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Abstract

Estimating the solution value of transportation problems can be useful to assign customers
to days for multi-period vehicle routing problems, or to make customer selection decisions
very fast (e.g., within an online environment). In this paper, we apply several regression
methods to predict the total distance of the traveling salesman problem (TSP) and vehicle
routing problem (VRP). We show that distance can be estimated fairly accurate using simple
regression models and only a limited number of features. Besides using features found in
the scientific literature, we also introduce new classes of spatial features. The model is
validated on a fictional case with different spatial instances considering both a backordering
and lost sales configuration, and on a realistic case that involves dynamic waste collection
in the city of Amsterdam, The Netherlands. For the fictional case, we show differences in
performance per instance type and configuration, and we show that our model can save up
to 25.3% in distance compared with a heuristic approximation. For the waste collection
case, we introduce a cost function that combines the travel distance and service level, and
show that our model can reduce distances up to 17% compared to a well-known heuristic
approximation while maintaining the same service level. Furthermore, we show the benefits
of using approximations for combining offline learning with online or frequent optimization.

Keywords Distance approximation - Traveling salesman - Vehicle routing - Customer
selection - Inventory routing - Waste collection

1 Introduction

With the increasing size and complexity of logistics problems, there is an increasing demand
for fast solution methods to solve vehicle routing problems (VRPs). Estimating the (optimal)
solution value has received more and more attention in operations research studies in recent
years. Approximating the solution value of VRPs, i.e., the total distance, can help solving
multi-period VRPs and other logistics problems where customer selection or assignment is

DX Fabian Akkerman
f.r.akkerman @utwente.nl

Martijn Mes
m.r.k.mes @utwente.nl

High Tech Business and Entrepreneurship Department, University of Twente,
Enschede, The Netherlands

Published online: 07 April 2022 9\ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-022-04674-8&domain=pdf
http://orcid.org/0000-0001-8055-9864
http://orcid.org/0000-0001-9676-5259

Annals of Operations Research

necessary. When vehicle capacities are insufficient to serve all customers within a given time
period, or when customers need to be assigned a delivery day for a multi-period problem,
we need to select a subset of customers to serve. Examples of customer selection in practice
are the collection of oil from oil fields with a limited fleet of oil trucks (Duhamel et al.,
2009), a large-scale manufacturer buy-back campaign causing peaks in demand for collecting
disposed products from dealers at variable buy-back prices (Aras et al., 2011), the need for a
fast selection of feasible delivery time slots to offer to e-retail grocery consumers (Agatz et
al.,2011), and the selection of dynamically arriving customers for parcel pickup services with
limitations on working hours (Ulmer et al., 2018). These, and other problems often need to
be solved in stages to cope with the multi-period structure, or require a fast response in online
situations. Our distance approximation models can help to decompose multi-period problems
into single-period sub-problems, or make customer selection decisions in an environment
with high demand on computational times.

In this paper, we develop an approximation method that utilizes regression models to
approximate the costs within transportation problems related to distance. We consider both
the traveling salesman problem (TSP), creating the shortest route for a single vehicle visiting a
given set of customers, and the vehicle routing problem (VRP), considering a fleet of vehicles
with capacity restrictions. Both the TSP and the VRP are NP-hard combinatorial optimization
problems, which means that realistic instances can typically only be solved heuristically (Dror
et al., 1994). We validate our model by applying it to two case studies: a fictional case study
with different (spatial) settings, and a real case on dynamic waste collection in Amsterdam,
The Netherlands. Fast approximation techniques can be advantageous for both cases; as the
problem instances are relatively large and demand is stochastic, we have to consider a longer-
term planning horizon. The stylized case study is introduced to study the effects of different
spatial patterns on the performance of our proposed model. Our distance approximation model
supports the customer acceptance decision for the upcoming delivery day. Furthermore, we
show how our model can be applied to a backordering case (i.e., customers can be postponed
indefinitely) as well as to a lost sales case (i.e., customer sales are lost when not fulfilled within
a time interval after their arrival). To avoid excessive computational time in online or frequent
decision making, we propose a combination of offline learning (training the approximation
model) and operational decision making utilizing the approximation model.

The remainder of this paper is structured as follows. In Sect. 2, we introduce the rele-
vant scientific literature on combinations of online and offline methods, customer selection,
distance approximation, and waste collection problems. Furthermore, we describe how we
extend the current literature and highlight our contributions. In Sect. 3, we introduce our
approximation model and discuss the combination of offline learning and online optimiza-
tion. In Sect. 4, we describe the stylized customer selection case and the waste collection
case. In Sect. 5, we validate and illustrate our model using the two case studies. We close
with conclusions and future research directions in Sect. 6.

2 Literature

We briefly review the literature on methods that reduce the computational demands for solving
the VRP. We first discuss the use of offline methods that support online or operational decision
making, e.g., assigning customers to clusters or time slots before making a routing decision.
Next, we treat the literature about customer selection and discuss related works about TSP
and VRP distance approximations. Finally, we treat the relevant literature about modelling
the planning of waste collection related to our case study of waste collection in Amsterdam.
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VRP research increasingly considers real-life, dynamic environments, which typically
involve stochastic demands, stochastic travel times, and other disturbances (Braekers et al.,
2016). This means that VRP models need to come up with robust plans that can handle
changing environments. Furthermore, VRP complexity increases by considering multiple
periods, multiple depots, larger (heterogenous) fleets, and larger customers bases. As opposed
to exact solutions, approximation methods are typically more robust and generally better able
to solve large multi-period problems, hence they are more often applied in real-life situations
(Caceres-Cruz et al., 2014). With longer planning horizons, and therefore larger problem
sizes, the need for faster solution methods increases. There are numerous options for limiting
computational complexity, both for exact and approximate methods. The decision space
can be reduced by, e.g., disregarding indisputably bad decisions, prioritizing customers, or
restricting the decision space to the cheapest options (Gromicho et al., 2012). Other methods
focus on improving fast obtained heuristic solutions using metaheuristics, or split the heuristic
solution in smaller sub-parts that can be solved to optimality using exact methods (Lalla-Ruiz
& VoB, 2020). The multi-period VRP considered in Bard and Nananukul (2009), is split in
two stages: first, a linear program is used that assigns delivery quantities to customers by
maximizing an estimated term for customer value, next, a single-day VRP is solved exactly.
Approximating the unknown solution value, prior to solving, can help to reduce the decision
space by excluding potentially weak solutions or unattractive problem instances. To keep
computational effort low, a model can be split in an offline and online phase. Training the
model on historic data can be done offline, while the application of the model is considered an
online phase, since costs are incurred during the decision making process (Powell & Ryzhov,
2013).

Several authors use offline methods to improve online decisions. In Ulmer et al. (2019),
approximate dynamic programming (ADP), also known as value-based reinforcement learn-
ing, is applied to the uncapacitated single-vehicle routing problem with stochastic service
requests. Their approach has an offline value function approximation (VFA) component,
which determines the value of a state using a heuristic and simulation, as further described
in Ulmer et al. (2018). The state is defined by (i) the time of arrival to the current vehicle
location, and (ii) the time budget, which is defined as the time left until the duration limit.
The online routing decisions are then made using the already known VFA. They conclude
that the geographical spread of customers is a good predictor for the success of an approx-
imation. The approach in Novoa and Storer (2009) is similar in the usage of ADP. They,
however, define the state to be the current vehicle location, remaining vehicle capacity, and
the demand yet to be delivered. Both approaches enable fast, online decision making by
shifting the computational effort to an offline stage.

Large scale, complex, multi-period VRPs drive the need for heuristic approximation. But
besides the approximations used to speed up the computations, some VRP variants more
explicitly require some form of customer selection or prioritization. Examples of these prob-
lem variants are the vehicle routing problem with profits (VRPP), inventory routing problem
(IRP), and problems where customers arrive dynamically during the day (Ulmer et al., 2018).
Approximation approaches are needed for customer selection problems since it takes too
much computational effort to evaluate all possible customer subsets. The number of possi-
ble subsets, with subset size r, from a set of customers with size n, equals n!/rl(n — r)!.
Selecting a subset of customers to serve is relevant when capacity is insufficient to serve all
customers. The Vehicle Routing Problem with Profits (VRPP) is a problem variant where the
total collected profits minus travel costs is maximized, while adhering to time or capacity
constraints (El-Hajj et al., 2020). For the VRPP it is allowed to leave cost-unattractive loca-
tions unvisited. In Vidal et al. (2016), a solution for the VRPP is proposed that first assigns all
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customers to vehicles and solves the respective TSPs. Next, a SELECT algorithm is applied
to each route, activating a subset of the customers while fulfilling the resource constraints and
maximizing profits. El-Hajj et al. (2020) propose a particle swarm optimization algorithm
(PSO) to maximize the number of served customers for the multi-period VRPP. Their algo-
rithm extracts the best routes from a given particle, and improves the extracted routes with
selective neighborhood operators, e.g., swapping or moving served customers, or remov-
ing served customers and inserting unserved customers (El-Hajj et al., 2020). Tricoire et al.
(2010) consider a multi-period variant of the VRPP, the multi-period orienteering problem
with time windows. Similar to El-Hajj et al. (2020), they use neighborhood operators with
a metaheuristic (variable neighborhood search) to move, select and deselect customers, e.g.,
a customer is moved to a different tour and, hence, a different day (Tricoire et al., 2010).
These methods all decrease computational demand by partitioning the VRP and solving the
smaller problems with exact or heuristic methods. The way the larger problem is partitioned
has major influence on the global solution quality. A method that approximates the objective
value of a sub-problem can improve the quality of partitioning and therefore improve the
global solution. Partitioning VRPs by means of customer prioritization is also considered for
inventory routing problems (IRP). The IRP combines the fields of inventory management
(when to serve customers and how much to deliver to each customer) and routing (how to
route the vehicles along the selected customers) (Coelho et al., 2014). In Roldén et al. (2016),
several rule-based policies are tested on IRP instances where vehicle capacity is insufficient to
replenish all customers fully. Their policies prioritize the customers with the highest demand
or lowest inventory level, respectively.

Formulas for approximating TSP and VRP distance have received ample attention in the
scientific literature. Beardwood et al. (1959) proved that the shortest TSP distance, serving N
customers in a bounded plane of area size A, is almost always asymptotically proportional to
/AN forlarge N. Further development of the TSP distance formulas were done by, amongst
others, Christofides and Eilon (1969), Chien (1992), and Hindle and Worthington (2004).
For the capacitated VRP (CVRP), a well-known formula is the Daganzo-approximation. The
formula is a fairly accurate approximation of the CVRP distance (Robusté et al., 1990) and
is calculated as follows:

kN
CVRP distance ~ [0.9 + E] -+ AN, (1)

where k is an area shape constant, and C is the maximum number of customers a vehicle
can serve. Later, their formula was improved by considering the shape of the area (Robusté
et al., 2004). In addition, Figliozzi (2008) tested several formulas for the VRP as well as for
the VRP with time windows (VRPTW), in different spatial settings. Their models show high
performance on Solomon instances (Solomon, 1987), the best performing approximation is
calculated with:

N-—-M A
VRP distance ~ k; N VAN + kpy/ N + kyM, 2)

where the parameters k;, kp, and k,, are determined with linear regression, and M is the
number of available vehicles.

Aside from approximation formulas, research has been conducted on the use of machine
learning methods to approximate the value of a vehicle routing decision. Kwon et al. (1995)
use linear regression and neural networks in combination with several spatial features (e.g.,
average customer-depot distance, area of the service region, and area of the smallest rectangle
that covers all customers) for predicting TSP tour length. Their models can estimate TSP
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distance fairly accurate. In Arnold and Sorensen (2019), the characteristics of a VRP solution
are described by several features. Using classification algorithms (decision-trees, random
forests, and support vector machines), they distinguish good and bad solutions. Their research
shows that a good heuristic can be further improved by guiding the search process using
classification data, e.g., by removing edges that are unlikely to appear in a good solution. The
research in Nicola et al. (2019) is focused on the prediction of travel distances using linear
regression with several customer-oriented features, like geographic information and demand.
They show that the approximation of distance is accurate for the TSP and VRP, especially
for Solomon instances with clustered customers (Solomon, 1987).

The planning of waste collection is gaining a lot of attention in the scientific literature
(Belién et al., 2014). The main focus is on the collection of household waste. The collection
from larger containers is typically modelled as an adapted VRP, also called the Waste Collec-
tion Vehicle Routing Problem (WCVRP) (Belién et al., 2014). WCVRPs have as objective
to find optimal routes for collecting waste from a set of containers. Collection vehicles leave
the depot empty, collect waste, and unload waste at a disposal facility when the route is
completed or when the vehicle capacity has been reached. At the end of the day, the vehicles
return to the depot (Benjamin & Beasley, 2010). The WCVRP requires the set of containers
to be emptied to be known upfront. A distinctive feature of WCVRPs is the dynamicity,
which entails the influence of today’s decisions on the next-day decision space (Baita et al.,
1998). We distinguish the following options for including dynamicity: (i) run the model for
a long planning horizon, (ii) solve a periodic VRP (PVRP), which concerns multi-period
problems like in Archetti et al. (2017), and (iii) model the planning of waste collection as
an inventory routing problem (IRP). The IRP is a medium-term problem, in contrast to the
short-term character of the regular VRP or WCVRP (Archetti et al., 2017). The classification
in Heijnen (2019) shows that most IRP literature uses a one-to-many topology, i.e., instances
with a single depot serving many customers. Some authors extend the problem with satellite
facilities, which function as additional depots, effectively increasing vehicle capacity (Bard
etal., 1998). Research on the planning of waste collection is done for both single-period mod-
els and multi-period models. However, since the long-term planning approach has positive
effects on long-term outcomes (Moin & Salhi, 2007), contemporary research tends to treat
multi-period models (Heijnen, 2019). In Mourgaya and Vanderbeck (2007), a mixed integer
programming method is proposed for household waste collection in rural areas. Their model
integrates the routing decisions with waste collection site selection in a multi-period setting
with unknown demand. Their computational results illustrate the complexity of the waste
collection problem, since small real world instances already require excessive computational
effort. The application of the IRP to a medical waste collection problem is considered in
Taslimi et al. (2020). They consider the planning of collection of hazardous medical waste.
Their design concerns a weekly inventory routing schedule with as goal to minimize trans-
portation costs and risks related to storing hazardous materials. The proposed decomposition
based heuristic divides the problem into single-period problems, after which an integer pro-
gram is solved for the routing (Taslimi et al., 2020). Another application of the IRP to a waste
collection problem can be found in Mes (2012), who studies the added value of a dynamic
planning methodology compared to a cyclic emptying schedule. In a follow-up study, Mes et
al. (2014) propose a dynamic collection policy with tunable parameters to adjust the policy
to changing environments. The parameters are tuned using optimal learning techniques in a
simulation optimization approach.

In a preparatory study, we tested various features for the waste collection case (Akkerman
et al., 2020). In this paper, we build further on this by introducing a new class of features
for the VRP and analysing various approximations for both the waste collection case as well
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as for generic multi-period VRPs. Our contribution to the scientific literature is threefold.
First, we develop a solution methodology that supports customer selection decisions in routing
problems, as well as the decomposition of multi-period vehicle routing problems. Second, we
introduce several new spatial features to better estimate the characteristics of VRP solutions.
Third, we illustrate our solution methodology using a stylized customer selection case study
in different spatial settings and a waste collection case.

3 Distance approximation model

In this section, we subsequently introduce the approximation model for the TSP in Sect. 3.1
and later extend it for the VRP in Sect. 3.2. With respect to the models, we make a clear
separation between generic elements and case-specific elements, enabling the model to be
applied to a variety of problems. Furthermore, for the generic model, we distinguish between
the TSP and VRP. Since VRPs include multiple vehicles, the basic TSP model needs to be
expanded to consider vehicle capacity and expected demand. Various features are proposed
and evaluated using (i) linear regression, (ii) random forests regression, (iii) lightGBM, and
(iv) multi-layer perceptron regression, i.e., neural networks. We describe how the data is
generated in Sect. 3.3 and we show the application of automatic feature selection techniques
for both linear regression and random forests in Sect. 3.4. In Sect. 3.5, we show how we apply
an automatic hyperparameter tuning method to obtain the best settings for random forests and
neural networks. Next, we evaluate the predictive performance of our approximation models
for both the TSP and VRP in Sect. 3.6. We end with Sect. 3.7, where we introduce our
framework for improving the approximation by combining online optimization and offline
learning. This adaptive learning framework summarizes the contribution of this research.

3.1 Model for the traveling salesman problem

For the approximation of a TSP route, we only consider spatial features and disregard the
customer demand data. The features are summarized in Table 1 and further explained below.

F1 is the number of customers visited by a vehicle. F2 is the area size of the smallest
possible rectangle that fits all visited locations, including the depot. F3 is the perimeter
of this rectangle. Alternatively to the enclosing rectangle, the area and perimeter can be
calculated by taking the convex hull around all locations, including the depot (F4, F5). F6
and F7 are the width and height of the enclosing rectangle, respectively. F8-F13 are several
distance related features. F8 is the average distance between customers and F9 is the average
distance between customers and the depot. The customer centroid (centre of mass) is found
by averaging all latitudes and longitudes. The rectangle centroid is the the point where the two
diagonals of the enclosing rectangle intersect. The customer centroid and rectangle centroid
are used for F10-F13 to calculate the (average) distance from the depot or all customers to
the respective points.

The angle related features F14—-F16 express the dispersion of the customers by taking the
variance of several different bearings between customers and either the depot (F14), customer
centroid (F15), or rectangle centroid (F16). The bearing B, ; between point a and b, is the
angle between the line connecting the two points and the north-south line of the earth, and
can be calculated with (3), (4) and (5).
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Table 1 Summary of features for the TSP

Feature ID  Feature or feature type Source
F1 Number of customers Rasku et al. (2016), Arnold and Sérensen
(2019), Nicola et al. (2019)
F2,F3 Enclosing rectangle (area and perimeter) Kwon et al. (1995), Rasku et al. (2016)
F4, F5 Convex Hull (area and perimeter) Rasku et al. (2016)
Fo6, F7 Enclosing rectangle (width, height) Rasku et al. (2016)
F8 Avg. distance between customers Rasku et al. (2016), Arnold and S6rensen
(2019), Nicola et al. (2019)
F9 Avg. distance depot to customers Kwon et al. (1995), Rasku et al. (2016),
Arnold and Sorensen (2019), Nicola et al.
(2019)
F10, F11 Distance depot to rectangle or customer Rasku et al. (2016), Arnold and S6rensen
centroid (2019), Nicola et al. (2019)
F12, F13 Avg. distance customers to rectangle or Rasku et al. (2016), Arnold and Sérensen
customer centroid (2019), Nicola et al. (2019)
F14-F16 Angle related Arnold and Sorensen (2019)
F17-F22 Geographical variance Nicola et al. (2019)
F23-F28 Radius related -
F29-F36 Rectangular partitioning -
x = cos (latyp) - sin (A(long, lony)) 3)
y = cos (lat,) - sin (latp) — sin (lat,) - cos (latp) - cos (A(lon,, lony)) “4)
Ba,p = arctan (x, y) (6))

F14-F16 are based on latitude and longitude but can be converted to a Cartesian system by
substituting the north-south line by one of the Cartesian axes. F17-F22 express geographical
variance and dispersion by means of variance in customer latitude and longitude (F17),
the variance of customer latitude multiplied with longitude (F18), and the variance of the
distance from customers to either the depot (F19), customer centroid (F20), or rectangle
centroid (F21), and the variance of distances between all customers (F22) in a route.

In addition to these features based on literature, we introduce two new types of features.
First, F23-F28 count the number of customers within a certain radius from the depot, cus-
tomer centroid, or rectangle centroid, respectively. We use two different radius sizes: 0.5 M
and 0.75 M, where M is the distance between the respective circle centrepoint and the fur-
thest away customer. These radius features have similar descriptive power as other already
described features but might be more convenient to calculate. Second, F29-F33 are rectan-
gular partitioning features. We split the smallest possible rectangle that can be fitted around
all locations into several equally sized smaller rectangles. An illustrative example of a 2 x 2
rectangular partitioning structure is depicted in Fig. 1.

In our experiments, we test two different rectangular partitioning structures, namely a
10 x 10 structure and a 15 x 15 structure. Several features can be extracted from the rectan-
gular partitioning structure: the distance between the depot and the centroid of the rectangle
with the most customers (F29), e.g., Rectangle 1 in Fig. 1; the average distance from the
depot to the centroid of all activated rectangles (F30), i.e., rectangles that contain customers;
the average distance between activated rectangle centroids (F31); and the average distance
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between customers grouped inside a rectangle (F32). F33-F36 are similar features, but cal-
culated for the 15 x 15 rectangle setting. The rectangular partitioning features can capture
the extent of concentration of customers at geographical locations.

3.2 Model extensions for the vehicle routing problem

For the VRP, we consider spatial data as well as demand data. The addition of demand data
is imperative since the VRP involves multiple vehicle routes and capacitated vehicles. The
additional features considered for the VRP are shown in Table 2. Here, F37-F42 describe
the VRP instance considering the demand and vehicle capacity. The variance of customer
demand d; (F39) is calculated with all n customers included in the VRP:

Ylo(di —d)?

S =
d n

(6)
F41 is similar to F40, but rounds up to the nearest integer. F43 is a feature for which we

count the rectangles (10 x 10 setting) in which the demand is higher than the average rect-
angle demand. As alternative to the rectangular partitioning features F29-F36, we propose a

Table 2 Summary of additional features for the VRP

Feature ID Feature Source

F37 Total demand per instance Nicola et al. (2019)

F38 Avg demand per instance Nicola et al. (2019)

F39 Variance of demand per instance Nicola et al. (2019)
Total demand per instance .

F40 —Vehicle capacity Nicola et al. (2019)

F41 Minimum required vehicles Rasku et al. (2016)
Maximum customer demand in an instance .

F42 AIMU u:/ehicle Capacilyl 1 Rasku et al. (2016)

F43 Count high demand rectangles -

F44-F48 Seed clustering related -
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different method to group customers in a route into subsets over which features are calculated.

Total demand
Vehicle capacity

algorithm is applied, roughly based on Fisher and Jaikumar (1981). First, C seeds are chosen
by selecting customers that are furthest from the depot and the other selected seeds. Next,
an assignment algorithm groups customers to seeds based on the smallest distance from the
seed to the respective customer. We calculate the average distance between customers in
clusters (F44), between centroids of customer clusters (F45), and between all customers in a
cluster and either the cluster centroid (F46) or the depot (F47). Also, we calculate the average
distance from the depot to the the furthest away customer in a cluster (F48).

We first initialize C empty customer clusters, where C = ’V -‘ Next, a clustering

3.3 Data generation

We use a simulation model we developed to mimic the waste collection planning of Amster-
dam, The Netherlands, to generate data for training our approximation models. More detailed
information about the waste collection case, and the corresponding simulation model, can be
found in Sect. 4.2. Household containers are selected and emptied on the respective days of
the simulation. Each day in the simulation, a container selection algorithm selects a subset of
all containers that will be emptied during the current day. The vehicle routes are constructed
using a cluster-first-route-second approach and improved with a 2-opt metaheuristic. A sim-
plification, in comparison with the actual case as described in Sect. 4.2, is that we only focus
on planned routes and ignore possible disruptions during the day, caused by, e.g., additional
trips to the depot because of higher fill levels than expected. Also, we only consider routes
starting and ending at the central depot, without considering the satellite facilities as used
in the waste collection case study. Hence, this choice of generating the vehicle routes as
training data does not affect the generic applicability. For creating training data for the TSP,
we select the routes of a single vehicle for each day. For the TSP training data, we store the
locations, including the location of the depot, and the distance per vehicle. For obtaining
the VRP training data, the TSP data is extended with demand data (fill levels) and next, the
vehicle routing data is aggregated per day, i.e., the aforementioned TSP data is combined if
the TSP routes were planned on the same day. The obtained TSP and VRP data, with each
15, 000 entries, is split into a training set and a validation set, in a 80%/20% ratio. Features
are standardized before training.

3.4 Feature selection

Feature selection is performed for several reasons. First, it indicates the individual importance
of the features for the regression models. Second, features might be correlated or suffer from
multicollinearity, which potentially can distort some models. In addition, a model can be
overfitted because there are too many features relative to the available data. Finally, the
computational time needed to calculate the feature values needs to be as low as possible
for the approximation to be fast enough (Rasku et al., 2016). Therefore, even though some
models are robust to noise from bad features (Hastie et al., 2009), it can be valuable to evaluate
the feature importance.

We employ two different methods for feature selection. The first method is called Elas-
tic Net Regularization (ENR) (Zou & Hastie, 2005). ENR combines two linear regression
methods: Lasso regression with L penalization and Ridge regression with L, penaliza-
tion. By combing the two methods, the advantages of both methods can be exploited, and
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the limitations reduced. Lasso regression shrinks large feature coefficients and can be an
effective tool for automatic feature selection. However, the Lasso fails to select grouped fea-
tures, i.e., features that suffer from multicollinearity (Zou & Hastie, 2005). Ridge regression,
however, does recognize grouped features but does not do automatic feature selection. ENR
successfully combines these two methods. First, the assumptions for using linear regression
need to be reviewed; we observe that the residuals are by estimation normally distributed
and homoscedastic, i.e., we can safely assume linear regression is a valid method for our
data. Note that features were standardized before fitting as this is necessary for coefficient
shrinkage methods.

The second method, called Boruta-Shap (BShap), is used for the tree-based methods.
BShap employs an iterative procedure of copying features and randomizing them to remove
correlation with the target. These new “shadow” features are compared with the regular
features, allowing for calculating statistical significant feature importance scores. We use
a variant of the algorithm that employs Shapley-values as internal importance measure, as
using this permutation-based statistic aids the process of finding global feature importance
(Keany, 2020; Orlenko & Moore, 2021).

For more details on both selection methods, we refer to Zou and Hastie (2005) and Kursa
and Rudnicki (2010). Finally, all features are selected for the neural networks regressor, since
neural networks are better able to learn complex relationships and weigh the importance of
features.

3.5 Hyperparameter tuning

Hyperparameter tuning is an important procedure for machine learning models. For both
tree-based methods and neural networks, there are several settings that can influence the per-
formance and the chance of overfitting. We tune the hyperparameters on the training set using
Bayesian optimization with the Scikit-Learn and Scikit-Optimize Python libraries (Pedregosa
etal., 2011; Head et al., 2021). Bayesian optimization iteratively samples different values of
hyperparameters within a wide interval. The algorithm is efficient since it incorporates prior
belief about the best hyperparameter values from previous iterations to direct new sampling
and trade-off exploration and exploitation (Brochu et al., 2010). As scoring criteria we use
R2, which is the variance in the data set that can be explained by the model. The R? of
selected models is measured using a 5-fold cross validation procedure.

Table 3 shows the best settings for TSP and VRP data, found by Bayesian optimization
for the tree-based methods, random forests regressor (RFR) and lightGBM, respectively.
LightGBM is a gradient boosting method that is often more accurate and efficient compared
to standard tree-based methods, like RFR (Ke et al., 2017). We set the number of trees to 200
for all models, striking a balance between performance and computational effort. Next, we
let the trees grow to their full depth and tune the maximum number of features to consider
when splitting a tree (RFR), the maximum number of bins that features will be bucketed

Table 3 Hyperparameters found

H t TSP VRP
by Bayesian optimization with ypetparameter
5-fold cross validation for the Max. features for splitting (RFR) 30 42
tree-based methods . .

Max. bins (lightGBM) 139 160

Learning rate (lightGBM) 0.0584 0.0341
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Table 4 Hyperparameters found

H t TSP VRP
by Bayesian optimization with yperparamerer
5-fold cross validation for the Initial Learning rate 0.038 0.0024
neural networks .

Batch size 78 187

in (lightGBM), and the learning rate (lightGBM). We apply bootstrapping and out-of-bag
samples to the tree-based methods to reduce the chance of overfitting (Hastie et al., 2009).

We determine the neural network architecture with the following procedure. On a separate
data set, we determine the number of hidden layers and nodes in such a way that the neural
network is almost perfectly fitted to the training set of size 17,000, i.e., the R? is close to 1.0
and the error is close to 0. Next, we reduce the complexity of the architecture until we do no
longer see an overfit, i.e., the performance decreases on the training set and increases on the
validation set. After performing this procedure, we find an architecture of 3 hidden layers,
with 128, 64, and 32 hidden neurons, respectively. We use this architecture for both the TSP
and VRP models, since it seems to suffice for both instance types. For both the TSP and
VRP model, the Adam weight optimization solver is used, as proposed by Kingma and Ba
(2015). Adam is a stochastic gradient solver that works well on large data sets (Kingma & Ba,
2015). Furthermore, we use ReLU as the activation function and adaptive weight updates,
i.e., the learning rate is constant, equal to the initial learning rate, but is divided by 5 when
two successive epochs fail to decrease training loss or increase the validation score by at least
0.0001. Next, we tune the initial learning rate and batch size with Bayesian optimization. The
settings found by the Bayesian optimization algorithm for neural networks are summarized
in Table 4.

3.6 Model performance

We compare models using five different statistics: adjusted R?, relative mean absolute error
(rMAE), relative root mean squared error (rRMSE), mean percentage error (MPE), and mean
absolute percentage error (MAPE). The adjusted R? is adjusted for the number of features
in the model. The measures rMAE and rRMSE provide an indication of the quality of the
approximation. The regular MAE indicates the average magnitude of errors without consid-
ering direction. The regular RMSE penalizes large errors more than the MAE, and therefore
the RMSE is useful for identifying prediction outliers. Both MAE and RMSE are made rel-
ative to the mean of the observed values. The MPE is the average of all percentage errors
and indicates whether the prediction underestimates or overestimates the actual distance. The
MAPE is the average percentage of absolute error. With respect to the latter two measures,
we note that MPE tends to balance out the errors and MAPE is biased when the actual values
are small.

% ZzN=1 |Predicted; — Actual,|

MAE = —_— x 100% @)
Actual
Z,N:] (Predicted; —Actual;)?
rRMSE = N x 100% ®)
Actual
N

1 Predicted; — Actual;
MPE = — 100% 9
N Z Actual; x v ©)

1=l
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Table5 Comparison of approximation formulas, literature based features, and new features on TSP and VRP
data, using linear regression

Statistics TSP VRP

VAN  Literature Literature and Daganzo Literature Literature and

features new features features new features

(Adjusted) R? (out-of-sample) 0.467 0.910 0.923 0.657 0.844 0.871
rMAE (out-of-sample) 50.21% 8.91% 8.46% 1537% 9.25% 8.08%
rRMSE (out-of-sample) 57.27% 9.87% 9.5% 18.89% 12.56% 10.67%
MPE (out-of-sample) —5.67% —3.56% —3.24% 234%  —323% —3.03%
MAPE (out-of-sample) 10.47% 7.68% 7.17% 13.57% 9.17% 8.97%

MAPE — i XN: |Predicted; — Actual,|

100% 10
Actual; x 7 (19)

i=0

Before we show the performance of the various regression models, we first study the predictive
performance of closed-form approximation formulas for the TSP (Beardwood et al., 1959)
and VRP (Robusté et al., 1990). We compare these closed-form formulas with (i) the features
as suggested by the literature, and (ii) the features suggested by the literature extended
with our proposed features, including the radius, rectangle partitioning, and seed clustering
features. We compare using our generated data and employ linear regression as the predictor.
Table 5 shows the results of this comparison on the validation set (out-of-sample).

For the TSP data, it appears that the formula by Beardwood et al. (1959) is not able
to predict TSP distance accurately, reporting an R? of 0.467. Even though this formula
was proven to be asymptotically proportional to the TSP distance, it cannot capture TSP
distance for these instances, possibly due to the complex, non-convex area with a limited
number of customers. The difference in performance between the features proposed in the
literature and our extensions is small, with an R? of 0.910 and 0.923, respectively, which is
a slight improvement. The same small difference is apparent for the other error statistics. We
conclude that for the TSP, our proposed features result in a small improvement of predictive
performance. For the VRP, we observe that the Daganzo-formula is able to capture the VRP
distance for these instances, but still the R? is low with 0.657. The other error statistics confirm
this. The comparison between the literature-based features and our proposed extensions shows
that the addition of our proposed features has a modest but positive effect on predictive
performance. The adjusted R? rises from 0.844 to 0.871 and the various error statistics show
a similar effect when adding our proposed features. In the remainder of this section, we
compare various regression models on the complete feature data set, while employing the
proposed feature selection methods.

Table 6 shows the performance of the four models on the TSP training and validation data
set. We observe that the predictive performance is high for all models. On the training set (in-
sample), our models perform similarly to the models presented in Hindle and Worthington
(2004) and slightly worse compared with the regression models in Nicola et al. (2019), who
both report performance on stylized instances. The negative MPE indicates that all our models
tend to slightly underestimate the actual TSP distance.

Comparing the models with the validation set performance, Elastic Net Regularization
(ENR) seems to perform the worst, with a IMAE of 7% of the average distance in the
validation set, and an R? of 0.938. Random forests regression (RFR) performs slightly better
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Table 6 Model performance for the TSP

Statistics ENR RFR lightGBM NN
Number of Features 26 31 32 36
Adjusted R? (in-sample) 0.945 0.995 0.995 0.986
rMAE (in-sample) 5.63% 1.75% 1.62% 2.02%
rRMSE (in-sample) 6.8% 2.38% 2.03% 2.15%
MPE (in-sample) —0.99% —-0.21% —0.15% —-0.23%
MAPE (in-sample) 4.27% 1.79% 1.65% 1.53%
Adjusted R? (out-of-sample) 0.938 0.965 0.97 0.948
rMAE (out-of-sample) 7% 4.91% 4.72% 4.99%
rRMSE (out-of-sample) 7.86% 6.58% 6.42% 6.62%
MPE (out-of-sample) —1.89% —0.56% —0.38% —0.42%
MAPE (out-of-sample) 8.49% 5.03% 4.99% 5.12%

Table 7 Model performance for the VRP

Statistics ENR RFR lightGBM NN
Number of Features 38 32 36 48
Adjusted R? (in-sample) 0.896 0.99 0.99 0.97
rMAE (in-sample) 4.34% 1.71% 1.61% 1.76%
rRMSE (in-sample) 8.23% 2.82% 2.11% 2.11%
MPE (in-sample) —1.42% —0.23% —0.11% —0.21%
MAPE (in-sample) 5.33% 2.56% 1.63% 2.21%
Adjusted R? (out-of-sample) 0.876 0.944 0.961 0.941
rMAE (out-of-sample) 4.7% 2.87% 2.12% 2.71%
rRMSE (out-of-sample) 10.21% 3.4% 3.1% 4.25%
MPE (out-of-sample) —2.94% —0.34% —0.29% —0.44%
MAPE (out-of-sample) 6.6% 3.07% 2.98% 3.99%

than neural networks (NN), with a rMAE of 4.91% and R? of 0.965. The relative RMSE is
6.58%, which indicates that there are not many large outliers. The best performing model
is lightGBM, with an adjusted R? of 0.97, tMAE of 4.72% and rRMSE of 6.42%. For all
models, the MPE on the validation set is between —0.38% and —1.89%, while the MAPE lies
between 4.99% and 8.49%. Note that, even for the in-sample case, NN does not outperform
the tree-based methods because overfitting is prevented using the L2 regularization penalty.

ENR eliminates 10 features and BShap eliminates 5 features for RFR and 4 features
for lightGBM. ENR removes 2 out of the 3 radius features (F23—F28), only the feature
representing the proximity to the depot is kept. Some seemingly good features are removed,
possibly because of redundancy. All rectangular partitioning features (F29-F36) are in the
model. BShap makes a different selection: it removes 4 of the 8 rectangular partitioning
features, with the only one remaining being the average number of customers in an activated
rectangle.

Table 7 shows the performance of the four models on the VRP data set. Compared with
the TSP model, the performance of ENR drops significantly. We observe that, both on the
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training set and the validation set, the R> decreases and the MPE and MAPE increases.
The higher rRMSE indicates that there are some large outliers that heavily influence the
performance. Nevertheless, the rMAE is reasonably good, with 4.34% on the training set
and 4.7% on the validation set. The regression models that can better handle nonlinear
relationships outperform ENR and show similar predictive performance on the TSP and
VRP data. LightGBM outperforms the random forests regression and neural networks. Our
approximation model for the VRP outperforms the models presented by Figliozzi (2008) and
Nicola et al. (2019), when compared with their reported performance on random clustered
instances, that closely resemble our data.

ENR removes several seemingly redundant features but keeps all demand-related features
(F37-F42). BShap now removes more features compared to the TSP model. Both feature
selection methods keep all seed clustering features (F44—F48) in the model. For the TSP
and VRP model, we observe that the highest Shapley-values are given to the following
features: number of customers (F1), enclosing rectangle perimeter (F3), convex hull area
(F4), enclosing rectangle width and height (F4,F7), average distance between locations (F8),
the multiplied variance of customer latitudes and longitudes (F17), the distance from the
centroid of all activated rectangles to the depot (F30), and the average distance from the
depot to the furthest away customer in a seed cluster (F48).

3.7 Adaptive learning framework for improving approximations

The main advantage of learning models, as opposed to heuristic methods, is that they can
be retrained and adapt to changing circumstances. The method of training a model (offline),
using the approximation to optimize decisions (online), and retraining a model again is shown
in Fig. 2. For our case studies, we do not consider online optimization, since decisions are

Customer selection based on

distance (cost) approximation

Online/frequent
Customer subset

optimization

Solve vehicle routing problem

Updated

Routing data approximation

\ 4

model

Forget or diminish oldest data

when data set is large enough

Offline learning Routing data

(Re-)train distance

approximation model

Fig.2 Adaptive learning feedback loop with a customer selection phase, route construction phase, and model
training phase
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only made at the start of the day, not during the day. Nevertheless, this procedure can also be
applied to frequent optimization cases like ours. The framework can be applied to cases where
the environment changes and the approximation model needs to be updated regularly, e.g.,
when customer demand changes or the geographic area of operations changes. Alternatively,
the framework can be used to improve the approximation of a stable environment by obtaining
more data.

In the first phase, customer selection decisions are made based on a distance (cost) approx-
imation model. Next, in the second phase, a routing schedule is constructed that delivers all
selected customers. As soon as the data set collected during the iterations of the feedback
loop is large enough, the oldest data can be forgotten or given less importance in phase three.
The routing realization data is used in the fourth phase to train or retrain an approximation
model. Finally, the new approximation model is used in the first phase again. This process,
as depicted in Fig. 2, generalizes the process used for the stylized customer selection case
and the waste collection case, and summarizes the contribution of this paper. In Sect. 4, we
will show how this framework can be applied to our case studies.

4 Case studies

In this section, we introduce our case studies. First, we describe the stylized customer selection
case in Sect. 4.1. Next, we describe our waste collection case study in Sect. 4.2. Finally, in
Sect. 4.3, we explain how we adapt our generic approximation model to cope with a combined
cost term of distance and service level.

4.1 Settings for the stylized customer selection case

We use a fictional case to test our proposed regression model for the vehicle routing problem
and study the performance of customer selection for the VRP. We decompose the daily
decision process in two stages. First, customers are selected based on the lowest expected
increase in routing costs as described by our approximation. Next, a vehicle routing problem
is solved for the subset of customers that can be delivered with the limited vehicle capacity.
Before the assignment decision at the start of day ¢, a random number of customers ¢; € C;
arrives, drawn from a discrete uniform distribution, |C;| ~ Ula, b]. So, all customers are
known before creating the routes for the current day, and a subset of these customers needs
to be selected in order to adhere to capacity constraints and minimize routing distance.
Before the first execution day (¢t = 0), there are already |Cp| initial customers present in the
system. Each customer has a demand d., which is drawn from a discrete uniform distribution,
d. ~ Ulag, bg]. All customers are served from the single depot, with a homogeneous fleet of
K vehicles, each vehicle having a capacity of Q. The values for K and Q and the parameters
for d. are chosen in such a way that approximately half of the daily customers can be served.
The other half needs to be postponed to the next day. The parameters of the discrete uniform
distribution that determine the number of daily arriving customers |C;| are chosen in such a
way that the system is in a steady state, i.e., the daily number of customers fluctuates around
a stable mean. The starting state of the system is chosen in such a way that half of the fleet
capacity is already reserved for existing customers Cy, before new customers arrive on the
first day. Since our proposed regression models first need data to be trained, we start by
collecting data without utilizing a regression model. During the first simulation iteration of
200 days, we use the Daganzo-approximation (see Eq. 1) to estimate the routing costs and
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support customer selection decisions. With the obtained data from the first iteration, we can
train and subsequently use the regression model. In the next simulation iterations, we can use
our trained approximation model for the customer selection decision. After every simulation
iteration of 200 days, we add new data to our data set to further improve our approximation
with more observations.

We simulate a finite horizon of 200 days and only plan for the upcoming day. We test four
different spatial settings in both a backordering variant and a lost sales variant. Backordering
in this case means that customer demand can be postponed indefinitely. For the lost sales
case, a customer that arrived at the start of day ¢ can only be postponed once, so to day ¢ + 1.
If not selected for delivery at the start of day ¢ or day ¢ + 1, the customer sales are lost. For
all lost sales variants, we do not consider a vehicle capacity (Q), but a maximum vehicle
distance (V') as a constraining factor, which mimics the situation of limited working hours.
With distance as the constraining factor, the effect of customer selection on the number of
lost sales can be better illustrated, since more efficient routing will allow for an increase in
the number of customers that can be served. We include the vehicle distance constraint only
for the lost sales case as it is more computationally demanding in our simulation to check
this constraint.

After every simulation iteration, we retrain our model on the newly obtained data, including
previously collected data, and test the model on a separate left-out validation data set. We
include both old and new data in the training set to increase the number of observations
and cancel out possible fluctuations in the data. Aside from regression model performance
indicators, we store the traveled distances per day, the number of served customers, and lost
sales ratios after a simulation run. We define the lost sales ratio as the percentage of lost
sales compared with the total number of customers: number of lost sales/total number of
customers.

Summarizing the solution structure, we start with a customer selection Phase 1, where
a subset of customers is selected based on our distance approximation. More precisely,
customers are sequentially selected based on the distance approximation. Customers are
selected until the total fleet capacity has been reached, i.e., total fleet capacity = K - Q, or
in case of lost sales, we insert customers until the predicted distance exceeds the maximum
fleet distance, i.e., maximum fleet distance = K - V. Next, in Phase 2, a routing schedule
is made for the selected customers. We apply a cluster-first-route-second heuristic by first
selecting seeds based on: (i) the maximum distance from the depot and (ii) the maximum
distance from the other seeds. Finally, a parallel assignment heuristic assigns customers to
seeds and a TSP is solved for each vehicle. For solving the TSPs, we use a nearest neighbor
heuristic for an initial solution, after which we run a 2-opt local search. Distances between
locations are computed with the Euclidean-distance formula. After the routing schedule has
been constructed, we move to the next day 7 4 1 and make a new customer selection decision,
considering (i) the customers that were postponed the previous day ¢ and (ii) the newly arrived
customers for day ¢ + 1.

For both the backordering case and the lost sales case, a feasibility check is needed after the
customer selection phase, before a customer is definitely inserted into the route. Customers
might have been assigned to a cluster seed, but cannot be inserted into the schedule due to the
restraining vehicle capacity or maximum vehicle distance. In that case, we reject all left-over
customers and they are again considered the next day.

We test our regression model on four different spatial instance types. The first three instance
types are situated on a 100 x 100 grid. Instance type R randomly scatters customers on the
grid. Instance type RC partially clusters customers by first randomly generating A cluster
centrepoint locations, and next assigning customers with a probability P(A) to a cluster
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centrepoint, and assigning them a random location on the 100 x 100 grid with probability
1 — P(A). When assigned to a cluster centrepoint, customers are randomly placed within
a radius r of the cluster centrepoint, with r = 10. We use two different settings for the
RC instances: (i) generate 3 clusters (A = 3) and assign customers to a random cluster with
probability P(A) = 0.7 or assign them to arandom location with probability 1 — P (A) = 0.3,
and (ii) generate 8 clusters (A = 8) and assign customers to a random cluster with probability
P(A) = 0.7 or assign them to a random location with probability 1 — P(A) = 0.3. See Fig.
3 for an illustration of the R and RC instance types. For all three instance types, we consider
a single depot located at (50, 50).

The fourth instance type considers a special VRP-instance with multiple regions that
are served by a single depot. Instead of the 100 x 100 grid, the total area is enlarged to
a 200 x 200 grid. The depot is located at (100, 100) and most customers (approximately
75%) are located inside the original area closest to the depot, Region 1 (see Fig. 4). Region
2 contains approximately 25% of the customers. The number of daily customer arrivals |C;|
follows a Poisson distribution with A = 30. This means that the number of customer arrivals
fluctuates more heavily compared to the R and RC instances, on most days all customer
demand can be fulfilled and customer selection is primarily needed on busy days with more
arrivals.
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Fig. 3 Illustrative VRP instance with randomly scattered customers (left) and clustered customers (A = 3,
P(A) = 0.7) (right)
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In the second case setting, we consider the four spatial instance types in a configuration
with lost sales, i.e., the variant where customers that are not selected for delivery on their
arrival day ¢ or the next day ¢ 4 1, will leave and the sales are lost. This means that customer
orders that arrive on day ¢, and are not served on day ¢, are automatically scheduled for the
nextday 7+ 1. If there are more customers postponed to day ¢+ 1 than capacity is available, the
surplus of postponed customers will be lost. Because of the variability in customer arrivals, on
some days no decision is needed from our solution method, since the complete fleet capacity
is consumed by previous-day orders. Thus, the decision method has less opportunity to make
an impact on routing costs.

The multi-region instance type has been adapted slightly for the lost sales case. Since
the furthest possible customer is located at the corner of the area, e.g., location (200,200), a
vehicle needs to have a distance capacity V of at least 283 to make the trip from the depot
to the customer and back. This extended distance capacity results in a situation where all
customers close to the depot can easily be served, limiting the need for customer selection.
Therefore, we reduced the number of vehicles K to 2.

All instance settings of the four instance types in both the normal and lost sales con-
figuration are summarized in Table 8. The aim of the experiments with this stylized case
is to examine if our proposed method can better recognise clustered groups of customers
and group these together in a VRP schedule. Our features might be able to recognize an
isolated customer in a sparsely populated area and postpone delivery until more customers
arrive. Furthermore, we use different spatial instance types to examine the performance of our
approximation models compared to the Daganzo-approximation benchmark. The lost sales
case shows a different setting that causes a smaller decision space, which means that a single
selection decision has more impact. Also, it shows the capabilities of our regression model
to recognise and insert customers close to customers that are prioritized. A more efficient
routing will potentially increase the number of served customers and decrease lost sales for
the distance constrained lost sales experiments.

Table 8 Instance settings for backorder and lost sales instances

R RC Multi-region

Number of Arriving U[40, 60] U[40, 60] Poisson(x = 30)

customers
Number of initial 25 25 15

customers (Cq)
Customer demand UJ[9, 11] Ul[9, 11] Ul4, 6]

~ Ulag. bg)
Number of vehicles (K) 5 5 2
Vehicle capacity (Q) 80 (backordering) 80 (backordering) 80 (backordering)

N/A (lost sales) N/A (lost sales) N/A (lost sales)

Maximum vehicle N/A (backordering) N/A (backordering) N/A (backordering)

distance (V)
Number of clusters (A)

Probability of clustering
(P(A)

150 (lost sales)
N/A
N/A

150 (lost sales)
3or8
0.7

283 (lost sales)
N/A
N/A

@ Springer



Annals of Operations Research

4.2 Settings for the waste collection case

We consider the dynamic collection of waste from underground containers in Amsterdam,
The Netherlands, as depicted in Fig. 5. The Amsterdam waste collection problem can be
considered as an Inventory Routing Problem (IRP), where we have to decide which con-
tainers to empty on which day, and how to route our vehicles to visit these containers. Here
we specifically focus on the collection of household waste from 7995 containers in Ams-
terdam. For illustrative reasons, we focus in our experiments on the Southeast district of
Amsterdam. This district is a secluded part of the city that consists of 353 underground
heterogeneous containers, one depot, and two satellite locations. The containers are scat-
tered over an area of 21.7 km?. The daily waste disposal at each container c is stochastic
and modeled using a Gamma-distribution, given by d. ~ Gamma(k., 6.), as common for
these types of problems (Mes et al., 2014). We assume a homogeneous fleet of vehicles. Key
performance indicators for comparing models are the service level and the distance traveled
per ton of collected waste. The service level is dependent on the overflow of containers.
An overflowed container has a fill level higher than the container capacity. We define the
service level as the proportion of containers that are emptied on time, without overflow:
1 — (number of overflowed containers/number of emptied containers).

We use a rolling horizon planning approach, where decisions are made on consecutive
days t over a finite horizon 7 = {1, ..., T'}. Each day, we plan for T days ahead, but only the
decisions of t = 1 are fixed. To be able to solve problem sizes of up to 7995 containers in
reasonable time, we propose a solution methodology consisting of the following three phases:
(i) container selection, (ii) day assignment, and (iii) route construction. The first phase con-
cerns the selection of containers based on overflow probabilities of every container. When the
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Fig.5 Map of the underground waste containers in Amsterdam, The Netherlands (source: maps.amsterdam.nl)
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overflow probability exceeds a certain threshold, the respective container is considered for
the next phase. The second phase concerns the planning of collection days for the pre-selected
containers. In this phase, both the service level and the travel costs are considered, i.e., both
the time and space dimension of the inventory routing problem. The time dimension of an
IRP concerns the timing of container emptying and the amount of waste collected from each
respective container, the space dimension concerns the routing along the selected containers.
The third phase concerns the construction of routes for the first day (¢ = 1) of the planning
horizon. We use a cluster-first-route-second approach, which constructs routes in four steps:
(1) clustering containers using adapted k-means, (ii) feasible sequencing using nearest inser-
tion, (iii) combining sequences into feasible routes, and (iv) improving the feasible solution
using a 2-opt metaheuristic. See Heijnen (2019) for more details on the route construction
phase.

Our proposed method concerns the approximation used in the second phase: the allocation
of containers to days. We use an algorithm that iteratively assigns containers to days based on
the distance approximation. In the next section, we explain how our regression model can be
adapted to predict a cost function with multiple objectives, i.e., distance and service level. We
benchmark our method using the Daganzo-approximation for the distance approximation (see
Eq. 1). Our regression model predicts a combined cost term, including distance and service
level. However, the Daganzo-approximation only considers distance. Therefore, we adapt the
benchmark method to consider a combined cost term including the Daganzo-approximation
and a penalty factor for emptying a container ¢ too early or too late:

Selection costs, = Daganzo(c) + Timing penalty(c). (11)
The timing penalty is determined using the following:

Too early penalty, ift < EOD — 1,
Timing penalty(c) = { O, ift=EOD — 1, (12)
Too late penalty, ifr > EOD — 1,

with ¢ being the day that is considered for the assignment and £ O D being the expected
overflow day.

The expected overflow day is determined using an overflow probability, determined using
the expected fill levels that are estimated with the probability density function of the Gamma-
distribution. Since container overflow needs to be prevented, we set an acceptable overflow
probability (AOP). So, the EO D is the day before the probability of overflow exceeds the
AOP. In our experiments, we use different levels for the AOP.

4.3 Adaptations to the generic model for the waste collection case

The waste collection problem and other IRPs differ from the standard VRP by being multi-
objective: the distance needs to be minimized and the service level should be maximized (or
attain a certain threshold). Practical problems will arise when there is too much overflow
of containers. For our implemented benchmark method (the Daganzo-approximation), we
separately assess the service level requirements by adding a timing penalty (see Eq. 12) to the
approximated distance. For our new approximation model, we can combine the performance
indicators by both approximating the distance and the service level together.

We introduce two new features to estimate the actual service level, namely the service level
calculated using the expected fill levels (F49) and the average expected fill level of containers
as a percentage of the container capacity (F50). For both features, we use the known container
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capacities to calculate the feature values. F49 can be calculated by considering for each
container the days until last emptying, the average waste disposal per day for this container,
and its capacity. In preliminary experiments, we observe that F49 can estimate the service
level reasonably well; when tested in a single-feature regression model aimed at predicting
the service level, we observe a relative mean absolute error of 9.3%. F50 is an error term
that is added to take into account possible deviations from the expected fill levels: when the
demand of a container is close to its capacity, it has a high chance of overflow. Thus, in case
of equal expected service level and distance, the container with a higher fill level is favored
for emptying on the current day.

After scaling both target variables to the domain [0, 1], we define a new cost function (13),
that combines distance and service level terms in one objective function. The regression model
estimates the costs, i.e., it is trained to predict the value of ¢ ;.

Cor(Styxer) = w? - ds, v, + W - s, s VeeC:CCI,VieT, (13)

with ¢., being the combined cost for inserting container ¢ € C onday t € 7. C is the
set of containers that are not yet inserted, / is the complete set of containers that has been
pre-selected in phase 1 of the algorithm, so C € I. §; is the current state from which we
derive the feature values for the already selected set of containers for day 7, and x., is the
decision to insert container ¢ on day ¢. The costs are determined using the predicted distance
d and service level «. The weights w strike a balance between the importance of the distance
and the service level. In our experiments, we adjust both weights.

5 Computational experiments and results

In this section, we discuss our experiments and results for the stylized customer selection
case and the waste collection case. This section (i) illustrates the use of our proposed distance
approximation model in a decision-support context, and (ii) shows the use of our adaptive
learning framework, as discussed in Sect. 3.7. We start with discussing the results for the
stylized customer selection case in Sect. 5.1, first for the backordering configuration, then for
the lost sales case. In Sect. 5.2, we discuss the results for the dynamic waste collection case
of Amsterdam. To ease the presentation, we only show the results for the linear regression
model for both cases, as its performance is relatively close to those of the more advanced
models, i.e., random forests, lightGBM, or neural networks, see Sect. 3.6.

5.1 Results for the stylized customer selection case

We first validate our regression model on the stylized customer selection case and show the
application of the adaptive learning feedback loop. For this, we create a simulation model in
Python. In our experiments, we conduct 15 iterations (V) of the adaptive learning feedback
loop, i.e., in one iteration we (i) use a predictive model to make customer selection decisions,
(ii) construct routing schedules, (iii) retrain the predictive model on the data, and repeat the
process in the next iteration. After each iteration of the adaptive learning feedback loop,
we forget the old data, since we obtain enough training data in a single iteration. To report
statistically significant results, we conduct several replications over these 15 iterations. We
determine the number of replications by calculating the relative error of the total distance
over the replications for each instance type. To obtain a relative error less than 5% with 95%
confidence, 10 replications are needed for all instance types.
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Fig. 6 Experimental results of the randomly scattered (R), clustered (RC), and multi-region instances under
backordering: average daily distance compared with the Daganzo-approximation (left) and the R? onaleft-out
validation set (right), using 15 iterations and 10 replications

Two policies are compared: (i) the benchmark Daganzo-approximation and (ii) our pro-
posed regression model using 23 features. For our proposed model, in iteration 0, the daily
decision to serve or postpone a customer is made on the basis of the Daganzo-approximation.
In iterations 1 to 14, we use our proposed regression model. Every iteration consists of 200
execution days. The reported statistics are the averages from 10 replications and are relative
to the performance of the Daganzo-approximation benchmark. We report significance by
performing paired t-tests.

Figure 6 shows the results for the backordering case. The left graph shows the aver-
age daily VRP-distance over the 15 iterations, compared to the Daganzo-approximation
(0% line).

The difference between the Daganzo-approximation and the approximation models, in
terms of distance, is significant for all instances with 95% confidence. A negative percentage
indicates a saving of the regression model in comparison with the Daganzo-approximation.
The number of served customers per day using the Daganzo-approximation or the regression
model are similar. The right figure indicates the prediction quality of the regression model,
expressed with the R2, reported after every iteration on a separate validation data set. Both
figures indicate that the performance on the random instances is the lowest, subsequently
followed by the clustered instances and the multi-region instances. We observe that when
customers are more scattered, the performance gains are lower because the variance between
customers is large and cannot be fully captured by our features. Nevertheless, for all instances
we improve on the Daganzo-approximation with a reduction of 6.1% up to 9.4% in average
daily distance after 15 iterations.

Next, we discuss the results for the lost sales case. Figure 7 shows the average daily
distance per customer compared to the Daganzo-approximation (0% line) (left), and the
R? of the regression model per simulation iteration (right). The difference between the
Daganzo-approximation and the approximation models, in terms of distance, is significant
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Fig. 7 Experiment results of the randomly scattered (R), clustered (RC) and multi-region instances with lost
sales: average distance per customer compared with the Daganzo-approximation (left) and the R? on aleft-out
validation set (right), using 15 iterations and 10 replications

for all instances with 95% confidence. Especially the multi-region case shows a considerable
improvement (25.3% after 15 iterations), which can be explained by a better adaptation to
the lost sales configuration, compared to the static Daganzo-formula. In addition, we observe
that the fluctuating Poisson arrivals change the balance in the system: on most days, a large
percentage of all customers can be served, but on days with peak demand, the decision on
what customers to serve becomes more important and our approximation model, opposed
to the Daganzo-approximation, chooses to prioritize close-by customers and lose far away
customers. For the other instance types (random and clustered), we observe similar or slightly
larger savings compared to the backordering configuration, the savings in average distance
per customer range from 5.7% up to 12.3% after 15 iterations. The R? on the clustered
instances is slightly lower than before, but this is not directly reflected in the performance of
the models.

Figure 8 shows more performance statistics for the lost sales case. The average number
of served customers (left) and lost sales ratio (right) are compared with the Daganzo-
approximation (0% line). We observe that when using our approximation model for customer
selection, we can serve more customers, except for the random and multi-region instance type,
which show a lower and similar number of served customers compared with the Daganzo-
approximation, respectively. The lost sales ratios are, for both the regression model and
the Daganzo-approximation, negligible. Nevertheless, the difference between the Daganzo-
approximation and our model is significant at a confidence level of 95%, with as exception
the difference on the clustered (A=3) instances. We observe that the Daganzo-approximation
almost always has a better lost sales ratio. Our approximation model often chooses to neglect
expensive lost sales customers, where the Daganzo-approximation does select these cus-
tomers. As a result, the Daganzo-approximation has less lost sales, but needs to travel longer
distances compared with our approximation model.
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Fig. 8 Experiment results of the randomly scattered (R), clustered (RC) and multi-region instances with lost
sales: average number of served customers compared with the Daganzo-approximation (left) and the number
of lost sales compared with the Daganzo-approximation (right), using 15 iterations and 10 replications

5.2 Results for the waste collection case

We created a discrete-event simulation model in Java, with two types of actors: the inhabitants
who dispose waste in containers and the waste collectors who empty the containers. For
simplicity, we only focus on the planning phase and ignore possible disruptions during the
execution of routes. At the beginning of each day, the three-phase planning procedure is
executed to plan the waste collection routes for the corresponding day (see Sect. 4.2). We use
arolling horizon of three days, which is found to strike the best balance between performance
and computational efficiency. For our simulation, We use a simulation run length of 125
days with a 25-day warmup period. Given the relatively long run length, it appears that 3
replications are enough the obtain a relative error of at most 5% using a 95% confidence
interval for the total driving distance.

Three policies are compared: (i) the benchmark Daganzo-approximation with a service
level penalty, (ii) our proposed regression model, which combines distance and service level
approximations, and (iii) a myopic policy that uses a horizon of T = 1 and always favors
the containers with the highest expected fill levels. For both the benchmark policy and our
regression model, the respective overflow penalty and approximation weights can be tuned.
The tuning of these parameters can shift the focus, either favoring the service level or distance.
Table 9 summarizes the relevant experimental parameters for each model. The acceptable
overflow penalty (AOP) is only used for the Daganzo-approximation since the myopic

Table9 Experimental parameters

Policy Planning horizon AOP w9, w)

Myopic 1 - -

Daganzo 3 {0.1,0.2,0.3} -

Regression 3 - {(1,1),(1,10),(10,1)}
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Fig.9 Performance of approximation policies over several iterations, AOP = 0.2 (Daganzo) and W, w¥) =
{1, 1), (1, 10), (10, 1)} (Regression), N = 4, 3 replications, 125-day horizon with 25-day warmup period

method only considers container fill levels and our regression model has its own service level
approximation.

The implemented model for the case contains 18 features and is trained using the VRP
data obtained from the waste collection case. Although the demand for waste collection is
stochastic, the system is stable, i.e., there are no external disruptions and the parameters for
the demand, modeled with the Gamma-distribution, do not change. Nevertheless, it might
still be the case that the approximation can be improved using our proposed adaptive learning
framework, i.e., (i) using a predictive model to make container selection decisions, (ii) con-
struct routing schedules, and (iii) retrain the predictive model and repeat the process. After
the first iteration of this process, we forget the old data, since we obtain enough training data
in one iteration. To obtain the initial training data for our regression model, we first use the
Daganzo-approximation (see Eq. 1) for the customer selection in combination with a service
level penalty factor, as described in Sect. 4.2. After enough training data (VRP realizations)
has been obtained, we can train our regression model on the combined distance and service
level term as presented in Sect. 4.3. Figure 9 shows the respective distance and service level
for the three settings of the regression model during several iterations of the adaptive learning
feedback loop. The performance of the best setting for the Daganzo-approximation is also
shown. We perform a paired t-test for the two performance indicators as observed in iteration
4, comparing the regression models with the Daganzo-approximation. The paired t-test con-
firms that the difference in distance per vehicle and service level is significant for all models
with 95% confidence, with as exception the difference between the Daganzo-approximation
and Regression with parameters w? = 1 and w® = 10.

We observe that the weights in the cost function . ; have an effect on the performance
of the model. When the weight for the distance (w?) is relatively low, the model favors high
service levels over distance reduction, and vice versa. The improvement over the iterations is
limited, which indicates that for this case, the initial training on the training set as described
at the beginning of this section, was sufficient.

A more detailed comparison of all experiments can be found in Table 10. First, the added
value of a rolling planning horizon is confirmed by the poor performance of the myopic pol-
icy, in comparison with the Daganzo-approximation and the regression model: the service
level is relatively low, and the distance is over 15% more in comparison with the worst
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Table 10 Performance of approximation policies for all experiments

Policy km/ton per vehicle Service level Nr. of vehicles
Myopic 0.0959 86.4% 5
Daganzo (0.1) 0.0830 96.5% 4
Daganzo (0.2) 0.0722 94.1% 4
Daganzo (0.3) 0.0827 90.5% 4
Regression (wd =Lw*=1) 0.0691 93.2% 4
Regression (wd =1,w% =10) 0.0721 93.5% 4
Regression (wd =10,w¥ =1) 0.0684 91% 4

performing approximation method. Compared with the best performing approximation
method, the myopic policy is more than 28 % worse. Also, an additional vehicle is needed. Fur-
thermore, we observe that the regression model results in a better performance compared to
using the Daganzo-approximation: there is an improvement in distance ranging from 0.13%
to almost 17%, compared with similar or slightly worse service levels. The difference, in
terms of distance and service level, between the best performing Daganzo-method and the
best performing regression model is significant with 95% confidence.

6 Conclusions

We developed a distance approximation method to support customer selection, encompassing
a large range of temporal and spatial features. This method can be used to predict distance
and service levels within transportation problems, for use in customer assignment and selec-
tion problems, i.e., the assignment of customers to days for a multi-period vehicle routing
problem or supporting fast customer selection decisions in situations with limited capacity.
We illustrated the approach considering two relatively large vehicle routing cases: a fictional
case with multiple spatial settings for both backordering and lost sales, and a real case of
dynamic waste collection in Amsterdam, The Netherlands. As a benchmark, we implemented
the Daganzo-approximation.

The new distance and service level approximation model was introduced in such a way
that it can be applied to a wide range of problems. We showed which features have the highest
importance for TSP and VRP models, showed the performance gain of our model compared
with well-known closed-form distance approximation formulas, showed that we can predict
distance fairly accurately without solving the TSP or VRP, explained the automatic feature
selection methods for linear regression and tree-based methods, and illustrated the use of an
automatic hyperparameter tuning approach for the tree-based methods and neural networks.
We described the approach of combining offline learning with online optimization, and
how to iteratively update or improve the approximations. Finally, we validated our machine
learning model on the stylized customer selection case and the multi-period waste collection
case with stochastic demands. The stylized case showed that the approximation models can
be successfully utilized for customer selection problems with different spatial settings. We
showed how our customer selection method, utilizing the distance approximation model, was
applied to a real case of the waste collection planning of Amsterdam, The Netherlands. The
application of our model to an inventory routing problem (IRP) showed a different practical
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setting for which our proposed method can be used. For both the stylized case and the waste
collection case, our proposed model performs reasonably better than the benchmark policy.
Also, we showed that our regression model shows better performance on clustered instances
and complex structure instances than on randomly scattered instances.

Further research can be done on new features that describe certain vehicle routing prob-
lem instances more specifically. Especially the rectangular partitioning structure provides
opportunities for the design of new features, e.g., the rectangles can be given weights corre-
sponding to the number of customers inside them, and different ways of partitioning could be
explored, e.g., using adaptive grids that automatically identify customer clusters. We would
like to stress that computational effort is an important factor in calculating features, espe-
cially when the approximation needs to be done often and relies on its speed compared with
solving a TSP or VRP using heuristics. A limitation of our distance approximation model is
its inability to look ahead, since it aims to minimize the costs of the current day only. For
the waste collection case, we used a rolling horizon approach, but we believe more research
could be done on the inclusion of a look-ahead policy into our distance approximation, e.g.,
by utilizing (deep) reinforcement learning methods that can minimize long term costs using
features as those proposed in this paper.
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