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Estimation of the population size n from k i.i.d. binomial observations
with unknown success probability p is relevant to a multitude of applica-
tions and has a long history. Without additional prior information this is a
notoriously difficult task when p becomes small, and the Bayesian approach
becomes particularly useful. For a large class of priors, we establish posterior
contraction and a Bernstein-von Mises type theorem in a setting where p → 0
and n → ∞ as k → ∞. Furthermore, we suggest a new class of Bayesian es-
timators for n and provide a comprehensive simulation study in which we
investigate their performance. To showcase the advantages of a Bayesian ap-
proach on real data, we also benchmark our estimators in a novel application
from super-resolution microscopy.

1. Introduction. The binomial distribution with parameters n and p is the most funda-
mental model for the repetition of independent success/failure events. Motivated by several
important applications, we focus on the situation where both p and n are unknown. For exam-
ple, n might corresponds to the population size of a certain species (Otis et al. (1978), Royle
(2004), Raftery (1988)), the number of defective appliances (Draper and Guttman (1971)),
or the number of faults in software reliability (Basu and Ebrahimi (2001)). In Section 4,
we elaborate on a novel application where n is the number of unknown fluorescent markers
in quantitative super-resolution microscopy (Betzig et al. (2006), Hell (2009), Aspelmeier,
Egner and Munk (2015)).

The joint estimation of the population size n and the success probability p of a binomial
distribution from k independent observations has a long history dating back at least to Fisher
(1941). In comparison to the estimation of one of the parameters when the other is known
(Lehmann and Casella (1996)), this problem turns out to be much harder. Fisher, who re-
garded the assumption of an unknown integer n as “entirely academic”, suggested the use
of the sample maximum, arguing that this estimator is necessarily good if the sample size is
sufficiently large. Indeed, if X1, . . . ,Xk are i.i.d. Bin(n,p) distributed random variables for
fixed n ∈ N and p ∈ (0,1), the sample maximum Mk := maxi=1,...,k Xi converges exponen-
tially fast to n as k → ∞, since

(1.1) P(Mk = n) = 1 − P

(
max

i=1,...,k
Xi < n

)
= 1 − (

1 − pn)k
.
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In practice, however, the regime with small p (“rare events”) is often the relevant one (see the
references below and Section 4). In this setting, the sample maximum strongly underestimates
the true n even for large sample sizes k. This is explicitly quantified in DasGupta and Rubin
(2005): if p = 0.1 and n = 10, then the sample size k needs to be larger than 3635 to ensure
P(Mk ≥ n/2) ≥ 1/2. If p = 0.1 and n = 20, one would even need a sample size of more than
k = 900,000 for the same probability.

The erratic behavior of the sample maximum can be explored by allowing the parameters n

and p to depend on k. Applying Bernoulli’s inequality and the bound 1 − x ≤ e−x , it follows
from (1.1) that 1 − e−kpn ≤ P(Mk = n) ≤ kpn. Therefore, the sample maximum Mk becomes
an inconsistent estimator of n if kpn → 0 as k → ∞ (see Lemma A.1 in the Supplemen-
tary Material (Schmidt-Hieber et al. (2021)) for a characterization of domains of consistency
and inconsistency of Mk). One particular example where consistency breaks down is the do-
main of attraction of the Poisson distribution: when n ≥ log(k) → ∞ and p → 0 such that
np → μ ∈ (0,∞), then kpn ≤ k1+logp → 0. In this case, Bin(n,p) approaches the Poisson
distribution with intensity parameter μ, leading to nonidentifiability of the parameters (n,p)

in the limit. Consequently, more refined estimation techniques become necessary.
Since Fisher (1941), a variety of methods have been proposed to improve upon the sam-

ple maximum. A definite answer, however, remains elusive until today. The general lesson
from the attempts to obtain better estimators in the small p regime is that further information
on n and p is required, which calls for a Bayesian approach. An early Bayesian estima-
tor of the binomial parameters dates back to Draper and Guttman (1971), who suggested
to use the posterior mode under a uniform prior for n (upper bounded by some maximal
value), and a Beta(a, b) prior for p with a, b > 0. Later, Raftery (1988), Günel and Chilko
(1989), Hamedani and Walter (1988), and Berger, Bernardo and Sun (2012), besides others,
considered different Bayesian estimators. Raftery (1988), for example, introduced a hierar-
chical Bayes approach that utilizes a Poisson prior on n with intensity parameter λ > 0 and
a uniform prior distribution on [0,1] for p. Under the choice π(λ) ∼ 1/λ as hyperprior, this
hierarchical approach is equivalent to choosing the (improper) scale prior 1/n for n. This
prior is also recommended as an objective prior for n in Berger, Bernardo and Sun (2012).
A broader perspective on objective priors for discrete parameter spaces is offered in Villa
and Walker (2014), Villa and Walker (2015), who propose a prior on n|p that depends on
the Kullback–Leibler divergence between two successive values of n. The Villa-Walker con-
struction therefore also models a dependency between n and p.

Besides considering the posterior mode and posterior median as estimators, Raftery (1988)
suggested to minimize the Bayes risk with respect to the relative quadratic loss. From exten-
sive simulation studies (see the aforementioned references and Section 3 of this article), it
is understood that these Bayesian estimators generally deliver good results, especially when
compared to frequentist approaches. To the best of our knowledge, however, there is no rigor-
ous theoretical underpinning of these findings. In particular, little is known about the posterior
concentration of such estimators, and no systematic understanding of the role of the prior has
been established.

Our contribution to this topic is threefold. First (i), we propose a new class of Bayesian
estimators for n, generalizing the approach in Raftery (1988). Second (ii), we analyze the
asymptotic behavior of the posterior distribution of n for a large class of priors and asymptotic
regimes. This includes statements of posterior consistency as well as a novel Bernstein-von
Mises type theorem. Finally (iii), we extend the i.i.d. Bin(n,p) model to a regression setting
and apply the suggested estimators to count the number of fluorophores from super-resolution
images. This is a difficult issue of quantitative biology and a target of ongoing research.
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Ad (i). We consider product priors of the form �n ⊗ �p on (n,p) with �p ∼ Beta(a, b)

for some a, b > 0 and �n(n) ∝ n−γ for all n ∈ N and some γ > 1. Independence of n and p

in the prior is a natural assumption and can be justified in our application based on physical
considerations (Section 4). The beta prior for p is the standard choice and makes the problem
analytically tractable due to its conjugacy property (Draper and Guttman (1971)). The priors
n−γ for n, which we call scale priors with scaling parameter γ , are widely studied in the
literature on the binomial (n,p) problem and its variations, see (Berger, Bernardo and Sun
(2012), Link (2013), Raftery (1988), Wang, He and Sun (2007), Tancredi, Steorts and Liseo
(2020)).

Based on these prior choices, we focus on two Bayesian scale estimators for n. The first
is the posterior mode estimator n̂pm and the second is the Bayes estimator n̂rql with respect
to the relative quadratic loss, �(x, y) = (x/y − 1)2. Following Raftery (1988), the respective
estimators are given by

n̂pm = arg maxn≥Mk

La,b(n)

nγ
,(1.2a)

n̂rql = E[ 1
n
|Xk]

E[ 1
n2 |Xk] =

∑∞
n=Mk

1
n1+γ La,b(n)∑∞

n=Mk

1
n2+γ La,b(n)

,(1.2b)

where Xk = (X1, . . . ,Xk) denotes the data vector and La,b(n) is the (data dependent) beta-
binomial likelihood defined in equation (2.1) below (see also Carroll and Lombard (1985)).
In our applications (Section 3 and 4), we assume n̂pm and n̂rql to be integer valued by taking
the arg max over N and by rounding n̂rql to the nearest integer.

Ad (ii). We provide asymptotic conditions under which the marginal posterior for n con-
centrates all mass around the true population size. As before, we assume product priors on
(n,p) with a beta prior on p. For n, we allow general proper priors that decay at most poly-
nomially,

(1.3) �n(n) ≥ βn−α,

for all n ∈ N and some α > 1 and β > 0. To investigate the asymptotic behavior of the
posterior distribution, we let n and p depend on the sample size k. We formalize this by
considering parameter domains of the form

Mk(λ) :=
{
(n,p) : 1

λ
≤ np ≤ λ,n ≤ λ

√
k

log6(k)

}
,(1.4)

where λ > 1 can be chosen arbitrarily. This class describes binomial variables Bin(n,p)

with expectation values np bounded away from 0 and infinity, such that n grows (at most)
slightly slower than

√
k. Under the condition that �n satisfies (1.3), posterior contraction

around the true population size n0 is studied in Theorem 1. If n0 does not grow faster than
k1/4/ log(k), we will see that the posterior mass eventually concentrates on the true n0. In
Theorem 2, we then extend our analysis to a different asymptotic domain in which the true
population size n0 stays bounded but p0 is allowed to decay. Lower bounds that we establish
in Theorem 3 guarantee that the rates for consistency in Theorems 1 and 2 are indeed sharp
up to logarithmic factors. We also derive a Bernstein-von Mises type result for the posterior
on n in Theorem 4, which shows that the limit distribution can be viewed as a discretized
version of a normal distribution.

The main building block underlying the recent advances in the frequentist analysis of pos-
terior concentration are the connection to posterior mass conditions and the existence of sep-
arating statistical test, see Ghosal, Ghosh and van der Vaart (2000), Ghosal and van der Vaart
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(2017), Schwartz (1965). To establish model selection properties of the posterior requires
typically different tools (Castillo, Schmidt-Hieber and van der Vaart (2015), Castillo and van
der Vaart (2012), Gao, van der Vaart and Zhou (2020)). Since proving that the posterior con-
centrates on the true population size can be viewed as posterior model selection, it is not
surprising that we do not follow the standard posterior contraction proof technique. In fact,
a much more refined analysis of the likelihood is necessary and we crucially rely on a de-
composition of the log-likelihood via a telescoping sum that is due to Hall (1994). The main
challenge in our approach consists of obtaining uniform results over parameter classes where
n → ∞ and p → 0 is allowed (in order to capture the small p regime). For fixed n and p, in
contrast, posterior consistency as k → ∞ already follows from Doob’s consistency theorem
(see van der Vaart (1998), Theorem 10.10).

Ad (iii). Modern cell microscopy allows researchers to observe the activity and interac-
tions of biomolecules in unprecedented detail. Especially since the development of super-
resolution nanoscopy, for which the 2014 Nobel Prize in Chemistry was awarded, it has
become an indispensable tool for understanding the biochemical function of proteins (see
Hell (2015) for a survey). Super-resolution techniques rely on photon counts obtained from
fluorescent markers (or fluorophores), which are tagged to the specific protein of interest
and excited by a laser beam. In this article, we are concerned with single marker switching
(SMS) microscopy (Betzig et al. (2006), Hess, Girirajan and Mason (2006), Rust, Bates and
Zhuang (2006), Fölling et al. (2008)) where the activation of fluorophores and the emission
of photons is inherently random: after excitation by a laser, a fluorophore undergoes a com-
plicated cycling through (typically unknown) quantum mechanical states on different time
scales. This severely hinders a precise determination of the number of molecules at a certain
spot in the specimen, see, for example, Lee et al. (2012), Rollins et al. (2015), Aspelmeier,
Egner and Munk (2015), Staudt et al. (2020). In Section 4 we show how the number of flu-
orophores can be obtained from a modified binomial (n,p) model. A common difficulty in
such experiments is that the number of active markers decreases over the measurement pro-
cess due to bleaching effects. We show that the initial number n0 can still be inferred from
observations at later time points by linking them through an exponential decay. This leads to
a variant of the binomial (n,p) model where the bleaching probability of a fluorophore can
be estimated jointly with n0. We apply this model to experimental data and determine the
number of fluorophores on DNA origami test beds.

Outline. This paper is organized as follows. Our results on posterior contraction and the
Bernstein-von Mises type theorem can be found in Section 2. For a broader perspective,
we also discuss previous results on the asymptotics of several frequentist estimators for n.
Section 3 contains an extensive simulation study in which we examine the posterior of n

for moderate to large k and compare the finite sample properties of several Bayesian and
frequentist estimators. Furthermore, we study the choice of suitable scale priors in different
settings and investigate robustness against model deviations from the Bin(n,p) model. In
Section 4, we apply our estimators to data from super-resolution microscopy. The proof of
our main posterior contraction result (Theorem 1) is presented in Section 5. Further proofs,
auxiliary statements, as well as additional figures are deferred to the Supplementary Material.

2. Asymptotic results. Recall that we observe k independent random variables X1, . . . ,

Xk with Bin(n,p) distribution. We refer to this setting as the binomial (n,p) model. The
joint distribution of the data Xk = (X1, . . . ,Xk) is denoted by Pn,p and the expectation with
respect to this distribution is En,p . We study product priors �n ⊗ �p on (n, p) and set
�p = Beta(a, b) with parameters a, b > 0. The prior �n for n can be chosen as any proper
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probability distribution on the positive integers such that condition (1.3) holds for some α > 1
and β > 0. We write Mk = maxi=1,...,k Xi for the sample maximum and Sk = ∑k

i=1 Xi for
the sample sum. The true parameter values are denoted by n0 and p0.

For a measurable set A ⊆ [0,1] and n ∈ N, the joint posterior distribution for (p,n) is
given by

�
(
p ∈ A,n|Xk)
=

∫
A tSk+a−1(1 − t)kn−Sk+b−1dt · ∏k

i=1
( n
Xi

) · �n(n)∑∞
m=1

∫ 1
0 tSk+a−1(1 − t)km−Sk+b−1dt · ∏k

i=1
( m
Xi

) · �n(m)

if n ≥ Mk and �(p ∈ A,n|Xk) = 0 otherwise. The marginal posterior distribution of n is
thus

(2.1) �
(
n|Xk) ∝

k∏
i=1

(
n

Xi

)
	(kn − Sk + b)	(Sk + a)

	(kn + a + b)
1(n ≥ Mk)︸ ︷︷ ︸

=:La,b(n)

�n(n),

where 	 is the Gamma function, 1 the indicator function, and La,b the beta-binomial likeli-
hood.

Posterior contraction. Our first result establishes uniform posterior concentration around
the true value n0 over parameters in the set Mk(λ) defined in equation (1.4). Its proof can be
found in Section 5.

THEOREM 1. Consider the binomial (n,p) model under the prior mass condition (1.3).
For fixed λ > 1 and k → ∞,

(2.2) sup
(n0,p0)∈Mk(λ)

En0,p0

[
�

(
n : |n − n0| ≥ n2

0 log7/4(k)√
k

∣∣∣Xk

)]
→ 0.

Equivalently, this result could also be stated in terms of the relative loss �(n,n0) = |n/n0 −
1|2, which is widely studied in the Bayesian literature for this and related problems, see Smith
(1988). A noteworthy consequence of Theorem 1 is that the posterior of n eventually places
all mass on the true population size n0 if the parameters (n0,p0) ∈ Mk(λ) additionally satisfy

(2.3) n2
0 <

√
k

log7/4(k)
.

An inspection of the proof of Theorem 1 reveals that the lower bound on the prior mass
condition (1.3) only has to hold for the true value n0. If we consider sequences of (proper)
priors �n,k for n that can change with the sample size k, it can readily be seen from bound
(5.14) in the proof that the assertion of the theorem also holds if �n,k(n) ≥ β/(nk)α for all
positive integers n ≤ λk1/2 and some α,β > 0. In particular, it holds for priors with restricted
support of the form

(2.4) �n,k(n) ∝ f (n)1
(
n ≤ λkα)

,

where f satisfies n−α/2 � f (n) � nα/2 for some α ≥ 1/2.
The techniques used to prove Theorem 1 can also be adapted to asymptotic regimes where

n0 is bounded and p0 converges to 0 as k tends to infinity. In this case, we depart from the
Poisson limit and it should thus become easier to discern the parameters n0 and p0. Still, if p0
approaches zero quickly with increasing k, only a few observations with positive counts will
remain, such that the problem becomes difficult again. The next result states that posterior
consistency holds in this setting as long as p0 � log k/

√
k. Its proof is very similar in structure

to the one of Theorem 1 and can be found in Section C of the Supplementary Material.



POSTERIOR ANALYSIS IN THE BINOMIAL MODEL 3539

THEOREM 2. Consider the binomial (n,p) model. For any B ≥ 2, define the parameter
regime

Mb
k(B) :=

{
(n,p) : 2 ≤ n ≤ B,

log k

B
√

k
≤ p

}
.

If �n(n) > 0 for all n ∈ N with 2 ≤ n ≤ B , the posterior asymptotically concentrates all mass
on the true population size as k → ∞, meaning

sup
(n0,p0)∈Mb

k(B)

En0,p0

[
�

(
n �= n0|Xk)] → 0.

The uniform posterior concentration on the true value n0 that follows for parameters in the
domain Mb

k(B) (by Theorem 2) and for parameters in Mk(λ) that additionally satisfy (2.3)
(by Theorem 1) also implies uniform consistency of the respective posterior mode estimators
n̂k ∈ arg maxn �(n|Xk). Indeed, for any subset Mk of the mentioned domains,

(2.5) sup
(n0,p0)∈Mk

Pn0,p0(n̂k �= n0) → 0

as k → ∞. As a special case, this includes the estimator n̂pm introduced in equation (1.2a).
Furthermore, if Mk is such that n0 stays bounded, consistency of the Bayes estimator n̂rql
with respect to the relative quadratic loss given in (1.2b) also follows. The same holds for
the Bayesian estimators introduced in Hamedani and Walter (1988) and Günel and Chilko
(1989). Since the estimators in Raftery (1988), Berger, Bernardo and Sun (2012), and Link
(2013) are based on improper priors for n, our results can be applied to modifications of these
estimators where �n is restricted to a bounded support.

We next state a lower bound proving that no uniformly consistent estimator for n0 exists
if n0/p0 �

√
k (see Section D in the Supplementary Material for a proof). Combined with

statement (2.5), this implies that posterior contraction on the true value n0 is impossible in
this regime.

THEOREM 3 (Lower bound). Let η, δ > 0 and fix sequences (nk)k ⊂ N and (pk)k ⊂
(0,1 − δ) such that nk/pk ≥ η

√
k for all k. Define the set M∗

k := {(nk,pk), (nk + 1,p′
k)}

where p′
k = nk

nk+1pk . Then there exists a positive constant c = c(η, δ) such that for any esti-
mator n̂ = n̂(Xk) and all k

max
(n0,p0)∈M∗

k

Pn0,p0(n̂ �= n0) ≥ c.

If the expectation value n0p0 is constant or stays bounded away from zero and infinity (and
p0 thus essentially behaves like 1/n0), Theorem 3 implies that it is impossible to recover n0
asymptotically when n0 � k1/4. Therefore, the sufficient condition (2.3) for posterior consis-
tency in Theorem 1 is sharp up to logarithmic factors. Similarly, Theorem 3 also implies that
the asymptotic recovery of a bounded n0 ≤ B is only possible if p0 � 1/

√
k, which proves

that the lower bound on p in Theorem 2 can at most be relaxed by a factor of log(k). Another
consequence of Theorem 3 is that product priors � = �n ⊗ �p are already asymptotically
optimal in the settings of Theorems 1 and 2 (at least up to log-factors). Modeling dependen-
cies between n and p via � may hence affect the finite sample performance, but it will not
improve the asymptotic behavior substantially.

To complete the discussion on posterior concentration, it should be mentioned that another
interesting regime occurs if p0 is bounded away from zero and n0 → ∞ as k → ∞. Since the
sample maximum grows quickly in this case, controlling the posterior requires completely
different bounds than before. This regime is of little relevance for our application and we
omitted the mathematical analysis in this work. Note that a numerical study in Schneider,
Staudt and Munk (2018) indicates that posterior consistency holds in this setting as long as
n0 grows slower than

√
k, which coincides with the lower bound in Theorem 3.
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Limiting shape of the posterior. In the regime where the binomial expectation n0p0 is
bounded away from zero and infinity, we can characterize the limiting distribution of the
posterior in the Bernstein-von Mises (BvM) sense. For parametric problems, the standard
BvM theorem states, under weak conditions on the prior and the model, that the posterior
converges in total variation distance to a normal distribution centered at the MLE (see van
der Vaart (1998) for a precise statement). The BvM phenomenon has been studied in a va-
riety of nonstandard settings as well, including estimation of the probability mass function
Boucheron and Gassiat (2009), nonregular models Bochkina and Green (2014), and model
selection Castillo, Schmidt-Hieber and van der Vaart (2015). To the best of our knowledge,
BvM theorems for discrete parameters have not been considered yet. One might wonder in
which sense such a limiting shape theorem can hold, since a discrete distribution can not
converge to a continuous distribution with respect to the total variation distance.

For the binomial (n,p) problem, we show below that the posterior on n converges in
total variation to a discretized version of the normal distribution. The total variation dis-
tance between two discrete distributions P and Q defined on the integers is TV(P,Q) =
1
2

∑
i∈Z |P(i) − Q(i)|, and we say that an integer-valued random variable X has the discrete

normal Nd(μ,σ 2) distribution if it satisfies P(X = j) ∝ exp(− 1
2σ 2 (j − μ)2) for all j ∈ Z.

This distribution is characterized in Kemp (1997) as the probability distribution on the inte-
gers with maximal entropy for given expectation and variance. Its connection to the Jacobi
theta functions and other properties are analyzed in Szabłowski (2001).

Asymptotically, the posterior of n will be centered at the estimator

n̂ := S2
k

S2
k − k

∑k
i=1 Xi(Xi − 1)

with Sk =
k∑

i=1

Xi.(2.6)

In Hoel (1947), this estimator is attributed to Student (1919), who derived it by matching the
first two moments of the binomial distribution.

THEOREM 4 (Discrete Bernstein-von Mises). Suppose that the parameter a in the
Beta(a, b) prior on p is a nonnegative integer and �(n) ∝ n−α for some α > 1 and all
n ∈N. Then, as k → ∞,

sup
(n0,p0)∈Mk(λ)

En0,p0

[
TV

(
�

(
n = ·|Xk),Nd

(
n̂,

2n2
0

kp2
0

))]
→ 0.

The proof is rather involved and precise bounds for the likelihood ratio in a neighborhood
of the true n0 are required. The main step is to establish that the log-likelihood can locally
around n0 be written as

1

2

k∑
i=1

(Xi)2 log
(

1 − 1

n

)
+ S2

k

2kn
(2.7)

up to terms of negligible order. It can be checked that n = n̂ is a maximizer of this expression.
A second order Taylor expansion of (2.7) around n̂ then shows that the posterior is close to
the limit on a localized set. The full proof is deferred to Section E in the Supplementary
Material.

Since p0 is of order 1/n0 for parameters (n0,p0) in the class Mk(λ), the limit distribu-
tion in Theorem 4 converges to the point mass on n̂ if n0 � k1/4. For n0 � k1/4, on the
other hand, the limiting variance diverges with k. In this context, we also mention another
possibility to define a discretized normal distribution Z ∼ ND(μ,σ 2) on the integers via
Z := arg minj∈Z |j − X| for X ∼ N (μ,σ 2). The distributions ND(μ,σ 2) and Nd(μ,σ 2) are
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not the same, but they are close in total variation distance for large σ , see Lemma E.3 in the
Supplementary Material. If n0 � k1/4, this implies that we can replace the limit distribution
Nd in the BvM type result by ND.

We conjecture that discretized normal distributions like the ones above will occur as
generic posterior limit distributions for a wide range of discrete parameter models, such as
the ones considered in Choirat and Seri (2012).

Asymptotic results for frequentist methods. For comparison, we briefly summarize exist-
ing asymptotic results for frequentist estimators. Early estimators for n based on the method
of moments and the maximum likelihood approach can be found in Haldane (1941) and
Blumenthal and Dahiya (1981). In Olkin, Petkau and Zidek (1980), it is shown that these
estimators are highly irregular if p is small and methods to stabilize them are proposed.
More recently, two further estimators were introduced by DasGupta and Rubin (2005): an-
other modification of the method of moments estimator, and a bias correction of the sample
maximum. For the new moments estimator, n̂NME, which depends on the choice of a tuning
parameter α > 0, it holds that

√
k(n̂NME − n)

D−→ N
(
0,2α2n(n − 1)

)
as k → ∞, where n and p are both held fixed. To derive this result, the authors exploit
the exponential convergence of the sample maximum to n, which suggests that the limit
distribution is only an accurate approximation for very large values of k, especially if p is
small. For the bias corrected sample maximum n̂bias, DasGupta and Rubin (2005) derive

(nk)1/(n−1)(n̂bias − n)
D−→ δ1

as k → ∞, where δ1 denotes the Dirac measure at 1.
The Carroll–Lombard estimator n̂CL in Carroll and Lombard (1985) is the maximizer of

the beta-binomial likelihood in (2.1). It is therefore the posterior mode estimator under a beta
prior on p and an improper uniform prior on n. For p constant, n → ∞ and

√
k/n → 0 as

k → ∞, it is known that

√
k

(
n̂CL − n

n

)
D−→N

(
0,

2(1 − p)2

p2

)
.

All of the results above hold for p fixed and hence provide only limited insight into the
situation when p is small. A notable extension is discussed in Hall (1994). This article studies
a variation ñCL of the Carroll–Lombard estimator by restricting the search for the maximum
of the beta-binomial likelihood to a suitable neighborhood around the true n. Since this con-
struction depends on the truth, the maximizer ñCL is in a strict sense not an estimator. It is
shown that for n = nk → ∞ and p = pk → 0, np → μ ∈ (0,∞], and kp2 → ∞,

(2.8)
p
√

k√
2

(
ñCL − n

n

)
D−→ N (0,1)

as k → ∞. This setup is similar to the one in Theorems 1 and 4, but it does not cover the
asymptotic regime considered in Theorem 2. For the asymptotic normality in (2.8), it matters
that ñCL is regarded as maximizer over the real numbers and not the integers. To see this,
consider a sequence such that p

√
k/n → ∞. As the rate in (2.8) blows up, we must have

that ñCL converges to n in probability, which means that if one replaces ñCL by the closest
integer, one recovers the exact value of n with probability increasing to one as k → ∞. Also
note that result (2.8) is a specific scenario in a broader context and relies on further technical
conditions, like n to be lower bounded by some positive power of k.
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FIG. 1. Averaged posterior distributions for true parameters n0 = 20, p0 ∈ {0.05,0.1,0.3}, sample sizes
100 ≤ k ≤ 105, and γ = a = b = 1. The bar plots display En0,p0 [�(n|Xk)] for different values of n. The number
in the upper right corner of each graph is the expected posterior mass in the interval [15,25].

3. Numerical results. In this section, we numerically investigate the posterior distribu-
tion and the finite sample performance of Bayesian estimators for different choices of priors
�p and �n. We consider beta priors with parameters a, b > 0 for p, as well as proper and
improper scale priors �n(n) ∼ n−γ with γ ≥ 0. In situations where we assume a prior guess
p̃ for the value of p, the parameters a and b are chosen such that a ∈ {1,2} and b = a/p̃ − a.
Then, the Beta(a, b) distribution has expectation p̃ and its probability density function is
monotone if a = 1, while it is unimodal if a = 2. For comparison, we also study the objective
prior with a = b = 1, corresponding to a uniform distribution on the probability of success p.

Posterior contraction. For γ = a = b = 1, Figure 1 displays the expected posterior n �→
En0,p0[�(n|Xk)] for n0 = 20 and p0 ∈ {0.05,0.1,0.3} based on 1000 draws of the data.
Figures for different parameters can be found in Section F of the Supplementary Material. For
n0 = 20 and p0 = 0.3, Figure 1 demonstrates that the posterior distribution visibly contracts
to the true value n0 = 20 for sample sizes k ≥ 104. If p0 ≤ 0.1, k = 105 or more observations
become necessary for a comparable effect. Figure F.3 in the Supplementary Material shows
that increasing n0 likewise results in broader and less concentrated distributions for given
sample sizes k. Changing γ , a, or b has little effect on the shape of the posterior for large
values of k, which is in accordance with the Bernstein-von Mises type result in Theorem
4. Still, setting a = 2 and b = 2/p0 − 2 notably affects the distributions for k = 100 and
k = 1000 by reducing the bias of the mode, especially when p0 is small (see Figures F.1 and
F.2 in the Supplementary Material).

It is worth pointing out that the posterior of n behaves considerably better than the sample
maximum Mk . For example, if n0 = 20 and p0 = 0.3, a sample size of at least k = 1010 is
needed for Pn0,p0(Mk = 20) ≥ 0.35, while about 104 samples are sufficient for En0,p0[�(n =
20|Xk)] ≥ 0.35. If p0 is set to 0.1 in this comparison, the respective sample sizes are of the
dimensions 1019 versus 105.

Posterior shape. In order to examine the validity of the Bernstein-von Mises type result
for finite samples, we compare the posterior of n to the discrete normal Nd distribution pre-
dicted as limit in Theorem 4. Figure 2 depicts several examples of the posterior distribution
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FIG. 2. Posterior distribution �(n = ·|Xk) in blue and discrete normal distribution Nd(n̂,2n2
0/kp2

0) of Theorem
4 in grey. The binomial parameters are chosen according to n0 = �3k1/4� and p0 = 4/n0, where �·� denotes
the floor function. This results in an (asymptotically) constant value 2n2

0/kp2
0 ≈ 10. The prior parameters are

γ = a = b = 1. In each graph, independent realizations of Xk are used. The dashed lines mark the true value n0.

in a setting with n0 ∼ k1/4 and p ∼ 1/n0, such that the variance parameter σ 2 = 2n2
0/kp2

0
of the limiting distribution stays (roughly) constant. While the posterior shape deviates (in
part strongly) from the BvM limit for sample sizes k ≤ 103, it clearly approaches the Nd
distribution as k becomes larger. At the same time, the center of the posterior does not seem
to concentrate on the true value n0 as k increases. The posterior often exhibits a less broad
distribution than suggested by Theorem 4, especially when the sample maximum Mk reaches
into the bulk of the BvM limit for moderate values of k.

Figure 3 shows the total variation distance between the posterior and the BvM limit. This
time, we consider settings with n0 ∼ k1/4 and n0 ∼ k1/3, which are covered by Theorem 4, but

FIG. 3. Total variation distance between �(n = ·|Xk) and Nd(n̂,2n2
0/kp2

0) in dependence of the sample size k

for prior parameters γ = a = b = 1. The black line shows the empirical mean over 100 independent realizations
of Xk , while the blue and green areas correspond to the respective 25–75 and 10–90 percentile ranges. The
binomial parameters are chosen as n0 = �3k1/δ� and p0 = 4/n0 for δ = 4,3,2 (from left to right).
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also the case n0 ∼ k1/2, which falls outside of its scope. One can clearly see the TV distance
decreasing in the former two cases, while it does not decay if n0 ∼ k1/2. This indicates that
the restriction of (n0,p0) to Mk(λ) in Theorem 4 cannot be relaxed.

Estimator performance. We next study the finite sample performance of a number of
Bayesian and frequentist estimators. In total, the following estimators are considered.

• The scale estimator n̂rql with respect to the relative quadratic loss defined in (1.2b). It
depends on the scale parameter γ and the beta parameters a and b, and we refer to it by
SE(γ ). Note that the posterior distribution for the scale prior is well defined as long as
a + γ > 1 (see Kahn (1987) for a cautionary note in this context). However, we also report
results for SE(0) with a = 1, in which case the posterior is no probability distribution, but
we still obtain finite estimates when evaluating (1.2b) numerically. The estimator proposed
by Raftery (1988) is equivalent to the scale estimator with the choices γ = 1 and a = b = 1,
and is denoted by RE in the following.

• The posterior mode estimator n̂pm defined in (1.2a). We refer to it by PME(γ ) and as-
sume the same prior choices as for SE(γ ). If γ = 0, it coincides with the Carroll–Lombard
estimator. Furthermore, if N0 ∈ N is chosen sufficiently large, PME(0) in practice also co-
incides with the estimator proposed by Draper and Guttman (1971), which is the posterior
mode estimator under a beta prior on p and �n = 1{1,...,N0}.• The (frequentist) new moment estimator NME(α) with parameter α, proposed in DasGupta
and Rubin (2005). The authors use α = 1 in their numerical work.

• The (frequentist) sample maximum MAX.

Note that we do not include the maximum likelihood estimator and the moment estimator
(2.6) in our comparison, since their finite sample behavior proved to be very unstable in the
range of parameters we consider.

Figure 4 summarizes the performance of the proposed estimators for n0 = 20 and
p0 = 0.1 when k ∈ {30,100,300}. Further simulation results that cover settings with n0 ∈
{10,20,50,100,200} and p0 ∈ {0.05,0.1,0.3} can be found in Section F of the Supplemen-
tary Material. We observe several salient tendencies among the Bayesian estimators. First, the
smaller γ is, the smaller the bias but the larger the variance of the estimates becomes. Esti-
mators with γ = 1 or 2 typically underestimate n0, while estimators with γ = 0 have a larger
variability. Second, the bias typically reduces as k is increased from 30 to 300. The variance,
on the other hand, only slightly decreases or even increases in some instances. Third, the SE
and the PME perform similarly for the same γ , with the former having slightly larger esti-
mates on average. In particular, we can conclude that the posterior mode does not suffer from
any peculiar instabilities or other drawbacks. Finally, taking knowledge of p0 into account
(by choosing a = 2 and b = 2/p0 − 2) notably reduces the bias of all Bayesian estimators.
As expected, this effect is most pronounced for small values of k.

In comparison, the frequentist estimators typically underestimate n0 more severely than
the Bayesian ones. While the NME clearly improves over the sample maximum, it still pro-
duces values centered about n ≈ 10 for both α = 1 and α = 2 when n0 = 20. We consistently
observed that the variance of the NME quickly decreases with increasing k (usually faster
than for the Bayesian estimators), but that its bias barely reduces at the same time. Indeed,
values estimated by the NME seem to be strongly influenced by the sample maximum, and it
seems to inherit the extremely slow convergence toward the real value in the setting of mod-
erate to large k. Similar issues were also observed for the bias reduction estimator proposed
by DasGupta and Rubin (2005), which we did not include in our figures. We still stress that
the NME(α) with a suitable choice of α is competitive with the Bayesian procedures in some
regimes, especially if k is small and p is moderate (see, e.g., Figure F.6 in the Supplementary
Material).



POSTERIOR ANALYSIS IN THE BINOMIAL MODEL 3545

FIG. 4. Comparison of estimators for n with underlying parameters (n0,p0) = (20,0.1) and for three sample
sizes k = 30 (left/green), k = 100 (middle/turquoise), k = 300 (right/blue). All box plots are based on 100 inde-
pendent repetitions. Outliers are plotted if they deviate from the median by more than 1.5 times the interquartile
range.

Prior choices. In the following, we take a systematic look at the influence of the prior
choice on the performance of the Bayesian estimators in case of small to moderate sam-
ple sizes. Our goal is to establish some practical guidance regarding how to choose γ ,
a, and b in different scenarios. To this end, we compare the scale estimators SE(γ ) with
γ ∈ {0,0.5,1,2,3} and the posterior mode estimator PME(0), which corresponds to the
Carroll–Lombard estimator, in several simulations, documenting the parameter constellations
that perform best.

In a first study, we consider the settings k ∈ {30,100,300}, n0 ∈ {20,50}, and p0 ∈
{0.05,0.1,0.3}, while assuming a good guess p̃ = p0 that correctly informs the Beta(a, b)

prior on p via a = 2 and b = a/p̃ − a, such that its expectation is p̃. For all pairs (n0,p0)

and each estimator n̂, we empirically approximate:

• the relative mean squared error (RMSE) given by En0,p0[(n̂/n0 − 1)2],
• the bias En0,p0[n̂] − n0 of the estimator,

by averaging over 1000 realizations of Xk . In Table 1, we present the estimators that have
the lowest RMSE and the lowest bias for the different choices of k. The outcome generally
advises to select smaller values of γ the smaller p0 is expected to be. We only found minor
differences between the PME(0) and the SE(0). Both of them outperform the other estimators
in the regime of very small p0. The drawback of these estimators is their high variance, which
is why larger choices of γ become preferable for low RMSEs as k increases. The similarity
of Table 1(a) and 1(b) for n0 = 20 and n0 = 50 suggests that the influence of n0 is weaker
than the one of p0 for the optimal estimator choice.

Our next study covers a setting that is motivated by the data example in Section 4, and
we select n0 = 15, p0 = 0.0339, and k = 94. This time, our focus lies on the influence of
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TABLE 1
Overview of the estimators with the smallest RMSE and the smallest absolute bias for a = 2 and b = 2/p0 − 2

(a) n0 = 20

p0 k RMSE bias

0.05 30 PME(0) SE(0)
0.05 100 PME(0) SE(0)
0.05 300 SE(0.5) PME(0)
0.1 30 PME(0) SE(0)
0.1 100 SE(0.5) PME(0)
0.1 300 SE(1) PME(0)
0.3 30 SE(2) SE(1)
0.3 100 SE(3) PME(0)
0.3 300 SE(3) SE(2)

(b) n0 = 50

p0 k RMSE bias

0.05 30 PME(0) SE(0)
0.05 100 PME(0) SE(0)
0.05 300 SE(0.5) PME(0)
0.1 30 PME(0) SE(0)
0.1 100 SE(0.5) PME(0)
0.1 300 SE(1) SE(0.5)
0.3 30 SE(1) SE(0.5)
0.3 100 SE(3) PME(0)
0.3 300 SE(3) PME(0)

the beta prior parameters a ∈ {1,2} and b = a/p̃ − a. We consider four different scenarios:
no information about p0 (setting p̃ = 0.5), accurate information (p̃ = p0), underestimation
(p̃ = 0.5p0), and overestimation (p̃ = 1.5p0).

The results in Table 2 show that it is advantageous to choose a small γ and a unimodal
beta prior (i.e., a = 2) if a good guess for p0 is available. If we have no information or are
overestimating, it is again advisable to select γ = 0, while choosing a less confident prior
for p with a = 1. In contrast, underestimation of p0 leads to instabilities and substantial
overestimation of n0 if γ is small. Here, estimators with (proper) prior choices γ = 1 and 2
perform very well: the tendency of overestimation caused by the choice p̃ = 0.5p0 is in part
compensated by the tendency of underestimation due to the higher value of γ .

Overall, our findings confirm that the smaller p0, the more difficult it becomes to estimate
n0 and the smaller γ should be picked. A smaller γ , however, increases the variance of the
posterior distribution and leads to estimators that are potentially more sensitive against miss-
specification in the beta prior. This is further investigated in Table 3, where we compare the
sensitivity of estimators corresponding to γ = 0 and γ = 1. Miss-specifying p̃ = 0.5p0 leads
to severe overestimates En0,p0[n̂] ≈ 2n0 for PME(0), while SE(1) is less sensitive in this
regard. Selecting γ = 0 can therefore help to estimate n0 in very difficult scenarios, but it can
also lead to heavily biased results if p̃ is chosen too small.

Robustness. Motivated by our data example in Section 4, we also investigate the situation
where n may vary within the sample. This appears to be relevant in many other situations as
well, for example, in the capture–recapture method, where the (unknown) population size
of a species may change from experiment to experiment. While varying probabilities p have
been investigated in Basu and Ebrahimi (2001), models with a varying population size n have
not received attention in previous research, as far as we are aware.

TABLE 2
The two estimators that perform best under different choices of p̃ for n0 = 15, p0 = 0.0339, and k = 94. The

respective values of b are given by b = a/p̃ − a

p̃ a est. RMSE bias

0.5 1 SE(0.5) 0.478 −10.17
1 SE(0) 0.395 −9

p0 2 PME(0) 0.034 −0.266
2 SE(0) 0.036 −0.043

p̃ a est. RMSE bias

1.5p0 1 SE(0) 0.12 −3.73
2 SE(0) 0.121 −4.69

0.5p0 1 SE(1) 0.036 −0.032
2 SE(2) 0.025 −0.55
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TABLE 3
Sensitivity of SE(1) and PME(0) against miss-specification of p̃. The value a is set to 2, all other parameters are

selected as in Table 2. The behavior of PME(0) and SE(0) is comparable in this setting

Estimator p̃ RMSE bias

SE(1) p0 0.122 −4.85
0.5p0 0.129 4.43
1.5p0 0.279 −7.73

PME(0) p0 0.034 −0.27
0.5p0 1.002 14.32
1.5p0 0.139 −5.09

To study this question numerically, we generated 1000 data sets Xi , i = 1, . . . , k, with
sample size k = 100, where each observation Xi is drawn independently from a Bin(ni,p0)

distribution and each ni is a realization of a binomial random variable N ∼ Bin(ñ, p̃). For
each sample, p0 is drawn from a Beta(2,38) distribution with expectation 0.05. To test the
influence of the varying parameter ni , we compare the performance of the estimators in the
described scenario to their performance on binomial samples with constant n0 (chosen as
the integer nearest to E[N ] = ñp̃) and the same realization of p0. For both scenarios, we
simulated the RMSE with respect to n0 and record their ratios in Table 4 for parameters ñ

and p̃ resembling the data example in Section 4. The resulting ratios are all close to one,
which suggests a stable performance of the estimators: estimating n0 from a sample with
heterogeneous ni (randomly drawn from N ) instead of constant n0 (close to E[N ]) does not
affect the RMSE much (on average).

4. Data example. We now apply the previously described Bayesian estimators to quan-
tify the number of fluorescent molecules in super-resolution microscopy. Reliable methods
for this task are highly relevant in quantitative cell biology, which aims to determine the con-
centration of specific biomolecules, like proteins, in the cell. For general information, see
Lee et al. (2012), Rollins et al. (2015), Ta et al. (2015), Aspelmeier, Egner and Munk (2015),
Karathanasis et al. (2017), Staudt et al. (2020), and references therein.

Super-resolution microscopy. The term super-resolution microscopy denotes a family of
recently developed techniques of fluorescence microscopy. It describes the ability to achieve
resolutions below the diffraction limit of visible light (about 250–500nm), which limits clas-
sical modes of optical microscopy (Hell (2009)). The central idea is to separate photon emis-
sions of spatially close fluorescent markers (fluorophores) in time, for example, by making

TABLE 4
Ratios of the RMSE for i.i.d. and non-i.i.d. samples (RMSE-R)
for the estimators SE(γ ), PME(0), and the Raftery estimator
RE. The beta prior for SE and DGE uses a = 2 and b = 38

ñ = 8 ñ = 22

Estimator RMSE-R RMSE-R

SE(0.5) 1.022 1.130
SE(1) 1.011 1.067
SE(2) 1.020 1.010
PME(0) 1.032 1.073
RE 0.988 0.981
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them switch between active and inactive states (until they bleach and become permanently
inactive). In practice, the separation in time is realized by applying an excitation laser with
low intensity, such that only a small fraction of fluorophores in the sample are in the active
state during a given frame of observation. By combining the resulting “sparse” information
recorded over a series of frames, an increased resolution of up to 20–30nm can be achieved.
See Betzig et al. (2006), Rust, Bates and Zhuang (2006), Hess, Girirajan and Mason (2006),
or Fölling et al. (2008) for different variants of this principle.

Experimental setup. Our data has been recorded at the Institute for Nanophotonics Göt-
tingen e.V. In a preparational step, DNA origami molecules (Schmied et al. (2014)) were
dispersed on a microscopic cover slip. DNA origami are nucleotide sequences engineered in
such a way that they fold into a desired shape and that fluorophores can attach to them (see
Figure 5(a)). In the experiment, Alexa647 fluorophores with 22 different types of anchors
were used, each matching a different anchor spot on the origami. The attachment process
itself is random and is expected to occur with a probability between 0.6 and 0.75 according
to the manufacturer. Hence, about 13 to 17 fluorophores should on average be attached to a
single DNA origami.

The experiment was initialized in such a way that most fluorophores occupy their active
state in the first frame. All origami are therefore visible as bright spots in Figure 5(b). Note
that individual fluorophores occupying the same origami can not be discerned in this image;
this becomes possible only by analyzing later frames where most fluorophores are inactive
and markers show up individually (see the supplementary video). Each frame had an exposure
time of 15ms, and 14,060 consecutive frames were recorded in total over a time span of about
3.5 minutes.

Counting fluorophores. Quantitative biology addresses the issue of counting the number
of fluorophores from measurements like the one described above. The brightness of each
spot is proportional to the number of fluorophores in the active state within the respective
origami. Thus, an origami is invisible if all of its fluorophores are inactive, but its location
on the image is still known from the first frame. This allows us to register 94 regions of

FIG. 5. (a) Schematic drawing of the DNA origami used in the experiment. The origami is a tube-like structure
that consists of 12 suitably folded DNA helices. In each of the two highlighted green regions up to 11 fluorescence
markers can anchor. (b) First frame of the sequence of microscopic images. The 94 regions of interest (ROIs) that
were chosen for analysis are identified by white boxes. No overlap between ROIs was allowed, and it was made
sure that no excessive background noise and disturbances affected the ROI during the course of the experiment.
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FIG. 6. Six selected frames from the data set of recorded origami. The (physical) time difference between two
consecutive images in this figure is roughly 23 seconds. Bleaching causes the number of visible origami to decrease
with increasing frame number, while switching causes that unbleached origami are visible only in some frames.

interest (ROIs) marked in Figure 5(b). For illustration, six microscopic frames recorded at
the times t ∈ {1500,3000,4500,6000,7500,9000} are visualized in Figure 6. The influence
of switching and bleaching on the observations is clearly visible.

We aim to estimate the number of fluorophores attached to each origami, which is expected
to be between 13 and 17. For simplicity, we assume that each origami carries the same number
n0 of fluorophores and we only model the mean number nt of unbleached fluorophores at
time t . The physical relation between n0 and nt is given by

(4.1) nt = n0(1 − pb)
t ,

where pb denotes the bleaching probability. The brightness observed for a spot in frame
t is proportional to the (random) number Xt of active fluorophores during the frame’s ex-
posure. This number is binomially distributed, Xt ∼ Bin(nt ,p), where p denotes the (time-
independent) probability that an unbleached fluorophore is in its active state. We will estimate
n0 and pb by fitting a log-linear model to equation (4.1), where the respective population sizes
nt are in turn estimated from the 94 realizations of Xt observed in frame t .

To get a sense for the magnitude of p, we use prior information from a similar experiment
where each origami has been designed to carry exactly one fluorophore. We calculate the
average ratio between the number of frames where the fluorophore is active (a bright spot
is seen) and the total number of frames before bleaching, which yields p̃ ≈ 0.0339 as a
prior guess for p. Therefore, we are indeed in the difficult small-p regime of the binomial
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FIG. 7. (a) Log-linear fit described by nt = n0(1 − pb)t for the SE with γ = 0.5. (b) Bar charts of the observed
numbers of fluorophore molecules for time frames 1500 and 7500.

(n,p) problem and will estimate nt via the Bayesian scale estimators (1.2), using the notation
(SE, PME) of Section 3. The beta prior for SE and PME uses the parameters a = 2 and b =
2/p̃−2 ≈ 56.99. We choose the unimodal prior with a = 2, as suggested by Table 2, since we
assume that our guess p̃ is reasonably accurate. Note that a finer degree of modeling would
require to view n0, nt and p as random variables instead of constants. However, as shown at
the end of Section 3, the Bayesian estimators we consider are robust against fluctuations in
the parameters and are therefore suited to estimate the respective mean values.

Since most fluorophores are deliberately forced to be active in the first frame, the relation
Xt ∼ Bin(nt ,p) does not hold initially. It only becomes valid after the initial state has relaxed
to an equilibrium, which is why we only take into account data after frame 1500, about 23
seconds into the experiment. To mitigate the influence of correlations between observations
(since Xt and Xt+1 for a spot can not be considered independent), we also add a waiting time
of 1500 frames between the frames we use for our analysis. In total, we use the six frames at
t ∈ {1500,3000,4500,6000,7500,9000} depicted in Figure 6. The 94 realizations of Xt are
extracted from the image data as follows: at each registered origami position, represented by
a 6 × 6 pixel ROI, the total brightness is measured and then divided by the brightness of a
single fluorophore. We determined the brightness of a single fluorophore from the late frames
of the experiment, where typically at most one fluorophore of each origami is active.

The results for the scale estimator SE(0.5) are depicted in Figure 7(a), which shows the
log-linear fit for model (4.1). The point estimates of n0 and pb for different estimators are
summarized in Table 5. Given that the true n0 in this experiment is expected to be between
13 and 17, we can see that the scale estimators with an improper prior (γ ≤ 1) produce the

TABLE 5
Estimates of the bleaching probability pb and the number n0

of fluorophore molecules on single DNA origami

Estimator n0 pb · 103

SE(0) 16 0.152
SE(0.5) 13 0.148
SE(1) 11 0.139
SE(2) 9 0.163
SE(3) 6 0.123
SE(5) 5 0.114
PME(0) 16 0.167
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most reasonable results. This is in agreement with our observations in Section 3, where we
noted that priors putting a lot of weight on large values of n perform better for small p by
correcting for the inherent tendency to underestimate (see Table 2). To illustrate the difficulty
of this problem, Figure 7(b) shows exemplary counting results for t ∈ {1500,7500}. Note that
estimates for each nt are exclusively based on observations Xt ≤ 3, where a great majority is
even zero.

5. Proof of Theorem 1. In the following, we prove the posterior contraction result of
Theorem 1. Since this involves numerous steps, we begin by an outline of the main ideas.
Auxiliary results needed by the proof are collected in Section B of the Supplementary Mate-
rial.

Outline. Throughout the proof, we fix some λ > 1 and consider a generic sequence
(nk,pk)k of parameters that satisfies (nk,pk) ∈ Mk(λ) for all k ∈ N with Mk(λ) as de-
fined in (1.4). Since the convergence in Theorem 1 is uniform over Mk(λ), we emphasize
that our arguments are indeed independent of the specific choice of (nk,pk)k and all bounds
are controlled by the parameter λ alone. For brevity, we usually write Pk and Ek instead of
Pnk,pk

and Enk,pk
from now on.

Let Ak ⊂ N be a series of sets that do not contain the true parameter value nk . The first
step of the proof consists of bounding the (marginal) posterior probability �(n ∈ Ak|Xk)

in terms of fractions La,b(n)/La,b(nk) of beta-binomial likelihoods (defined in (2.1)) for
integers n ∈ Ak . Recall that Mk denotes the sample maximum and Sk = ∑k

i=1 Xi the sample
sum. Consider the function R : [0,∞) × (0,∞) × [Mk,∞) → (0,∞),

(5.1) R(a, b,m) =
k∏

i=1

	(m + 1)

	(Xi + 1)	(m − Xi + 1)

	(km − Sk + b)	(Sk + a)

	(km + a + b)
,

which is well defined (even for a = 0) if Sk > 0. In particular, note that R(a, b,n) = La,b(n)

for a, b ∈ (0,∞) and n ≥ Mk , so that one can write

(5.2)
R(a, b,n)

R(a, b, nk)
= exp

(
k

∫ n

nk

f ′(m)dm

)
,

where f (m) := 1
k

logR(a, b,m) is differentiable. The derivative f ′(m) is studied in Hall
(1994).

The remainder of the proof focuses on bounding f ′(m). This includes the definition of an
event Xk that satisfies Pk(Xk) → 1 for k → ∞. We construct this event in such a way that
Mk , Sk , and the factorial moments (Xi)j , where (c)j := c · (c − 1) · · · (c − j + 1) for c ∈ R

and j ∈ N, exhibit benign properties if Xk ∈ Xk . We also need to distinguish between the
cases m ≤ nk and m > nk , for which we have to lower-, respectively upper-bound f ′(m) on
Xk . This requires several technical interim steps, which are largely outsourced to Section B
in the Supplementary Material. Combining the resulting bounds yields an upper bound for
�(n ∈ Ak|Xk) that can be used to show consistency in the asymptotic setting explored in
Theorem 1 if the sets Ak are chosen suitably.

PROOF OF THEOREM 1. Let Ak ⊂ N be sets such that nk /∈ Ak for all k. It will later
become evident how these sets are best be chosen. First, observe that

�
(
n ∈ Ak|Xk) =

∑
n∈Ak,n≥Mk

La,b(n)�n(n)∑∞
n=Mk

La,b(n)�n(n)
≤ ∑

n∈Ak,n≥Mk

La,b(n)�n(n)

La,b(nk)�n(nk)
.
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Under the assumption that Sk ≥ 2, which we justify below, we can apply Lemma B.3 and find

La,b(n)

La,b(nk)
≤ R(�a�, b, n)

R(�a�, b, nk)
≤ c1

knk

Sk

R(�a�, b, n)

R(�a�, b, nk)

for c1 = 2(1 + �a� + b), where �·� and �·� denote the ceiling and floor functions, and where
R was defined in (5.1). It follows that

(5.3) �
(
n ∈ Ak|Xk) ≤ c1

knk

Sk

∑
n∈Ak,n≥Mk

exp
(
k

∫ n

nk

f ′(m)dm

)
�n(n)

�n(nk)
,

where f (m) = 1
k

logR(�a�, b,m). In case that n < nk , we find
∫ n
nk

f ′(m)dm =
− ∫ nk

n f ′(m)dm. For an upper bound on the posterior we thus need a lower bound of f ′(m)

if Mk ≤ m ≤ nk and an upper bound if m ≥ nk . Since f only depends on a via �a�, we for
brevity write a ∈ N0 to denote �a� from now on. Lemma 4.1 in Hall (1994) states that

r∑
j=1

1

c − j + 1
=

r∑
j=1

(r)j

(cj )j j

for integers r ∈N and positive numbers c > k − 1. We therefore find

f ′(m) = 1

k

k∑
i=1

Xi∑
j=1

1

m − j + 1
−

Sk+a∑
j=1

1

km + a + b − j

=
Mk∑
j=1

Tj − Uj

j
−

Sk+a∑
j=Mk+1

Uj

j

(5.4)

with

(5.5) Tj := 1

k

k∑
i=1

(Xi)j

(m)j
and Uj := (Sk + a)j

(km + a + b − 1)j

for j ≤ Mk and j ≤ Sk + a, respectively. If j > Mk , we define Tj := 0 for all j > Mk . The
expectation of Tj is given by tj := Ek[Tj ] = (nk)j (pk)

j /(m)j , which follows from

Ek

[
(Xi)j

] =
nk∑

x=j

(
nk

x

)
(x)jp

x
k q

nk−x
k = (nk)j (pk)

j
nk−j∑
y=0

(
nk − j

y

)
p

y
k q

nk−j−y
k︸ ︷︷ ︸

=1

for all i = 1, . . . , k, where we set qk := 1 − pk and substituted y = x − j .
Next, recall that λ > 1 is the constant in the definition of the spaces Mk(λ). For a fixed

positive and diverging sequence lk = o(
√

log(k)) and c2 = 2λ(λ+1), we introduce the events

Rk := {
min(nk, lk) ≤ Mk ≤ 2 log(k)

}
,

Tk :=
Mk⋂
j=1

{
(m)j |Tj − tj | ≤

√
(c2j)j lk log(k)/k

}
,

Sk := {|Sk − knkpk| ≤
√

λk log(k)
}
,

(5.6)

and denote their intersection Rk ∩ Tk ∩Sk by Xk . The probability of the event Tk is indepen-
dent of m due to the definition of Tj . On the event Sk , Lemma B.5 grants us the additional
property

|Uj − uj | ≤ j

√
λ log(k)

k

(
c3

m

)j

with uj := (knkpk + a)j

(km + a + b − 1)j
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for j ≤ Sk + a and c3 = 2e2(3λ + a + 1). If k/ log(k) ≥ 4λ3, then k/2λ ≤ Sk ≤ 2λk and
Sk ≥ 2 on Sk . Hence, equations (5.3) and (5.4) apply on Xk if k is sufficiently large. Also, we
can use

(5.7) c1knk/Sk ≤ 2λc1nk

to bound the factor preceding the sum in (5.3).
For the remainder of the proof, we can restrict Xk to Xk since

(5.8) Ek

[
�

(
n �= nk|Xk)] −Ek

[
1Xk

�
(
n �= nk|Xk)] ≤ Pk

(
X c

k

) −→ 0

uniformly over Mk(λ) for k → ∞. To show this, we bound

Pk

(
X c

k

) ≤ Pk

(
Sc

k

) + 2Pk

(
Rc

k

) + Pk

(
T c

k ∩Rk

)
.

The first contribution vanishes by the application of Chebyshev’s inequality (see, e.g.,
DeGroot and Schervish (2012)), because Ek[Sk] = knkpk and Vark[Sk] = knkpk(1 − pk) ≤
kλ. The second term is controlled by Lemma B.2. For the last term, observe that

Var
[
(Xi)j

] ≤ (
2jnp(np + 1)

)j ≤ (
2jλ(λ + 1)

)j = (c2j)j

by Lemma B.1. For any r > 0, Chebyshev’s inequality yields

Pk

(∣∣∣∣∣1

k

k∑
i=1

(Xi)j −E
[
(X1)j

]∣∣∣∣∣ >

√
r(c2j)j

k︸ ︷︷ ︸
=:T c

jk(r)

)
≤ Var[(X1)j ]/k

r(c2j)j /k
≤ 1

r
.

With r = lk log(k) and Mk ≤ 2 log(k) on Rk ,

Pk

(
T c

k ∩Rk

) = Pk

( ⋃
1≤j≤2 log(k)

T c
jk

(
lk log(k)

)) ≤ 2 log(k)

lk log(k)
−→ 0

follows. It is important to note that the upper bounds in these inequalities are all controlled
by λ, which implies that the convergence in (5.8) is indeed uniform over Mk(λ).

Auxiliary lower bound. For Mk ≤ m < nk , we prove a lower bound for f ′(m). We may
assume that Mk ≥ lk → ∞ for k → ∞ in this case, since Xk ∈ Rk . For k such that lk ≥ 4,
equation (5.4) yields

(5.9) f ′(m) ≥
4∑

j=1

Tj − Uj

j
−

Sk+a∑
5

Uj

j
,

as Tj ≥ 0 for all j . Due to the definition of Mk(λ), we can (generously) bound m < nk ≤
λ
√

k log(k) and

T1 − U1 = Sk

km
− Sk + a

km + a + b − 1
≥ − a + 1

km − 1
≥ −2

λ(a + 1)

m2

√
log(k)

k
.

To handle the terms in (5.9) with j ≥ 2, we exploit that Xk ∈ Tk and apply (m)j ≥ (m/e2)j

(see Lemma B.4) in order to derive

4∑
j=2

|Tj − tj |
j

≤
√

lk log(k)

k

4∑
j=2

(√
c2j

m/e2

)j

≤ 2
4c2e

4

m2

√
lk log(k)

k
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for sufficiently large k such that
√

4c2e
2/lk < 1/2. Similarly, we find

Sk+a∑
j=2

|Uj − uj |
j

≤
√

λ log(k)

k

Sk+a∑
j=2

(
c3

m

)j

≤ 2

√
λc2

3

m2

√
log(k)

k

for m ≥ lk ≥ 2c3. By applying Lemma B.6 with c4 = 6e2(λ + a) and using Sk ≤ 2kλ on Sk ,
we furthermore observe

Sk+a∑
j=5

uj

j
≤

Sk+a∑
j=5

1

j

(
c4

m

)j

≤ 2
(

c4

m

)5

for all k (and thus m) that are sufficiently large. The first result of Lemma B.7 combined with
m < nk ≤ λ

√
k log(k) reveals
4∑

j=2

tj − uj

j
≥ 1

2λ2

nk − m

nkm3 − 3c4
5

mk
≥ 1

2λ2

nk − m

nkm3 − 2
2λc4

5

m2

√
log(k)

k
,

where c5 = 3λ(1+a +b)+2a +4. All bounds calculated above can be inserted into inequal-
ity (5.9), yielding

f ′(m) ≥ (T1 − U1) +
4∑

j=2

Tj − tj

j
+

Sk+a∑
j=2

uj − Uj

j
+

4∑
j=2

tj − uj

j
−

Sk+a∑
j=5

uj

j

≥ C1
nk − m

nkm3 − C2

m2

√
lk log(k)

k
+

[
1

4λ2

nk − m

nkm3 − 2
(

c4

m

)5]
︸ ︷︷ ︸

=:h(m)

(5.10)

with C1 = 1/(4λ2) and C2 = 2(λ(a + 1) + 4c2e
4 + √

λc2
3 + 2λc4

5).

Auxiliary upper bound. We next provide an upper bound for f ′(m) for m > nk ≥ Mk .
Unlike for the lower bound, we can not assume that m becomes larger than any given constant
with increasing k as nk could stay bounded. Since Uj is nonnegative, we can derive

f ′(m) ≤
Mk∑
j=1

Tj − Uj

j

from equation (5.4). For j = 1,

T1 − U1 = Sk

km
− Sk + a

km + a + b − 1
≤ Sk(a + b)

km(km − 1)
≤ 4λ(a + b)

m2

√
log3(k)

k
,

where we used that Sk ≤ 2λk on the event Sk . Next, we set m0 := 4c2e
4 and derive

Mk∑
j=2

|Tj − tj |
j

≤
√

lk log(k)

k

Mk∑
j=2

(√
c2j

m/e2

)j

≤ c2Mke
4

m2

√
lk log(k)

k

�m�∑
j=0

(
e2√c2√

m

)j

≤ c2Mke
4

m2

√
lk log(k)

k
·
{

2 if m > m0,

m0
(
e2√c2 + 1

)m0 if m ≤ m0

≤ c6

m2

√
lk log3(k)

k
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for c6 = 2c2e
4(m0(e

2√c2 + 1)m0 + 2). In the last step, we used that Mk ≤ 2 log(k) on the
event Rk . In a similar fashion, we can establish the bound

Mk∑
j=2

|Uj − uj |
j

≤
√

λ log(k)

k

Mk∑
j=2

(
c3

m

)j

≤ c7

m2

√
log3(k)

k
,

where c7 = 4
√

λc2
3(c

2c3+1
3 +1). Finally, we apply the second claim of Lemma B.7 and obtain

Mk∑
j=2

tj − uj

j
≤ −C′

1
m − nk

nkm3 + c8
log(k)

m2k

with C′
1 = (λ2(a + b + 1)2)−1 and c8 = 36(1 + λ)3(1 + a + b)2 for sufficiently large k. We

conclude

f ′(m) ≤ (T1 − U1) +
Mk∑
j=2

Tj − tj

j
+

Mk∑
j=2

uj − Uj

j
+

Mk∑
j=2

tj − uj

j

≤ −C′
1

m3

m − nk

nk

+ C′
2

m2

√
lk log3(k)

k

(5.11)

for C′
2 = 4λ(a + b) + c6 + c7 + c8.

Posterior bound. By applying the two inequalities (5.10) and (5.11) for m < nk and
m > nk , we can now bound the posterior probability �(n ∈ Ak|Xk) on the event Xk through
equation (5.3). Recall that we can assume n �= nk due to the assumption nk /∈ Ak . We observe
that ∫ n

nk

m − nk

nkm3 dm = 1

2

(n − nk)
2

(nkn)2 and
∫ n

nk

1

m2 dm = 1

2

(n − nk)
2

(nkn)2

2nkn

n − nk

.

Noting |n − nk| ≥ 1, it also holds that

(5.12)
∣∣∣∣ n

nk

− 1
∣∣∣∣ = |n − nk|

nk

≥
{

1/nk if nk ≤ 2n

1/2 if nk > 2n

}
≥ 1

2n
.

Therefore, if lk ≤ n < nk , the function h(m) introduced in equation (5.10) satisfies∫ nk

n
h(m)dm = C1

2

(n − nk)
2

(nkn)2 − c5
4

2

n4
k − n4

(nkn)4

≥ C1

2

(n − nk)
2

(nkn)2

(
1 − 4c5

4

C1

1

1 − n/nk

1

n2

)
≥ 0

(5.13)

for k such that lk ≥ 8c5
4/C1. Employing bound (5.10) thus yields

−k

∫ nk

n
f ′(m)dm ≤ −k

C1

2

(n − nk)
2

(nkn)2

(
1 − C

nkn

nk − n

√
lk log(k)

k

)
,

where the constant C is given by 2C2/C1. On the other hand, for nk < n, bound (5.11)
similarly leads to

k

∫ n

nk

f ′(m)dm ≤ −k
C′

1

2

(n − nk)
2

(nkn)2

(
1 − C′ nkn

n − nk

√
lk log3(k)

k

)
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for C′ = 2C′
2/C′

1. Finally, let C̃1 = min{C1,C
′
1} and C̃ = max{C,C′}. Combining the two

inequalities for nk < n and nk > n results in

k

∫ n

nk

f ′(m)dm ≤ −k
C̃1

2n2
k

(
nk

n
− 1

)2(
1 − C̃nk

|1 − nk/n|

√
lk log3(k)

k

)
for all n �= nk with n ≥ Mk . In order to bound �(n ∈ Ak|Xk) via (5.3), we need that the
second factor in this expression is positive for large k. Since lk log3(k) = o(log7/2(k)), this
motivates the choice

Ak :=
{
n ∈ N||nk − n| ≥ nnk

logρ(k)

2
√

k

}
with ρ = 7/4.

For n ∈ Ak and k large enough, we thus find

k

∫ n

nk

f ′(m)dm ≤ −k
C̃1

4n2
k

(
nk

n
− 1

)2

Applying the inequalities (5.3) and (5.7) combined with the constraint �n(n) ≥ βn−α for all
n ∈N on the (proper) prior yields

1Xk
�

(
n ∈ Ak|Xk) ≤ 2λc1nk

∑
n∈Ak

exp
(
− C̃1

4

k

n2
k

(
nk

n
− 1

)2)
�n(n)

�n(nk)

≤ 2λc1

β
exp

(
− C̃1

2
log2ρ(k) + (α + 1) log(nk)

)
−→ 0

(5.14)

as k → ∞ uniformly over Mk(λ). Due to (5.8), we have therefore established uniform con-
vergence of Ek[�(n ∈ Ak|Xk)] to 0. To bring this result in the form of Theorem 1, we just
have to note that

Ac
k ⊂

{
n ∈ N

∣∣∣|nk − n| ≤ n2
k

logρ(k)√
k

}
whenever k is large enough such that nk logρ(k)/

√
k < 1/2. �
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