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Abstract—The use of drone base stations offers an agile mech-
anism to safeguard coverage and provide capacity relief when
cellular networks are under stress. Such stress conditions can
occur for example in case of special events with massive crowds
or network outages. In this paper we focus on a disaster scenario
with emergence of a hotspot, and analyze the impact of the drone
position (altitude, horizontal position) and selection bias on the
network performance. We determine the optimal settings of these
control parameters as a function of the hotspot location, and
demonstrate that the optimized values can drastically reduce the
fraction of failed calls.

Index Terms—Drone-assisted cellular networks, drone posi-
tioning, load management, performance assessment

I. INTRODUCTION

Wireless cellular networks have become a critical infrastruc-
ture in today’s digital society, and assurance of high reliability
and quality is a key requirement for service providers. While
networks are carefully engineered to provide reliable coverage
and adequate capacity in nominal operating conditions, this
can be compromised in certain atypical situations, e.g. festivals
or sports games with huge crowds or network anomalies due
to failures or disasters. The deployment of drone base stations
provides an appealing approach to protect coverage and/or
rapidly resolve capacity issues in such circumstances [1].

In order for the deployment of drone base stations to be
effective in quite diverse and often unpredictable scenarios,
several challenges need to be addressed however. In particular,
the position of the drone will have a critical impact on the
performance benefits. When properly positioned, the drone
could significantly improve capacity/coverage, while a badly
positioned drone could result in high interference and therefore
degrading performance. A related challenge is to determine a
good policy or selection bias for assigning users to a drone
or regular base station in order to properly balance the loads.
These challenges are exacerbated by the fact that it is not
even clear what the key factors are that determine the optimal
control parameter settings and to what extent these factors can
be observed or estimated in practical deployments [1].

A. Contributions

In this paper we focus on a network disruption event with a
failing base station and emergence of a hotspot. As a way to
restore service, we consider the deployment of a drone base

(a) Before disaster (b) After disaster

Fig. 1: Coverage regions before and after a disaster event and
a consequent drone deployment. Green, blue and yellow areas
indicate the cells of the regular base stations (black dots, where
the arrows identify the azimuth directions) and the red cell is
covered by the drone (black triangle).

station to handle some of the users that would have been served
by the failing base station as illustrated in Figure 1. The Call
Success Rate (CSR) (as defined in detail later) is adopted as a
key performance metric to capture the efficacy of the drone in
terms of coverage and capacity relief. Motivated by the above-
mentioned challenges, we provide insights in 1) the impact of
the drone position and selection bias on the CSR for various
load scenarios, and 2) the optimal position and selection bias
as well as the corresponding CSR as function of the location
of the hotspot. These results offer a useful cornerstone for
the design of adaptive and possibly data-driven algorithms
for optimal parameter configuration and management of drone
base stations.

B. Related literature

The deployment of aerial base stations has attracted sig-
nificant attention in recent years. In [2] the authors deter-
mine the optimal altitude of a drone for a given maximum
allowed path loss. In [3] a comparison is made between a
conventional terrestrial network and a drone-assisted network
where the position of the drone is determined using Q-
learning. The authors of [4] propose a Q-learning algorithm
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for optimal drone positioning in an emergency scenario where
the conventional network is completely destroyed. In a similar
setting the authors of [5] use Q-learning to determine the best
transmit power allocation and positioning of drones. In [6] the
authors derive the optimal altitude and separation distance for
the coverage of a rectangular area using two drones. In [7]
three algorithms (Q-learning, a gradient-based technique and
a greedy search) are considered for minimizing the maximum
path loss. The authors in [8] propose a heuristic scheme to
find the minimum number of drones and their optimal 3D
positions in a scenario without any regular base station. In [9]
an approach using multiple drones to form a communication
‘bridge’ is considered to offload excessive traffic demand to
an underloaded base station.

As opposed to the above papers, our work considers a
control parameter to steer traffic towards/away from a drone
base station in order to properly balance the loads. To the
best of our knowledge, this work is the first to consider such
a selection bias, and provides explicit insight in the impact
of the drone position and selection bias on the CSR. It is
worth observing that this can come on top of cell outage
compensation as a default method to maintain coverage [10].

C. Organization of the paper

The remainder of the paper is organized as follows. In
Section II we discuss a few key challenges related to the
control parameters. In Section III we describe the specific
network scenario that we consider. We then investigate in
Section IV the impact of the selection bias and the drone
position, followed by an analysis of the optimal settings of
these parameters. In Section V we provide some concluding
remarks and suggestions for further research.

II. KEY CHALLENGES AND TRADE-OFFS

As mentioned earlier, the optimal 3D-positioning of even a
single drone involves significant challenges with various trade-
offs to be made. For example, a higher altitude of the drone
implies a larger distance to the UEs, which in turn implies a
larger path loss. On the other hand, when the drone is located
at a higher altitude, there is a higher probability that the UEs
have a Line-of-Sight link with the drone, which potentially
reduces the path loss. But positioning the drone at a higher
altitude also has another advantage, namely that UEs will be
closer to the main lobe of the drone antenna. For illustrations
of these effects we refer to Figures 2 and 3 which are based
on the models explained in Section III.

Optimizing the altitude of the drone such that many UEs
have a low path loss and high antenna gain, also comes with
a downside as the drone may potentially be overloaded. In
order to avoid this, we can offload some traffic to other cells
by introducing a Cell Individual Offset (CIO) which makes the
drone relatively less attractive to the UEs. On the other hand,
this CIO can also be used to make the drone more attractive
when only few UEs connect to it. Obviously, this introduces
another control parameter whose optimal value depends on the
position of the drone in a nontrivial manner.
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Fig. 2: Path loss at different altitudes of the drone for UEs at
25, 75 and 150 m horizontal distance.

40 60 80 100 120 140 160 180 200

Altitude (m)

-10

-8

-6

-4

-2

0

2

4

6

8

A
n

te
n

n
a

 g
a

in
 (

d
B

)

UE at 25 m

UE at 75 m

UE at 150 m

Fig. 3: Antenna gain at different altitudes of the drone for UEs
at 25, 75 and 150 m horizontal distance.

Another challenge considered in this paper is to find the
optimal position of the drone with respect to the location of
a failing site and/or a traffic hotspot. For example, one could
argue that it would be good to position the drone close to a
failing base station to provide coverage to users that would
require a large amount of radio resources otherwise. On the
other hand, if there are areas with relatively many users, one
could argue that it would be good to position a drone above
such an area to ensure that these only require a small amount
of radio resources.

III. MODELING

In this section we will elaborate on the most important
modeling aspects.

A. Network and antenna aspects

We consider a hexagonal layout of twelve three-sectorised
sites comprising 12 × 3 = 36 cells served by directional
antennas (see Figure 1a). A wraparound feature is applied to
mimic an infinite-size network and avoid boundary effects. We



assume that the antennas are located at a height of 30 m [11]
and that the inter-site distance is 500 m.

For the regular base stations we use the model proposed by
[12] to represent horizontal and vertical components of the
antenna gain of each sector as follows:

Gh(ϕ) = −min

{
12

(
ϕ

HPBWh

)2

, FBRh

}
+Gm,

Gv(θ) = max

{
−12

(
θ − θetilt

HPBWv

)2

, SLLv

}
,

with the total antenna gain given by G(ϕ, θ) = Gh(ϕ)+Gv(θ),
where HPBW{h,v} denotes the horizontal or vertical half-
power beamwidth, Gm the maximum gain in dBi, FBRh the
front back ratio in dB, and SLLv the side lobe level in dB, both
relative to the maximum gain of the main beam. Furthermore ϕ
denotes the horizontal angle relative to the azimuth direction,
θ the negative elevation angle relative to the horizontal plane,
and θetilt the electrical downtilt. In addition, we assume that
these regular base stations each have a transmission power of
P Tot
m = 20 W where the power of the reference signal PRS

m = 1
W.

For the drone base station we have rotated the model in [13,
Table 7.3.1], and adapted the horizontal component to ensure
a circular footprint, so that the antenna gain is modeled as

G(θ) = −min

{
12

(
θ

HPBWd

)2

, SLLd, FBRd

}
+Gd,

with similar notation as before. We assume that the drone base
station has a transmission power of P Tot

d = 0.5 W where the
power of the reference signal PRS

d = 0.025 W. Furthermore
the drone is assumed to be connected to the backhaul network
using another frequency range than the access.

B. Propagation characteristics

To be able to model different kinds of urban scenarios, the
ITU recommends three statistical parameters [14]:
α: The ratio of built-up land area to the total land area.
β: The number of buildings per square kilometer.
γ: A scale parameter describing the buildings’ heights ac-

cording to a Rayleigh distribution.
As we consider a dense urban scenario we will set α = 0.5,
β = 300 and γ = 20 [15].

For the regular base stations, we model the path loss
according to the COST 231 Walfisch-Ikegami model [16].
We derive the parameters of this model using the statistical
parameters α, β and γ. First the value of γ implies an average
building height of γ

√
π/2. Following the reasoning in [15],

the average width of the roads and the building separation are
given by 1000/

√
β− 1000

√
α/β and 1000/

√
β, respectively.

Lastly, we take the road orientation with respect to the direct
radio path to be 90 degrees as suggested in [16].

The COST 231 Walfisch-Ikegami model is only valid for
transmitter heights up to 50 m. Therefore we model the path
loss between a UE and the drone base station according to

the model described in [2], which is better suited for higher
altitudes. This model considers two types of links, either
having Line-of-Sight (LoS) or not (NLoS) with probabilities
depending on the difference in height h and the horizontal
distance r between the drone and UE. These probabilities are
assumed to be

pLoS = 1− pNLoS =
1

1 + ξ exp (−ψ[arctan(h/r)− ξ])
,

where ξ = 12.081 and ψ = 0.1139 are environment parame-
ters calculated according to the model in [2], which also uses
the statistical parameters α, β and γ. Now the path loss is
assumed to be the free-space path loss plus the excessive path
loss η which depends on the type of link (LoS or NLoS). We
take ηLoS = 1.6 dB and ηLoS = 23 dB corresponding to a
dense urban environment with a carrier frequency f = 2000
MHz as reported in [15]. So the path loss is given by

L = −27.5522 + 20 log10(df) + pLoSηLoS + (1− pLoS)ηNLoS,

where the first two terms correspond to the free space path
loss with d the 3D-distance between the drone and UE. We
further impose a minimum coupling loss of 70 dB for all links
[11].

C. Traffic characteristics

We consider a single type of users initiating calls according
to a spatial Poisson process. The occurrence of the disruptive
event could result in an increased intensity of active users in
an area close to the location of this event. We model such a
hotspot as a circle with a radius of 100 meters, and assume
that the intensity of initiated calls in the hotspot is a factor ρ
times higher than elsewhere.

The calls have a mean duration of τ seconds, and a
minimum bit rate of R Mb/s throughout the duration of the
call is required for it to be successfully completed.

D. Resource management aspects

Upon arrival of a new call, it is first verified whether or
not the user has coverage. For this we check whether there is
at least one radio link with RSRP = PRS + G − L > −120
dBm, where G denotes the antenna gain and L the path loss.
If this is the case, then this user is assigned to the access point
with the highest value of RSRP+CIO, where the CIO is only
included in the case of the drone base station.

An admission control mechanism accepts a new call when
the estimated fraction of downlink resource blocks needed at
the serving access point to satisfy all currently assigned users
plus the new user remains below 98%. The 2% margin serves
to cope with possible changes in the amount of interference.

To guarantee the minimum required bit rate of R Mb/s, we
calculate the fraction of downlink resources that a user needs
by R/ (B log2(1 + SINR)), where B denotes the available
bandwidth and SINR the Signal-to-Interference-plus-Noise
Ratio of that user. For the calculation of the SINR, we assume
a thermal noise of -106.94 dBm and a noise figure of 8 dB
for each UE. Any surplus resources that are not needed to



TABLE I: Simulation parameters

General parameters
B Bandwidth 5 MHz
hUE Height of UE 1.5 m
λ Arrival intensity (outside the hotspot) 2.1383 arrivals/s/km2

τ Average call duration 120 s
R Minimum bit rate 0.05 Mb/s

Antenna gain - link with regular BS
Gm Maximum antenna gain 18 dBi
HPBWh Half-power beam width (horizontal) 65◦

HPBWv Half-power beam width (vertical) 6.2◦

FBRh Front back ratio 30 dB
SLLv Side lobe level -18 dB
θetilt Electrical downtilt 8◦

Antenna gain - link with drone BS
Gd Maximum antenna gain 8 dBi
HPBWd Half-power beam width 65◦
FBRd Front-back ratio 30 dB
SLLd Side lobe level 30 dB

satisfy the minimum bit rate requirements are divided in a
proportional fair way.

E. Performance measure

As mentioned earlier, we adopt the CSR as a key perfor-
mance metric to capture the efficacy of the drone in ensuring
coverage and offering capacity relief. We define the CSR as
the fraction of calls that are successfully completed, meaning
that the CSR is the fraction of users that has coverage and is
admitted to the system. Note that the initial coverage and ca-
pacity checks imply that all admitted calls will be successfully
completed. In evaluating the CSR, we only consider the users
that in a normal situation would be served by the failing base
station or in one of the six sectors adjacent to the sectors of
the failing site.

IV. SIMULATION RESULTS

We first list in Table I the simulation parameters that have
not been introduced/specified earlier. These parameter values
are based on the papers [12], [13], and our choice of a dense
urban scenario. Furthermore, we have selected the parameters
such that approximately 70% of the downlink resources are
needed to guarantee the minimum bit rate for the admitted
users in a scenario without a failing site and hotspot.

In all simulations, we measure the CSR over a period of
2000 seconds. As a warm-up period, we let each simulation
run for a fixed, sufficiently long time to ensure measurements
starting from a statistical equilibrium.

A. Impact of CIO and 3D position of the drone

We first investigate the performance impact of the altitude
and CIO of the drone. We consider a scenario where the center
of the hotspot is located 200 m from the failing site along
one of its azimuth directions. Further suppose that the drone
is positioned right above the center of the hotspot. In this
experiment we vary the multiplication factor ρ for the traffic
density in the hotspot, yielding the results shown in Figure 4.
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Fig. 4: CSR for different altitudes and CIO values of the drone.

Looking at Figure 4 we first note that as expected the
CSR for the best combination of CIO and altitude decreases
as ρ increases. We further see that both the optimal altitude
and CIO of the drone decrease as ρ increases. This can be
explained as the drone will try to serve as many users as
possible, and to do so it needs to focus on the users that have
the best SINR. For that we can choose to lower the CIO, which
means that fewer users will be assigned to the drone, or reduce
the altitude of the drone. The latter reduces the path loss of
the users connected to the drone more than the antenna gain
of these users, while at the same time ensuring that users with
a relatively poor SINR will no longer be assigned to the drone
(as their antenna gain reduces more than the path loss).

Another interesting observation is that the impact of the
CIO on the CSR becomes smaller as ρ increases. On the other
hand, the impact of the altitude on the CSR increases when ρ
increases. However, the CSR is fairly insensitive to the control
parameters near their optimal values, in particular for larger
values of ρ.

As mentioned in Section II, it is not necessarily optimal to
position the drone right above the hotspot. To investigate this,
we fix the CIO to -4 dB and consider locations of the drone on
a straight line from the failing site to the center of the hotspot,
and plot in Figure 5 the CSR for different altitudes of the
drone. We see that the optimal x,y-location is relatively close
to the hotspot for ρ = 4, and near the location of the failing
site for ρ = 2. This difference can be explained by the fact that
moving towards the hotspot improves the channel quality of
users in the hotspot, while at the same time the channel quality
of users near the failing site degrades. Therefore, increasing
the load of the hotspot implies that the benefits of relatively
many of users in the hotspot will be greater, and thus the drone
should move closer towards the center of the hotspot.

The key observation from Figures 4 and 5 is that there is not
a universal optimal configuration of control parameters for all
possible load scenarios. For example, the optimal configuration
for ρ = 2 has a higher CIO, higher altitude and a lower
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Fig. 5: CSR for different x,y-locations and altitudes of the
drone.

horizontal distance to the failing site than for ρ = 4, and
results in a distinctly suboptimal CSR when applied for ρ = 4
or higher hotspot load densities.

B. Optimal control parameters

In order to gain further insight in the optimal choices of
x,y-coordinates, altitude and CIO, we conducted simulations
for many possible configurations for each combination of ρ ∈
{1, 2, 4, 6, 8} and the distance of the hotspot to the failing site
in {0, 20, . . . , 200}. For these experiments we first estimated a
suitable range for the optimal control parameters using a few
runs per combination. Then we estimated the CSR using 150
independent runs for each configuration of control parameters
where we used a granularity of 5 meters for both the altitude
and the distance between the drone and failing site and 0.5
dB for the CIO. In view of the insensitivity of the CSR near
the optimal control parameter settings, we fitted the average
simulated CSR for each value of ρ ∈ {1, 2, 4, 6, 8} using a
quadratic function that takes as input the CIO, distance of the
drone to the failing site, distance of the hotspot to the failing
site and the altitude of the drone. For each fit we ensured that
the optimal position of the drone is right above the failing site
when the hotspot is centered at the failing site. Furthermore,
we used over 1000 observations to determine 15 coefficients
involved in this function. We compared the CSR provided by
this function with the average values of the simulation results,
and verified that the mean squared error is less than 6 · 10−7,
and in less than 2.5% of the used sets of control parameters
the fit is outside a 95% confidence interval.

Figure 6 shows the maximum achievable CSR and Figures
7-9 show the corresponding configuration according to these
fits, and indicates that the deployment of a drone does signif-
icantly improve the CSR. For example, we see improvements
of at least 9, 10, 13, 16 and 19% for ρ = 1, 2, 4, 6 and
8 respectively. This means that the fraction of failed calls
would be approximately twice as high or higher without the
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deployment of a drone. Additionally, the maximum achievable
CSR decreases when the distance between the hotspot and the
failing site increases, but also when traffic intensity in the
hotspot increases.

We further observe that the optimal value of the CIO seems
to depend only on the value of ρ, except for the jumps
when ρ = 4. However, these jumps also suggest that there
is a relation between the CIO and altitude, as the optimal
altitude for ρ = 4 jumps at the same points in the graph.
Also the optimal distance between the drone and failing site
shows a small jump at these points, however these jumps are
relatively small. Finally, the optimal distance seems to increase
linearly when the hotspot moves away from the failing site. In
particular, the optimal position is close to the failing site and
the hotspot for low and high load in the hotspot respectively.

A last observation is that the relative differences for the
optimal distance between the drone and failing site differ more
for small values of ρ while the relative differences for the
optimal values of the CIO differ more for larger values of ρ.
This can be explained by the fact that for higher values of ρ
the optimal position of the drone is close to the center of the
hotspot, meaning that the drone can not significantly improve
the gains (antenna gain minus the path loss) of users in the
hotspot by moving closer towards the hotspot. So the only
way to serve more users is by steering users with relatively
high resource requirements towards one of the regular base
stations, which is done by lowering the CIO. On the other
hand when ρ is small, we can improve the gains (antenna gain
minus the path loss) of users in the hotspot by moving closer
towards the hotspot. Therefore the drone is able to reduce the
resource requirements of (relatively many) users in the hotspot
by moving closer to the hotspot, which means that there is less
need to steer users towards one of the regular base stations.

V. CONCLUSION

We have investigated the impact of the position and se-
lection bias of a drone base station on the performance of a
cellular network in scenarios with a failing site and emerging
hotspot. In these scenarios, we have seen that the deployment
of a drone base station can significantly reduce the fraction
of failed calls and observed that the CSR is not very sensitive
to the control parameters when the selected configuration is
close to the optimal setting. We further found that the optimal
selection bias mostly depends on the traffic intensity in the
hotspot, while the optimal position of the drone additionally
depends on the location of the center of the hotspot.

It might be difficult in practice to accurately determine the
location and/or traffic intensity in a hotspot. However, the
relative insensitivity around the optimal settings of the control
parameters is encouraging for the development of an adaptive
algorithm with near-optimal performance, which is the topic
of ongoing investigation.
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