
affected the classifier performance. However, only 
1 participant reported a discrepancy between 1 donning 
action and subsequent confirmation in the app during 
1 interval. Therefore, it was assumed that any discre-
pancy between the actual and reported timestamps 
was negligible.

The data for this study were collected in December 
and January in the Netherlands. As no data were 

recorded on warm days, the model was not specifically 
trained for conditions with a high ambient tempera-
ture. However, a large variation was still present in 
the recorded data-sets, to allow for a proper training 
of the classification model. During the measurements, 
the ambient temperature outside was in the range 
5–10°C. Therefore, participants often wore a coat on 
top of their clothing when they went outside. Indoors, 
the ambient temperature was limited, and was approx-
imately in the range 18–21°C. All participants wore 
long sleeves, but the thickness of their clothing varied, 
enabling us to train the model for a wide variety of 
clothing types. We believe that the data presented here 
represent a worst-case, as (thick) clothing in between 
the sensors and skin make it more difficult to cor-
rectly estimate the wear time. Future studies should 
address the effect of a higher number of parameters 
(high ambient temperature, sensors worn directly on 
skin) on the classifier performance and wear time 
estimation. By adding these data to the data-set, the 
classification and subsequent wear time estimation 
may be improved.

The authors have no conflicts of interest to declare.
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