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This study aimed to map mine waste piles and iron oxide by-product minerals from an
Earth Observing 1 (EO-1) Hyperion data set that covers an abandoned mine in southwest
Spain. This was achieved by a procedure involving data pre-processing, atmospheric
calibration, data post-processing, and image classification.

In several steps, the noise and artefacts in the spectral and spatial domains of the
EO-1 Hyperion data set were removed. These steps include the following: (1) angu-
lar shift, which was used to translate time sequential data into a spatial domain; (2)
along-track de-striping to remove the vertical stripes from the data set; and (3) reduc-
ing the cross-track low-frequency spectral effect (smile). The Fast Line-of-sight
Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm in combination
with the radiance transfer code MODTRAN4 was applied for quantification and removal
of the atmospheric affect and retrieval of the surface reflectance. The data set was
post-processed (filtering, spectral polishing) in order to remove the negative values and
noise that were produced as the a result of de-striping and atmospheric calibration. The
Mahalanobis distance algorithm is used to differentiate the area covered by mine piles
from other main land-use classes. The spatial variations of iron oxide and carbonate
minerals within the mine area were mapped using the Spectral Feature Fitting (SFF)
algorithm.

The pre-processing of the data and atmospheric correction were vital and played a
major role on the quality of the final output. The results indicate that the vertical stripes
can be removed rather well by the local algorithm compared to the global method and
that the FLAASH algorithm for atmospheric correction produces better results than the
empirical line algorithm. The results also showed that the method developed for correct-
ing angular shifts has the advantage of keeping the original pixel values since it does
not require re-sampling.

The classification results showed that the mine waste deposits can be easily mapped
using available standard algorithms such as Mahalanobis Distance. The results obtained
from the SFF method suggest that there is an abundance of different minerals such
as alunite, copiapite, ferrihydrite, goethite, jarosite, and gypsum within the mine area.
From a total number of 754 pixels that cover the mine area, 43 pixels were classified
as sulphide and carbonate minerals and 711 pixels remained unclassified, showing no
abundance of any dominant mineral within the area presented by these pixels.
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1. Introduction

Use of mineral resources through mining activities generates waste-rock piles and tailings,
which are sources of environmental degradation in the case of mismanagement. The inten-
sive mining of pyritic massive sulphide in the Iberian Pyrite Belt (IPB) in southwest Spain
(Huelva province) since mid-nineteenth century (Galán et al. 2003) has generated large
amounts of sulphide piles and tailings that have led to the formation of acidic and iron-
rich water, severely contaminating soil and water in the region (Hudson-Edwards et al.
2003). Catastrophic events such as the breaching of the Aznalcóllar tailings dam in the
Spanish Iberian pyrite belt raised significant environmental concerns and triggered consid-
erable numbers of investigations aiming to assess the level of soil and water pollution and
to develop cost–benefit methods for the monitoring of solid waste deposits and estimating
potential environmental risks in terms of water and soil quality.

Previous studies suggest the presence of iron oxide by-product minerals and localized
concentrations of potentially toxic elements in the mine areas of the Spanish Iberian pyrite
belt (Alastuey et al. 1999; Pamo et al. 1999; Buckby et al. 2003). These minerals have dif-
ferent abilities to carry toxic trace elements and produce different amounts of acidic water
(Velasco et al. 2005). Therefore, gathering information about sulphate minerals and their
spatial distribution is vital for estimating the level of pollutants and defining the risk man-
agement strategies. One of the cost–benefit methods for monitoring mine waste deposits
involves application of remote-sensing data and techniques. This is due to the well-known
fact that remote-sensing data are widely available and relatively cheap compared to field
measurements.

Spaceborne remote-sensing data have been widely used to obtain information regarding
Earth surface properties due to their spatial and temporal availability. Hyperspectral imag-
ing data with hundreds of spectral bands have been successfully used to monitor and map
materials on the Earth surface (Goetz et al. 1985; Crowley 1993; Clark and Swayze 1995;
Swayze et al. 2000; Farifteh et al. 2007). Consequently, a large variety of analysis meth-
ods have been developed, which currently are used as standard techniques for extraction
of information from airborne and space-borne imageries. The new-generation spaceborne
hyperspectral sensor, Earth Observing 1 (EO-1) Hyperion, provides high spectral reso-
lution data, which recently have been used for mineral mapping and forest classification
(Goodenough et al. 2003; Kruse, Boardman, and Huntington 2003).

The research aims to develop a cost–benefit method for mapping and monitoring the
spatial variability of the mine waste sulphide deposits on the basis of their spectral char-
acteristics. The main strategy is to employ a suitable and non-complex monitoring method
that makes use of high-resolution spectral information obtained by spaceborne sensors and
field measurements. The developed method should have the capabilities to discriminate
areas covered by mine deposits and also provide quantitative information concerning the
iron oxide by-product minerals formed at the surface and near the surface as a result of
alteration processes. Furthermore, the developed method should have undemanding capa-
bilities in terms of the data availability (especially field measurements) and implementation
(simplicity), since it is expected to be used as a preliminary application tool. The objective
of the study, as defined above, can be achieved by the procedure involving Hyperion data
pre-processing, atmospheric calibration, data post-processing, image classification, data
analysis, and validation results.

2. Study area

The study area (Las Herrerías mine area) is situated in southwest Spain between 37◦ 36′,
30′′ to 37◦ 37′ 30′′ N and 7◦ 16′ 10′′ to 7◦ 18′ 30′′ W (Figure 1). The mine is located in the
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Figure 1. Location of the study area (Las Herrerías mine) in southwest Spain.

northwest of Huelva, at about 5 km from the village of Puebla de Guzmán and not very far
from the Tharsis mine (15 km), which is one of the major mining districts in the area.

The Herrerías is a small- to medium-sized mine with a massive sulphide ore-body and
a datable black shale formation, which can be associated with major massive sulphide
deposits dated in the region (González et al. 2002; Sáez, Moreno, and González 2008).
The sulphide ore-body consists mainly of pyrite, together with minor chalcopyrite, galena,
sphalerite, arsenopyrite, and other accessory minerals (Doetsch 1957). The mining activi-
ties in the area, which date from Roman times, have been definitely ceased in Las Herrerías
mining district since 1988 (Pinedo Vara 1963; Sáez, Moreno, and González 2008). Even
though Las Herrerías, at the present time, is an abandoned mine, the large numbers
of dumped waste-rock piles and tailings in the area are widely subjected to alteration
processes (especially during summer due to high temperature), causing soil and water
pollution. Recent studies suggest the presence of minerals such as haematite (Fe2O3),
goethite (FeO(OH)), ferrihydrite ((Fe3+)2O3·0.5H2O), jarosite (K(Fe3+)3(SO4)2(OH)6),
alunite (KAl3(SO4)2(OH)6), gypsum (CaSO4·2H2O), epsomite (MgSO4·7H2O), schw-
ertmannite ((Fe3+)16O16(OH)12(SO4)2), copiapite (Fe2+(Fe3+)4(SO4)6(OH)2·20H2O), and
localized concentrations of potentially toxic elements such as zinc (Zn), lead (Pb), arsenic
(As), copper (Cu), cadmium (Cd), and chromium (Cr) in the area (Alastuey et al. 1999;
Pamo et al. 1999). Figure 2 shows an overview and visual examples of the ongoing alter-
ation process by which the waste-rock piles and tailings are weathered and various iron
oxide by-product minerals are formed. These minerals potentially are a source of soil and
water pollution by producing acid or iron-rich water during rainy seasons. A favourable
geomorphologic setting, including an adequate drainage network in the area, increases the
potential of the existing risk by facilitating mobilization of the produced acid water and
toxic elements towards the downstream areas.

3. Materials

3.1. EO-1 Hyperion data

Hyperion is one of three sensors on board the EO-1 satellite launched in November 2000.
The Hyperion push-broom instrument captures the incoming radiation in the visible and
near-infrared (VNIR) and shortwave infrared (SWIR) wavelength range (400–2400 nm)
in 242 spectral bands with an average full-width at half-maximum (FWHM) of 10.90 and
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Figure 2. Flow chart of alteration processes (simplified); formation of iron oxide by-product min-
erals and acidic water. The photographs visualize the alteration process and the formation of
various minerals and acidic water in the Las Herrerías mine area. (a) Examples of waste-rock piles
and tailings, (b) formation of various minerals due to physical and chemical weathering, and (c)
production of acid and iron-rich water due to dissolving of some of the minerals.

10.14 nm for VNIR and SWIR, respectively. It has 30 m spatial resolution with 7.65 km
swath width from 705 km altitude. A detailed description of the Hyperion instrument and
data are given in Barry (2001), Folkman et al. (2001), Pearlman et al. (2003), and Jupp
and Datt (2006). The Hyperion data characteristics and their temporal availability provide
a unique possibility (concerning the project objective) for mapping and monitoring main
waste deposits in southwest Spain. However, the Hyperion level 1B1 data suffer from sensor
artefacts and atmospheric effects (Datt et al. 2003; Goodenough et al. 2003), and therefore
to optimize their application, it is essential that they are pre-processed and corrected prior
to any data analysis.

In this study, the Hyperion level 1B1 data were used after they were converted to the
BSQ format during which the pre-launched FWHM calibration setting was restored. From
the available 242 bands, 196 bands (50 bands in VNIR and 146 bands in SWIR) cover
the visible–near infrared–shortwave infrared (VNIR–SWIR) wavelength range between
426 and 2395 nm with no overlap with the NIR. They are bands 8–57 (426–925 nm) and
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bands 79–223 (933–2395 nm). Among these 196 bands, 24 bands contain no information,
which include bands 93–101 (1356–1437 nm), bands 138–152 (1810–1951 nm), and bands
195–196 (2385–2395 nm). There are also 25 bands that contain large amounts of noise
including vertical or intermittent stripes. They are bands 1–3 (426–447 nm), bands 50–54
(925–962 nm), bands 69–72 (1114–1144 nm), bands 103–105 (1457–1477 nm), bands
153–158 (1961–2012 nm), and bands 191–194 (2345–2375 nm). These 25 bands can be
used in data analysis after being de-striped and their signal-to noise ratio improved. In this
study, after pre-processing and atmospheric correction of the EO-1 Hyperion data, only
166 bands are used to map the minerals and their spatial variations. They are bands 1–92
(426–1346 nm), bands 103–136 (1457–1790 nm), and bands 154–193 (1971–2365 nm).
The Hyperion level 1B1 data were georeferenced by the United States Geological Survey
(USGS).

3.2. Field measurements

3.2.1. Spectral measurements

A FieldSpec FR spectrometer, manufactured by Analytical Spectral Devices, Inc. (Boulder,
CO, USA), was used to measure surface reflectance spectra of the rocks and soils within
the study area. The instrument covers the visible to SWIR wavelength range using three
separate detectors: one for VNIR (350–1050 nm) and two for the SWIR (1000–1800 nm
and 1800−2500 nm). The spectrometer has a sampling interval of 1.4 nm for the region
350–1000 nm and 2 nm for the region 1000–2500 nm with a spectral resolution of 3 and
10 nm, respectively (ASD 2010).

Reflectance measurements were acquired in the 350–2500 nm range with a 25◦
field-of-view foreoptic from nadir at approximately 120 cm height above the surface
between 11.00 am and 3:00 pm. Laboratory reflectance measurements were acquired in
the aforementioned range and field-of-view from nadir at uniform 3 cm height above the
approximately 2 cm thick soil and weathered rock samples. A light source, Lowel Light
Pro, with a JCV 14.5 V–50 W halogen lamp, was used to illuminate the surface of the
rock and soil samples from a 45◦ angle. Reflectance was calibrated using a white panel
(Spectralon diffuse reflectance panel) in the field and the laboratory. The dark room used
for the laboratory spectral measurements was painted with flat black paint to avoid spectral
contamination.

4. Methods

Analysis of the Hyperion data for mapping the types and spatial distributions of iron oxide
minerals was carried out by developing approaches that allow reproducible results with
minimum field and laboratory measurements. Implementation of the developed method
was carried out using Environment for Visualizing Images (ENVI), interactive data lan-
guage (IDL), and MatLab software. Figure 3 shows an overview of the developed methods,
which includes data pre-processing, atmospheric correction, the mapping algorithm, and
validation procedures.

4.1. Pre-processing

The Hyperion level 1B1 data suffer from noise and sensor artefacts and have to be corrected
prior to any data analysis (Staenz et al. 2002; Datt et al. 2003; Goodenough et al. 2003).
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Figure 3. General methods for Hyperion data processing and mapping of iron oxide by-product
minerals in the Las Herrerías mine district.

In this study, the Hyperion data were corrected for angular shift, vertical strips, and smile
effects prior to atmospheric calibration (Figure 4).

4.1.1. Angular-shift correction

The angular shift occurs since the multiple detectors that are used to provide a wider spec-
tral or spatial coverage become misaligned within the Hyperion instrument (Pearlman et al.
2003; White et al. 2004). As a result, the Hyperion data are not in the traditional format with
horizontal lines and vertical columns and, therefore, need to be rearranged (Figure 4(a)).
An IDL program was developed to correct for the along-track and across-track shifts. The
program allows for translation of the time sequential data into a spatial domain data, while
for each pixel, it registers the same radiance value at a given spatial position and therefore
has the advantage of keeping the original pixel values.

4.1.2. De-striping

Visual inspection of the Hyperion level 1B data suggests that around 25 bands contain
continuous vertical strips or intermittent stripes caused by a poorly calibrated detector in
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Figure 4. Different types of artefacts in the Hyperion level 1B data. (a) Shift in row and column
which need to be corrected. The image is a colour composite from band 40 (at 752 nm), band 35 (at
702 nm), and band 30 (at 650 nm) for red, green, and blue respectively. The illustrated image was
georeferenced by the image provider (USGS). (b) Continuous and intermittent strips, which can be
found in numbers of the spectral bands, and (c) MNF (minimum noise fraction) band 1; the gradient
change of grey tone suggests the presence of smile in the data set.

either VNIR or SWIR arrays (Han et al. 2002; Datt et al. 2003). Further analysis of the
Hyperion level 1B data requires removal of the striping artefacts. The technique widely
used to de-stripe the Hyperion data is based on forcing the mean and the standard deviation
of each column to match the mean and standard deviation of either the corresponding band
or the entire image; called local and global algorithms (Equation (2)), respectively (Datt
et al. 2003). The following equations can be applied to de-stripe the EO-1 Hyperion image
data (Goetz 2003):

X ′
ijk = (

Xijk − μjk

) σk

σjk
+ μk , Local algorithm, (1)

X ′
ijk = (

Xijk − μjk

) σm

σjk
+ μm, Global algorithm, (2)

where Xijk is the pixel value in row i, column j, and band k; X ′
ijk is the calculated de-striped

pixel value in row i, column j, and band k; μk and σk are the mean and the standard deviation
of band k; μjk and σjk are the mean and the standard deviation of column j in band k; and
μm and σm are the mean and the standard deviation of the image. The detailed explanation
of this approach can be found in Goetz (2003) and Datt et al. (2003). For this study, an IDL
program was developed to apply the aforementioned algorithms (Equations (1) and (2)) and
de-stripe the Hyperion data set.

4.1.3. Smile-effect correction

The spectral smile (frown) is a push-broom technology effect that causes a variation in
central wavelength or FWHM in VNIR and SWIR bands across the width of the image
array. A maximum variation of 2.7 nm has been reported for the bands in the VNIR region
over the 256 pixels, while bands in the SWIR show a variation of less than 1 nm (Liao et al.
2000). This low-frequency effect of 2.7 nm variation may not affect interpretation of the
Earth surface spectra since the FWHM and bandwidth are about 10 nm, but it certainly
affects the highly variable and sharp ‘spikes’ of 0.1 nm within the atmospheric spectra and
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therefore it should be removed prior to the atmospheric correction (Liao et al. 2000; Cairns
et al. 2003; Datt et al. 2003).

The smile effect cannot be visualized in the individual bands, but it can be detected indi-
rectly, e.g. using the first eigenvalue image of minimum noise fraction (MNF) space (Green
et al. 1988; Goodenough et al. 2003) or measuring the spatial variation in the position of
the oxygen-A absorption band near 762 nm (Green, Chrien, and Pavri 2003; Cairns et al.
2003). A brightness gradient that appears in the MNF band 1 suggests existence of the smile
within the Hyperion data set. Various techniques have been developed to remove this low-
frequency effect from the original Hyperion data and adjust the band centre wavelengths
and bandwidth (Liao et al. 2000; Jupp et al. 2002; Feng and Xiang 2008) from which the
column mean adjusted in radiance space were used in this study. By this approach, for each
band, the mean value of each column is set equal to the mean value of the band assuming,
on average, that the image is sufficiently homogeneous (Goodenough et al. 2003). However,
the existing techniques are only able to reduce the smile effect, not to remove it completely
(Jupp and Datt 2006).

4.2. Atmospheric correction

Solar radiation (emitted and scattered from the Earth surface) passes through the atmo-
sphere before reaching a space- or airborne remote-sensing sensor, and therefore, generally,
it is required for the captured data to be corrected for the effects of the atmosphere prior to
quantitative analysis of surface reflectance. In past decades, several atmospheric calibration
methods have been developed to remove the atmosphere effects from imagery and to
retrieve surface reflectance spectra from measured radiances. The latest developments pro-
vide more accurate results by including water vapour and aerosol models in the atmospheric
correction calculation (Cairns et al. 2003). Atmospheric Correction Now (ACORN),
Atmospheric Removal (ATREM), Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes (FLAASH), and High Accuracy Atmospheric Correction for Hyperspectral
(HATCH) data are some of the latest developed methods that are based on Moderate
Resolution Atmospheric Transmission (MODTRAN) calculation (Berk, Bernstein, and
Robertson 1989; Gao, Heidebrecht, and Goetz 1996; AIG 2001; Qu, Kindel, and Goetz
2003). In this study, the method (FLAASH) developed by Spectral Science Inc. (SSI) and
the Air Force Research Laboratory (AFRL) was used for retrieving spectral reflectance
from EO-1 Hyperion images.

4.2.1. FLAASH method

The FLAASH algorithm is one of the latest developments for atmospheric correction of
space- and airborne multispectral and hyperspectral sensors. The algorithm quantifies the
effects of the atmosphere with sufficient accuracy using the MODTRAN4 radiation transfer
code for modelling atmospheric propagation of solar radiation (Staenz et al. 2002). The
algorithm accounts for both the radiance that is reflected from the Earth’s surface that
travels directly into the sensor and the radiance from the surface that is scattered by the
atmosphere into the sensor. The FLAASH program uses the following equation to calculate
(Vermote et al. 1994; Matthew et al. 2000) surface reflectance for each pixel:

L =
(

Aρ

1 − ρeS

)
+

(
Bρe

1 − ρeS

)
+ La, (3)
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where L is the at-sensor radiance, ρ is the pixel surface reflectance, ρe is an average sur-
face reflectance for the pixel and a surrounding region, La is the radiance back-scattered
by the atmosphere, S is the spherical albedo of the atmosphere, and A and B are coeffi-
cients that only depend on geometric and atmospheric conditions (Adler-Golden et al. 1999;
Matthew et al. 2000; Staenz et al. 2002). The unknown A, B, S, and La are determined from
MODTRAN4 spectral radiance calculations and afterwards pixel surface reflectance is cal-
culated in all of the sensor channels from Equation (3). Then, the approximation equation
(4) is used for computing a spatially averaged radiance image, Le, from which the spatially
averaged reflectance, ρe, is estimated:

Le ≈
(

(A + B) ρe

1 − ρeS

)
+ La. (4)

Detailed descriptions of FLAASH and MODTRAN can be found in Staenz et al. (2002),
Matthew et al. (2000), Adler-Golden et al. (1999), Kaufmann et al. (1997), Staenz and
Williams (1997), Berk et al. (1998), and Berk, Bernstein, and Robertson (1989).

4.3. Post-processing

The post-processing of the Hyperion data in this study includes removal of the negative
values of the pixel digital numbers (DNs) and the noise, which were both produced as the
results of the pre-processing and atmospheric calibration.

4.3.1. Removal of the negative values

The algorithms that were used for de-striping and smile-effect correction may produce
negative values when the operation in the first part of Equations (1) or (2) produces negative
values that are larger than the band’s mean. To avoid any negative pixel values in the image,
an averaging filter of 3 × 3 windows was used. An IDL script was developed to find pixels
with values less than 0 and replace them with average values calculated from their eight
surrounding pixels.

4.3.2. Spectral polishing

Hyperspectral reflectance data, after atmospheric calibration, comprise noise and arte-
facts due to differences between the modelled and real atmosphere conditions, and limited
accuracy of the methods used for processing noise (Datt et al. 2003). As a result, the
reflectance data have less accuracy compared to the actual precision of the original data.
In order to reduce the spectral artefacts in atmospherically corrected hyperspectral data,
post-processing methods such as linear normalization were developed (Boardman 1998).
The Empirical Flat Field Optimal Reflectance Transformation (EFFORT) method avail-
able in ENVI software is a mild linear correction algorithm that was used in this study to
decrease the noise level in the reflectance data set.

4.4. Image classification

In this study, two classification algorithms were used to map the mine area and spatial dis-
tribution of the minerals. In the first step, the Mahalanobis Distance algorithm is applied to
differentiate between main land-cover classes in the field area. This method (1) calculates
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the distance towards class means for each pixel, (2) defines the shortest Euclidian distance
to a class mean, (3) and then this class name is assigned to the output pixel if no distance
threshold has been specified (Richards 1999). In the area of the mine, based on aerial pho-
tointerpretation and field observation, the four main land-cover classes are rock outcrop,
mine waste deposits, vegetation, and water reservoirs. The collected field data were used
as a training set to supervise the Mahalanobis classifier. In the second step, the spatial vari-
ations of iron oxide and carbonate minerals within the mine area were mapped using the
Spectral Feature Fitting (SFF) method. The SFF is an absorption-feature-based method that
compares and matches an image spectrum to a reference (endmember) spectrum using a
least-squares technique (Clark, Gallagher, and Swayze 1990; Clark and Swayze 1995). The
method requires that data be reduced to reflectance and that a continuum be removed from
both data sets (image and reference spectra) prior to data analysis (Clark and Roush 1984;
Green and Craig 1985). The outputs of the SFF classification are scale and ‘root mean
square’ (RMS) images, which are calculated for each reference (endmember) spectrum.
The scale image depicts how similar an unknown image spectrum is to the reference spec-
tra. The pixel values close to 1 in the scale image indicate the best match to the reference
material. However, the scale image may contain values larger than 1, which can be a prod-
uct of selecting an incorrect wavelength range (ITT 2009). The RMS images show the root
mean square error (RMSE) calculated for each reference spectrum at the pixel level, indi-
cating the accuracy of the classified pixels (the lower the RMSE, the higher the accuracy).
To improve classification accuracy in this study, the scale and RMSE image are crossed
and only pixels with values close to 1 (from scale image) and pixel values close to 0 (from
RMS image) are selected as the best match to the endmembers.

In this study, the endmembers were selected from the spectral library provided by USGS
and the Jet Propulsion Laboratory (JPL). It is known from field measurements that the dom-
inant iron oxide minerals in the area are identified as alunite (KAl3(SO4)2(OH)6), copiapite
(Fe2+(Fe3+)4(SO4)6(OH)2·20H2O), ferrihydrite ((Fe3+)2O3·0.5H2O), goethite (FeO(OH)),
haematite (Fe2O3), and jarosite (K(Fe3+)3(SO4)2(OH)6), while the dominant carbonate
minerals in the area are identified as gypsum (CaSO4·2H2O) and calcite (CaCO2, CaCO3).
The spectral signatures of these minerals are given in Table 1.

5. Results

5.1. Pre-processing

In the first phase of pre-processing, the Hyperion images were co-aligned as described in
Section 4.1. The sub-pixel shift and the spatial registration of the data were obtained by
applying angular rotation in such way that for each pixel the same radiance value at a given
spatial position has been registered. The developed IDL algorithm that corrects for the
shifts does not apply any re-sampling techniques, and, therefore, preserves the original pixel
values in the output image. Comparison of the corrected image (Figure 5(a)) with the uncor-
rected image (Figure 4(a)) depicts the alignment of pixels along-track and across-track.
This visually can be observed, specifically for the along-track shift, by checking the stripe
column in the original and corrected images. The results of the applied method compared to
the counter-clockwise rotation, available in many commercial software applications, have
the advantage of preserving the original pixel values.

The second phase of pre-processing concerned the removal of the vertical stripes from
some of the bands in the VNIR and SWIR regions using the local method (see Section 4.1).
The results suggest that the de-striping algorithm (local method), in general, works well,
except for the very noisy bands (Figure 5(b)). The results of the local method (Equation (1),
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Table 1. The dominant minerals in the field area and their diagnostic absorption bands position in
VNIR–SWIR wavelength range.

Mineral
type Formula

VNIR–SWIR
absorption band
positions (nm)

Absorption band
positions used in this

study (nm)

Alunite KAl3(SO4)2(OH)6 1010, 1270, 1350,
1450, 1775, 2000,
2170, 2330, 2500*

963–1033 (1003),
1235–1296 (1270),
1740–1790 (1769),
2133–2194 (2170)

Copiapite Fe2+(Fe3+)4(SO4)6(OH)2·20H2O 431, 468, 544, 670,
864, 1447, 1936†

772–953 (864)

Ferrihydrite (Fe3+)2O3·0.5H2O 604, 778, 978, 1437,
1933†

824–1033 (972)

Goethite FeO(OH) 494, 548, 671, 764,
963, 1451, 1935†

824–973 (922)

Haematite Fe2O3 586, 663, 749, 882† 803–925(877)
Jarosite K(Fe3+)3(SO4)2(OH)6 436, 522, 717, 924,

1466, 1848, 1933,
2264†

813–993(910),
2234–2304 (2270)

430, 910, 1850, 2270‡
Calcite CaCO2, CaCO3 1888, 2000, 21600,

2350, 2550§
1975–2012 (1991),

2305–2355 (2335)
1225, 1479, 1978,

2113, 2356
Gypsum CaSO4·2H2O 1000, 1200, between

1450–1550, 1750,
1900, between
2200–2270*

943–1044 (994),
1165–1245 (1194),
2183–2234 (2213),
2244–2284 (2270)

Note: *Hunt, Salisbury, and Lenhoff (1971).
†Crowley et al. (2003).
‡Bishop and Murad (2005).
§Hunt and Salisbury (1971).

(a) (b) (c)

Figure 5. (a) Hyperion image after being corrected for the angular shift, (b) band 8 (472 nm) of
the data set after removal of the stripes, (c) MNF band 1 calculated from the Hyperion image after
being corrected for the smile/frown effects. The illustrated Hyperion image (a) is a colour composite
of band 28 (at 701 nm), band 25 (at 671 nm), and band 18 (at 599 nm) for red, green, and blue,
respectively.
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Table 2. Basic statistics calculated from the bands de-striped by global and local algorithms.

Minimum Maximum Mean SD PNV
Band
no.

Wavelength
(nm) GT LT GT LT GT LT GT LT GT LT

2 436 −2903 1880 12529 4196 1429.5 2530.5 1242.3 186.4 9697 0
51 932 −6073 −247 8264 2634 1429.5 1260.3 1242.3 249.8 8601 2
70 1124 −6624 −103 7560 720 1429.5 364.2 1242.3 72.2 8282 22
104 1467 −5398 −67 6925 389 1429.5 184.9 1242.3 46.1 10486 47
154 1971 −5543 −66 6711 410 1429.5 204.7 1242.3 48.4 10778 40
193 2365 −4494 −25 8430 339 1429.5 141.4 1242.3 35.1 10013 17

Notes: The image bands consist of 251 columns and 300 rows with a total number of 75,300 pixels.
SD = standard deviation, GT = global algorithm, LT = local algorithm, and PNV = number of pixels with
negative values in the de-striped bands.

Section 4.1) compared to the global approach show lower standard deviation and a mean
close to that of the original data, while the global technique results show a wider range and
high standard deviation values for the corrected bands. The basic statistic was calculated
for the de-striped bands and a few examples are shown in Table 2 in order to illustrate
the differences between the results of the two de-striping techniques. The calculated statis-
tics from the de-striped spectral bands (Table 2) suggest the presence of negative pixel
values mostly in the intensively noisy bands within or near the water absorption region
(SWIR). The negative values were removed using a 3 × 3 averaging filter described earlier
(see Section 4.3). Visual comparison of the de-striped image (Figure 5(b)) with the uncor-
rected image (Figure 4(b)) confirmed removal of the stripe from the image; both images
(Figures 4(b) and 5(b)) illustrate band 8 (at 425 nm).

The EO-1 Hyperion imagery was also corrected for smile effects using the method
described in Section 4.1. The MNF band 1 calculated from the Hyperion image after
being corrected (Figure 5(c)) suggests that this method removes the gradient grey tone
(Figure 4(c)) caused by the smile effects.

5.2. Atmospheric correction

The FLAASH algorithm was used to remove the effect of the atmosphere from the EO-1
Hyperion image. The model input parameters used for atmospheric correction include
the mid-latitude summer atmospheric model, the urban aerosol model, and the 2-band
(T-K) aerosol retrieval model (ITT 2012). The corrected image and a few examples
of pixel spectra are shown in Figure 6. The upper spectrum in Figure 6 is typical of
a vegetated area, while the lower spectrum in the figure represents an area of waste
deposits within the mine area. For comparison, the empirical line algorithm, available in
ENVI software, together with field spectra were also used to correct the EO-1 Hyperion
image for atmospheric effects. However, since the FLAASH algorithm produced a better
result, further data analysis was carried out using the images that were calibrated by this
method.

5.3. Post-processing

The EO-1 Hyperion data after being de-striped and atmospherically calibrated are post-
processed in order to remove the negative pixel values and reduce the noise level which
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Figure 6. The EO-1 Hyperion data after being corrected for atmospheric effects. The examples of
the pixel spectra represent vegetation (upper spectrum) and mine waste deposits (lower spectrum) in
the study area. The Hyperion image is a colour composite using band 43 (at 854 nm), band 33 (at
752 nm), and band 23 (at 651 nm) for red, green, and blue, respectively.

was produced as a result of pre-processing and atmospheric calibration. The negative pixel
values within each band were replaced with the average value calculated from their eight
surrounding pixels by applying an averaging filter of 3 × 3 windows. The mild linear
correction algorithm (EFFORT) available in ENVI software was also used to reduce spec-
tral artefacts in atmospherically corrected EO-1 Hyperion data. The image and spectra
presented in Figure 6 are the final result obtained after post-processing.

5.4. Mapping mine waste deposits and minerals spatial variations

The Mahalanobis Distance classification was used prior to the mineral discrimination in
order to map the area of the mine where the waste rock and tailings are damped. The results
illustrated successful mapping of the four main land-use classes in the field area, including
the area covered by mine waste (Figure 7(a)). For visual comparison, a high spatial resolu-
tion photo from the same area is included (Figure 7(b)). Further data analysis for identifi-
cation and mapping of the minerals is limited only to the area covered by the mine waste.

The spatial variations of iron oxide and carbonate minerals within the mine area were
mapped by the SFF method. The results of the SFF classification are scale and RMS
images, which are calculated for each reference (endmember) spectrum. The scale images
show the spatial distribution of each identified mineral, while the RMS image indicates
the accuracy of the classification for each reference spectrum at pixel level. From the eight
reference spectra used for classification, dominant presences of six minerals were mapped
in the field area (Figure 8), while the contributions of haematite and calcite within the pixel
area were not sufficient to be recognized. The basic statistic calculated from the scale and
RMS images (Table 3) suggests that not all of the discriminated pixels meet the thresh-
old as defined in Section 4.3. For example, the classified pixels in the scale images with
values less than 0.8 and above 1.0 are not considered a good match and therefore need
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Figure 7. Classified EO-1 Hyperion image showing the main land-use classes in the field area (a).
High spatial resolution photo from the same area for visual comparison (b).

to be excluded. In addition, it is also important to exclude those classified pixels with
high RMSE.

In order to minimize error and to obtain a more accurate mineral mapping, from each
scale image the pixels with values from 0.8 to 1.0 and from each RMS image the pixels with
values lower than minimum plus 2 standard deviation were selected. The maps resulting
from the selection were crossed and eventually only pixels with high match values and with
low RMSE were mapped (Figure 8). The total number of pixels in each mineral class is
given in Table 4. As can be seen from the table, from a total of 754 pixels that cover the test
area, 43 pixels were classified as sulphide and carbonate minerals and 711 pixels showed
no dominant abundance of any mineral.

5.5. Validation of the results

The results obtained from SFF classification were validated against field measurements.
The field measurements confirm the dominant presence of the identified minerals in many

Figure 8. The images resulting from Spectral Feature Fitting method showing spatial distribution
of iron oxide and carbonate minerals in the mine area. The six images were derived from crossing
of the scale and RMS images. The pixels in each mineral class are those with the best match to the
reference mineral and with the lowest root mean square error.
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Table 3. Basic statistics calculated from the scale and RMS images.

Scale image RMS image

Endmember Min. Max. Mean SD Min. Max. Mean SD

Alunite 0.5248 1.1603 0.7313 0.0903 0.1583 0.4156 0.2060 0.0227
Copiapite 0.4212 1.1687 0.5924 0.0993 0.1705 0.3794 0.2184 0.0194
Ferrihydrite 0.3428 1.2144 0.5276 0.0857 0.1856 0.3877 0.2379 0.0231
Goethite 0.3774 1.5831 0.6186 0.1292 0.1890 0.3959 0.2473 0.0241
Jarosite 0.6779 2.3685 0.9507 0.2015 0.1807 0.3769 0.2405 0.0235
Gypsum 0.6179 1.5738 0.8923 0.1335 0.1739 0.4311 0.2218 0.0215

Note: Min. = minimum, Max. = maximum, SD = standard deviation.

Table 4. Number of pixels classified within each mineral class.

Mineral
class Alunite copiapite Ferrihydrite Goethite Jarosite Gypsum

Ferrihydrite
and goethite

Classified
as minerals

Classified as
non-minerals

NOCP 7 4 5 6 6 14 1 43 711

Total number of pixels that cover the mine area 754

Note: NOCP = number of classified pixels.

places within the mine area as well as within the classified pixel areas. In this study, the pix-
els identified as a match to reference mineral (or minerals) only suggest the abundance of
the mineral or minerals within the pixel area. It should not be assumed that the entire pixel
area (900 m2) is covered by a certain mineral. It has to be emphasized that the reflectance
spectra measured in the field represents an area of about 0.5 m2, while a pixel spectrum is
obtained from an area of 900 m2 (30 × 30 m, the spatial resolution). Due to scale differ-
ences between the field measurements and image data, the calculated statistics regarding
the validation of the results do not reveal the actual condition and do not show the actual
differences between the SFF results and the field measurements. However, it has to be men-
tioned that from a total of eight endmembers identified during field measurements, two
have not been detected by the SFF classifier (see Tables 1 and 4). Furthermore, the location
of the field-measured spectra of different endmembers often occurs within the same pixel
area, suggesting the presence of the two or three endmembers, while the results of the SFF
classifier confirm the abundance of the dominant endmembers.

6. Conclusions

The results presented in this study confirm the achievement of the research objective as
defined in Section 1. The method developed in this study is non-complex, simple, has unde-
manding capabilities in terms of field measurements, has the capability to discriminate
areas covered by mine waste deposits, and provides quantitative information concerning
iron oxide by-products and carbonate minerals formed at the surface. Therefore, it can be
used as a preliminary application tool for monitoring the mine waste deposits.

Since the Hyperion data contain large amounts of noise and artefacts, and are affected
by the atmosphere, the pre-processing and atmospheric calibrations of the data are vital
and play a major role in the final output. The results suggest that the vertical stripes
can be removed very well by the local algorithm except for the very noisy bands. The
method developed for correcting the along-track and across-track shifts does not require
re-sampling and therefore has the advantage of keeping the original pixel values.
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The classification results showed that the mine waste deposits can be easily mapped
using available standard algorithms. The results of mineral mapping illustrate the poten-
tial application of the EO-1 Hyperion images. However, due to the low spatial resolution
of the Hyperion data (30 × 30 m), the results should be carefully interpreted. The
field measurements confirm the dominant presence of the identified minerals within the
mine area.

Acknowledgements
The authors thank C. Quesada and A. Barnolas from the Instituto Geológico y Minero de España
(IGME) for supporting the research. The authors are also very grateful for the support received from
their colleagues, in IGME, especially Francisco Rubio-Pascual, Enrique Díaz-Martínez, and Santiago
Martin-Alfageme.

References
Adler-Golden, S. M., M. W. Matthew, L. S. Bernstein, R. Y. Levine, A. Berk, S. C. Richtsmeier,

P. K. Acharya, G. P. Anderson, G. Felde, J. Gardner, M. Hoke, L. S. Jeong, B. Pukall,
A. Ratkowski, H. H. Burke. 1999. “Atmospheric Correction for Short-Wave Spectral Imagery
Based on MODTRAN4.” SPIE Proceedings on Imaging Spectrometry 3753: 61–9.

Advanced Software Design Inc. (ASD Inc.) 2010. FieldSpec® 3 Hi-Res Portable Spectroradiometer.
Boulder, CO: ASD, Inc. Accessed April 26, 2010. http://www.asdi.com/products/fieldspec-3-hi-
res-portable-spectroradiometer.

Alastuey, A., A. García-Sánchez, F. López, and X. Querol. 1999. “Evolution of Pyrite Mud
Weathering and Mobility of Heavy-Metals in the Guadiamar Valley after the Aznalcóllar Spill,
South-West Spain.” The Science of the Total Environment 242: 41–55.

Analytical Imaging and Geophysics (AIG). 2001. ACORN User’s Guide, Stand Alone Version, 64 pp.
Boulder, CO: AIG, LLC.

Barry, P. 2001. EO-1- Hyperion Science Data User’s Guide, Level 1_B. Redondo Beach, CA: TRW,
Space, Defense & Information Systems.

Berk, A., L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd,
and S. M. Adler-Golden. 1998. “MODTRAN Cloud and Multiple Scattering Upgrades with
Application to AVIRIS.” Remote Sensing of the Environment 65: 367–75.

Berk, A., L. S. Bernstein, and D. C. Robertson. 1989. MODTRAN: A Moderate Resolution Model for
LOWTRAN7. GL-TR-89-0122, 38 pp. Lincoln, MA: Air Force Geophysical Laboratory, Hanscom
AFB.

Bishop, J. L., and E. Murad. 2005. “The Visible and Near Infrared Spectral Properties of Jarosite and
Alunite.” American Mineralogist 90: 1100–7.

Boardman, J. W. 1998. “Post-ATREM Polishing of AVIRIS Apparent Reflectance Data Using
EFFORT: A Lesson in Accuracy Versus Precision.” In Summaries of the Seventh JPL Airborne
Earth Science Workshop, vol. 1, 53. Pasadena, CA: JPL Publication 97-2.

Buckby, T., S. Black, M. L. Coleman, and M. E. Hodson. 2003. “Fe-Sulphate-Rich Evaporative
Mineral Precipitates from the Rio Tinto, Southwest Spain.” Mineralogical Magazine 67, no. 2:
263–78.

Cairns, B., B. E. Carlson, R. Ying, A. A. Lacis, and V. Oinas. 2003. “Atmospheric Correction and
Its Application to an Analysis of Hyperion Data.” IEEE Transactions on Geoscience and Remote
Sensing 41: 1232–45.

Clark, R. N., A. J. Gallagher, and G. A. Swayze. 1990. “Material Absorption Band Depth
Mapping of Imaging Spectrometer Data Using a Complete Band Shape Least-Squares Fit with
Library Reference Spectra.” In Proceedings of the Second Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) Workshop, 176–86. Pasadena, CA: JPL Publication 90-54.

Clark, R. N., and G. A. Swayze. 1995. “Mapping Minerals, Amorphous Materials, Environmental
Materials, Vegetation, Water, Ice and Snow, and Other Materials: The USGS Tricorder
Algorithm.” In Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, edited
by R. O. Green, 39–40. Pasadena, CA: JPL Publication 95-1.

http://www.asdi.com/products/fieldspec-3-hi-res-portable-spectroradiometer
http://www.asdi.com/products/fieldspec-3-hi-res-portable-spectroradiometer


698 J. Farifteh et al.

Clark, R. N., and T. L. Roush. 1984. “Reflectance Spectroscopy: Quantitative Analysis Techniques
for Remote Sensing Applications.” Journal of Geophysical Research 89: 6329–40.

Crowley, J. K. 1993. “Mapping Playa Evaporate Minerals with AVRIS Data: A First Report from
Death Valley, California.” Remote Sensing of Environment 44: 337–356.

Crowley, J. K., D. E. Williams, J. M. Hammarstroom, N. Piatak, I. M. Chou, and J. C. Mars. 2003.
“Spectral Reflectance Properties (0.4–2.5 µm) of Secondary Fe-Oxide, Fe-Hydroxide and Fe-
Hydrate Minerals Associated with Sulphide-Bearing Mine Waste.” Geochemistry: Exploration,
Environment, Analysis 3: 219–28.

Datt, B., T. R. McVicar, T. G. van Niel, D. L. B. Jupp, and J. S. Pearlman. 2003. “Preprocessing
EO-1 Hyperion Hyperspectral Data to Support the Application of Agricultural Indexes.” IEEE
Transactions on Geoscience and Remote Sensing 41: 1246–59.

Doetsch, J. 1957. “Esbozo Geoquímico Y Mineralógico Del Criadero De Piritas ‘Las Herrerías’,
Puebla De Guzmán (Huelva).” Boletín del Instituto Geológico y Minero de Espana 68:
225–306.

Farifteh, J., F. Van der Meer, C. Atzberger, and E. J. M. Carranza. 2007. “Quantitative Analysis of
Salt-Affected Soil Reflectance Spectra: A Comparison of Two Adaptive Methods (PLSR and
ANN).” Remote Sensing of Environment 110, no. 1: 59–78.

Feng, Y., and Y. Xiang. 2008. “Mitigation of Spectral Miss-Registration Effects in Imaging
Spectrometers via Cubic Spline Interpolation.” Optics Express 16, no. 20: 15366–74.

Folkman, M., J. S. Pearlman, L. Liao, and P. Jarecke. 2001. “EO-1 Hyperion Hyperspectral Imager
Design, Development, Characterization, and Calibration. Hyperspectral Remote Sensing of the
Land and Atmosphere.” Proceedings of SPIE 4151: 40–51.

Galán, E., J. L. Gomez-Ariza, I. Gonzalez, J. C. Fernandez-Caliani, E. Morales, and I. Giraldez.
2003. “Heavy Metal Partitioning in River Sediments Severely Polluted by Acid Mine Drainage
in Iberian Pyrite Belt.” Applied Geochemistry 18: 409–21.

Gao, B. C., K. B. Heidebrecht, and A. F. H. Goetz. 1996. Atmosphere Removal Program (ATREM)
Version 2.0 Users Guide. Centre for the Study of Earth from Space/CIRES, 26 pp. Boulder, CO:
University of Colorado.

Goetz, A. F. H. 2003. EO-1 Interim Report. Accessed April 26, 2010. http://eo1.gsfc.nasa.gov/new/
validationReport/Technology/JoeCD/Goetz_FinalReport.doc.

Goetz, A. F. H., G. Vane, J. Solomon, and B. N. Rock. 1985. “Imaging Spectrometry for Earth Remote
Sensing.” Science 228: 1147–53.

González, F., C. Moreno, R. Sáez, and G. Clayton. 2002. “Ore Genesis Age of the Tharsis Mining
District (Iberian Pyrite Belt): A Palynological Approach.” Journal of the Geological Society 159:
229–32.

Goodenough, D. G., A. Dyk, K. Olaf Niemann, J. S. Pearlman, H. Chen, T. Han, W. Murdoch, and
C. West. 2003. “Processing Hyperion and ALI for Forest Classification.” IEEE Transaction on
Geoscience and Remote Sensing 41: 6.

Green, A. A., M. Berman, P. Switzer, and M. D. Craig. 1988. “Transformation for Ordering
Multispectral Data in Terms of Image Quality with Implications for Noise Removal.” IEEE
Transaction on Geoscience and Remote Sensing 26: 65–74.

Green, A. A., and M. D. Craig. 1985. “Analysis of Aircraft Spectrometer Data with Logarithmic
Residuals.” In Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop,
edited by G. Vane and A. Goetz, 111–19. Pasadena, CA: JPL Publication 86-35.

Green, R. O., T. G. Chrien, and B. Pavri. 2003. “On-Orbit Determination of the Radiometric
and Spectral Calibration of Hyperion Using Ground, Atmospheric and AVIRIS under Flight
Measurements.” IEEE Transaction on Geoscience and Remote Sensing 41, no. 6: 1194–203.

Han, T., D. G. Goodenough, A. Dyk, and J. Love. 2002. “Detection and Correction of Abnormal Pixels
in Hyperion Images. Geoscience and Remote Sensing Symposium, IGARSS.” IEEE International
3: 1327–30.

Hudson-Edwards, K. A., M. G. Macklin, H. E. Jamieson, P. A. Brewer, T. J. Coulthard, A. J. Howard,
and J. N. Turner. 2003. “The Impact of Tailings Dam Spills and Clean-up Operations on Sediment
and Water Quality in River Systems: The Ríos Agrio–Guadiamar, Aznalcóllar, Spain.” Applied
Geochemistry 18, no. 2: 221–39.

Hunt, G. R., and J. W. Salisbury. 1971. “Visible and Near Infrared Spectra of Minerals and Rocks: II.
Carbonates.” Modern Geology 2: 23–30.

Hunt, G. R., J. W. Salisbury, and C. J. Lenhoff. 1971. “Visible and Near Infrared Spectra of Minerals
and Rocks: IV. Sulphides and Sulphates.” Modern Geology 3: 1–14.

http://eo1.gsfc.nasa.gov/new/validationReport/Technology/JoeCD/Goetz_FinalReport.doc
http://eo1.gsfc.nasa.gov/new/validationReport/Technology/JoeCD/Goetz_FinalReport.doc


International Journal of Remote Sensing 699

ITT. 2009. ENVI Reference Guide. Boulder, CO: ITT Visual Information Solutions.
ITT. 2012. ENVI Help, Standard FLAASH Input Parameters. Boulder, CO: ITT Visual Information

Solutions.
Jupp, D. L. B., and B. Datt, eds. 2006. Evaluation of the EO-1 Hyperion Hyperspectral Instrument and

Its Applications at Australian Validation Sites, 2001–2003 (2004/06), 36 pp. Canberra: CSIRO
Earth Observation Centre.

Jupp, D. L. B., B. Datt, T. R. McVicar, T. G. Van Niel, J. S. Pearlman, J. Lovell, and E. G. King.
2002. “Improving the Analysis of Hyperion Red Edge Index from an Agricultural Area.” In
Proceedings of SPIE Conference on Remote Sensing Asia, Hangzhou, China.

Kaufman, Y. J., A. E. Wald, L. A. Remer, B.-C. Gao, R.-R. Li, and L. Flynn. 1997. “The MODIS
2.1-mm Channel—Correlation with Visible Reflectance for Use in Remote Sensing of Aerosol.”
IEEE Transactions on Geoscience and Remote Sensing 35, no. 5: 1286–98.

Kruse, F. A., J. W. Boardman, and J. F. Huntington. 2003. “Comparison of Airborne Hyperspectral
Data and EO-1 Hyperion for Mineral Mapping.” IEEE Transactions on Geoscience and Remote
Sensing 41, no. 6: 1388–99.

Liao, L., P. Jarecke, D. Gleichauf, and T. Hedman, 2000, “Performance Characterization of the
Hyperion Imaging Spectrometer Instrument.” Proceedings of SPIE 4135: 264–275.

Matthew, M. W., S. M. Adler-Golden, A. Berk, S. C. Richtsmeier, R. Y. Levine, L. S. Bernstein, P. K.
Acharya, G. P. Anderson, G. W. Felde, M. P. Hoke, A. Ratkowski, H.-H. Burke, R. D. Kaiser, D. P.
Miller. 2000. “Status of Atmospheric Correction Using a MODTRAN4-based Algorithm.” SPIE
Proceedings, Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI 4049:
199–207.

Pamo, E., D. Barettino, C. Antón-Pacheco, G. Ortiz, J. C. Arranz, J. C. Gumiel, B. Martinez-Pledel,
M. Aparicio, and O. Montouto. 1999. “The Extent of the Aznalcollar Pyritic Sludge Spill and Its
Effects on Soils.” Science of the Total Environment 242: 57–88.

Pearlman, J. S., P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman. 2003. “Hyperion,
a Space-Based Imaging Spectrometer.” IEEE Transactions on Geoscience and Remote Sensing
41, no. 6: 1160–73.

Pinedo Vara, I. 1963. Piritas de Huelva. Su historia, minería y aprovechamiento, 1003 pp. Madrid:
Summa.

Qu, Z., B. C. Kindel, and A. F. H. Goetz. 2003. “The High Accuracy Atmospheric Correction for
Hyperspectral Data (HATCH) Model.” IEEE Transactions on Geoscience and Remote Sensing
41: 1223–31.

Richards, J. A. 1999. Remote Sensing Digital Image Analysis, 240 pp. Berlin: Springer-Verlag.
Sáez, R., C. Moreno, and F. González. 2008. “Synchronous Deposition of Massive Sulphide Deposits

in the Iberian Pyrite Belt: New Data from Las Herrerías and La Torerera Ore-Bodies.” Comptes
Rendus Geosciences 340, no. 12: 829–39.

Staenz, K., R. A. Neville, S. Clavette, R. Landry, and H. P. White. 2002. “Retrieval of Surface
Reflectance from Hyperion Radiance Data.” IEEE Geoscience and Remote Sensing Letters 1,
no. 2: 1419–21.

Staenz, K., and D. J. Williams. 1997. “Retrieval of Surface Reflectance from Hyperspectral Data
Using a Look-up Table Approach.” Canadian Journal of Remote Sensing 23, no. 4: 354–68.

Swayze, G. A., K. S. Smith, R. N. Clark, S. J. Sutley, R. M. Pearson, J. S. Vance, P. L. Hageman, P. H.
Briggs, A. L. Meier, M. J. Singleton, S. Roth. 2000. “Using Imaging Spectroscopy to Map Mine
Sites.” Environmental Science and Technology 34: 47–54.

Velasco, F., A. Alvaro, S. Suarez, J. M. Herrero, and I. Yusta. 2005. “Mapping Fe-Bearing Hydrated
Sulphate Minerals with Short Wave Infrared (SWIR) Spectral Analysis at San Miguel Mine
Environment, Iberian Pyrite Belt (SW Spain).” Journal of Geochemical Exploration 87, no. 2:
45–72.

Vermote, E. F., D. Tanre, J. L. Deuze, M. Herman, and J. J. Morcrette. 1994. Second Simulation of
the Satellite Signal in the Solar Spectrum (6s). 6s User Guide Version 6.0, 134. Greenbelt, MD:
NASA-GSFC.

White, H. P., K. S. Khurshid, R. Hitchcock, R. Neville, L. Sun, C. M. Champagne, and K. Staenz.
2004. “From At-Sensor Observations to At-Surface Reflectance-Calibration Steps for Earth
Observations Hyperspectral Sensors.” In IGARSS’04, Proceedings of the IEEE International
Geoscience and Remote Sensing Symposium, Anchorage, Alaska, vol. 5, 3241–4.




