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Minimizing the Maximum Processor Temperature by
Temperature Aware Scheduling of Real-Time Tasks

Baver Ozceylan, Boudewijn R. Haverkort, Maurits de Graaf, and Marco E. T. Gerards

Abstract—Thermal management is gaining importance since
it is a promising method for increasing the reliability and the
lifespan of mobile devices. Although the temperature can be
decreased by reducing processor speed, one must take care not
to increase the processing times too much; violations of deadline
constraints must be prevented. This article focuses on the tradeoff
between performance and device temperature. We first analyze
this tradeoff and show how to determine the optimal lower
bound for the maximum temperature for a given set of jobs with
known workloads and deadlines. To do so, we use a thermal
model, which describes how future decisions impact temperature
dynamics. Then, we introduce a processor scheduling algorithm
that computes the resource allocation that achieves this lower
bound. Consequently, our algorithm finds the optimal resource
allocation for the purpose of minimizing the maximum processor
temperature for a set of jobs with known workloads and deadlines.
Our experimental validation shows that our thermal management
algorithm can achieve a reduction of up to 15°C (42%) of the
maximum temperature when the workload is high, where a
previously proposed method achieved a reduction of up to 10°C
(25%). Another advantage of our method is that it decreases
the variance in the temperature profile by 16%, compared to
previously proposed methods.

Index Terms—Thermal management, resource allocation, leak-
age current, model predictive control, processor scheduling,
reliability.

I. INTRODUCTION

HE applications that are used in electronic devices have

become more complex over the last decade, thus, requiring
a significant amount of computational power. With the advances
in electronic chip manufacturing technologies, mobile devices
are able to keep up with this trend using multiprocessor System-
on-Chips (SoCs), however, this has impact on high temperature
related issues. Although the impact is partially alleviated by the
increased efficiency of advance chip technologies, the overall
heat dissipation increases due to the increase in computations
[1]. High temperature values have catastrophic consequences
for electronic devices. In [2], the authors emphasize that even
small differences in the operating temperature can have a
high impact on the lifespan of devices and underline the
fact that high temperatures can also decrease the effective
operating speed. Moreover, high variations in the temperature
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profile further decrease the reliability [3]. When dealing
with high temperatures, the battery dependent nature and
deployment environments of mobile devices should be taken
into consideration. For example, active cooling mechanisms,
such as using a fan or water cooling, consumes too much
power for mobile devices due to their battery dependent nature,
these are typically not possible in some environments, such
as highly mobile environments, where equipment is subject to
vibrations and shocks. Therefore, we focus on passive cooling
mechanisms.

Passive cooling mechanisms are mostly based on throttling
(slowing down) the processor so that they adjust the resources
assigned to a task [4]. A commonly used mechanism is
idle time scheduling, which periodically idles the processor
to cool it. Another well known method is dynamic voltage
and frequency scaling (DVFS), which controls the operating
frequency and voltage [5]. Although these mechanisms are
able to decrease the temperature effectively, they do decrease
the performance as well. Therefore, every thermal management
technique has to balance temperature vs. performance reduction.
If the application requires a high performance, the adapted
technique has to allow high temperature values to provide
the required performance. However, if the application does
not require a high performance, it should throttle the device.
Most employed approaches assign a temperature limit and
throttle the processor only if the temperature exceeds this limit,
which particularly favors performance. In the Linux kernel [6],
the default thermal policy, the so-called performance policy,
implements this approach. The goal here is to prevent damage
caused by high temperatures. However, this policy assigns a
predetermined maximum temperature limit, which is based on
the specifications of the hardware. On the other hand, there
are some approaches [7]-[9] that throttle the processor before
the temperature reaches the predetermined limit and prolong
the duration until the temperature reaches the predetermined
limit. To do so, they use algorithms that provide the minimum
required performance during the full available processing time.
For example, for a single job, these approaches assign the
resources such that the job is completed precisely at the
deadline, and not before. We refer to this as the just enough
policy, as in [7]. The goal of this policy is to balance energy
consumption and performance reduction. Another advantage is
to reduce the exposure to high temperature values compared to
the performance policy. As a result, the performance and just
enough policies regulate the device performance while keeping
the device temperature under a predetermined temperature
limit, which means that they do not necessarily minimize the
maximum temperature.
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Our aim in this article is to minimize the maximum
temperature by assigning dynamic temperature limits while
meeting the performance constraints. We focus on a use
case with a given set of real-time jobs, which means that
the workloads and deadlines are known. To achieve this, we
first determine the optimal lower bound for the maximum
temperature limit. Such a problem requires the use of a thermal
model, as in [3], [10]-[14], to define it as a convex optimization
problem. We use the thermal model from our previous work
[12] for this purpose. After solving this problem analytically,
we prove that this lower bound is optimal for a given set of jobs
with known workloads and deadline, which means the best that
the device can achieve with any thermal/power management
approach based on throttling. Then, we propose a dynamic
thermal management algorithm that allocates the resources and
adjusts the temperature limit with respect to this lower bound.
Furthermore, we observe that a side effect of our algorithm is
a reduction in the variance of the temperature profile, which
further improves reliability.

Consequently, our algorithm minimizes the maximum tem-
perature for a given set of real-time jobs. Our contributions in
this article are as follows:

o An analytic method that calculates the optimal lower
bound for the maximum temperature limit at a given time
with respect to known workloads and deadlines.

o An algorithmic approach that minimizes the maximum
temperature for a set of real-time jobs by adjusting the
allocated resources and the temperature limit dynamically.

« A mathematical proof that this algorithm finds the the-
oretical minimum value for the maximum temperature
limit.

« Experimental evaluation on an Exynos 5422 MPSoC,
which is a widely used commercial processor.

The remainder of this article is organized as follows. In
Section II, we describe related work on thermal modeling
and thermal management policies. In Section III, we briefly
explain the thermal model that we use. Section IV defines
and formalizes the problem. Then, in Section V, we start with
the case with only one job and find an optimal solution. In
Section VI, we generalize this solution to the multiple job case.
In Section VII, we describe our implementation and present
the experimental results. Section VIII concludes the article.

II. RELATED WORK

The collected data from built-in temperature sensors in chips
have drawn significant attention in recent research. For example,
[15] proposes a method to detect malicious activities using
built-in temperature sensors. On the other hand, there is a
variety of proposed methods that increase the accuracy of built-
in temperature sensors. While [16] uses convolution neural
networks, [17] uses approximate computing to better increase
the sensor accuracy. Their common motivation is to predict
the temperature with the collected data using only built-in
temperature sensors.

In the literature, several ways to predict the temperature
have been proposed. Whereas initial work uses autoregressive
moving averages (ARMA) to estimate future temperatures

[10], more recent studies [3], [11]-[14] combine this statistical
method with an analytical temperature model. In [3], the
authors propose a thermal model and describe an experimental
setup to determine the model parameters. This experimental
setup requires a furnace and periodic measurements of the
temperature and power using on-board sensors. The authors of
[11] introduce a similar concept, however, without requiring
power measurements. In order to deal with different environ-
ments, [13] uses a look-up table that contains error correction
coefficients for different system states. This look-up table is
updated on the fly based on the error between temperatures
measured and estimated values to adapt the temperature to
environmental changes. We introduced a thermal model in
[12], and a method to estimate the system parameters. This
method only uses built-in temperature sensors and is easy
to apply, since it does not require any additional hardware,
such as a furnace or power sensor. Moreover, in [14], we
introduced two different extensions to this approach using a
Kalman filter and a particle filter, such that the model can
adapt to environmental changes. Thus, these methods are well
studied to capture the dynamic thermal behavior of a system.

Although our goal in this article is to minimize the maximum
temperature using the captured thermal behavior, various
thermal management techniques have been proposed in the
literature with different goals. In [11], a PID controller is
used to reduce the temperature variance for mobile gaming
applications. In [5] and its extended version [3], the authors
propose an algorithm to calculate and distribute a power
budget to control thermal violations. In [13], the goal is to
determine the maximum operating frequency and processor
utilization setting to avoid temperature violations before it
reaches the assigned temperature limit. In [18], the authors
focus on the temperature variance. They first introduce this
as a convex optimization problem and then solve it to reduce
the temperature variance. In [7] and [8], the authors propose a
closed-loop control policy to achieve sustainable QoS (Quality
of Service). They control the temperature using real-time
QoS measurements. In [9], this policy is extended by adding
application awareness.

There are several papers that address minimizing the max-
imum processor temperature as in this article. In [19], [20]
and [21], the goal is to minimize the steady state temperatures
while executing periodic tasks. The method in [20] first splits
tasks and, then, schedules idle time, whereas, in [21] and [19],
the authors use DVFS. All three studies use simulations to
validate their methods. In [22], the task model is a set of
real-time jobs. However, the authors mostly focus on leakage
current, they only consider jobs with a common deadline and
they validate their method using simulations.

In this article, we also address minimizing the maximum
processor temperature and the task model that we use is a set
of real-time jobs with different deadlines. We first introduce
this as a convex optimization problem as in [18]. However,
we solve it to minimize the maximum processor temperature.
Our solution is a hybrid method that combines the just enough
policy, which is proposed to achieve sustainable QoS in [7],
and the performance policy, which is the default policy in
Linux kernel.
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III. THERMAL MODEL

The heat dissipation in the system is directly related to
assigned resources. There are two heat sources in a processor
unit [23]. The first source, Op(f), reflects the switching activi-
ties in the processor, which depends on the active resources
of the processor and it can be expressed as Op(t) = ax(z),
where x(¢) is the normalized amount of active resources, i.e.,
0<x(t) <1, and o > 0 is a system dependent parameter. The
second source, QO (t), relates to the leakage current in the
processor, which depends on the tcemperature of the system

and is given by Qy(f) = ClT(t)zeﬁ%) [23], where C; and C,
are system dependent parameters and 7'(¢) is the processor
temperature at time ¢. In our previous study [12], we derived
a method to estimate the dynamic temperature behavior of
CPUs and our experiments showed that the effect of Qp (¢)
is very low compared to Qp(¢) when the temperature is not
high and we can control Qp(¢) via adjusting the assigned
resources. Since our aim is to operate in the low temperature
range by adjusting the assigned resources, we focus on Op(7),
the dominant contributor to the heat dissipation'. As a result, in
this study, we use the following dynamic heat transfer equation:

. 1 1 o

T@)= TT(t)+ rTa+ Tx(t), (1)
where T'(t) is the first order derivative of T(t), T> 0 is the
thermal system dependent time constant and 7, is the ambient
temperature, which mainly depends on environmental factors.
We assume 7, constant over time in this study. To ease the
notation, we define the output as y(t) = LT(t) — 1 T,, which
is the normalized temperature difference. With this, we can
rewrite (1) as follows:

1 1
y(t) = ——y(t —x(t), 2
3(1) = =3(t) + (1) @
and the solution to this first order differential equation is:
1 4 —(t—0) —(t—19)
y0) = [ alordo+yin)e T iz ()
fo

In this study, we take the initial value y(ty) between O and 1.
Thus, the expression in (3) always results in 0 < y(¢) < 1 since
x(t) is normalized. This means that the system temperature T ()
always remains between 7T, and T, + . Now considering a
time interval [8,, 8] where 0 < &, < 8, we make two remarks
based on (2) and (3). First, if x(z) is a constant in this time
interval as x(t) = x(0,), Vt € [84, 8], we can write y(¢) using
(3) as:

—(1-6a)

y(t) =x(8.)(1 —e™ =

Second, if y(¢) is a constant in this time interval as y(¢) = y(6,),
Vt € [84, 0p), we can write x(¢) using (2) as:

x(t) :y(sa)a Vi € [5117617];

V4 y(S)e T, Vi € (80,85, (@)

&)

As a result, we use (4) to predict the temperature change in
time intervals where x(¢) is constant and (5) to adjust x(¢) in
time intervals where a constant temperature value is desired.

'We show high temperature results in Section VII and revisit the factor
QL (1) to explain the measurement results
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Fig. 1. Example of the dynamic thermal behavior of the system with varying
input.

The example below illustrates the relation between x(¢), T ()
and y(z).

Example IIL.1. Figure 1 shows a sample input x(z), which
refers to the assigned resources, the corresponding output
y(t) and the temperature 7' (), which follows from (3) with
parameters T = 350ms, o =40°C, T, =25°C and the initial
value, Ty = 35°C.

IV. SYSTEM DEFINITION

Our target system is a processor running a set of real-time
jobs, which means that the deadlines and workloads are known.
Our goal is to find a resource allocation that minimizes the
maximum processor temperature while considering system
constraints. We model this system as a linear time-invariant
system with an input x(¢) and output y(t) = (T (r) - T,) and
t > 0. The initial temperature of the system at t = 0 is Tp.
Since T, is constant and « is positive, minimizing max 7 (¢),
our main objective, is the same as minimizing maxy(z).

For each job n € {1,2,...,N} in a given set of N real-time
jobs, where every job becomes available at t =0, we denote
the workload and deadline by p, and d, respectively, where
pn is the time that is needed to process the job at full system
resources (i.e., x(t) = 1) and d,, is the time before which the
job has to be completed. To ease the notation, we assume jobs
are ordered by increasing deadlines and processed in this order.
We represent the minimum cumulative required resources to
meet all the deadlines coming before a given time ¢ with the
function F),(t):

Fp()= ), (6)

ne{n|d,<t}

Pn,Vt > 0.

We also represent the cumulative resources assigned up to a
given time ¢ with the function F, () as:

Fi(t) = /0 ' v(0)do.

Thus, the deadline constraints can be represented by
Fy(t) > Fy(t), Vt € [0,dy]. Since we cannot assign more
resources if there is no remaining workload, Fi(t) < F,(dn),
Vt € [0,dy], and x(¢#) =0 when 7 > dy. This also means that
¥(t) is decreasing for ¢t > dy. Moreover, 0 < x(¢) < 1 leads to
0 < F(t) <t, Vt € [0,dy]. Therefore, the feasibility conditions
for the input are:

(7

min{F,(dy),t} > F(t) > F,(1), Vr € [0,dy].  (8)
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Fig. 2. Example of Fj(¢) and F(r).

TABLE I
OVERVIEW OF THE USED NOTATION

Processor temperature at time ¢

Ty Initial temperature of the system
o, T System dependent parameters
T, Ambient temperature
x(1) Normalized amount of active resources
¥(1) Normalized processor temperature at time ¢
y(t)¢ Complement of y(¢) as y“(r) = 1 —y(t)
Yo Normalized initial temperature of the system
Pns dn Workload and deadline of the n™ job respectively
Fy(1) Minimum cumulative required resources up to time ¢
Fi(1) Cumulative resources assigned up to time ¢
At;dy) Minimum cumulative required resources at time 7 up to d,

Complement of A(t;d,) as A°(t;dy) =dn —t — A(t;dy)
Stable state temperature corresponding to d,, and p,
Time point when the system reaches yg(#;d),)

This also means that this system has a solution only if F,(¢) <1,
Vt € [0,dy]. From now on, we only focus on the time interval

[0,dy] and assume that the above conditions are always satisfied.

The example below illustrates the relation between F), (), Fi(t)
and min{F,(dy),t}.

Example IV.1. Figure 2 shows a sample set of real-time jobs in
the form of F,(¢) and a sample input x(z) in the form F;(z). This
set contains N =4 jobs, where p; = 0.5s, po = 1.5s, p3 = 3s,
ps =2s, dy =2s, dy =4s, di = 8s and d4 = 10s. Furthermore,
the dashed line represents the upper boundary min{F,(dy),?}
in (8).

To ease the notation, at time ¢ and for a given deadline
dy,, where t < d,, we define the remaining minimum required
amount of resources as:

Alt:dy) = Fy(dy) — Fu(t). )

This gives the required amount of resources at time ¢ to meet
the deadline d,,. This function may have negative values, which
implies that the corresponding deadline is already satisfied.
Since F,(t) <t, the maximum value for A(t;d,) is d, —1t,
which is the total available amount of resources. Hence, we
define the complement of A(#;d,) as:

A(t:dy) = dy —1 — A(1:dy). (10)

Moreover, using y(z) € [0,1], we define the complement of the
output as y“(¢#) = 1 —y(¢). This means that y°(¢) is also in the
range of [0, 1].
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Fig. 3. Comparison of three different scheduling policies for the single job
case with yg =0.

In Section V, we consider the case with only one job and
find an optimal solution. In Section VI, we generalize this
solution to the multiple job case.

V. SINGLE JOB CASE

In this section, we consider a single real-time job that
becomes available at t =0 with a workload p and a deadline d
hence:

p, t>d,

F,(t) =
p(0) 0, t<d.

and the deadline constraint is F,(d) = p. Therefore, given p, d
and yp, we aim to find an input x(z) that minimizes maxy(z),
where y(¢) depends on x(¢) as in (3). We call this the single
Jjob resource allocation problem and its full description is:

i t 11
o e e
1 [t -0 =
s.t.y(t) = ;/ e 7 x(o)do+ype, (11b)
0
d
/ x(t)dt = p, (11¢)
0
0<x(t)<1Vtel0,d]. (11d)

To develop an intuition, we compare the performance
and just enough policies with the optimal solution. Figure
3a shows three different F(¢) samples, which all result
in the same amount of workload (i.e., Fy(d) = p). The
resulting outputs based on (11b) are shown in Figure 3b.
The performance policy aims to complete the process as
soon as possible, which means that x(r) =1 V¢ € [0, p] and
x(t) = 0 otherwise. Hence, y(¢) reaches its maximum value
at 1 =p and maxy(t) = 1+ (yo— 1)e® due to (4). The just
enough policy aims to provide sustainable and no more
than required performance, which means that x(¢) = %,
Vt € [0,d]. Hence, y(t) reaches its maximum value at t =d
and maxy(t) = %—1—()}0—%)6%‘1 due to (4). Although the
Jjust enough policy does not greedily use the resources, and
consequently achieves a lower objective value max y(¢) than the
performance policy, it does not solve the resource allocation
problem (11) optimally because the just enough policy does
not utilize the resources effectively when the temperature is
low. Therefore, our proposed solution (optimal) in Figure 3a
behaves like the performance policy until a time point u
and then behaves like the just enough policy so that it
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t

Fig. 4. Our approach to solve the single job resource allocation problem in
(11) with different initial values.

minimizes the maximum temperature value as in Figure 3b.

We introduce Algorithm 1 to find this critical time point
and the corresponding input x(¢) and Theorem V.5 proves the
optimality of this input.

At this point, we introduce the following lemma to provide
an insight into the problem. In particular, it shows that
fod y(t)dt 4+ ty(d) is constant for all possible inputs x(¢).

Lemma V.1. Given t, p, d and yo, any x(t) that follows the
constraint (11c) leads to an output y(t) with respect to (11b)

such that: y

/0 y(t)dt +ty(d) = Tyo + p. (12)

Proof. To prove this lemma, we first integrate both sides of
the equality (2) from¢t=0tot=d:

y(d) —yo = —%/Ody(t)dtjL % /de(t)dt.

Then, we rearrange this equality using (11c) to obtain (12). H

We have developed our approach based on Lemma V.1.

Intuitively, the naive approach would be to obtain a constant
output y(¢) in the time interval [0,d] since [§ y(t)dt + Ty(d)
is constant. This constant value is Tﬁ"—jf” according to (12).
However, constraints (11b) and (11d) only allow this solution
when the initial value yy equals this constant output value.
Thus, if the system meets this condition, the output y(¢) can
be kept constant during the whole process as the red line in
Figure 4 indicates. Otherwise, our approach is heating up (the
blue line and blue dashed line in Figure 4) or cooling down
(the green line and green dashed line in Figure 4) the system
until the time point that the remaining workload, remaining
time to the deadline and the output meet this condition. This
implies that the policy behind our algorithm is keeping the

temperature constant as long as possible as shown in Figure 4.

In order to allow for later generalization to a system with
multiple jobs, we analyze the system with respect to a deadline
d when the system is at time ¢ < d, which means that we need
to determine x(¢) for the time interval [t,d]. The remaining
workload with respect to the deadline d is A(t;d) and the
remaining time is d —¢. We define three system states at time
t as follows:

» The system is in a stable state when y(¢) =

o The system is in a cooling state when y(¢) > e
For example, when ¢ = 0, then the system is in a stable state

when yp = £, in a heating state when yo > £ and in a cooling

state when yo < g. At time ¢, if the system is in a stable
state, the output y(z) can be kept constant until this deadline
d; if the system is in a heating state, our approach is to fully
utilize (x(¢#) = 1) the system until it reaches a stable state; and
if the system is in a cooling state, our approach is to idle
(x(r) = 0) the system until it reaches a stable state. We denote
the corresponding stable state temperature by ys(#;d) and the
time point when the system reaches this temperature value by
u(t;d). The main challenge of this approach is to determine
yss(t;d) and p(t;d) with respect a deadline d when the system
is at time ¢. For this purpose, Lemmas V.2 and V.3 use the
Lambert W function [24], which is defined to solve x = ze®
as z=W(x). In this study, we only use the real values and
principle branch of the W function, which is denoted by Wj.
Hence, it has the following properties:

z=Wo(ze®),
=W (Z)ew‘)(z).

13)
(14)

As a result, at any time ¢, we can calculate ys(¢;d) and p(r;d)
using (16), (15), (19) and (18) with respect to the remaining
workload A(z;d), the remaining time to the deadline d —¢ and
the initial value y(r).

Lemma V.2. Az time t € [0,d), if the system is in a heating
state, it reaches a stable state after applying x(t) = 1 (fully
utilized) for a time period | (t;d) € [0,d —t), where:

l(ﬂd) _yss(t;d)(d_t)

t;d) = (15)
‘u( ) 1 — Vss (t§d)
Then, the stable state temperature yss(t;d) is defined as:
A¢(t;d
y‘vx(t;d) =1- ,,,g ) ) (16)
et A(t;d)
™Wo ( )
T ()
and it satisfies the following equality:
e 1 —yfs(t;d). (17)
ye(r)
Proof. We prove this lemma in Appendix A. ]

Lemma V.3. Az time t € [0,d), if the system is in a cooling
state, it reaches a stable state after applying x(t) = 0 (idled)
for a time period U(t;d) € [0,d —t), where:

. yAcs(t;d)(d—t) —l([;d)

t;d) = (18)
'u( ) Vss (t;d)
Then, the stable state temperature yss(t;d) is defined as:
At;d
yss(t;d) = d(—r ) . (19)
et A(t:d)
™Wo ( )
T ()
Proof. We prove this lemma in Appendix B. ]

The approach explained above is implemented in Algorithm 1
as the function SJ (A(#;d),d —t,y(t)) . We prove the optimality
of this algorithm in Theorem V.5 using the upper bound in the
following lemma:
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Algorithm 1: The solution to the single job resource
allocation problem (11)

Parameters: 7

Input: daP;yO

Result: x(r)

Function SJ (p,d,y) :

ﬂmgﬁmm
ed d—p
x(t) <1Vt e[o,u);
pp— I
else
e% p
LL(—d_TWO(?)T),
x(t) 0Vt eo,u);
end
(t)eﬂwe[u ,d);

End Function

Lemma V4. At t =0, for § €[0,d], the objective function
(11a) of the resource allocation problem (11) has a lower
bound in the time interval [8,d] as:

A¢(0;d) +1y°(0)e T

H>1- 20
) 2 d—8+1 20
Proof. We prove this lemma in Appendix C. ]

Theorem V.5. Algorithm 1 results in an optimal solution to
the single job resource allocation problem (11) with respect to
the deadline d, workload p and initial value Yy.

Proof. Given that, at t = 0, the workload is p, the deadline is
d and the initial value y(0) is yo. This means that 1(0;d) = p,
A€(0;d) =d — p and y°(0) = 1 —yo. We can prove this theorem
by showing that the maximum temperature value equals the
lower bound (20). To prove this, we separately consider all
three possible cases, which are yy > 5 (cooling state), yo = &
(stable state) and yg < g (heating state) in the time interval
0,d]:

Case 1. If yo > & (coohng state), Algorithm 1 computes
u > 0 according to Lemma V.3 and then idles the system, i.e.,
x(t) =0, until it reaches a stable state. The output achieved by
the algorithm is always less than yp, which means y(z) < yo,
Vt(0,d] and y(t) = yo at t = 0. Therefore, the maximum value
is yp, which is the lower bound for the objective function.
Therefore, if the system is in a cooling state, Algorithm 1 is
optimal.

Case 2. If yp = g (stable state), Algorithm 1 computes
p =0 due to (13) and then generates the input x(r) = £, Vr €
[0,d]. This input keeps y(¢) constant in the time interval [0,d]
according to (5), which means y(¢) = yo, V¢[0,d]. To see that
this is optimal, consider the lower bound in Lemma V.4 in the
time interval [0,d] as:

A°(0;d) + 7y“(0)

1— =
d+7t

P+ o

t .
max y(r) > dic

t€[0,d]

After substituting yo = 5, we have max;c[o 4 ¥(t) > yo, which
means that yq is the lower bound for the objective function.
Therefore, if the system is in a stable state, Algorithm 1 is
optimal.

Case 3. If yp < § (heating state), Algorithm 1 computes
U >0 according to Lemma V.2 and then fully utilizes the
system, i.e., x(z) = 1, until it reaches a stable state. To see that
this is optimal, consider the lower bound in Lemma V.4 in the
time interval [u,d] as:

A€(0:d) + 1y¢ (0)e 7
d—u+r '

max y(t) > 1—
ZEW]y( ) >

Due to (17), y¢(0)e * = 1 — yg(0;d). Then:
P — K+ Tyss(0;d)

max y(z) > A+t

1€(u.d]

Substituting (15):
—dygs(0sd
- Ees ;S»S(g d)) + Tys(0;d)
1) 2 d_ b= dvss((Od)) Tt
This means that ys(0;d) computed with respect to Lemma V.2
is the lower bound for the objective function. Therefore, if the
system is in a heating state, Algorithm 1 is optimal. |

max y( = yss(0;d).

t€[p.d]

We now make the following remarks regarding Algorithm 1.
These help to generalize the single job case to the multiple
job case in the next section. For the input obtained by

J(A(0;d),d,yo) (using Algorithm 1) for the time interval
[0,d], we have:

Remark 1. yy(#;d)
Remark 2. u(r;d) =

= y5(0,d), Vi € [0,d|.
maX{O w(0;d) —1}, vVt € [0,d].

Remark 3. if yg > (coohng state):

< .
(1) = 0 0 <t <u(0;d), 21
(t—1(0:d))yss(0,d), u(0:d) <t<d,
e_Tt, 0<t<u(0;d),
y(t) = Y0 < (0:d) (22)
yss(0,d), u(0;d) <t<d,
where 50 > 3s(0:d) = yoe- S M and y(r) > A,
vt € [0,u(0;d)), y(t )= (1(0:d),d).
Remark 4. If yo = /1 4 (stable state):
Fi(1) = yss(0,d)1, (23)
(1) = ys(0,d), (24)
where yo = ys(0,d) = ( 4) ,and y(r) = ( ) Vit e [0,d)
Remark 5. If yp < ( ) (heating state):
En)=1{" 0<r<p(0:d),
' R(Osd)+ (1 — p(0:d))ys(0,d),  p(03d) <1 <d,
(25)
1—(1—yp)e™, 0<t<pu(0:d),
y(t) = (1—=y0) < u(0;d) 26)
¥5s(0,d), u(0;d) <1 <d,
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where  yp < yu(0,d) = 1 — (1—yp)e 7% < 20D apg

(1) < 25D p e [0,1(05d)), (1) = 25D it € [u(0;d), d).

t t

VI. MULTIPLE JOB CASE

We now generalize the single job resource allocation problem
(11) to N jobs that become available at t = 0 with a vector
of workloads P = [pi1,p2,...,pn] and a vector of deadlines
D =[dy,d,,...,dy], where dy > d; if k > j since the jobs
are ordered by increasing deadlines. We formalize these
deadline constraints as Fy(dx) > Fj(dy), Vk € {1,2,...,N} and
the constraint Fy(dy) = F,(dy) prevents the assignment of a
different amount of resources than required similar to (11c).
In the remainder, we focus on instances that have a feasible
solution in the time interval [0,dy]. This means that F,(r) <z,
Vt € [0,dy] and x(¢) = 0 when 7 > dy. Therefore, given F),(t)
and yp, we aim to find an input x(¢) that minimizes maxy(t),
where y(¢) depends on x(¢) as in (3). We call this the multiple
Jjob resource allocation problem and its full description is:

i t 27
R o
| L ) =t
s.t.y(t) = ;/ e 7 x(o)do+yeT, (27b)
0
Fe(dy) > Fy(dy), Vke {1,2,....N—1}, 27¢)
FX(dN) :Fp(dN)a (27d)
0<x(t) <1Vre[0,dy]. 27¢)

Although we can try to solve this problem using Algorithm 1
as SJ (A(0;dy),dn,yo) , which satisfies the constraints (27b),
(27d) and (27e), this solution may miss some of the intermediate
deadline constraints (27¢). However, if we consider the total
workload up to each deadline independently by ignoring (27c),
Algorithm 1 as SJ (A(0;d,),d,,y0) gives a lower limit for
the time interval [0,d,], which is ys(0,dy,). This means that
no input exists for the time interval [0,d,] that both satisfies
the deadline d, and keeps the temperature below yg(0,d,).
Although each deadline results in a different lower limit, we
can focus on only the maximum of these lower limits, which
means max{ys(0,d,)}, Vn € {1,...,N}, since the maximum
temperature cannot be lower than any of them. This highest
limit creates a thermal bottleneck, which is not present in the
unconstrained case (solved by Theorem V.5). As a result, this
bottleneck leads to a lower limit that the temperature cannot
stay under while satisfying all the deadline constraints. This
means that if maxy(r) = max{ys(0,d,)}, Vn € {1,...,N}, the
corresponding input is optimal. Our approach is based on the
intuation that we can find such an optimal input, which means
that the optimal maximum temperature depends on the thermal
bottleneck. We later prove this intuation analytically.

To obtain such an optimal input, we first divide the entire
time interval [0,dy] into two subintervals in such a way that
the first subinterval ends at the deadline that creates a thermal
bottleneck. We choose the division point d, from the vector
of deadlines using the following rule:

d, = argmax {ys(0,d,)},
n€{1 ..... N}

(28)

Here, we assume that all the ys(0,d,) values are different
without loss of generality. Thus, the first subinterval is [0,d,]

and the second is [d,,dy], where v={1,2,...,N}. During the
first subinterval, we aim to process only the jobs that have
their deadlines in this subinterval, i.e., if n < v the n job is
processed during the subinterval [0,d,] otherwise during the
subinterval [d,,dy]. This also implies that the arrival time of
the n™ job is allowed to be updated to d, if n > v without
loosing optimality. Therefore, at + = 0, we compute the input
x(t) that corresponds to the first subinterval as a single job
problem with the workload A4 (0;d,) = F,(d,), the deadline d,
and the initial value yo, i.e., ST (A(0;d,),dy,y0), and then we
use this input up to the division point d,.

For notational convenience, we now define Fx(d”>(t) for a
deadline d,,, which denotes the cumulative assigned resources
resulted from the input x(¢) obtained by SJ (A(0;d,),dn,y0)
for the time interval [0,d,] and we define A(%)(1;d}),
Vr € [0,d,], which denotes the remaining minimum required
amount of resources to be allocated from ¢ to d; when the
input x(¢) obtained by SJ (A(0;dy),d,,y0) is applied on the
time interval [0,d,]. This means that:

AU (1:dy) = Fy(dy) — F (1), (29)
Moreover, Fx(d”)(d,,) = A(0;d,) = F,(dy) since Algorithm 1
satisfies the corresponding deadline. We also define y(d")(t),
which denotes the output that corresponds to Fx(d”)(t). The
following lemma uses this notation to show that the input
obtained using Algorithm 1 with respect to the deadline d,
given by (28) always allocates more resources then the one
with respect to any other deadline.

Lemma VIL.1. Given a vector of workloads P, a vector of
deadlines D and the initial value yo. For the deadline d, given
by (28)and each deadline dy where k € {1,...,N}:

EY (02 FV @), vi e (omin{d, di}.  (G0)

Proof. We prove this lemma in Appendix D. ]

To prove that the rule (28) leads to optimality, we need to
consider two issues. The first one is that the obtained solution
by Algorithm 1 for the subinterval [0,d,] may not satisfy the
constraints (27¢) since we treat a set of jobs as a single job. The
second issue is that these two subintervals cannot be considered
as independent since the final temperature of the first one is
the initial temperature of the second one.

To cope with the issues mentioned above, we in-
troduce Lemmas VI.2 and VI.3. Lemma VI2 proves
that the input x(r) obtained by SJ(A(0;d,),d,,yo) sat-
isfies all the deadline constraints up to this division
point, i.e., Fx(dy) > A(0;d,) = F,(dy), Vk € {1,2,...,v}. Next,
Lemma VI.3 proves that, after applying this input up to ¢ =d,,
there is no deadline where the corresponding state is a heating
state. Theorem VI.4 uses Lemma VI.2 to prove that the input
x(t) obtained by SJ (A(0;d,),d,,yo) for the time interval
[0,d,] is optimal and it uses Lemma VL3 to prove that there
exist a feasible solution to the time interval [d,,dy] such that
the output does not increase after applying this input. In other
words, Theorem VI.4 proves that the input x(z) obtained by
SJ (A(0;d,),d,,yo) optimally solves the multiple job resource
allocation problem (27).
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Lemma VL.2. Given a vector of workloads P, a vector of
deadlines D and the initial value yo. For the deadline d, given
by (28), the input obtained by sJ (A(0;d,),d,,yo) satisfies the
constraints (27c¢) on the time interval [0,d,).

Proof. According to Lemma VLI, for each d; where
ke {1,2,...v}, F") > E“% (), vt € [0,dy]. Since
each F;dk)(t) is obtained by SJ(A(0;d,),d,,y0), each
of them satisfies the corresponding deadline constraint,
ie., F%(dy) = 2(0:dy) = F,(dy). Hence, F\™) (dy) > F,(dy).
Vk € {1,2,...,v}, which proves that the input obtained by
SJ (A(0;d,),d,,yo) satisfies the constraints (27¢) on the time
interval [0,d,]. ]

Lemma VL3. Given a vector of workloads P, a vector of
deadlines D and the initial value yo. For the deadline d, given
by (28), the input obtained by SJ (A(0;d,),d,,yo) leads to an
output at t = d, such that the system is a cooling state for
each dy where k € {1,2,...,v}, i.e:

A D) (dys dy)
dy—d,
Proof. We prove this lemma in Appendix E. ]

Y (d,) > , Ydy € (dy,dy]. 31)

Theorem VI1.4. Given a vector of workloads P, a vector of
deadlines D and the initial value yy. For the deadline d,
given by (28) and the input x(t) for t € [0,d,] obtained by
ST (A(0;d,),dy,y0), there exists a remaining input x(t) for
t € [dy,dy], such that x(t) results in an optimal solution to the
multiple job resource allocation problem (27).

Proof. Algorithm 1 is optimal to the single job resource
allocation problem as proven in Theorem V.5. Therefore, for
each deadline di, where k € {1,2,...,N}, the final temperature
y) (dy) = yes(0,dy) or the initial temperature yo indicates a
lower bound for the output y(¢) in the time interval [0,d;] as:

max

t) > t) >
te[ode]y() max y(f) >

0,di)}.
T 1€(0,dy] mE"X’N}{YOJss( ,di)}

Considering the deadline d, given by (28), we can rewrite
these inequalities as:

max y(r) > max{yo,yss(0,d,)}. (32)

t€[0,dy]
The input obtained by SJ (A(0;d,),d,,yo) leads to the output
y%) (1) hence (22), (24) or (26) is applicable for y\®) (z). Thus:

max{yo,yss(0,dy)} >y (1), vt € [0,d,)]. (33)
Combining (32) and (33):

max y(t) >y (1), vr € [0,d,].
t€[0,dy)

This means that there exist no input that results in a lower
maximum temperature value than y(®)(¢) in the time interval
[0,d,]. Additionally, Lemma V1.2 shows that F) (¢) also meets
all the deadlines coming before d,. Therefore, for the time
interval [0,d,], Fx(d“)(t) satisfies all the deadline constraints and
minimizes the maximum temperature.

For the time interval [d,,dy], we here show that, after
applying the input x(r) obtained by SJ (A(0;d,),d,,yo0), there
exist a feasible input that meets all the upcoming deadlines with

keeping the temperature always below or equal to the tempera-
ture value at t =d,, i.e., y(t) < ys(0,d,), Vt € [d,,dy]. Notice
that F*)(d,) = 2(0:d,) = F,(d,) and y%)(d,) = y(0,d,)
after applying de“)(t). An example input for this purpose
is:

(dv) (.-
Y (d,), dy <t <d,+ W7

V) (dy)
A D) (d,:dy)
% dy @) =h

x'(t) =

where y\®)(d,)(dy — d,) = A)(d,;dy). Due to (5), this
input keeps the temperature stable after ¢ = d, until

o A D) (d,:dy)
t —_— dV + y(d")(dv)
it idles the system. Then, the cumulative assigned resources is

Fi(t)= Fx(d“>(dv) +f,§v x*(¢)dt and can be computed as:

. After that, the temperature decreases since

F(t) = A(0:d,) +min{y ™) (d,) (t — d,),A\%) (d:dy)}.

inter-
and

For each  deadline d in the time
val (dy,dy), A D) (dy;dy) > A D) (d,;dy)
YD) (d)(dy —d,) > A ) (d;dy) due to (31). Thus:

F¥(dy) = 2(0:d,) +min{ A %) (d,:dw), ') (d,) (d — d,)}
> A(0;d,) + A D) (dy;dy) = A(0;dy) = Fy(dy),

which proves that x*(¢) satisfies the deadline constraints
(27c) for each d; where v < k < N. Additionally,
F(dn) = A(0;dy) = F,(dy), which proves that x*(¢) satisfies
the deadline constraint (27d).

As a result, Algorithm 1 as SJ (F,(d,),dy,y0) results in
an output that is optimal in the time interval [0,d,] and the
remaining workload can be processed without increasing the
temperature after ¢t = d,. |

VII. IMPLEMENTATION

For evaluation purposes, we use the Odroid-XU4 platform,
which hosts a widely used commercial processor Exynos 5422
MPSoC [3], [8], [9], [11], [13], [14]. For the implementation
of our algorithm, we first calculate the division with respect
to the rule (28) and then apply the input that we obtained
by Algorithm 1 to the first subinterval. After reaching the
division point, we repeat this approach iteratively, e.g., in
an online fashion, for the remaining jobs. The overhead due
to these computations are executed on the device during the
experiments and included in the results. For the first iteration,
we find the division point among all the deadlines, which
means N computations. Then, for the second iteration, the
worst case scenario results in N — 1 computations. Therefore,
considering that the computation of the Lambert function has
an O(1) complexity, the overall worst-case complexity of this
implementation method is O(N?).

Our implementation ensures that the system is always in
a cooling state with respect to all the remaining deadline
constraints after each iteration and the temperature reaches
its maximum in the first iteration according to Theorem
VI1.4. Moreover, the input obtained by Algorithm 1 satisfies
the deadline constraints during each iteration while keeping
the temperature below or equal to the optimal maximum
temperature. This approach can be extended easily to dynamic
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Fig. 5. Experimental and theoretical comparison of the three algorithms with
varying workload, which is directly related to the average of x(r).

TABLE II
MEAN AND VARIANCE OF THE DISTRIBUTIONS IN FIGURE 6
Workload Just Our
intensity Performance | enough | algorithm
Hish Mean 68.4 56.8 56.4
& Variance 200 234 19.6
L Mean 57.9 444 443
ow Variance 293 5.22 4.96

job arrivals by repeating this procedure whenever there is a
new arrival.

Additionally, we have also tested the performance and the
Jjust enough policies explained in Section V. For the implemen-
tation of the performance policy, we use an algorithm that, at
time ¢, chooses the input as x(z) = 1 if there is any unfinished
job, otherwise, it chooses the input as x(¢) = 0. For the
implementation of the just enough policy, we use an algorithm
that, at time ¢, chooses the input as x(r) = max{}L (tidy) ,0},
vne{l,2,...,N}.

To adjust the assigned resources, that is, to adapt the input
x(t), we use the cpulimit tool [25], which is available
in the Linux operating system. This tool allows us to limit
the CPU usage of a process by periodically idling the CPU
using a closed loop control system with a high granularity.
Although this may create oscillations in the temperature profile,
we observed that the low pass filter characteristic of the heat
transfer equation (1) smoothens the temperature profile. As
a workload, we repetitively apply the square root operator to
randomly chosen numbers. This guarantees that there is always
a constant workload in the system. This application scenario
and the cpulimit tool enable us to show the limitations and
potential of our approach without including the effect of the
workload dependencies and the discretization of the assigned
resources respectively. We take the processor temperature, that
is, T(t), as the average of the measurements taken by the four
built-in temperature sensors at time 7. The conversion from
T(t) to y(z) is explained in Section III. Each experiment starts
with idling the system until the temperature converges to the
ambient temperature 7,. To compute the Lambert function, we
use Algorithm 743 of the TOMS database in the public domain
mathematical library Netlib [26].

According to Theorem VIL.4, in the multiple job case, the
system reaches its maximum temperature always in the first

0.3 0.3

[ Performance
[ Just Enough
[ Our Algorithm

[ Performance
[ Just Enough
[ Our Algorithm

0.2

0.1 0.1

Probability Density
Probability Density

0
40 44 48 52 56 60 64 68 72 76 80
Temperature (°C')

(b) Low workload

0
40 44 48 52 56 60 64 68 72 76 80
Temperature (°C')

(a) High workload

Fig. 6. The probability density of the measured temperature during the
execution of 10 jobs for the three algorithms.

iteration when the corresponding system state is a heating state.
Algorithm 1 computes x(¢) for the first iteration as if there is
a single job. To illustrate the characteristic of the algorithm
in the first iteration experimentally, we have conducted many
experiments with a single job with a fixed deadline d = 1.5s.
The workload of each job is variable and ranges from O to 1.5s.
Figure 5 shows the experimental results for the first iteration.
The horizontal axis presents the average of x(¢), which refers to
the workload and equals Z. In the figure, the theoretical graphs
are also shown. To compute these graphs, we also include the
effect of leakage current mentioned in Section III as follows:

1

)= T+ STt 2@ +0L), (34

where Op(t) = ax(r) and the system parameters o and T are
found using the method that we proposed in our previous work

[12]. Furthermore, Qy(t) = C; T (t)? eT(f) as explained in Sec-
tion III, and we apply a first order Taylor series approximation
to the exponential term in Qy (¢) as Q(t) ~ CT(¢).

As shown in Figure 5, the theoretical graphs fit well with the
experimental results where the root mean square error (RMSE)
between the theoretical graphs and the experimental results is
approximately 1°C. Clearly, the reduction that can be obtained
depends on the workload. If the workload is maximum (5 =1),
there is no flexibility and all the algorithms operate in essence
the same. If the workload is low, then the difference between our
algorithm and the just enough algorithm becomes insignificant,
however, both algorithms give better results compared to the
performance algorithm since they do not favor performance.
According to these results, the just enough algorithm and
our algorithm can process the workload with significantly
lower temperature values, where the reduction in the maximum
temperature is around 30°C when the average of x(z) is around
0.5. Furthermore, comparing our algorithm and the just enough
algorithm, the difference in the maximum temperature values
can reach 5°C in favor of our algorithm. This difference is
above 3°C if the average of x(¢) is between 0.75 and 0.95.
However, it is below 1°C if the average of x(¢) is less then
0.55 or greater than 0.95. As a result, in terms of y(z), the
Jjust enough algorithm can achieve up to 25% decrease in the
maximum temperature while our algorithm can further decrease
it up to 42% compared to the performance algorithm.

To show the benefit of our algorithm in the multiple job
case, we have conducted 500 experiments with N = 10 jobs
for each algorithm. In each experiment, the last deadline is
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Fig. 7. Experimental Results for the three algorithms under different workload
scenarios while keeping the avarage of x(¢) the same.

fixed to 150s and the other deadlines are chosen randomly in
the time interval [0, 150s]. The experimental results show that
after the first iteration, the temperature always decreases or
keeps constant within a reasonable range, £0.5°C. Furthermore,
the results give the same relation between the workload and
the maximum temperature as in Figure 5, which is expected
according to Theorem VI.4. To have a complete picture of the
results, we show the probability density of the measurement
data with histograms in Figure 6. Figure 6a shows a high
workload case, where the workloads are chosen randomly
such that Fy,(d,,) € [0.65d,,,0.95d,], Vn € {1,2,...,N}, whereas,
Figure 6b shows a low workload case, where the workloads
are chosen randomly such that Fj,(d,) € [0.35d,,0.65d,],
Vn € {1,2,...,N}. Table II shows the mean and variance of
the distributions in Figure 6a. Since the performance algorithm
fully utilizes or idles the device, the temperature values are
accumulated around very high and very low values. However,
the just enough algorithm as in our algorithm do not reach
very high temperature values. For this reason, the effect of the
leakage current in the temperature is low in the just enough
algorithm and our algorithm. By Lemma V.1, the mean value,
which can be written as 1 f(;i y(t)dt, highly depends on the
workload p since T < d. For this reason, we obtain very
close mean values for the just enough algorithm and our
algorithm. However, due to the leakage current, the mean
value is slightly higher for the performance algorithm. On the
other hand, Table II shows that we decrease the variance of
the temperature with our algorithm by 16% compared to the
Jjust enough algorithm, which has an additional positive effect
on the reliability of the device [3].

Furthermore, to illustrate the performance of our algorithm
under different workload scenarios, we use MiBench [27],
which provides a set of commercially representative applica-
tions. For each application, we have conducted 100 experiments
and assigned the deadlines such that the ratio g equals 0.85
since for this value the potential for temperature management
is largest, and illustrates the differences between the evaluated
approaches the best. The results in Figure 7 show the average
of these experiments.

Our algorithm finds the critical time point and then switches
the thermal policy at this time point to minimize maximum
temperature. For example, if the initial temperature is low, it
switches the policy from performance to just enough at the
critical point. Additionally, periodically repeating the procedure
in an online fashion can easily make it robust to unexpected
events. Thus, it is easy to implement with a low overhead. On

the other hand, our algorithm requires the workload information
a priori and it does not create a significant advantage in low
workload and very high workload situations.

VIII. CONCLUSION

In this article, we propose a resource allocation algorithm that
minimizes the maximum processor temperature dynamically
using built-in temperature sensors; we also prove the optimality
of this algorithm. We focus on applications consisting of a set
of jobs with known workload and deadlines. The algorithm can
be implemented as an optimal thermal management policy that
calculates the optimal maximum temperature and keeps the
system on this temperature as long as possible. The algorithm
can be can be easily adapted for use in an online fashion.

For validation purposes, we have implemented our algorithm
on a commercial processor that is used in many mobile
devices and compared it to two other algorithms, namely the
performance and just enough algorithms. We experimentally
show that our theoretical analysis matches the experimental
results; and consequently, our approach can be used in real-life
scenarios. Although the performance algorithm relies on a
policy that aims to maximize the performance, the just enough
algorithm relies on a policy that aims to provide sustainable and
no more than required performance. Our experimental results
show that the just enough algorithm decreases the maximum
temperature by 25% on average, and our new algorithm further
decreases it by 15% compared to the performance algorithm.
Our experimental results also show that our algorithm decreases
the variations in the temperature profile by 16% compared to
the just enough algorithm, which further increases system
reliability.
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APPENDIX A
PROOF OF LEMMA V.2

Lemma V.2. At time ¢ € [0,d), if the system is in a heating
state, it reaches a stable state after applying x(z) = 1 (fully
utilized) for a time period u(s;d) € [0,d —t), where:

l(t;d) _)’ss(t;d)(d_t)
t;d) = . (15)
Then, the stable state temperature yg(#;d) is defined as:
Ac(t:d
yss(t:d) = 1— d,E ) ) (16)
oW (eT M(t;d))
N0
and it satisfies the following equality:
eI l—yss(t;d). (17
ye(t)

Proof. We first prove that the system is able to reach the
temperature value expressed in (16) by applying full utilization,
ie., x(t) = 1. To do so, we show that this stable state
temperature value, y(f;d), is always between y(r) and 1. At
At;d
t, the system is in a heating state, which means y(¢) < (:4) ,
which can be rearranged as A¢(¢;d) < y“(¢)(d —1t). Since y°(¢)
and A¢(t;d) are always positive:
< A€(t;d)
ye(7)
Then, we can write the following inequality for the argument
of the Lambert function in (16):

et A°(1;d)
T y(1) T
Moreover, the inequality (35) can be rearranged to have the

following inequality for the argument of the Lambert function
in (16):

<d-—t.

(35)

d—t (36)

d) 1200 o 4(1;d)
() -

1 AC(z;

< - e’ W)

— T y(t) T
The principal branch of the Lambert function, which means
that the domain is positive, is always positive and increasing
[24]. Therefore, first combining (36) and (37) and then using
(13), we write the following inequalities for the output of the
Lambert function in (16):

(37

C(+4. % C(+4. _
<1A(z,d)<W(e A(z,d)) d—t (38)

S0 O AN
This proves that y(7;d) defined in (16) is always between y(r)
and ’1(5 ‘f), which means the system can reach this temperature
value by fully utilizing, i.e., x(¢) = 1.

We now prove that the system reaches this y(f;d) value at
t+u(t;d), where u(t;d) € [0,d —t), and show that this time
point can be computed by (15). Since the input is constant in
the time interval [t,7 + u(¢;d)], we can use (4) to compute the
output y(¢ + u(t;d)), which also equals y(7;d), as follows:

—u(t:d)

Y +u(nd)) = ys(t:d) = 1=y (1)e =

This proves the equality (17). After substituting (16) using the
identity (14), we can write:

T lc(t;d))
Ty
This proves that p(z;d) is always in the time interval [0,d —t)
using (38). To obtain (15), we rearrange (16) as:

/.L(t;d):d—t—rWo( (39)

7 = A°(t;d) A(t;d)
(S Ky e
T y(r) 1 —yss(t;d)
then combine with (39).
Lastly, we shows that, at ¢+ (¢;d), the system is in stable
state, i.e., y(t + u(t;d)) = d<t+”(’ ‘j) ) Since x(r) =1 in the

(d)
t

time interval [t,t—|—,u(t,d)},7t(t+u( d);d)=A(t;d)— pu(t;d).
After substituting (15), we have:
AC(t;d)
Alt+u(t;d);d) =y (t;d) ——————.
(-4 u(td)id) = yulrsd) =

On the other hand, we compute the remaining time
d—1t—u(t;d) using (15) as

A¢(r;d)
d—t—ut;d) = ——————.
‘u( ) 1 _yss([;d)
Therefore:
At +u(t:d);d
Me+uid)id) ) ) = yss(1:d).
d—t—u(t;d)
This means that the system is in a stable state at # + y(¢;d)
since yu(1:d) = y(1 + 1 (t5d)). .
APPENDIX B

PROOF OF LEMMA V.3
Lemma V.3. At time 7 € [0,d), if the system is in a cooling

state, it reaches a stable state after applying x(¢) = 0 (idled)
for a time period p(#;d) € [0,d —1t), where:
Vss(t:d)(d —1t) — A(1;d)
t:d) = . (18)
plesd) ylt:d)
Then, the stable state temperature ys(#;d) is defined as:
At;d
YSs(t;d): ( ) (19)

d—t :

T At d
TWO(e ( ))

T ()
Proof. We first prove that the system is able to reach the
temperature value expressed in (19) by idling, i.e., x(#) = 0. To

do so, we show that this stable state temperature value, yg(#;d),
is always between 0 and y(¢). At ¢, the system is in a cooling

t;d
state, which means y(t) > (—t)’ and d—t>A(t;d) >0
according to the system definition, hence:
At;d
d—t> ( )>0, 40)
(1)

Thus, we can write the following inequality for the argument
of the Lambert function in (19):

d—t

e At:d)
T oy()

d—t da—
T

(41)
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Moreover, the inequality (40) can be rearranged to have the
following inequality for the argument of the Lambert function
in (19):

T Ad) 1 A(6:d)

T oy Ty

The principal branch of the Lambert function, which means
that the domain is positive, is always positive and increasing
[24]. Therefore, first combining (41) and (42) and then using

(13), we write the following inequalities for the output of the
Lambert function in (19):

1 A(tia
T ()

(42)

d—t
d—t et At;d) 1 A(t;d)
— > W > — 0. 43
(TS0 )70 Ce @
This proves that y(7;d) defined in (19) is always between

lzy_;”f) and y(r), which means the system can reach this

temperature value by idling, i.e., x(¢) = 0.

We now prove that the system reaches this ys(¢;d) value
at pu(r;d), where p(t;d) € [0,t —d), and show that this time
point can be computed by (18). Since the input is constant in
the time interval [0, u(#;d)], we can use (4) to compute the
output y(r + u(r;d)), which also equals ys(z;d), as follows:

u(t:d)
y(t+u(td)) =ys(t:d) = :

y(t)e =

After substituting (19) and using the identity (14), we can
write:

e’ Arid) ). (44)

u(td)=t+d- ‘L’Wo( T 0

This proves that 1(¢;d) is always in the time interval [0,d —1]
using (43). To obtain (18), we rearrange (19) as:

T Ad)\ | And)
TWO( T () )*yss(t;d)’

then combine with (44).
Lastly, we shows that, at ¢+ u(z;

stable state, i.e., y(r+u(t;d)) = <f (“ d):d)

d), the system is in a

) - Since x(t)=0
in the time interval [¢t,z 4 u(7;d)], 7L( +u(t;d) = A(t;d). On
the other hand, we compute the remaining time d —¢ — l(¢;d)
using (15) as

A(t;d)
d—t—pu(td)= .
pir:d) yss(t:d)
Therefore:
A(t+u(t:d);d)
———————= =y(t;d).
d—t—pu(t;d) yss(t:d)
This means that the system is in a stable state at # + u(¢;d)
since yss(t;d) = y(t + p(t;d)). L
APPENDIX C

PROOF OF LEMMA V.4

Lemma V4. At s =0, for § € [0,d], the objective function
(11a) of the resource allocation problem (11) has a lower bound
in the time interval [0,d] as:

A¢(0;d) +1y°(0)e T
d—0+7

max y(t) > 1— (20)

ted,d]

Proof. We integrate both sides of the differential equation (2)

from 6 to d:
do+ — /
which can be rewritten as follows:

rd d
/5 W(6)do +y(d) = /8 x(0)do + ty(8).

Since any feasible x(¢) must satisfy the deadline constraint,
ie., fo x(o)do > A(0;d), we can write:

d 8
Lx(c)dozl(o;d)—/o x(o)do.

Hence:
d [
/6 W(6)do + ty(d) > A(0;d) — /0 x(6)do + Ty(8).
After using (3) to compute y(0):
d 9 —(8-0)
/6 W(6)do +ty(d) > A(0;d) — /0 (1—e 7 )x(0)do
+1y(0)e . (45)

Since x(t) < 1 according to the system definition and
—(5-1) .
l—e 7 >0,Vre]0,6], we can write:

s —(5-0) —(5-0)
/ (1—e 0 )x(0)do < 5 — T+ 7"
0
Thus, (45) can be rewritten as follows:

-8

T .

(46)

/8  (G)do +Ty(d) > d— 5+ T — A6(0:d) — 1y (0)e

The maximum value of a function is always larger than or equal
to its mean hence we have maxy(r) > ﬁ fgy(O')dG in the
time interval [§,d]. Additionally, maxy(s) > y(d). Therefore,
we can write:

d—o
(@=0+9), g 0)

Combining (46) and (47):

/ v(0)do +1y(d).  (47)

-8

T .

(d—8+7) max y(t) >d—6+71—A°(0;d) — 7y°(0)e
t€[8.d]
Dividing by (d — 6 + 7) leads to the lower bound (20). W

APPENDIX D
PROOF OF LEMMA VI.1

Lemma VI.1. Given a vector of workloads P, a vector of
deadlines D and the initial value yy. For the deadline d, given
by (28):

Fx(d»)o) 2 I;)C(dk)(t)7 Vt c [O’min{d‘}’dk}], Vk S {17 ,N}

(30)
Proof. To prove this lemma, we sefarately consider all
three possible cases, which are yo > (cooling state),

Yo = Z OdV (stable state) and yy < M0dy)
time 1nterval [0, min{d,,d; }]:

(heatmg state) in the
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Case 1. If yg >
(22). Hence, Vk € {1

0;d,
means that yp > 2 7. )

(coohng state), yo > yss(0,d,) due to
N}, vo > ys5(0,d,) > yss(0,dy). This
(cooling state) for each dj due to (22)

and this also means that (21) is applicable for both F;fd“)(t)
and F\% (1). Thus, ¥t € [0, min{d,,d; }]:

—1(0sdy)
>ype T

—1(0sdv)
Yo >y$b( , v) >)’ss(0 dk = Yoe °
= p(0:dy) > u(0sdy) = FY () > BV @),
Case 2. If yy = ldi‘ (stable state), yo = yss(0,d,) due to

(24). Hence, Vk € {1,...,N}, yo = yss(0,dy) > yss(0,dy). This

means that yo > (O d") (cooling state) for each dj due to (22)

and this also means that (23) is applicable for Fx( )( t), while
(21) is for F,fdk)(t). Thus, Vr € [0, min{d,,d;}|:

dE (1) dFE

y0:yss(0adv)>yss(o>dk>:> xdt() > xdl‘ ( )

= Fx(d")(t) > Fx(d")(t).

Case 3. If yp < Od‘ (heating state), yo < yss(0,d,) due

to (26). Hence, there are three possible cases, which are
Yo > yss(0,d;) (cooling state), yo = yss(0,d) (stable state) and
yo < vss(0,dy) (heating state):

o If  yo>yss(0,di), then  ys(0,d,) > yo > yss(0,dk),
Vk e {1,...,N}. This means that yy > A(Od (cooling
state) for each d; due to (22) and this also means that
(25) is applicable for Fl )( t), while (21) is for FY )( r).
Thus, V7 € [0, min{d,,d; }|:

dE™) (1) . dFE% (1)
dt dt

ySS(OadV) >yo > ySS(();dk) =
= F @) > F% 1),

o If Yo = yss(ovdk)’ then yss(07dv) > yo = yss(oadk),
Vk € {1,...,N}. This means that yo = % (stable state)
for each d; due to (24) and this also means that (25) is
applicable for Fx(d">(t), while (23) is for Fx(d">(t). Thus,
vt € [0,min{d,,dy}]:

(dv) (dk)
dF:" (t dF: (1
ySS(O7dV) > Yo :)’ss(oadk) = i ( ) > 7 ( )
= Fx(d")(t) > Fx(dk>(t).

o If yo < ys(0,di), then y(0,d,) > YGG(O dy) > yo,
Vk € {1,...,N}. This means that yo < =% A 0 (heating
state) for each d;, due to (26) and this also means that
(25) is applicable for both F*)(r) and F%(r). Thus,
Vt € [0,min{d,,d; }]:

yss(07dv) > yss(oadk) > Yo

—u(0:dy)
= 1—(1—yp)e =

= u(0;d;) < u(0;d,)
= E™ () > K1), vi € [0,min{d,,d,}).

—1(0:dy)

>1—(1—ype =

As a result, if d, is chosen according to (28), (30) holds
for each dy where k € {1,2...,N} in the time interval
[0, min{d,,d}]. [ |

APPENDIX E
PROOF OF LEMMA VI.3

Lemma VI.3. Given a vector of workloads P, a vector of
deadlines D and the initial value yg. For the deadline d, given
by (28), the input obtained by SJ (A(0;d,),d,,y0) leads to an
output at t = d, such that the system is a cooling state for each

di where k € {1,2,...,v}, i.e.:
A (dv) d,.d
Y (d,) > M, Vdy. € (dy,dy).- 31)
di—d,

Proof. According to Lemma VI.1, Fx(d")(t) > Fx(d")(t), vt €
[0,dy] and Vk € {v+1,v+2,...,N}. This also means that
A4 (dy;dy) > A D) (dy;dy) due to (29). We first assume that:

d .
y(dk>(dv) > A’( k)(dv,dk)

Vdy € (dy,dy],
< d—d, k € (dy,dy]

(48)
which is proven later. If the output value y(dk>(t) is greater
than or equal to the ratio between the remaining workload
AW (t:dy) and the remaining time di —¢ at any time point
1 < dy as in (48), (22) or (24) is applicable for y\@)(¢) in the
time interval [0,d;] (see also Figure 4). Therefore, the stable
state temperature yss(0,dy) is also greater than or equal to this
ratio at any time ¢ < di, which means:

)L<dk)(dv;dk)

0,dy) > vd d,,dy|.

Yss(0,dk) = di—d, k € (dv, dn]
This proves the inequalities 31 since
Y9 (d,) = y(0,d,) > yss(0,d;) due to  (28) and

A (dysdy) > A D) (dy;dy).

We now prove the inequalities (48) by contradiction. Let
d; > d, be a deadline that does not follow the condition in
(48), which means:

29 (dy; d)

(@)
YR < =g

(49)
If the output value y% ).(t) is less than the ratio between the
remaining workload A(%)(;d;) and the remaining time df —¢
at any time ¢ < dj as in (49), (26) is applicable for y(dlf)(t).
According to (26), y(r) < A{j(t_;‘f) when 7 < u(0;d), hence, (49)
means that d,, < 11(0;d;). Therefore, in the time interval [0,d,],
Fx(dk)(t) =1t due to (25). This means that x(r) = 1, Vr € [0,d,],
hence, there is no input that the output value at = d, is greater
than y(%)(d,), which leads to:

y(d;) (dv) > y(d") (dv)

= ySS(07dV)'

Moreover, y\% )(t) is an increasing function at t = d, due to
(26), which leads to:

Y (dy) < Y\ (df) = yss (0, 47).

Combining  (50) and 51D, we have
s (0,df) > y\%)(d,) > y55(0,d,). However, our assumption
that (48) is false leads to a contradiction since the selection of
d, follows (28). Therefore, there cannot exist a deadline that
does not follow the condition in (48).

(50)

(D



