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a b s t r a c t 

Acoustically induced secondary flows are applied to enhance lateral mass transfer beyond the relatively 

slow diffusion. This has the goal to reduce convective axial dispersion and the resulting band broaden- 

ing which, in turn, limits the performance of column chromatography. Traditional approaches based on 

Taylor-Aris model are limited to one-dimensional rectilinear (unidirectional) tube- or channel-flows. We 

therefore apply the generalized dispersion theory (GDT) allowing for prediction of the dependence of po- 

tentially improved performance on the characteristics of the induced secondary flow, channel geometry 

and solute properties as well as providing qualitative physical insight into the role of lateral flows. Results 

corroborate agreement with our experimental observations (residual standard deviation, S res = 3.88) and 

demonstrate the advantage of applying GDT relative to 3D time-dependent simulations. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

The performance of a variety of continuous-flow systems such 

s liquid chromatography and continuous-flow chemistry is limited 

y axial dispersion resulting in broadening of sample bands. Ide- 

lly, it is desirable that the sample bands are transported as fast as 

ossible to the detector downstream which favors relatively high 

arrier fluid speed, in order to minimize the analysis time. Un- 

er these conditions the primary contribution to axial dispersion is 

mbodied in the C-term of van Deemter’s relation, representing the 

ffect of non-uniform axial (Poiseuille) fluid velocity (in pressure- 

riven flows) combined with the relatively slow diffusive solute 

ransfer across streamlines. This mechanism was initially presented 

n the pioneering work of Taylor [ 1 , 2 ] and subsequently formally

ubstantiated by Aris [3] via application of a statistical moments 

ethod. 

A variety of methods to mitigate axial dispersion have been ap- 

lied with only limited success. These include reduction of the 

imensions of channel cross-section or modification of its shape 

 4 , 5 ] as well as passive mixing via Dean flow [6] or turbulent

ixing. These however, are only effective at high axial velocities 

here dispersion is way too large to be relevant. Furthermore, pas- 
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ive mixing inevitably introduces undesirable axial-velocity com- 

onents which enhance dispersion. Contrary to these passive ap- 

roaches, active mixing [7–9] is applicable in a wide range of axial 

elocities while allowing for the generation of lateral flows accom- 

anied by negligible axial-velocity components. 

The goal of the present contribution is to investigate via both 

heoretical analysis and experimental methods the effectiveness of 

coustically-induced lateral flows to the reduction of dispersion. 

The above-mentioned Taylor [ 1 , 2 ] and Aris [3] analyses only 

onsidered solute transport in Poiseuille flow through a circular- 

ylindrical duct. Their results are therefore only applicable to one- 

imensional rectilinear flows and as such do not allow for the 

nalysis of the effect of the acoustically-induced lateral flow on 

olute dispersion. Effects of lateral flow have so far only been ad- 

ressed theoretically [ 10 , 11 ]. In recent experimental work of our 

roup we have actively induced a purely lateral flow leading to 

ore uniform residence time and reduced dispersion. In [8] an 

scillatory electric field perpendicular to channel axis and its top 

nd bottom walls generates a time-averaged alternating current 

lectroosmotic (ACEO) vertical lateral flow. In [9] such flow is 

coustically excited in a channel (etched in silicon) connected to 

 piezoceramic element. Both methods enable the induction of 

early purely-lateral flow. These experiments demonstrated a re- 

uction of the above-mentioned van Deemter’s C-term by factors 

f 2 and 3, respectively. For the theoretical aspects, we here ap- 

ly the generalized-dispersion-theory (GDT) paradigm introduced 

https://doi.org/10.1016/j.chroma.2022.462970
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chroma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chroma.2022.462970&domain=pdf
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y Brenner [ 12 , 13 ]. This long-time asymptotic scheme (outlined in 

he following) provides in the present context the effective trans- 

ort coefficients, i.e. the axial velocity and dispersion coefficient in 

he presence of a generic lateral flow. We here apply GDT to exam- 

ne the effects of the acoustically-induced lateral flow on disper- 

ion. Results are compared to those obtained from full-scale simu- 

ations and band-broadening experimental data [9] . GDT also pro- 

ides a valuable physical insight into the dispersion process. Since 

 reduction in dispersion gives a reduction in the plate height this 

lso gives a prediction of the potentially-improved performance in 

pen-tubular chromatography. 

The rest of this contribution is organized as follows: We next 

escribe the problem statement and then outline GDT. Subse- 

uently, section 3 describes the simulations. We next discuss the 

esults of the present model, in particular the effects of the lateral 

ow on the B-field essential to the rationalization of the reduction 

f axial dispersion. Results are then compared to those obtained 

ia time-dependent 3D simulations and with experimental data re- 

pectively. Following the demonstrated agreement of the present 

nalytic scheme with both simulations and experimental observa- 

ions, GDT is applied to study the effects of channel cross-section 

imensions and solute diffusivity on the potential reduction of dis- 

ersion via increased lateral flow. The paper ends with a conclu- 

ion and outlook. 

. Theory 

.1. Problem Statement within the framework of generalized 

ispersion theory 

In the absence of irreversible chemical reactions , c( x, y, z, t ) , 

he solute concentration distribution, satisfies the conservation 

onvection-diffusion equation 

∂c 

∂t 
= u ( x, y ) 

∂c 

∂x 
+ v ( x, y ) 

∂c 

∂y 
+ U ( x, y ) 

∂c 

∂z 
− D m 

∇ 

2 c, (1) 

here ( x, y ) ∈ S 0 , is the channel cross-section domain and −∞ < 

 < ∞ is the Cartesian coordinate along the straight open (mod- 

lled as infinitely-long-) channel, u ( x, y ) = ̂

 i u + 

ˆ j v is the lateral

uid velocity and 

ˆ k U( x, y ) is the axial Poiseuille velocity, the con- 

tant D m 

is the uniform isotropic molecular diffusivity of the solute 

nd 

ˆ i , ˆ j and 

ˆ k are the unit vectors in x, y and z direction, respec- 

ively. The above conservation equation is supplemented with the 

oundary conditions 

 · J = n · ( u c − D m 

∇ ⊥ c ) = 0 , (2) 

ith n , the local unit vector normal to the boundary, J the solute 

ross-sectional flux and ∇ ⊥ = ̂

 i ∂ 
∂x 

+ 

ˆ j ∂ 
∂y 

the ‘lateral’ part of the gra- 

ient operation, thus representing impermeability of the channel 

alls to solute flux, the far-field condition 

 ( x, y, z, t ) = 0 , as | z | → ∞ (3) 

nd the condition specifying c( x, y, z, 0 ) , the initial solute- 

oncentration distribution. In applications, the interest is primarily 

ocused on the evolution of the cross-sectional averaged concen- 

ration 

¯
 ( z, t ) = 

1 

| S 0 | 
∫ ∫ 

( x,y ) ε S 0 

c ( x, y, z, t ) d xd y (4) 

ather than on the detailed information embodied in c( x, y, z, t ) . 

his has been addressed for the specific problem of dispersion in 

oiseuille flow within a circular cylindrical tube in the celebrated 

ioneering work of Taylor [ 1 , 2 ] and Aris [3] who established that,

t times long relative to the cross-sectional diffusive relaxation 
2 
ime ∼ | S 0 | / D m 

, c̄ ( z, t ) satisfies the balance equation 

∂ c 

∂t 
+ 

∂ J 

∂z 
= 0 , (5a) 

ith the convection-diffusion constitutive relation for the solute 

ass flux 

 ̄= Ū ̄c − D̄ 

∂ ̄c 

∂z 
, # (5b) 

here, similarly to Aris [3] , the constant effective phenomenologi- 

al coefficients are obtained from the long-time limits of the rate- 

f-change of the first-order and central second-order moments 

 = 

1 

M 0 

lim 

t→∞ 

dM 1 

dt 
(6a) 

nd 

 = 

1 

2 M 0 

lim 

t→∞ 

d 

dt 
( M 2 − M 1 M 1 ) (6b) 

f the first-order and central second-order moments 

 n = 

∫ 
S 0 

∞ ∫ 
−∞ 

z n c ( x, y, z, t ) dz dxdy for n = 0 , 1 , . . . (6c) 

n absence of chemical reactions, M 0 represents the conserved to- 

al amount of solute. The transport coefficients thus obtained rep- 

esent the velocity along the channel of the solute center of mass 

nd the rate of dispersion of the solute cloud. The actual evaluation 

f these is carried out within the framework of GDT as outlined 

n the next subsection. In van Deemter’s theory, the linear mobile 

hase velocity is equal to Ū and the plate height is proportional to 
¯
 . 

.2. Generalized dispersion theory 

The development by Brenner [12,13] of GDT has been moti- 

ated by the recognition that certain fundamental elements of 

aylor-Aris theory retain their validity and usefulness for a wide 

lass of macrotransport problems well beyond the scope of their 

bove-mentioned problem. Thus, GDT generalizes Aris’ [3] mo- 

ent scheme where their long-time asymptotic behavior provides 

he relevant macroscale description of the transport process. The 

eneric problem is stated within an abstract multidimensional 

hase space consisting of the union of q ∈ q 0 , a ‘local’, usually 

ounded, and a ‘global’ unbounded Q ∈ Q ∞ 

subspaces while as- 

uming all phenomenological coefficients to be exclusively depen- 

ent on the local coordinate q . In the present problem the ‘local’ 

ubspace q 0 corresponds to the duct cross-sectional bounded do- 

ain ( x, y ) ∈ S 0 and the ‘global’ domain is Q ∞ 

= z ∈ ( −∞ , ∞ ) , sim-

larly to the classic Taylor-Aris problem. 

The resulting GDT macro-transport paradigm [ 12,13 ] has al- 

owed for the rigorous analysis of a broad class of material (e.g. 

ispersion of chemically-reactive and non-reactive solutes in con- 

inuous and discontinuous porous media, surface- and interfacial- 

ransport, transport in physical space of solute particles possessing 

internal’ orientation- or conformation degrees-of-freedom) as well 

on- material (dispersion of momentum and energy) problems. In 

he context of the present problem, application of GDT is essen- 

ial to the study of the effect of the acoustically-induced lateral 

ow in view of the Taylor-Aris theory being strictly limited to one- 

imensional unidirectional flows as noted above. Applied to the 

resent problem GDT establishes that (at sufficiently long times) 

¯ ( z, t ) , Eq. (4) , is governed by eqs. ( 5a , b ) and (6) with the macro-

cale transport coefficients constant and independent of the initial 

tate distribution, Eq. (3) . The macroscale velocity is obtained via 

he integration over the duct cross-section 

 = 

1 

M 0 

∫ 
( x,y ) ∈ S 0 

c 0 ( x, y ) U ( x, y ) dxdy (7a) 
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Fig. 1. a) Geometry of the time-dependent simulation including dimensions of the 

channel with a display of the lateral and axial flow field positioned in the channel. 

b) cross-sectional schematic overview of the experimental set-up. 
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here the stationary field c 0 is in the long-time limit 

 0 ( x, y ) = lim 

t→∞ 

∞ 

∫ 
−∞ 

c ( x, y, z, t ) dz. (7b) 

Normalizing solute concentration by the (conserved) total 

mount of solute, c 0 thus defined represents the fraction of solute 

long the straight line parallel to the z-axis and passing through 

 x, y ) . It is governed by the ‘local’-subspace boundary-value prob- 

em 

 ⊥ · ( u c 0 − D m 

∇ ⊥ c 0 ) = 0 , (8a) 

ogether with the boundary- 

ˆ 
 · ( u c − D m 

∇ ⊥ c ) = 0 (8b) 

nd normalization- 
 

S 0 

c 0 dxdy = 1 (8c) 

onditions. In the absence of external force fields, solute is pas- 

ively convected in the ambient incompressible flow field satisfy- 

ng ∇ ⊥ · u = 0 and ˆ n · u = 0 , i.e. impermeability of the duct wall

o the fluid, c 0 is uniform across S 0 , the duct cross-section. Thus 

 0 = 1 / | S 0 | where | S 0 | denotes the cross-sectional area. The effec-

ive solute velocity Ū is thus equal to the cross-sectional average 

f the carrier fluid axial velocity. The effective macroscale disper- 

ivity is D̄ = D̄ m 

+ D̄ c thus including the contributions of molecular 

iffusion 

 m 

= 

∫ 
S 0 

c 0 D m 

dxdy = D m 

(9a) 

n view of the uniformity of c 0 , and the Taylor-dispersion coeffi- 

ient 

¯
 c = 

1 

| S 0 | ∫ S 0 

B ( x, y ) 
[
U ( x, y ) − Ū 

]
d xd y, # (9b) 

espectively, where the B ( x, y ) field is defined by the long-time 

imit 

 ( x, y ) = lim 

t→∞ 

{ 

1 

c 0 

∫ 
s 0 

zc ( x, y, z, t ) dz − U t 

} 

. (10) 

imilarly to the above c 0 , the asymptotic analysis establishes that 

 ( x, y ) thus defined is indeed stationary and independent of the 

nitial solute distribution c( x, y, z, 0 ) . The first term on the RHS of 

q. (10) represents the time variation of center-of-mass of the frac- 

ion of solute along the straight line parallel to the z-axis pass- 

ng through the point ( x, y ) within the duct cross-section S 0 . The 

inematic significance of Eq. (10) is that B ( x, y ) represents in the 

ong-time limit the constant axial distance between solute centroid 

long each of these axial lines and the center of mass of the entire

olute cloud, respectively. The B-field is effectively obtained from 

he boundary-value problem 

 ⊥ · ( u ( x, y ) B − D m 

∇ ⊥ B ) = U ( x, y ) − U (11a) 

ithin S 0 together with the condition 

 · ( u B − D m 

∇ ⊥ B ) = 0 (11b) 

n the boundaries of the duct cross-section. These determine B to 

ithin an arbitrary additive constant B̄ which, in turn, as can be 

erified readily from the definition of Ū ( Eq. 7a ), has no effect on
¯
 c ( Eq. 9b ). We thus render B ( x, y ) unique by imposing the addi-

ional normalization condition 

 

S 0 

B ( x, y ) d xd y = 0 (11c) 

n summary, for U( x, y ) , u ( x, y ) and D m 

given, the fields c 0 ( x, y )

nd B ( x, y ) are obtainable from eqs. ( 8a - c ) and ( 11a - c ), respectively.
3 
he effective macroscale transport coefficient Ū and D̄ appearing in 

he constitutive equation of the axial solute flux ( Eq. 5b ) are then

valuated from Eq. (7a) , ( 9a ) and ( 9b ). 

. Method 

Computations were performed on a HP workstation running 

indows 10 Enterprise (64-bits) equipped with 32 GB RAM and 

 hexacore Intel processor (I7-4930K), using COMSOL Multiphysics 

version 5.3). First, dispersion was determined based on three- 

imensional time-dependent simulations wherein a solute plug 

as injected and followed through time. Depending on the ap- 

lied velocities, these simulations took up to 12 hours. The results 

hus obtained were compared with dispersion coefficients obtained 

ith the generalized dispersion theory. 

.1. Time dependent model 

The band broadening simulations were performed in an open 

ectangular channel with dimensions of 37.5 μm x 15.0 μm x 5.0 

m ( Fig. 1 ). This geometry was meshed using 2 625 152 cells, 

ith an average mesh quality of 0.67. A Poiseuille flow was ap- 

lied in the axial direction and acoustic streaming in the lateral 

irection. The velocity field of the acoustic streaming was deter- 

ined using the limiting velocity method (LVM) described by Lei 

t al. [14] . As this method only solves the outer boundary stream- 

ng with the assumption of an incompressible flow and neglectable 

nertial terms and thermoviscous effects, the computation time is 

inimized. Using the module ‘Transport of Diluted Species’ a so- 

ute plug ( D m 

= 5.4 × 10 −10 m 

2 /s ) was injected at t = 0. The inte-

ral over the cross section ∫ c ( x, y, z, t ) dA at two axial positions (4 

m and 5 mm downstream) was determined and used to eval- 

ate the axial dispersion coefficient and the reduced plate height 

 = 

�σ 2 
z 

�z 
· 1 

l 
with σz the standard deviation of the solute distribu- 

ion in the axial direction and l the characteristic length, being the 

eight of the channel. 
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.2. GDT implementation 

For the implementation of GDT, COMSOL was used to determine 

he different solutions. 

.3.1. Axial flow 

Since most chromatographic systems are pressure driven, we 

se an axial pressure-driven flow in this work. The Hagen–

oiseuille equation was used to determine the flow in axial direc- 

ion through the cross-section of the channel 

∂ 2 v 
∂ y 2 

+ 

∂ 2 u 

∂ x 2 
= − G 

μ
(12a) 

here G = 

dp 
dz 

, μ the viscosity of the fluid and the boundary con- 

itions are 

 ( x, 0 ) = u ( x, h ) = 0 (12b) 

 ( 0 , y ) = u ( w, y ) = 0 (12c) 

hile there exists a semi-analytic solution [15] we found it more 

onvenient for our present purpose to use the numerical solution. 

he cross sectional geometry was meshed using 31 768 cells with 

n average mesh quality of 0.94. 

.3.2. Lateral flow 

Boundary-driven acoustic streaming is a flow phenomenon in- 

uced at the channel walls and allows for the generation of long- 

ange (10 −3 m) lateral flows with a negligible axial component. 

urthermore, acoustic streaming has been well studied from both 

 theoretical and experimental point of view [16–19] . To induce 

coustic streaming, a microchannel is usually placed on a piezoce- 

amic element which operates at the resonance frequency of the 

uid-filled microfluidic channel. To achieve resonance the chan- 

el width (w) should be a multiple of half the wavelength λ
w = n 

∗λ/2). For submillimeter channels filled with water, the res- 

nance frequency is within the low MHz range. Similar to the 3D 

imulations, the LVM method was used to determine the lateral 

elocity field. 

. Results & discussion 

In the employed acoustic streaming system, the axial flow is a 

onventional Poiseuille flow (see Fig. 2 a). In Fig. 2 b, the lateral, 

coustically induced, flow profile as obtained by CFD is depicted, 

howing the occurrence of 4 main vortices characteristic for half 

avelength actuation (w = λ/2). 

The magnitude of the vortices depends on the channel dimen- 

ions and amplitude of wall displacement. Using Eqs. 11a - 11c , the 

-field ( Fig. 2 c) is uniquely determined. As stated in section 2 , the

-field can be given a kinematic interpretation as the distance be- 

ween the axial center of mass of the entire solute slug and the ax- 

al center of mass of the slug at a specific coordinate in the cross- 

ection. 

By Eq. (9b) , when seeking to minimize dispersion for a given 

ressure-driven (Poiseuille) channel flow and solute-carrier-fluid 

air, it is desirable to modify the distribution of B ( x, y ) through 

he introduction of a secondary (lateral) flow u ( x, y ) (cf. 11a) Fig. 3 .

resents the evolution of the B ( x, y ) field with increasing lateral 

éclet number, P e lat = | u | a v h/ D m 

,where | u | a v denotes the average 

ateral fluid speed over the channel cross-section and h is the 

hannel depth. 

By the double mirror-image symmetry of both u ( x, y ) and 

 ( x, y ) ( Fig. 2 b and 2 c, respectively), in Fig. 3 we only present

he lower-right quarter of the channel cross-section. The various 

ubfigures present the level lines of B ( x, y ) together with corre- 

ponding distributions of the relative magnitudes, of B ( x, y ) , across 
4 
he domain. It is important to note that, as mentioned above, the 

olour code is not uniform, but rather specific to each part of the 

gure. The caption of the figure details the range of values in each 

art. With increasing P e lat we note that the level line pattern is 

ecoming similar to the corresponding streamline pattern of the 

econdary flow (cf Fig. 2 .b and 2 c). Indeed, by the dimensionless 

ersion of Eq (11a) , with increasing P e lat >> 1 for a fixed value of

 ax = Ū h/ D m 

, the equation reduces to: 

 · ∇B = 0 (11a ′ ) 

The above implies that the value of B is constant along each 

treamline of the lateral flow. It is, however important to note 

hat owing to the singularity of the limit Pe >> 1 , the effect of

he weak diffusion is non-negligible. It typically occurs in trans- 

ort problems, characterized by the occurrence of closed stream- 

ines or particle trajectories, that [20–22] the (weak) diffusion af- 

ects the relatively slow transport across streamlines or particle 

rajectories. This determines the long-time limit (relevant to Taylor 

ispersion) distribution of B between the level lines (with remains 

ndeterminate otherwise). As can be observed in Fig. 3 , the lateral 

coustically-driven flow, acts to diminish the range of the B-values, 

.e. uniformize B ( x, y ) which, in turn corresponds to diminishing B 

hich is in agreement with the kinematic significance of B ( x, y ) . 

rom equation 9b follows that when diminishing B ( x, y ) , the dis- 

ersion also diminishes. 

.1. Comparison with time-dependent numerical model 

We compared a full-scale 3D-time dependent numerical sim- 

lation with our GDT-model and both have been compared to a 
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Fig. 3. level lines of the B-field distribution in the bottom-right quarter of the duct cross section for P e ax = 783 and P e lat : a) 3, b) 30, c) 300 and d) 30 0 0. The level lines 

show constant values of the B-field, the color shows the B-field distribution, with as maximum and minimum value, a) 6200 μm , -6572 μm b) 1179 μm , -1429 μm c) 

205.8 μm , -406.1 μm d) 193.4 μm , -175.4 μm . 

Fig. 4. Effect of acoustic streaming on the reduced plate height as a function of 

reduced axial velocity for a channel with a cross-section of dimensions 37.5 × 15 

μm. 3D Time dependent simulations (circles) as well as simulations applying the 

Generalized Dispersion Theory (squares) were performed, with the average lateral 

speeds, P e lat being 0(red), 15 (blue) and 30 (yellow). The theoretical curve (dotted 

line), is obtained from Poppe’s work [22] . 

s

s  

t

a

u

e

t

t

g

o

T

a

i

l

r

d

f

c

r

i

s

v

4

G

l

p

n  

n

n  

T

U

fi

c

i

d

a

a

a

a

T

a

a

a

a

r

b  

m

r

b  

t

v

b

o

t

v

c  

t

t

d

o

b

emi-analytical model proposed by Poppe [23] (the latter in ab- 

ence of secondary flow). As can be observed from Fig. 4 , in which

he plate height is plotted against the axial velocity, both models 

re in good agreement with the semi-analytical model. A resid- 

al standard deviation (S res ) has been calculated for both mod- 

ls which gave 0.0564 and 0.0467, respectively. The agreement be- 

ween the different models can be observed from Fig. 4 , in which 

he plate height is plotted against the axial velocity. 

The results of the time-dependent simulation model and the 

eneralized dispersion theory are in good agreement with each 

ther at all lateral and axial velocities simulated (S res = 0.0622). 

he former, however, took several hours to run, while the latter 

pproximation is obtained within a minute. Although the general- 

zed dispersion theory is in principle only valid in the long time- 

imit, good agreement between the results of both models is al- 

eady achieved for relatively short channels (typically within axial 

istances comparable to 10 times the channel depth downstream 

rom where the solute plug is introduced). This suggests that GDT 

an be used to determine the dispersion for most experimentally 

elevant channel lengths. Another benefit of applying the general- 

zed dispersion theory to dispersion problems is the physical in- 
5 
ight into the problem in terms of the B-field distribution and its 

ariation resulting from lateral convection. 

.2. Comparison with experimental results. 

To assess the validity and usefulness of the application of the 

DT in an experimental setting, a comparison with, earlier pub- 

ished [9], experimental data has been performed as well. The dis- 

ersion experiments were performed in silicon chips with a chan- 

el of dimensions 375 μm x 33 μm (w x h). The chip was con-

ected to a piezo-ceramic element (15 × 20 × 1 mm, APC Inter- 

ational Lt., USA) and actuated at a frequency of 1.95Mhz ( Fig 1 b.).

he actuator was driven by a frequency generator (AFG Tektronix 

K Ltd., UK) and the voltage was amplified by a RF power ampli- 

er (210L, Electronics & Innovation, USA). The medium inside the 

hannel was DI water and the injected plug was DI water contain- 

ng the fluorescent dye, Fluorescein isothiocyanate (FITC). The re- 

uced plate height was determined by injecting a plug of FITC into 

 microchannel in the presence of acoustically induced lateral flow 

nd subsequent measurement of its width at the point of injection 

nd 5mm downstream. The measured lateral velocity was used as 

 fitting parameter for the simulation of the acoustofluidic model. 

he lateral velocity field thus simulated has, in turn, been used as 

n input for the generalized dispersion model. 

Fig. 5 presents the effect of induced secondary flow on the vari- 

tion of reduced plate height with P e ax representing the reduced 

xial velocity. Squares and circles represent experimental values 

nd theoretical (GDT) predictions, respectively. The red symbols 

epresent the variation in the absence of lateral flow, blue sym- 

ols correspond to P e lat = 47 . In both cases there is a good agree-

ent between corresponding experimental observation and theo- 

etical (GDT) predictions. Both show a reduction of plate height 

y a factor of 2 as a result of the induced lateral flow. To reduce

he plate height, most effort s in the last decades have been de- 

oted to reducing the characteristic length of the system. In packed 

ed columns this is done by reducing the particle size and in 

pen-tubular columns this is done by reducing the dimensions of 

he cross-section of the channel. Furthermore, the A-term in the 

an Deemter equation has been reduced by using open-tubular 

olumns or by using ordered pillar arrays [ 24 , 25 ]. Reducing the C-

erm by inducing lateral convection, is a totally new approach in 

he field of chromatography and Fig. 5 shows that a substantial re- 

uction can be made using this. A next step would be to make an 

pen-tubular column with porous walls in which convection can 

e induced. 
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Fig. 5. Comparison of simulations performed with GDT and experimental data ob- 

tained for channels with a rectangular cross section of 375 × 33 μm. The theoret- 

ical curve (dotted line) is obtained from the semi-analytic expression for the plate 

height without lateral flow, from poppe [22] . Squares display experimental values, 

circles display values obtained with GDT. Red denotes results obtained in the ab- 

sence of lateral flow and blue denotes results obtained with an average lateral Pé- 

clet number of 5.5. 

4

d

p

b

n

o

n

s

t

o

v

f

o

μ

F

T

a

a

D

1

Fig. 7. Effects of solute diffusion coefficient and downscaling of channel cross- 

section dimensions on the variation of the relative Taylor-Aris dispersion coeffi- 

cient with the ratio of average lateral- and axial- speed. The axial velocity is fixed 

well into the C-term regime. Red circles, 375 × 150 μm, D m = 1 ∗ 10 −10 . Yellow 

circles, 37.5 × 15 μm, D m = 1 ∗ 10 −10 . Blue circles, 3.75 × 1.5 μm, D m = 1 ∗ 10 −10 . 

Red squares, 375 × 150 μm, D m = 1 ∗ 10 −12 . Yellow squares, 37.5 × 15.0 μm, D m = 

1 ∗ 10 −12 . Blue squares, 3.75 × 1.50 μm, D m = 1 ∗ 10 −12 . 
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.3. Variation of dispersion coefficient for different dimensions and 

iffusivity coefficient of the solute 

In silicon chip chromatography as well as in acoustofluidic ap- 

lications, microchannels are often rectangular with aspect ratios 

eing unequal to one. The variation of dispersion in microchan- 

els of varying aspect ratios is well documented in the absence 

f lateral flow [ 4 , 23 ]. Furthermore the dispersion in microchan- 

els of various shapes, packed with porous particles has been 

tudied theoretically [26] as well as experimentally [27] . Here, we 

urn to consider the effect of increasing lateral acoustofluidic flow 

n the dispersion coefficient in rectangular microchannels with 

arying cross-sectional aspect ratio AR and solute molecular dif- 

usivity. To this end, Fig. 6 presents the variation with P e lat /P e ax 

f D c / D c, 0 for rectangular microchannels of uniform width (375 

m) and several combinations of depth to width aspect ratio AR, 
ig. 6. Effects of aspect ratio (AR) and diffusion coefficient (D m ) on the relative 

aylor-Ais dispersion coefficient as a function of velocity ratios of the average lateral 

nd average axial speed. For channel width = 375 μm and depths depending on the 

spect ratio and average axial Péclet number of 78. Indicated by red, AR = 2,5 and 

 m = 1 ∗ 10 −10 , blue, AR = 11 and D m = 1 ∗ 10 −10 and yellow, AR = 11 and D m = 5 . 4 ∗
0 −10 . 
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6 
nd solute diffusion coefficients D m 

, (AR, D m 

) = (2.5, 10 −10 m/ s 2 , 

ed), (11, 10 −10 m/ s 2 , blue) and (11, 5.4x 10 −10 m/ s 2 , yellow). 

We see that increasing either AR or D m 

results in a less signif- 

cant relative reduction of the dispersion coefficient. These trends 

eflect the fact that the secondary flow is only affecting D c , the 

onvective ‘Taylor’ part of D̄ , while, with increasing either AR or 

 m 

, the relative contribution of D c is decreasing. This reduction 

n D c results in a lower contribution from the C-term of the van 

eemter equation and therefore in lower plate heights. 

To further reduce the dispersion coefficient for given AR and 

iffusion coefficient, one could in principle seek the most optimal 

ateral flow pattern. In practice however, the lower bounds will 

ost often not be reached and therefore focusing on inducing a 

igh lateral velocity will be a more effective strategy in reducing 

ispersion. 

To evaluate the potential gain of the vortex chromatography 

ethod for the best possible conditions for performing analytical 

eparations, it is interesting to examine how downscaling of the 

hannel size affects the dispersion coefficient. In Fig. 7 , a chan- 

el of 375 μm x 150 μm is successively scaled down, first by a 

actor of 10 and then by a factor of 100 at a fixed axial velocity

n the C-term regime and for D m 

= 10 −10 m 

2 /s and D m 

= 10 −12 

 

2 /s, respectively corresponding to relatively small and large ana- 

yte molecules. Similar to Fig. 6 , in all cases presented the relative 

ispersion coefficient decreases monotonically decreasing with in- 

reasing P e lat /P e ax . As observed in Fig. 3 , with enhanced secondary 

ow the B field approaches uniformity throughout the channel 

ross section, which results in diminishing D c , the ‘convective’ Tay- 

or term accompanied by the dispersion coefficient approaching 

he lower limit, i.e. the solute molecular diffusivity D̄ → D̄ m 

. What 

an be appreciated from Figs. 6 and 7 is that the major portion 

f the potential reduction of D̄ is already achieved at relatively 

mall ratio of lateral- to axial- fluid velocities. This is particularly 

isible for the combination of larger cross-sectional dimensions 

nd smaller solute diffusivity, i.e. those cases where the convec- 

ive effect represented by D c , the Taylor term, is significant. From 

ig. 7 it is clear that for all cases, at a relative streaming veloc- 

ty P e lat /P e ax = 0 . 5 , a reduction of dispersion by a factor of 10 or

arger is generally attained. At values of P e lat /P e ax = 2 , even a gain

f close to 2 orders of magnitude is predicted. 
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. Conclusion & outlook 

In this work we describe the application of the generalized dis- 

ersion theory to demonstrate the effective reduction of Taylor dis- 

ersion and show that it is in good agreement with the exper- 

mental results for dispersion in microchannels. We showed fur- 

hermore that using GDT is far less computational power demand- 

ng than a 3D time-dependent simulation. 

We discussed the usability of lateral mixing with acoustic 

treaming for microchannels with different sizes and aspect ra- 

ios. However, currently available acoustic actuators put a lower 

imit to the channel size. Currently available PZT frequencies are 

n the range of 20 MHz, limiting one of the channel dimensions 

o 37.5 μm. Current research, however, aims at integrating films of 

ZT material into the microfluidic channels, allowing for actuation 

requencies higher than 100 MHz [ 28 , 29 ]. At a frequency of 100

Hz, channel sizes of 7.5 μm can be used with water as a mobile

hase. For the electroosmotic approach however, the smallest di- 

ension in which vortices can be produced is sub-micron, which 

ight therefore be an approach that can be more readily put in 

ractice. We also showed that the average lateral flow speed needs 

o be sufficiently high to induce sufficient gain. Experimental work 

s underway aiming at lateral flows in the hundreds of μm/s in 

uch micron-scale channels. 

The present study has not considered the potential effects of 

olute retention/ adsorption. Because of an increasing C-term con- 

ribution to dispersion at increasing retention, it is expected that 

ateral flows will result in a significant dispersion reduction under 

etained conditions. This aspect will be at the focus of a follow- 

p study. Future work can also study how different types of lat- 

ral flows can be used to reduce Taylor-Aris dispersion. Thus, while 

he present model has only considered steady lateral flows, fu- 

ure work will examine the potential effects of time-periodic lat- 

ral flows. 
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