
CGC: a Scalable Python Package for Co- and
Tri-Clustering of Geodata Cubes
Francesco Nattino1, Ou Ku1, Meiert W. Grootes1, Emma
Izquierdo-Verdiguier2, Serkan Girgin3, and Raul Zurita-Milla3

1 Netherlands eScience Center, Science Park 140, 1098 XG Amsterdam, The Netherlands 2 Institute
of Geomatics, University of Natural Resources and Life Science (BOKU), 1190, Vienna, Austria 3
Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, PO Box 217,
7500 AE, Enschede, the Netherlands

DOI: 10.21105/joss.04032

Software
• Review
• Repository
• Archive

Editor: Hugo Ledoux
Reviewers:

• @Subho07
• @Narayana-Rao

Submitted: 17 December 2021
Published: 10 April 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
Multidimensional data cubes are increasingly ubiquitous, in particular in the geosciences.
Clustering techniques encompassing their full dimensionality are necessary to identify patterns
“hidden” within these cubes. Clustering Geodata Cubes (CGC) is a Python package designed
for partitional clustering, which identifies groups of similar data across two (e.g., spatial and
temporal) or three (e.g., spatial, temporal, and thematic) dimensions. CGC provides efficient
and scalable co- and tri-clustering functionality appropriate to analyze both small and large
datasets as well as a cluster refinement functionality that supports users in their quest to make
sense of complex datasets.

Introduction
Faced with the increasing ubiquity of large datasets, data mining techniques have become
essential to extracting patterns and generating insights. In this regard, clustering techniques,
which aim to identify groups or subgroups with similar properties within a larger dataset, are
becoming ever more popular.

Traditional clustering techniques focus on a single dimension and may therefore obfuscate
relevant groups (Cheng & Church, 2000; Hartigan, 1972). Hence, clustering techniques capable
of simultaneously grouping data along multiple dimensions are needed. These techniques –
referred to as co- or bi-clustering and tri-clustering in the case of two and three dimensions,
respectively – have seen significant development and adoption in fields ranging from bioinfor-
matics (Cheng & Church, 2000) to finance (Shi et al., 2018) and natural language processing
(Dhillon, 2001).

The exponential growth of multidimensional data referring to geographical features (e.g., time
series of satellite images) has resulted in a wide variety of geodata cubes, which can benefit from
co- and tri-clustering. Indeed, following the development of a general information-theoretical
approach (Dhillon et al., 2003) to partitional co-clustering (Banerjee et al., 2007), Wu et
al. presented an application of co-clustering to geodata (Wu et al., 2015), as well as its
extension to three dimensions (Wu et al., 2018).

In light of the eminent employability of co- and tri-clustering approaches to geospatial dis-
ciplines like geo-information science and Earth observation, and the transferability to other
(geo)scientific domains, this paper presents the Clustering Geodata Cubes (CGC) package.
CGC provides efficient and scalable co- and tri-clustering methods to analyze both small
and large datasets on single or multiple computing node systems. It also features a cluster

Nattino et al. (2022). CGC: a Scalable Python Package for Co- and Tri-Clustering of Geodata Cubes. Journal of Open Source Software, 7(72),
4032. https://doi.org/10.21105/joss.04032.

1

https://doi.org/10.21105/joss.04032
https://github.com/openjournals/joss-reviews/issues/4032
https://github.com/phenology/cgc
https://doi.org/10.5281/zenodo.6342263
https://3d.bk.tudelft.nl/hledoux
https://github.com/Subho07
https://github.com/Narayana-Rao
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04032


refinement functionality that allows users to make sense of complex datasets more easily. An
example of its application is the ongoing work on the analysis of spring onset datasets at high
spatial resolution and continental scale, a preview of which is presented in the CGC tutorial.
Although the package aims to meet the needs of geospatial data scientists, the algorithms
implemented remain widely applicable and can easily be applied in other domains that require
performing partitional clustering of positive data matrices.

Statement of need
The CGC package focuses on the needs of geospatial data scientists who require tools to make
sense of multi-dimensional data cubes by providing the following features and functionalities:

• Partitional co- and tri-clustering methods suitable for spatiotemporal (multi-
dimensional) data. CGC includes clustering methods designed to simultaneously group
elements into disjoint clusters along two or three dimensions. These methods are
advantageous over one-dimensional clustering in that they provide a strategy to identify
patterns that unfold across multiple dimensions, e.g. space and time. In addition, CGC
provides functionality to refine the identified co- and tri-clusters. This post-processing
step reduces the number of clusters to facilitate the identification and visualization of
patterns.

• Scalable clustering of small and big datasets. CGC offers functionality to efficiently
utilize available computational resources (ranging from single machines to computing
clusters) and to tackle a wide range of dataset sizes. For single machine execution the
package offers optimized support of multi-core CPUs and/or limited system memory. For
large datasets CGC supports the use of distributed data and computation on computing
clusters

• Easy integration into geospatial analysis workflows. CGC is written in Python, which
is widely used for geospatial scripting and applications, and employs NumPy (Harris et
al., 2020) and Dask (Dask Development Team, 2016) arrays as input and output data
types, guaranteeing seamless integration to the Python ecosystem and interoperability
with the libraries prevalent in the field of big (geo)data. This furthermore ensures the
interoperability of CGC with the Xarray package (Hoyer & Hamman, 2017), so that this
versatile and popular tool can be used for data loading and manipulation before and
after analyses with CGC.

• Ease of use and reproducibility. To facilitate community use and adoption, documen-
tation and tutorials illustrating domain-science examples, applications, and use cases
are available via the publicly accessible repository, where development takes place, and
which provides a platform for issue tracking. CGC is distributed via the Python Package
Index (PyPI), and code-release snapshots archived on Zenodo facilitate reproducible
analysis.

Algorithms

Co-clustering
CGC implements the Bregman block average co-clustering (BBAC) algorithm from Banerjee
et al. (2007) as inspired by the MATLAB code of (Merugu & Banerjee, 2004). Briefly, the
BBAC algorithm iteratively optimizes the clustering of rows and columns of a data matrix
starting from a random initial assignment until convergence. The information loss from the
original matrix to the clustered one, which is constructed as the matrix of the co-cluster means,
is minimized using a loss function that is based on the I-divergence (Dhillon et al., 2003;
Kullback & Leibler, 1951). CGC also supports a user-defined convergence threshold. To limit
the influence of the initial conditions on the final clustering and to avoid local minima several

Nattino et al. (2022). CGC: a Scalable Python Package for Co- and Tri-Clustering of Geodata Cubes. Journal of Open Source Software, 7(72),
4032. https://doi.org/10.21105/joss.04032.

2

https://github.com/phenology/cgc
https://pypi.org/project/clustering-geodata-cubes/
https://pypi.org/project/clustering-geodata-cubes/
https://zenodo.org/record/5788737
https://doi.org/10.21105/joss.04032


runs are carried out, with the cluster assignments from the lowest loss function value ultimately
being selected. Number of runs can be altered by the user.

Note that in the CGC implementation of the algorithm, the update in the row- and column-
cluster assignments is computed only from the previous iteration’s row and column. Contrarily
to the original MATLAB implementation (Merugu & Banerjee, 2004), this makes the algorithm
independent of the order in which the dimensions are considered, while still leading to an
optimal clustering solution.

Tri-clustering
For tri-clustering CGC implements the so-called Bregman cube average tri-clustering (BCAT)
algorithm, which is a generalization of the BBAC algorithm to three dimensions (Wu et al.,
2018). The algorithmic implementation with respect to the loss function and the update
schema are analogous to that described above for the co-clustering. Similarly, the tri-clustering
outcome is independent of the order in which the three dimensions of the input array are
provided.

Cluster refinement
The CGC package implements an optional, secondary cluster refinement step based on the k-
means method (Wu et al., 2016) and optimized using the Silhouette metric (Rousseeuw, 1987)
as implemented in the scikit-learn package (Pedregosa et al., 2011). This secondary grouping
is based on statistical properties of the co- or tri-clusters (see the package documentation)
and helps to better capture patterns in the data by combining clusters and going beyond strict
checkerboard structures.

Related Software
A number of co-/bi-clustering implementations based on different algorithms exist. While some
of the available packages focus on specific applications, like gene expression data (Barkow
et al., 2006; Eren et al., 2012), generic co-clustering tools include biclust (R) and CoClust
(Python) (Role et al., 2019), as well as two implementations from the scikit-learn Python
library (Pedregosa et al., 2011). Most of the available algorithms target tabular data with a
hidden blocked-diagonal structure, where each row and column of the input matrix is assigned
to only one co-cluster. In contrast, in spatio-temporal data a set of spatial elements often
exhibits the same behaviour within multiple time windows and vice versa. This type of data
requires algorithms where a subset taken along one dimension can be associated to multiple
subsets taken along the other dimension. Partitioning algorithms of this type, such as the
BBAC and BCAT algorithms implemented in CGC, can discover checkerboard-like patterns
in the input data matrix. The package additionally enables the user to recover more of the
intrinsic structure of the data in a second step, going beyond the limits on structure imposed

Within the Python ecosystem, prominent implementations targeting checkerboard-like structures
akin to CGC’s intial step are the scikit-learn SpectralBiclustering algorithm, which implements
the method from (Kluger et al., 2003), and the CoclustInfo algorithm from CoClust, also based
on information-theoretic co-clustering (Dhillon et al., 2003; Govaert & Nadif, 2018). However,
both approaches differ from CGC in the field of applicability. Spectral methods like the former
are fast, but their accuracy has been shown to be limited (Ailem et al., 2015; Role et al., 2019).
The latter focuses on datasets representing joint-probability distributions, preserving statistics
other than the co-cluster average (the row and column averages) in the search for the optimal
clustering solution (Banerjee et al., 2007). This requirement does not generally apply to the
geospatial datasets which CGC is targeting. Neither, however, offers the ability to “break out”
of the algorithmically-imposed checkerboard pattern.

Nattino et al. (2022). CGC: a Scalable Python Package for Co- and Tri-Clustering of Geodata Cubes. Journal of Open Source Software, 7(72),
4032. https://doi.org/10.21105/joss.04032.

3

https://cgc.readthedocs.io
https://doi.org/10.21105/joss.04032


Finally, to the best of our knowledge, CGC is unique in being designed from the outset for
use with big data (e.g. by including an implementation that supports multi-node distributed
computing), being able to analyze more complex data cubes via tri-clustering, and being able
to perform secondary cluster refinement.

Software package overview
The CGC software is structured in the following main modules, details of which are described
in the online package documentation:

• coclustering, containing the following implementations of the co-clustering algorithm:

– The NumPy-based, vectorized single machine implementation with threading sup-
port for optimal usage of multi-core CPUs.

– The NumPy-based single machine implementation with a reduced memory footprint.
This implementation trades performance for low memory usage, but uses Numba’s
just-in-time compilation (Lam et al., 2015) to mitigate performance loss.

– The Dask-based implementation. This implementation provides support for clus-
tering large, out-of-core datasets by distributing the computation across multiple
nodes using Dask arrays.

• triclustering, containing the following tri-clustering implementations:

– A NumPy-based implementation analogous to the co-clustering one described above
(note that the low-memory version is currently not available).

– A Dask-based implementation, also analogous to the corresponding co-clustering
version described above.

• kmeans, which implements the k-means cluster refinement step for both co- and tri-
clustering.

• utils, which includes a collection of utility functions e.g., memory consumption estima-
tion and cluster averaging.

Performance comparisons between the various co-clustering and tri-clustering implementations
are also briefly discussed in the package documentation.

Tutorial
The software package is complemented by an online tutorial (in the form of Jupyter notebooks
(Kluyver et al., 2016)) that illustrates how to perform cluster analysis of geospatial datasets
using CGC. Notebooks are made directly available via a dedicated GitHub repository, and are
also published as static web pages for reference and linked to the CGC documentation via
a ‘Tutorials’ tab. The tutorials are designed to run on systems with limited CPU/memory
capacity, which, together with environment requirement specifications in a standardized format
(conda YAML file) and binder badges, give users the possibility to easily run the notebooks
live on mybinder.org (Jupyter Project et al., 2018).

Tutorials cover the following topics:

• Co- and tri-cluster analysis.
• K-means-based cluster refinement.
• Choice of the suitable implementation for a given problem size/infrastructure available.
• Loading of geospatial data, common data-manipulation tasks in a workflow involving

CGC, visualization of the output.

Nattino et al. (2022). CGC: a Scalable Python Package for Co- and Tri-Clustering of Geodata Cubes. Journal of Open Source Software, 7(72),
4032. https://doi.org/10.21105/joss.04032.

4

https://cgc.readthedocs.io
https://cgc.readthedocs.io/en/latest/coclustering.html
https://cgc.readthedocs.io/en/latest/coclustering.html#local-numpy-based
https://cgc.readthedocs.io/en/latest/coclustering.html#local-numpy-based
https://cgc.readthedocs.io/en/latest/coclustering.html#local-numpy-based-low-memory-footprint
https://cgc.readthedocs.io/en/latest/coclustering.html#distributed-dask-based
https://cgc.readthedocs.io/en/latest/triclustering.html
https://cgc.readthedocs.io/en/latest/triclustering.html#local-numpy-based
https://cgc.readthedocs.io/en/latest/triclustering.html#distributed-dask-based
https://cgc.readthedocs.io/en/latest/kmeans.html
https://https://cgc.readthedocs.io/en/latest/utils.html
https://cgc.readthedocs.io/en/latest/coclustering.html#performance-comparison
https://cgc.readthedocs.io/en/latest/triclustering.html#performance-comparison
https://cgc-tutorial.readthedocs.io
https://github.com/esciencecenter-digital-skills/tutorial-cgc
https://cgc-tutorial.readthedocs.io
https://cgc.readthedocs.io
https://doi.org/10.21105/joss.04032


Note that while the tutorial is aimed at geospatial uses cases, it illustrates some real-case
applications that are likely to make it easier for users to carry out cluster analysis using CGC
in other fields as well.

Acknowledgements
The authors would like to thank Dr. Yifat Dzigan for the helpful discussions and support and
Dr. Romulo Goncalves for the preliminary work that led to the development of the software
package presented here. We also would like to thank SURF for providing computational
resources to test the first versions of the CGC package via the e-infra190130 grant.

Author contributions
All co-authors contributed to the conceptualization of the work, which was led by R.Z.M. and
E.I.V.. F.N., M.W.G., and O.K. prepared the first draft of the tutorials, and wrote the initial
draft of this manuscript. F.N. suggested changes to the co- and tri-clustering algorithms.
R.Z.M., E.I.V., and S.G. led the design of experiments to test and improve the CGC package.
R.Z.M. and E.I.V. helped to improve the tutorials. S.G. provided the required computational
resources to run the experiments and tutorials and made suggestions for code optimizations.
All co-authors reviewed and edited the final document.

References
Ailem, M., Role, F., & Nadif, M. (2015). Co-clustering document-term matrices by direct

maximization of graph modularity. Proceedings of the 24th ACM International on Confer-
ence on Information and Knowledge Management, 1807–1810. https://doi.org/10.1145/
2806416.2806639

Banerjee, A., Dhillon, I., Ghosh, J., Merugu, S., & Modha, D. S. (2007). A generalized
maximum entropy approach to bregman co-clustering and matrix approximation. Journal
of Machine Learning Research, 8(67), 1919–1986. http://jmlr.org/papers/v8/banerjee07a.
html

Barkow, S., Bleuler, S., Prelić, A., Zimmermann, P., & Zitzler, E. (2006). BicAT: a biclus-
tering analysis toolbox. Bioinformatics, 22(10), 1282–1283. https://doi.org/10.1093/
bioinformatics/btl099

Cheng, Y., & Church, G. M. (2000). Biclustering of expression data. Proceedings of the
Eighth International Conference on Intelligent Systems for Molecular Biology, 93–103.
ISBN: 1577351150

Dask Development Team. (2016). Dask: Library for dynamic task scheduling. https://dask.org

Dhillon, I. S. (2001). Co-clustering documents and words using bipartite spectral graph parti-
tioning. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 269–274. https://doi.org/10.1145/502512.502550

Dhillon, I. S., Mallela, S., & Modha, D. S. (2003). Information-theoretic co-clustering.
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining - KDD ’03, 89. https://doi.org/10.1145/956750.956764

Eren, K., Deveci, M., Küçüktunç, O., & Çatalyürek, Ü. V. (2012). A comparative analysis
of biclustering algorithms for gene expression data. Briefings in Bioinformatics, 14(3),
279–292. https://doi.org/10.1093/bib/bbs032

Nattino et al. (2022). CGC: a Scalable Python Package for Co- and Tri-Clustering of Geodata Cubes. Journal of Open Source Software, 7(72),
4032. https://doi.org/10.21105/joss.04032.

5

https://doi.org/10.1145/2806416.2806639
https://doi.org/10.1145/2806416.2806639
http://jmlr.org/papers/v8/banerjee07a.html
http://jmlr.org/papers/v8/banerjee07a.html
https://doi.org/10.1093/bioinformatics/btl099
https://doi.org/10.1093/bioinformatics/btl099
https://www.aaai.org/Library/ISMB/2000/ismb00-010.php
https://dask.org
https://doi.org/10.1145/502512.502550
https://doi.org/10.1145/956750.956764
https://doi.org/10.1093/bib/bbs032
https://doi.org/10.21105/joss.04032


Govaert, G., & Nadif, M. (2018). Mutual information, phi-squared and model-based co-
clustering for contingency tables. Advances in Data Analysis and Classification, 12(3),
455–488. https://doi.org/10.1007/s11634-016-0274-6

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Hartigan, J. A. (1972). Direct Clustering of a Data Matrix. Journal of the American Statistical
Association, 67(337), 123–129. https://doi.org/10.1080/01621459.1972.10481214

Hoyer, S., & Hamman, J. J. (2017). Xarray: N-D labeled Arrays and Datasets in Python.
Journal of Open Research Software, 5, 10. https://doi.org/10.5334/jors.148

Jupyter Project, Bussonnier, M., Forde, J., Freeman, J., Granger, B., Head, T., Holdgraf, C.,
Kelley, K., Nalvarte, G., Osheroff, A., Pacer, M., Panda, Y., Perez, F., Ragan-Kelley, B.,
& Willing, C. (2018). Binder 2.0 - Reproducible, interactive, sharable environments for
science at scale. 113–120. https://doi.org/10.25080/Majora-4af1f417-011

Kluger, Y., Basri, R., Chang, J. T., & Gerstein, M. (2003). Spectral Biclustering of Microarray
Data: Coclustering Genes and Conditions. Genome Research, 13(4), 703–716. https:
//doi.org/10.1101/gr.648603

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley,
K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., Willing, C.,
& Jupyter development team. (2016). Jupyter notebooks - a publishing format for
reproducible computational workflows. In F. Loizides & B. Scmidt (Eds.), Positioning
and power in academic publishing: Players, agents and agendas (pp. 87–90). IOS Press.
https://eprints.soton.ac.uk/403913/

Kullback, S., & Leibler, R. A. (1951). On Information and Sufficiency. The Annals of
Mathematical Statistics, 22(1), 79–86. https://doi.org/10.1214/aoms/1177729694

Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A LLVM-based python JIT compiler.
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC. https:
//doi.org/10.1145/2833157.2833162

Merugu, S., & Banerjee, A. (2004). Bregman Co-clustering code in Matlab. http://www.
ideal.ece.utexas.edu/software.html

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in python.
Journal of Machine Learning Research, 12(85), 2825–2830. https://www.jmlr.org/papers/
v12/pedregosa11a.html

Role, F., Morbieu, S., & Nadif, M. (2019). CoClust : A python Package for Co-Clustering.
Journal of Statistical Software, 88(7). https://doi.org/10.18637/jss.v088.i07

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. https:
//doi.org/10.1016/0377-0427(87)90125-7

Shi, G., Ren, L., Miao, Z., Gao, J., Che, Y., & Lu, J. (2018). Discovering the trading pattern
of financial market participants: Comparison of two co-clustering methods. IEEE Access,
6, 14431–14438. https://doi.org/10.1109/ACCESS.2018.2801263

Wu, X., Zurita-Milla, R., Izquierdo-Verdiguier, E., & Kraak, M.-J. (2018). Triclustering
Georeferenced Time Series for Analyzing Patterns of Intra-Annual Variability in Temperature.

Nattino et al. (2022). CGC: a Scalable Python Package for Co- and Tri-Clustering of Geodata Cubes. Journal of Open Source Software, 7(72),
4032. https://doi.org/10.21105/joss.04032.

6

https://doi.org/10.1007/s11634-016-0274-6
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1080/01621459.1972.10481214
https://doi.org/10.5334/jors.148
https://doi.org/10.25080/Majora-4af1f417-011
https://doi.org/10.1101/gr.648603
https://doi.org/10.1101/gr.648603
https://eprints.soton.ac.uk/403913/
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
http://www.ideal.ece.utexas.edu/software.html
http://www.ideal.ece.utexas.edu/software.html
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.18637/jss.v088.i07
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1109/ACCESS.2018.2801263
https://doi.org/10.21105/joss.04032


Annals of the American Association of Geographers, 108(1), 71–87. https://doi.org/10.
1080/24694452.2017.1325725

Wu, X., Zurita-Milla, R., & Kraak, M.-J. (2015). Co-clustering geo-referenced time series:
Exploring spatio-temporal patterns in Dutch temperature data. International Journal of
Geographical Information Science, 29(4), 624–642. https://doi.org/10.1080/13658816.
2014.994520

Wu, X., Zurita-Milla, R., & Kraak, M.-J. (2016). A novel analysis of spring phenological
patterns over Europe based on co-clustering: Co-Clustering European Spring Phenology.
Journal of Geophysical Research: Biogeosciences, 121(6), 1434–1448. https://doi.org/10.
1002/2015JG003308

Nattino et al. (2022). CGC: a Scalable Python Package for Co- and Tri-Clustering of Geodata Cubes. Journal of Open Source Software, 7(72),
4032. https://doi.org/10.21105/joss.04032.

7

https://doi.org/10.1080/24694452.2017.1325725
https://doi.org/10.1080/24694452.2017.1325725
https://doi.org/10.1080/13658816.2014.994520
https://doi.org/10.1080/13658816.2014.994520
https://doi.org/10.1002/2015JG003308
https://doi.org/10.1002/2015JG003308
https://doi.org/10.21105/joss.04032

	Summary
	Introduction
	Statement of need
	Algorithms
	Co-clustering
	Tri-clustering
	Cluster refinement

	Related Software
	Software package overview
	Tutorial
	Acknowledgements
	Author contributions
	References

