
Alpinist: an Annotation-Aware GPU Program
Optimizer?

Ömer Şakar1(�) , Mohsen Safari1 , Marieke Huisman1 , and Anton Wijs2

1 Formal Methods and Tools, University of Twente, Enschede, The Netherlands
{o.f.o.sakar,m.safari,m.huisman}@utwente.nl

2 Software Engineering & Technology, Eindhoven University of Technology,
Eindhoven, The Netherlands

a.j.wijs@tue.nl

Abstract. GPU programs are widely used in industry. To obtain the
best performance, a typical development process involves the manual or
semi-automatic application of optimizations prior to compiling the code.
To avoid the introduction of errors, we can augment GPU programs
with (pre- and postcondition-style) annotations to capture functional
properties. However, keeping these annotations correct when optimizing
GPU programs is labor-intensive and error-prone.

This paper introduces Alpinist, an annotation-aware GPU program op-
timizer. It applies frequently-used GPU optimizations, but besides trans-
forming code, it also transforms the annotations. We evaluate Alpinist,
in combination with the VerCors program verifier, to automatically op-
timize a collection of verified programs and reverify them.

Keywords: GPU · Optimization · Deductive verification · Annotation-
aware · Program transformation

1 Introduction

Over the course of roughly a decade, graphics processing units (GPUs) have
been pushing the computational limits in fields as diverse as computational biol-
ogy [64], statistics [35], physics [7], astronomy [24], deep learning [29], and formal
methods [17,43,44,65,67]. Dedicated programming languages such as CUDA [34]
and OpenCL [42] can be used to write GPU source code. To achieve the most
performance out of GPUs, developer should apply incremental optimizations,
tailored to the GPU architecture. Unfortunately, this is to a large extent a man-
ual activity. The fact that for different GPU devices, the same code tends to
require a different sequence of transformations [21] makes this procedure even
more time consuming and error-prone. Recently, automating this has received
some attention, for instance by applying machine learning [3].

? This work is supported by NWO grant 639.023.710 for the Mercedes project and by
NWO TTW grant 17249 for the ChEOPS project

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 332–352, 2022.
https://doi.org/10.1007/978-3-030-99527-0_18

http://orcid.org/0000-0003-3457-5446
http://orcid.org/0000-0003-0839-3251
http://orcid.org/0000-0003-4467-072X
http://orcid.org/0000-0002-2071-9624
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99527-0_18&domain=pdf

User-Selected
Transformations

sdf

1

2

3

4

Annotated
Program

Deductive Program Verifier

Annotation-Aware
Program

Transformer

Transformed
Annotated
Program

Fig. 1: Annotation-Aware Program Transformation.

Reasoning about the correctness of GPU software is hard, but necessary. Mul-
tiple verification techniques and tools have been developed to aid in this task
aimed at detecting data races, see [8, 10, 14, 32, 33], and for a recent overview,
see [22]. Some of these techniques apply deductive program verification, which
requires a program to be manually augmented with pre- and postcondition an-
notations. However, annotating a program is time consuming. The more complex
a program is, the more challenging it becomes to annotate it. In particular, as a
program is being optimized repeatedly, its annotations tend to change frequently.

This paper presents Alpinist, a tool that can apply annotation-aware trans-
formations [26] on annotated GPU programs. It can be used with the deductive
program verifier VerCors [9]. VerCors can verify the functional correctness of
GPU programs [10]. It allows the verification of many typical GPU computa-
tions, see e.g., [48,50,51]. The purpose of Alpinist is twofold (see Fig. 1): First, it
automates the optimization of GPU code, to the extent that the developer needs
to indicate which optimization needs to be applied where, and the tool performs
the transformation. Interestingly, the presence of annotations is exploited by
Alpinist to determine whether an optimization is actually applicable, and in
doing so, can sometimes apply an optimization where a compiler cannot. Second,
as it applies a code transformation, it also transforms the related annotations,
which means that once the developer has annotated the unoptimized, simpler
code, any further optimized version of that code is automatically annotated with
updated pre- and postconditions, making it reverifiable. This avoids having to
re-annotate the program every time it is optimized for a specific GPU device.

Alpinist supports GPU code optimizations that are used frequently in prac-
tice, namely loop unrolling, tiling, kernel fusion, iteration merging, matrix lin-
earization and data prefetching. In the current paper, we discuss how Alpinist
has been implemented, how it can be applied on annotated GPU code, and how
some of the more complex optimizations work. In addition, we evaluate the ef-
fect of applying several of these optimizations, both in terms of annotation size
and time needed to verify a program, to a collection of examples including the
verified case studies in [48, 49,51].

Outline. Section 2 demonstrates how Alpinist optimizes a verified GPU pro-
gram while preserving its provability. Section 3 discusses the architecture of
Alpinist. Section 4 discusses the most complex optimizations supported by

Alpinist: an Annotation-Aware GPU Program Optimizer 333

1 /*@ context_everywhere N > 0 && N < a.length;
2 req (\forall* int i; 0 <= i < a.length; Perm(a[i], 1));
3 ens (\forall* int i; 0 <= i < a.length; i != a.length-1 ==> Perm(a[i+1], 1));
4 ens (\forall* int i; 0 <= i < a.length; i == a.length-1 ==> Perm(a[0], 1));
5 ens (\forall int i; 0 <= i < a.length-1; a[i+1] == N*i);
6 ens a[0] == N*(a.length-1); @*/
7 void Host(int[] a, int size, int N) {
8 par Kernel1 (int tid = 0 .. a.length)
9 /*@ context Perm(a[tid], 1);

10 ens a[tid] == 0; @*/
11 { a[tid] = 0; }
12 par Kernel2 (int tid = 0 .. a.length)
13 /*@ context tid != a.length-1 ? Perm(a[tid+1], 1) : Perm(a[0], 1);
14 req tid != a.length-1 ? a[tid+1] == 0 : a[0] == 0;
15 ens tid != a.length-1 ? a[tid+1] == N*tid : a[0] == N*tid; @*/
16 { /*@ inv k >= 0 && k <= N;
17 inv tid != a.length-1 ? Perm(a[tid+1], 1) : Perm(a[0], 1);
18 inv tid != a.length-1 ? a[tid+1] == k*tid : a[0] == k*tid;@*/
19 for(int k = 0; k < N; k++) {
20 if (tid != a.length-1) { a[tid+1] = a[tid+1] + tid; }
21 else { a[0] = a[0] + tid; }
22 } } }

Fig. 2: A verified GPU-style program

Alpinist in detail, namely loop unrolling, tiling and kernel fusion, and briefly
discusses the remaining three. Section 5 presents the results of experiments in
which the tool has been applied on a collection of programs. Section 6 discusses
related work and Section 7 concludes the paper, and discusses future work.

2 Annotation-Aware Optimization using Alpinist

This section illustrates how Alpinist can optimize a verified GPU program while
preserving its provability. Fig. 2 shows a GPU program with annotations [10] that
is verified by VerCors. The example is written in a simplified version of VerCors’
own language PVL. The program initializes an array a, and subsequently updates
the values in a, N times. The workflow of a GPU program in general is that the
host (i.e., CPU) invokes a kernel, i.e., a GPU function, executed by a specified
number of GPU threads. These threads are organized in one or more thread
blocks. In this program, there are two kernels, both executed by one thread
block of a.length threads (lines 8 and 12 (l.8, l.12))3. Each thread has a unique
identifier, in the example called tid. In the first kernel (l.8-l.11), each thread
initializes a[tid] to 0. In the second kernel (l.12-l.22), each thread updates
a[tid+1] (modulo a.length) N times, by adding tid to it. In the main Host

function, Kernel1 is called, followed by Kernel2.
The kernels, the for-loop and the host function are annotated for verification

(in blue), using permission-based separation logic [6,11,12]. Permissions capture
which memory locations may be accessed by which threads; they are fractional
values in the interval (0, 1] (cf. Boyland [12]): any fraction in the interval (0,

3 In practice, the size of a block cannot exceed a specific upper-bound, but for this
example, we assume that a.length is sufficiently small.

334 Ö. Şakar et al.

1 /*@ context_everywhere N > 0 && N < a.length;
2 req (\forall* int i; 0 <= i < a.length; Perm(a[i], 1));
3 ens (\forall* int i; 0 <= i < a.length; i != a.length-1 ==> Perm(a[i+1], 1));
4 ens (\forall* int i; 0 <= i < a.length; i == a.length-1 ==> Perm(a[0], 1));
5 ens (\forall int i; 0 <= i < a.length-1; a[i+1] == N*i);
6 ens a[0] == N*(a.length-1); @*/
7 void Host(int[] a,int size,int N){
8 par Fused_Kernel(int tid = 0 .. a.length)

9 /*@ req Perm(a[tid], 1);

10 ens tid != a.length-1 ? Perm(a[tid+1], 1) : Perm(a[0], 1);

11 ens tid != a.length-1 ? a[tid+1] == N*tid : a[0] == N*tid; @*/
12 {
13 a[tid] = 0;

14 /*@ req Perm(a[tid], 1);

15 req a[tid] == 0;

16 ens tid != a.length-1 ? Perm(a[tid+1], 1) : Perm(a[0], 1);

17 ens tid != a.length-1 ? a[tid+1] == 0 : a[0] == 0; @*/
18 barrier(Fused_Kernel)
19
20 int a_reg_0, a_reg_1;
21 if (tid != a.length-1) { a_reg_1 = a[tid+1] } else { a_reg_0 = a[0] }
22 int k = 0;
23 if (tid != a.length-1) { a_reg_1 = a_reg_1 + tid; }
24 else { a_reg_0 = a_reg_0 + tid; }
25 k ++;
26 /*@ inv k >= 0 + 1 && k <= N;
27 inv tid != a.length-1 ? Perm(a[tid+1], 1) : Perm(a[0], 1);
28 inv tid != a.length-1 ? a reg 1 == k*tid : a reg 0 == k*tid; @*/
29 for(k; k < N; k++) {
30 if (tid != a.length-1) { a_reg_1 = a_reg_1 + tid; }
31 else { a_reg_0 = a_reg_0 + tid; }
32 }
33 if (tid != a.length-1) { a[tid+1] = a_reg_1 } else { a[0] = a_reg_0 };
34 } }

Fig. 3: An optimized GPU-style program, annotated for verification

1) indicates a read permission, while 1 indicates a write permission. A write
permission can be split into multiple read permissions and read permissions can
be added up, and transformed into a write permission if they add up to 1. The
soundness of the logic ensures that for each memory location, the total number
of permissions among all threads does not exceed 1.

To specify permissions, predicates are used of the form Perm(L, π) where L

is a heap location and π a fractional value in the interval (0, 1] (e.g., 1\3). Pre-
and postconditions, denoted by keywords req and ens, should hold at the begin-
ning and the end of an annotated function, respectively. The keyword context

abbreviates both req and ens (l.9, l.13). The keyword context everywhere is
used to specify a property that must hold throughout the function (l.1). Note
that \forall* is used to express a universal separating conjunction over permis-
sion predicates (l.2-l.4) and \forall is used as standard universal conjunction
over logical predicates (l.5). For logical conjunction, && is used and ∗∗ is used as
separating conjunction in separation logic.

In the example, write permissions are required for all locations in a (l.2).
The pre- and postconditions of the first kernel specify that each thread needs
write permission for a[tid] (l.9). The postcondition states that a[tid] is set
to 0 (l.10). In the second kernel, all threads have write permission for a[tid+1],

Alpinist: an Annotation-Aware GPU Program Optimizer 335

except thread a.length-1 which has write permission for a[0] (l.13). Moreover,
it is required that a[tid+1] (modulo a.length) is 0 (l.14). For the for-loop (l.19-
l.22), loop invariants are specified: k is in the range [0, N] (l.16), each thread has
write permission for a[tid+1] (modulo a.length) (l.17) and this location always
has the value k*tid (l.18). The postconditions of the second kernel and the host
function are similar to this latter invariant.

Fig. 3 shows an optimized version of the program, with updated annotations
to make it verifiable. Alpinist has applied three optimizations:

1. Fusing the two kernels : in GPU programs, the only global synchronisation
points (used, for instance, to avoid data races) exist implicitly between ker-
nel launches. However, if such a global synchronisation point is not really
needed between two specific kernels, then fusing them gives several benefits,
in particular the ability to store intermediate results in (fast) thread-local
register memory as opposed to (slow) GPU global memory, and it has a
positive effect on power consumption [62]. In the example, the kernels are
combined into Fused Kernel, and a thread block-local barrier is introduced
(l.18) to avoid data races within the single thread block executing the code.

2. Using register memory ; register variables can be used to reduce the number
of global memory accesses. Here, the use of a reg 0 and a reg 1 has been
enabled by kernel fusion.

3. Unrolling the for-loop; the for-loop has been unrolled once here (l.20-l.25).
Since GPU threads are very light-weight, compared to CPU threads, any
checking of conditions that can be avoided benefits performance. When un-
rolling a loop, this means that fewer checks of the loop-condition are needed.
Note that here, Alpinist benefits from the knowledge that N > 0 (l.1), so it
knows that the for-loop can be unrolled at least once.

To preserve provability of the optimized program, Alpinist changed the
annotations, in particular the pre- and postcondition of the fused kernel and
the loop invariants (highlighted in Fig. 3). Moreover, Alpinist introduced an
annotated barrier (l.14-l.18). Since threads synchronize at a barrier, it is possible
to redistribute the permissions. In the rest of the paper, we discuss how Alpinist
performs these annotation-aware transformations.

3 The Design of Alpinist

This section gives a high-level overview of the design of Alpinist. The opti-
mizations supported by Alpinist are discussed in Section 4. To understand the
design of Alpinist, we first explain the architecture of the VerCors verifier.

3.1 VerCors’ Architecture

VerCors is a deductive program verifier, which is designed to work for different in-
put languages (e.g., Java and OpenCL). It takes as input an annotated program,

336 Ö. Şakar et al.

which is then transformed in several steps into an annotated Silver program. Sil-
ver is an intermediate verification language, used as input for Viper [37, 60].
Viper then generates proof obligations, which can be discharged by an auto-
mated theorem prover, such as Z3 [36].

The internal transformations in VerCors are defined over our internal AST
representation (written in the Common Object Language or COL [52]), which
captures the features of all input languages. Some of the transformations are
generic (e.g., splitting composite variable declarations) and others are specific
to verification (e.g., transforming contracts). The transformations implemented
as part of Alpinist are also applied on the COL AST, but they are developed
with a different goal in mind, and in particular several of the transformation are
specific to the supported optimizations.

Using VerCors and its architecture to implement Alpinist gives us some ben-
efits. First, existing helper functions can be reused, which simplifies tasks such
as gathering information regarding specific AST nodes. Second, some generic
transformations of VerCors can be reused, such as splitting composite variable
declarations or simplifying expressions. This helps to simplify the implementa-
tion of the optimizations. Third, using the architecture of VerCors allows us to
prove assertions that we generate relatively easily by invoking VerCors internally.

3.2 Alpinist’s Architecture

Alpinist takes a verified file as its input, annotated with special optimiza-
tion annotations that indicate where specific optimizations should be applied.
Alpinist is written in Java and Scala and runs on Windows, Linux and macOS.
Fig. 4 gives a high-level overview of the internal design of Alpinist. The input
program goes through four phases: the parsing phase, the applicability checking
phase, the transformation phase and the output phase.

The parsing phase transforms the input file into a COL AST, after which
the applicability checking phase checks if the optimization can be applied. Some
optimizations, such as tiling (see Section 4.2), are always applicable, hence their
applicability check always passes. For other optimizations, prerequisites must be
established. Sometimes, a syntactical analysis of the AST suffices, e.g., kernel
fusion (see Section 4.3). For this optimization, it must be determined whether
there is any data dependency between two selected kernels. When analysis of the
AST is not enough, VerCors can be used to perform more complex reasoning.
An example of this is loop unrolling (see Section 4.1). Its prerequisite is that for
the loop to be unrollable k times, it is guaranteed that the loop executes at least
k times. This prerequisite is encoded as an assertion to be proven by VerCors.

The applicability checking phase is one of the strengths of Alpinist. It ex-
ploits the fact that the input program is annotated to determine whether an
optimization is applicable, and relies on the fact that VerCors can perform com-
plex reasoning. Moreover, this approach allows to distinguish failure due to un-
satisfied prerequisites and due to mistakes in the transformation procedure.

Alpinist: an Annotation-Aware GPU Program Optimizer 337

Transformation
Phase

Applicability
Checking Phase

Parsing
Phase

Output
File

Input
File

Output
Phase

Fig. 4: The internal design of Alpinist.

If the applicability check passes (i.e., the optimization is applicable), the
transformation phase is next, otherwise a message is generated that the prereq-
uisites could not be proven.

The transformation phase applies the optimizations to the input AST. The
output phase either prints the optimized program in the same language as the
input program, or a message is printed, signifying either a failure in optimizing
or a verification failure in the applicability checking phase.

4 GPU Optimizations

Alpinist supports six frequently-used GPU optimizations, namely loop un-
rolling, tiling, kernel fusion, iteration merging, matrix linearization and data
prefetching. This section discusses loop unrolling, tiling, and kernel fusion in
detail. The other optimizations follow the same approach in spirit and are dis-
cussed briefly, which can be found in the Alpinist implementation [16]. Each
optimization is introduced in the context of GPU programs. Then, we discuss
how to apply them. Interesting insights are discussed where relevant.

4.1 Loop Unrolling

Loop unrolling is a frequently-used optimization technique that is applicable
to both GPU and CPU programs. It unrolls some iterations of a loop, which
increases the code size, but can have a positive impact on program performance;
e.g., see [21, 38, 46, 59, 63] for its impact, specifically on GPU programs. Fig. 5
shows an example of unrolling an (annotated) loop twice: the body of the loop is
duplicated twice before the loop. This has the following effect on the annotations:
the loop invariant bounding the loop variable (l.5) changes in the optimized
program (l.14). Note that the other loop invariants (i.e., Inv(i)) remain the
same. Moreover, after each unrolling part, we add all invariants as assertions
(l.8-l.10) except after the last unroll. This captures that the code produced by
unrolling the loop should still satisfy the original loop invariants.

Our approach to loop unrolling is more general than optimization techniques
during compilation. For instance, the unroll pragma in CUDA [55] and the
unroll function in Halide [56] unroll loops by calculating the number of iterations
to see if unrolling is possible, i.e., it should be computable at compile time.
This difference is illustrated in Fig. 5 where N (i.e., the number of iterations)
is unknown at compile time. Their approach cannot automatically handle this

338 Ö. Şakar et al.

1 /*@ context_everywhere N > 1; @*/
2 void Host(int[] arr, int size, int N){
3 par Kernel(tid=0..size){
4 int i = 0;
5 /*@ inv i >= 0 && i <= N;
6 inv N > 1;
7 inv Inv(i); @*/
8 loop (i < N){
9 int newInt = i;

10 arr[tid] = arr[tid] + newInt;
11 i = i + 1; }
12 } }

⇒

1 /*@ context_everywhere N > 1; @*/
2 void Host(int[] arr, int size, int N){
3 par Kernel(tid=0..size){
4 int i = 0;
5 int newInt = i;
6 arr[tid] = arr[tid] + newInt;
7 i = i + 1;
8 //@ assert i >= 1 && i <= N;
9 //@ assert N > 1;

10 //@ assert Inv(i);
11 newInt = i;
12 arr[tid] = arr[tid] + newInt;
13 i = i + 1;
14 /*@ inv i >= 2 && i <= N;
15 inv N > 1;
16 inv Inv(i); @*/
17 loop (i < N){
18 newInt = i;
19 arr[tid] = arr[tid] + newInt;
20 i = i + 1; }
21 } }

Fig. 5: An example of unrolling a loop 2 times.

1 void Host(int[] array, int size){
2 par Kernel(tid=0..size){
3 int i = init; // The loop variable
4

.

.

.
5 //@ assert (i == a) || (i == b); // Depending on initialization of i only one
6 // of the conditions is specified
7 /*@ inv i >= a && i <= b; // The lowerbound of i (a), The upperbound of i (b)
8 inv Inv(i); @*/ // Additional loop invariants
9 loop (cond(i)) { // The loop condition

10 body(i); // The loop body, a sequence of statements in the ith iteration.
11 i = upd(i); } // The update function of i, restricted to (i + c), (i − c),
12 } } // (i × c) or (i/c) where c is a positive integer constant4.

Fig. 6: A general template of a loop inside a kernel.

case, while our approach can automatically unroll the loop, since annotations
(l.1, l.6) specify the lower-bound of N (provided by the programmer, who knows
that this is a valid lower-bound). VerCors verifies that the unrolling is valid.

Fig. 6 shows a loop template in a verified GPU program. We would like
to automatically unroll the loop k times and preserve the provability of the
program. To accomplish this, we follow a procedure consisting of three parts:
the main, checking and updating part. In the main part, an annotated (verified)
GPU program and positive k are given as input. Next we go to the checking
part, to see if it is possible to unroll the loop k times. This part corresponds
with the applicability checking phase. Thus, we statically calculate the number
of loop iterations, by counting how many times the condition (cond(i)) holds
starting from either a (as the lowerbound of i) or b (as the upperbound of i),
depending on the operation of upd(i). If k is greater than the total number of
loop iterations at the end of the checking part, then we report an error. Otherwise

4 If c was negative, for the multiplication and division, i would oscillate between
positive and negative values and hence would not always be useful as array index.
Hence we consider c to be positive.

Alpinist: an Annotation-Aware GPU Program Optimizer 339

t
0

t
1

t
2

t
3

t
4

t
5 t

6
t
7

t
8

t
9

t
10

t
11

t
0

t
1

t
2

t
3

t
0

t
1

t
2

t
3

t
0

t
1

t
2

t
3

t
0

t
0

t
0

t
0

t
1

t
1

t
1

t
1

t
2

t
2

t
2

t
2

Inter

One thread per location

Fig. 7: Inter- and intra-tiling of an array as T = 12, N = 4 and dT/Ne = 3.

1 void Host(int[] a, int T){
2 par Kernel(tid = 0..T)
3 /*@ // Preconditions related to permissions and functional correctness
4 req prePerm(a[tid]) ** preFunc(a[tid]);
5 // Postconditions related to permissions and functional correctness
6 ens postPerm(a[tid]) ** postFunc(a[tid]); @*/
7 { body(a[tid]); } }

Fig. 8: A general unoptimized GPU program to apply for tiling.

we go to the updating part, in which we update either a or b according to the
operation in upd(i). If the operation is addition or multiplication, then the loop
variable i (in the unoptimized program) goes from a to b. That means, after
unrolling, a should be updated according to the constant c from the update
expression and k. If the operation is subtraction or division, i goes from b to a.
Thus, after unrolling, b should be updated. After the updating part, we return
to the main part to unroll the loop k times.

4.2 Tiling

Tiling is another well-known optimization technique for GPU programs. It in-
creases the workload of the threads to fully utilize GPU resources by assigning
more data to each thread. Concretely, we assume there are T threads and a one-
dimensional array of size T in the unoptimized GPU program where each thread
is responsible for one location in that array (Fig. 8). To apply the optimization,
we first divide the array into dT/Ne chunks, each of size N (1 ≤ N ≤ T)5. There
are two different ways to create and assign threads to array cells (as in Fig. 7):
– Inter-Tiling We define N threads and assign them to one specific location in

each chunk. That means each thread serially iterates over all chunks to be
responsible for a specific location in each chunk.

– Intra-Tiling We define dT/Ne threads and assign one thread to one chunk
(i.e., 1-to-1 mapping) to serially iterate over all cells in that chunk.

Both forms of tiling can have a positive impact on GPU program performance;
e.g., see [25, 28,47,69] for the impact of this optimization.

Fig. 9 shows the optimized version of Fig. 8 by applying inter-tiling. Regard-
ing program optimization, two major changes happen: 1) the total number of
threads has reduced (l.2), and 2) the body is encapsulated inside a loop (l.16-
l.18). As mentioned, in inter-tiling, we define N threads instead of T. The number

5 Since N is in the range 1 ≤ N ≤ T, the last chunk might have fewer cells.

340 Ö. Şakar et al.

1 void Host(int[] a, int T){
2 par Kernel(tid = 0..N)
3 /*@ req (\forall* int i; 0 <= i && i < ceiling(T, N) && tid+i×N < T;
4 pre(a[tid+i×N]));
5 ens (\forall* int i; 0 <= i && i < ceiling(T, N) && tid+i×N < T;
6 post(a[tid+i×N])); @*/
7 {
8 int j = 0;
9 /*@ inv j >= 0 && j <= ceiling(T, N);

10 inv (\forall* int i; 0 <= i && i < ceiling(T, N) && tid+i×N < T;
11 prePerm(a[tid+i×N]));
12 inv (\forall int i; j <= i && i < ceiling(T, N) && tid+i×N < T;
13 preFunc(a[tid+i×N]));
14 inv (\forall* int i; 0 <= i && i < j && tid+i×N < T;
15 postFunc(a[tid+i×N])); @*/
16 loop (tid+j×N < T){
17 body(a[tid+j×N]);
18 j = j + 1; }
19 } }

Fig. 9: Optimized version of the GPU program of Fig. 8 after applying inter-tiling.

of chunks is indicated by the function ceiling(T, N). Each thread in the newly
added loop iterates over all chunks (in the range 0 to ceiling(T, N)-1) to be
responsible for a specific location. This happens by the loop variable j and the
loop condition tid+j×N < T. This means, each thread tid can access its own
location at index tid in each chunk. To preserve verifiability, we add invariants
to the loop (l.9-l.17). Therefore, we specify:

– the boundaries of the loop variable j, which iterates over all chunks.
– a permission-related invariant for each thread in each chunk (l.10). This

comes from the precondition of the kernel and is quantified over all chunks.
– an invariant to indicate functional properties of the locations that have not

yet been updated by threads in the body of the loop (l.12). This comes from
the functional precondition of the kernel and is quantified over all chunks.

– an invariant to specify how each thread updates the array in each chunk
(l.14). This comes from the functional property as the postcondition of the
kernel and is quantified over all chunks.

Moreover, we modify the specification of the kernel (l.3-l.6). Note that we have
the condition tid+j×N < T in all universally quantified invariants, because the
last chunk might have fewer cells than N. We quantified the pre- and postcondi-
tion of the kernel over the chunks in the same way as the invariants.

Intra-tiling is in essence similar to inter-tiling with two major differences: 1)
the total number of threads is ceiling(T, N), and 2) each thread in the loop
iterates over cells within its own chunk. Therefore, we have different conditions
in the loop and the quantified invariants. Alpinist also supports this.

Above, each thread is assigned to one cell. This can easily be generalized
to have each thread assigned to one or more consecutive cells (i.e., a task). A
similar procedure can be applied as long as the tasks do not overlap, i.e., each
cell is assigned to at most one thread.

Alpinist: an Annotation-Aware GPU Program Optimizer 341

4.3 Kernel Fusion

Kernel fusion is a GPU optimization where we merge two or more consecutive
kernels into one. It increases the potential to use thread-local registers to store
intermediate results (see Section 2) and can lead to less power consumption.
See [2, 19, 61, 62, 68] for the impact of kernel fusion on GPU programs. We pro-
vide a generalized procedure to fuse an arbitrary number of consecutive kernels
while considering data dependency between them. The idea is to fuse them by
repeatedly fusing the first two kernels (i.e., kernel reduction). In each iteration,
if there is no data dependency between the two kernels, we safely fuse them.
Else if there is only one thread block then we fuse the two kernels by inserting
a barrier between the bodies, else fusion fails.

A benefit of this approach is that it only considers two kernels at a time.
In this way, it can be determined whether a barrier is necessary between two
specific kernels, and we do not miss any possible fusion optimization. Another
benefit of this approach is that when a data dependency between two kernels P
and P + 1 (1 < P < #kernels−1) is detected, the output of the approach is the
fusion of the first P kernels, and the remaining unfused kernels after P . This
allows the user to not only find out that there is a data dependency between P
and P + 1, but also to obtain fused kernels where possible.

There are multiple challenges in this transformation: (1) how to detect data
dependency between two kernels? (2) how to collect the pre- and postconditions
for the fused kernel? and (3) how to deal with permissions so that in the fused
kernel the permission for a location does not exceed 1? The main difficulty in
addressing these challenges is that we have to consider many different possible
scenarios. Fortunately, we can use the information from the contract of the two
kernels. The permission patterns in the contract indicate for each thread which
locations it reads from and writes to. We provide procedures to separately collect
pre- and postconditions related to permissions and to functional correctness. Due
to space limitations, we only discuss the essential steps to collect the precondition
related to permissions for array accesses of the fused kernel in Alg. 1. Collecting
the rest of the contract uses a similar procedure.

Alg. 1 requires kernels k1 and k2 to not lose any permissions, only possibly
redistribute them (using a barrier). Furthermore, for ease of presentation, we
assume that in both k1 and k2, each thread accesses at most one cell of array a,
and that the expressions used to compute array indices only combine constants
and thread ID variables, using standard arithmetic operators.

We compare the postcondition of k1 and the precondition of k2 (l.2) to
understand how to add permissions of the preconditions of k1 and k2 to the
precondition of the fused kernel. Note that prePerm and postPerm correspond
to a permission-related pre- and postcondition, respectively. We use the post-
condition of k1 for this comparison since the permission at the end of k1 needs
to be sufficient to satisfy the precondition of k2. If the index expressions e1 and
e2 to access an array a are syntactically the same, then they refer to the same
array cell. In that case, we first add to the precondition of the fused kernel the
original permission from the precondition of k1 that corresponds to the permis-

342 Ö. Şakar et al.

Algorithm 1 Kernel fusion procedure for collecting precondition permissions.

1: Add all precondition permissions related to non-shared arrays (i.e., accessed by only one of the
two kernels) into the contract of the fused kernel kf.

2: for each shared array a with a permission postPerm(a[e1], p1) in the postcondition of the first
kernel k1 and a permission prePerm(a[e2], p2) in the precondition of the second kernel k2 do

3: if patterns e1 and e2 are syntactically the same then
4: Add pre. of k1 corresponding to postPerm(a[e1], p1) as pre. to kf
5: if p1 < p2 then
6: Add prePerm(a[e2], p2-p1) as pre. to kf

7: else if patterns e1 and e2 are not syntactically the same then
8: if p1 + p2 ≤ 1 then
9: Add pre. of k1 corresp. to postPerm(a[e1], p1) and prePerm(a[e2], p2) as pre. in kf
10: else if p1 + p2 > 1 && p1 < 1 && p2 < 1 then
11: Add pre. of k1 corresp. to postPerm(a[e1], p1) with permission p3 and prePerm(a[e2],
12: p4) as pre. s.t. p3 + p4 == 1
13: else if p1 == 1 (i.e., write) then . Data dependency, add barrier
14: Add pre. of k1 corresponding to postPerm(a[e1], p1) as pre. to kf
15: else p2 == 1 . Data dependency, add barrier
16: Add pre. of k1 corresponding to postPerm(a[e1], p1) as pre. to kf
17: Add prePerm(a[e2], 1-p1) as pre. to kf

sion for a[e1] in the postcondition of k1 (remember that the latter permission
may have been obtained in k1 after permission redistribution). Second, if p1 is
not sufficient for the precondition of k2 (l.5), we add additional permission to
the precondition of the fused kernel to satisfy the precondition of k2 (l.6).

The remaining different cases in the algorithm correspond to the different
edge cases that we should consider when e1 and e2 are not syntactically the
same. In particular, data dependency happens when the accumulated permission
(in both kernels) for one location is greater than 1, and there is at least one write
permission. Therefore, we have to distinguish multiple cases: 1) p1+p2 does not
exceed 1 (l.8), 2) p1 + p2 exceeds 1, but no write permission is involved (l.10),
or 3) and 4) at least one write is involved (l.13 and l.15). In the latter two cases,
a barrier must be introduced to take care of distributing permissions from the
access in k1 to the access in k2, and possibly additional permission for the latter
must be added to the precondition of the fused kernel (l.17). After constructing
the contract of the fused kernel, we check for data dependency.

Fig. 10 shows an example of fusing two kernels. We only present the per-
mission precondition expressions which are collected with Alg. 1. There are two
shared arrays a and b. To collect permission preconditions in the fused kernel,
we follow steps {l.2→l.3→l.4} for array a and steps {l.2→l.3→l.4→l.5→l.6} for
array b. As there is no data dependency, we can safely fuse the two kernels.

Implementing Data Dependency Detection. One of the implementation chal-
lenges of kernel fusion is to check data dependency in the applicability checking
phase. Our idea of detecting kernel dependencies is similar to detecting loop
iteration dependencies, see [1]. To detect data dependency for a specific shared
array, the function SV is used. Fig. 11 shows an example of the output of SV. The
kernel has 1\2 permission for a[tid+1] and 1\3 permission for a[0] if tid+1 is
out of bounds. SV takes an array name and the pre- and postconditions of a ker-
nel (of the form cond(tid) => Perm(a[patt(tid)], p)) on l.3-l.6, and returns
a mapping from indices patt(tid) to the permissions p (in Fig. 11: right).

Alpinist: an Annotation-Aware GPU Program Optimizer 343

1 void Host(...){
2 par Kernel1(tid1 = 0..T)
3 /*@ context Perm(a[tid1], 1);
4 context Perm(b[tid1], 1\2);@*/
5 { a[tid1] = 2*b[tid1]; }
6 par Kernel2(tid2 = 0..T)
7 /*@ context Perm(a[tid2], 1\2);
8 context Perm(b[tid2], 1);@*/
9 { b[tid2] = a[tid2]+1; } }

=⇒

1 void Host(...){
2 par Fused_Kernel(tid = 0..T)
3 /*@ req Perm(a[tid], 1);
4 req Perm(b[tid], 1\2);
5 req Perm(b[tid], 1\2);@*/
6 { a[tid] = 2*b[tid];
7 b[tid] = a[tid]+1; } }

Fig. 10: An example of collecting preconditions in fusing two kernels.

1 void Host(...){
2 par Kernel1(tid1 = 0..T)
3 /*@ context (tid != a.length-1 =>
4 Perm(a[(tid + 1)], 1\2));
5 context (tid == a.length-1 =>
6 Perm(a[0], 1\3)); @*/
7 { . . . } }

=⇒
Output SV(a, spec kernel)

index 0 1 2 3 4

permission 1
3

1
2

1
2

1
2

1
2

Fig. 11: Example output of the SV function for array a.

If the function SV is executed for two kernels to fuse with the same shared
array a, the results SV1(a) and SV2(a) can be compared to determine whether
there is data dependency between the two kernels. This comparison is described
generally at l.8-l.16 in Algorithm 1. For each corresponding location in SV1(a)

and SV2(a), we can determine, for example, whether both permissions combined
do not exceed 1 (l.8) or whether the location in k1 has write permission (l.12).

4.4 Other Optimizations

We briefly discuss the three remaining optimizations supported by Alpinist.
Iteration merging is an optimization technique related to loop unrolling that
is applicable to both GPU and CPU programs6. Iteration merging reduces the
number of loop iterations by extending the loop body with multiple copies of it,
as opposed to creating copies of it outside the loop, as is done in loop unrolling.
Iteration merging can have a positive performance impact; see [38,46,53] for the
effectiveness of this optimization on GPU programs.

Matrix linearization is an optimization where we transform two-dimensional
arrays into one dimension ones. This optimization can result in better memory
access patterns, thereby improving caching. See [5,13,54] for the impact of matrix
linearization on GPU programs.

The last optimization implemented in Alpinist is data prefetching. Suppose
there is a verified GPU program where each thread accesses an array location
in global memory multiple times. In this optimization, we prefetch the values
of those locations that are in global memory into registers which are local to
each thread. A similar optimization, in which intermediate results are stored in
register memory, is applied in Section 2. Therefore, instead of multiple accesses
to the high latency global memory, we benefit from low-latency registers. Data
prefetching can have a positive performance impact; see [4, 58, 70].

6 Iteration merging is also referred to as loop unrolling/vectorization in the literature.

344 Ö. Şakar et al.

Table 1: A summary of the optimization and verification times for all optimizations.
Optimization Optim. time (s) Verif. time (orig.) (s) Verif. time (opt.) (s)

min. max. avg. med. min. max. avg. med. min. max. avg. med.
Loop unrolling 0.067 0.238 0.116 0.098 7.6 50.7 18.2 14.3 7.6 57.5 20.8 17.3
Tiling 0.044 0.052 0.048 0.047 16.7 21.5 18.7 18.1 19.3 31.4 24.7 20.8
Kernel fusion 0.099 0.338 0.173 0.137 16.7 54.5 24.6 20.0 14.9 22.3 19.0 19.5
Iteration merging 0.042 0.592 0.152 0.097 6.9 51 17.0 12.7 7.3 64 20.0 13.8
Matrix linearization 0.011 0.044 0.022 0.017 11.6 16 14.3 14.1 11.5 16.8 14.4 15.1
Data prefetching 0.010 0.068 0.051 0.053 9.7 23 14.0 13.4 10.4 23 13.5 12.7

5 Evaluation

This section describes the evaluation of Alpinist. The goal is to

Q1 test whether Alpinist works on GPU programs.
Q2 investigate how long it takes for Alpinist to transform GPU programs and

how this affects the verification time.
Q3 investigate the usability of Alpinist on real-world complex examples.

5.1 Experiment Setup

Alpinist is evaluated on examples from three different sources. The first source
consists of hand-made examples that cover different scenarios for each optimiza-
tion. The second source is a collection of verified programs from VerCors’ ex-
ample repository7. The third source consists of complex case studies that are
already verified in VerCors: two parallel prefix sum algorithms [51], parallel
stream compaction and summed-area table algorithms [48], a variety of sort-
ing algorithms [49], a solution [27] to the VerifyThis 2019 challenge 1 [18] and a
Tic-Tac-Toe example [57] based on [23]. In total, we applied the optimizations
30 times in the first category, 23 times in the second category and 17 times in
the third category (in total 70 experiments). All the examples are annotated
with special optimization annotations such that Alpinist can apply those op-
timizations automatically. All these examples are publicly available at [15]. All
the experiments were conducted on a MacBook Pro 2020 (macOS 11.3.1) with
a 2.0GHz Intel Core i5 CPU. Each experiment was performed ten times, af-
ter which the average times, i.e., optimization and verification times, of those
executions were recorded for the experiment.

5.2 Results & Discussion

Q1 To test whether Alpinist works on GPU programs, we applied the six
optimizations in all 70 experiments and used VerCors to reverify all the resulting
programs. All these tests were successful.
Q2 To investigate how long it takes for Alpinist to transform GPU programs,
we recorded the transformation time for each optimization applied to all the

7 The example repository of VerCors is available at https://github.com/utwente-fmt/
vercors/tree/dev/examples.

Alpinist: an Annotation-Aware GPU Program Optimizer 345

https://github.com/utwente-fmt/vercors/tree/dev/examples
https://github.com/utwente-fmt/vercors/tree/dev/examples

Table 2: An overview of optimizing case studies, where # is the unroll factor (for
loop unrolling) or the merge factor (for iteration merging), OT the time it takes to
optimize, VB the original verification time (Verification Before) and VA the optimized
verification time (Verification After). All times are in seconds.

Case Loop unrolling Iter. merging Matrix lin. Data pref.
OT VB VA # OT VB VA OT VB VA OT VB VA

BubbleSort [49] 1 0.101 25.4 27.3 4 0.170 29.8 34.1 N/A N/A N/A N/A N/A N/A

InsertionSort [49] 1 0.134 25.6 25.8 3 0.225 24.1 28.0 N/A N/A N/A N/A N/A N/A

SelectionSort [49] 1 0.107 23.5 25.7 2 0.592 22.8 27.7 N/A N/A N/A N/A N/A N/A

TimSort [49] 2 0.216 29.3 38.5 3 0.182 29.1 37.9 N/A N/A N/A N/A N/A N/A

Blelloch [51] 1 0.129 50.7 57.5 3 0.355 51.0 64.0 N/A N/A N/A N/A N/A N/A

Kogge-Stone [51] 1 0.238 23.0 25.6 2 0.082 21.8 25.6 N/A N/A N/A 0.103 23.0 23.0
TicTacToe [57] 3 0.106 19.8 21.0 2 0.076 17.3 19.6 N/A N/A N/A N/A N/A N/A

VerifyThis [27] 1 0.144 26.2 28.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Transpose [48] N/A N/A N/A N/A N/A N/A N/A N/A 0.022 16.0 16.0 N/A N/A N/A

examples. Table 1 summarizes the best and worst optimization times for the
six optimizations (as reported by Alpinist). To investigate the impact on the
verification time, the table also shows the (best and worst) verification times of
the original and optimized programs (as reported by VerCors). The table shows
the minimum, maximum, average and median times of all examples. It can be
observed that Alpinist takes insignificant time to apply each optimization to
all the examples. Moreover, the verification time after optimizing generally in-
creases. For loop unrolling, tiling and iteration merging, the verification time
increases. This can be attributed to the additional code that is generated. For
kernel fusion, the verification time decreases. This is due to verifying fewer ker-
nels. For matrix linearization and data prefetching, the verification time slightly
increases. This can be attributed to the linear expressions in matrix linearization
and the extra statements to read from/write to the registers in data prefetching.
Q3 To investigate the usability of Alpinist on real-world examples, we suc-
cessfully applied it on the third category with the complex case studies. Table 2
shows the optimization and verification times of applying loop unrolling, iter-
ation merging, matrix linearization and data prefetching to these case studies.
Note that in the case studies only these four optimizations could be applied. In
the table, N/A indicates that the optimization is not applicable to the example.

6 Related Work

To the best of our knowledge, this is the first paper to showcase a tool that
implements annotation-aware transformations. We categorize the related work
into three parts, covering both tools and optimizations.

Automatic Optimizations without Correctness. There is a large body of related
work, see e.g., [2, 4, 19, 25, 28, 47, 61, 62, 68–70], that shows the impact of auto-
mated optimizations on GPU programs, but does not consider correctness, or
the preservation of it. Our tool can potentially complement these approaches by
preserving the provability of the optimized programs.

346 Ö. Şakar et al.

Correctness Proofs for Transformations. Another body of related work focuses
on different approaches to preserve provability not specific to GPU programs.
COMPCert [30, 31] is a formally verified C compiler which preserves semantic
equivalence of the source and compiled program, by proving correctness of each
transformation in the compilation process. Wijs and Engelen [66] and De Putter
and Wijs [45] prove the preservation of functional properties over transformations
on models of concurrent systems. They prove preservation of model-independent
properties. This approach differs from ours as they work on models instead of
concrete programs.

Compiler Optimization Correctness. Finally, there is related work that focusses
on the compilation of sequential programs, performing transformations from
high-level source code to lower-level machine code while preserving the seman-
tics. These approaches neither consider parallelization, nor target different ar-
chitectures. In GPU programming, the optimizations often need to be applied
manually rather than during the compilation process.

Namjoshi and Xu [41] use a proof checker to show equivalence between an
original WebAssembly program and optimized program. An equivalence proof is
generated based on the transformations. Namjoshi and Singhania [40] created a
semi-automatic loop optimizer with user-directives. The loops are verified during
compilation. For each transformation, semantics are defined to guarantee seman-
tical equivalence to the original program. Namjoshi and Pavlinovic [39] focus on
recovering from precision loss due to semantics-preserving program transforma-
tions and propose systematic approaches to simplify analysis of the transformed
program. Finally Gjomemo et al. [20] help compiler optimizations by supplying
high-level information gathered by external static analysis (e.g., Frama-C). This
information is used by the compiler for better reasoning.

7 Conclusion

In this paper, we presented Alpinist, the annotation-aware GPU program opti-
mizer. Given an unoptimized, annotated GPU program, we showed how Alpin-
ist transforms both the code and the annotations, with the goal to preserve the
provability of the optimized GPU program. Alpinist supports loop unrolling,
tiling, kernel fusion, iteration merging, matrix linearization and data prefetch-
ing, of which the first three are discussed in detail. We discussed the design and
implementation of Alpinist, and we validated it by verifying a set of examples
and reverifying their optimized counterparts.

For future work, there are other optimizations that could be supported, such
as data prefetching for all memory patterns as mentioned by Ayers et al. [4].
Another open question is if and how this approach can be used in program
compilation. We also plan to extend this approach to preserve the provability
of transpiled code, e.g., CUDA to OpenCL conversions. Moreover, we plan to
investigate how Alpinist can be combined with techniques such as autotuning
that automatically detect the potential for applying specific optimizations and
identify optimal parameter configurations [3, 63].

Alpinist: an Annotation-Aware GPU Program Optimizer 347

References

1. Allen, R., Kennedy, K.: Automatic translation of Fortran programs to vector form.
ACM Transactions on Programming Languages and Systems (TOPLAS) 9(4), 491–
542 (1987)

2. Ashari, A., Tatikonda, S., Boehm, M., Reinwald, B., Campbell, K., Keenleyside,
J., Sadayappan, P.: On optimizing machine learning workloads via kernel fusion.
ACM SIGPLAN Notices 50(8), 173–182 (2015)

3. Ashouri, A., Killian, W., Cavazos, J., Palermo, G., Silvano, C.: A Survey on Com-
piler Autotuning using Machine Learning. ACM Computing Surveys 51(5), 96:1–
96:42 (2018)

4. Ayers, G., Litz, H., Kozyrakis, C., Ranganathan, P.: Classifying memory access pat-
terns for prefetching. In: Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems. pp.
513–526 (2020)

5. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA.
Tech. rep., Citeseer (2008)

6. Berdine, J., Calcagno, C., O’Hearn, P.: Smallfoot: Modular Automatic Asser-
tion Checking with Separation Logic. In: de Boer, F., Bonsangue, M., Graf, S.,
de Roever, W. (eds.) FMCO. LNCS, vol. 4111, pp. 115–137. Springer (2005)

7. Bertolli, C., Betts, A., Mudalige, G., Giles, M., Kelly, P.: Design and Perfor-
mance of the OP2 Library for Unstructured Mesh Applications. In: Proceed-
ings of the 1st Workshop on Grids, Clouds and P2P Programming (CGWS).
Lecture Notes in Computer Science, vol. 7155, pp. 191–200. Springer (2011).
https://doi.org/10.1007/978-3-642-29737-3 22

8. Betts, A., Chong, N., Donaldson, A., Qadeer, S., Thomson, P.: GPUVerify: a ver-
ifier for GPU kernels. In: OOPSLA. pp. 113–132. ACM (2012)

9. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors Tool Set: Verifi-
cation of Parallel and Concurrent Software. In: iFM. LNCS, vol. 10510, pp. 102 –
110. Springer (2017)

10. Blom, S., Huisman, M., Mihelčić, M.: Specification and Verification of GPGPU
programs. Science of Computer Programming 95, 376–388 (2014)

11. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages (POPL). pp. 259–270 (2005)

12. Boyland, J.: Checking Interference with Fractional Permissions. In: SAS. LNCS,
vol. 2694, pp. 55–72. Springer (2003)

13. Catanzaro, B., Keller, A., Garland, M.: A decomposition for in-place matrix trans-
position. ACM SIGPLAN Notices 49(8), 193–206 (2014)

14. Collingbourne, P., Cadar, C., Kelly, P.H.: Symbolic testing of OpenCL code. In:
Haifa Verification Conference. pp. 203–218. Springer (2011)

15. Şakar, O., Safari, M., Huisman, M., Wijs, A.: The repository for the examples used
in Alpinist, https://github.com/OmerSakar/Alpinist-Examples.git

16. Şakar, O., Safari, M., Huisman, M., Wijs, A.: The repository for the
implementations of Alpinist, https://github.com/utwente-fmt/vercors/tree/
gpgpu-optimizations/src/main/java/vct/col/rewrite/gpgpuoptimizations

17. DeFrancisco, R., Cho, S., Ferdman, M., Smolka, S.: Swarm Model Checking on
the GPU. International Journal on Software Tools for Technology Transfer 22,
583–599 (2020). https://doi.org/10.1007/s10009-020-00576-x

348 Ö. Şakar et al.

https://doi.org/10.1007/978-3-642-29737-3_22
https://github.com/OmerSakar/Alpinist-Examples.git
https://github.com/utwente-fmt/vercors/tree/gpgpu-optimizations/src/main/java/vct/col/rewrite/gpgpuoptimizations
https://github.com/utwente-fmt/vercors/tree/gpgpu-optimizations/src/main/java/vct/col/rewrite/gpgpuoptimizations
https://doi.org/10.1007/s10009-020-00576-x

18. Dross, C., Furia, C.A., Huisman, M., Monahan, R., Müller, P.: Verifythis 2019:
a program verification competition. International Journal on Software Tools for
Technology Transfer pp. 1–11 (2021)

19. Filipovič, J., Madzin, M., Fousek, J., Matyska, L.: Optimizing CUDA code by
kernel fusion: application on BLAS. The Journal of Supercomputing 71(10), 3934–
3957 (2015)

20. Gjomemo, R., Namjoshi, K.S., Phung, P.H., Venkatakrishnan, V., Zuck, L.D.: From
verification to optimizations. In: International Workshop on Verification, Model
Checking, and Abstract Interpretation. pp. 300–317. Springer (2015)

21. Grauer-Gray, S., Xu, L., Searles, R., Ayalasomayajula, S., Cavazos, J.:
Auto-tuning a High-Level Language Targeted to GPU Codes. In: Proc.
2012 Innovative Parallel Computing (InPar). pp. 1–10. IEEE (2012).
https://doi.org/10.1109/InPar.2012.6339595

22. van den Haak, L., Wijs, A., M.G.J. van den Brand, Huisman, M.: Formal
Methods for GPGPU Programming: Is The Demand Met? In: Proceedings of
the 16th International Conference on Integrated Formal Methods (IFM 2020).
Lecture Notes in Computer Science, vol. 12546, pp. 160–177. Springer (2020).
https://doi.org/10.1007/978-3-030-63461-2 9

23. Hamers, R., Jongmans, S.S.: Safe sessions of channel actions in Clojure: a tour of
the discourje project. In: International Symposium on Leveraging Applications of
Formal Methods. pp. 489–508. Springer (2020)

24. Herrmann, F., Silberholz, J., Tiglio, M.: Black Hole Simulations with CUDA. In:
GPU Computing Gems Emerald Edition, chap. 8, pp. 103–111. Morgan Kaufmann
(2011)

25. Hong, C., Sukumaran-Rajam, A., Nisa, I., Singh, K., Sadayappan, P.: Adaptive
sparse tiling for sparse matrix multiplication. In: Proceedings of the 24th Sympo-
sium on Principles and Practice of Parallel Programming. pp. 300–314 (2019)

26. Huisman, M., Blom, S., Darabi, S., Safari, M.: Program correctness by transfor-
mation. In: 8th International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA). LNCS, vol. 11244. Springer (2018)

27. Huisman, M., Joosten, S.: A solution to VerifyThis 2019
challenge 1, https://github.com/utwente-fmt/vercors/blob/
97c49d6dc1097ded47a5ed53143695ace6904865/examples/verifythis/2019/
challenge1.pvl

28. Konstantinidis, A., Kelly, P.H., Ramanujam, J., Sadayappan, P.: Parametric GPU
code generation for affine loop programs. In: International Workshop on Languages
and Compilers for Parallel Computing. pp. 136–151. Springer (2013)

29. Le, Q., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Ng, A.: On Optimization
Methods for Deep Learning. In: Proceedings of the 28th International Conference
on Machine Learning (ICML). pp. 265–272. Omnipress (2011)

30. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: Conference record of the 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. pp. 42–54 (2006)

31. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reasoning
43(4), 363–446 (2009)

32. Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel func-
tions. In: SIGSOFT FSE 2010, Santa Fe, NM, USA. pp. 187–196. ACM (2010)

33. Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE:
concolic verification and test generation for GPUs. In: ACM SIGPLAN Notices.
vol. 47, pp. 215–224. ACM (2012)

Alpinist: an Annotation-Aware GPU Program Optimizer 349

https://doi.org/10.1109/InPar.2012.6339595
https://doi.org/10.1007/978-3-030-63461-2_9
https://github.com/utwente-fmt/vercors/blob/97c49d6dc1097ded47a5ed53143695ace6904865/examples/verifythis/2019/challenge1.pvl
https://github.com/utwente-fmt/vercors/blob/97c49d6dc1097ded47a5ed53143695ace6904865/examples/verifythis/2019/challenge1.pvl
https://github.com/utwente-fmt/vercors/blob/97c49d6dc1097ded47a5ed53143695ace6904865/examples/verifythis/2019/challenge1.pvl

34. Lindholm, L., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: A Uni-
fied Graphics and Computing Architecture. IEEE Micro 28(2), 39–55 (2008).
https://doi.org/10.1109/MM.2008.31

35. Liu, X., Tan, S., Wang, H.: Parallel Statistical Analysis of Analog Circuits by
GPU-Accelerated Graph-Based Approach. In: Proceedings of the 2012 Conference
and Exhibition on Design, Automation & Test in Europe (DATE). pp. 852–857.
IEEE Computer Society (2012). https://doi.org/10.1109/DATE.2012.6176615

36. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.,
Rehof, J. (eds.) TACAS. LNCS, vol. 4963, pp. 337–340. Springer (2008)

37. Müller, P., Schwerhoff, M., Summers, A.: Viper - a verification infrastructure for
permission-based reasoning. In: VMCAI (2016)

38. Murthy, G.S., Ravishankar, M., Baskaran, M.M., Sadayappan, P.: Optimal loop
unrolling for GPGPU programs. In: 2010 IEEE International Symposium on Par-
allel & Distributed Processing (IPDPS). pp. 1–11. IEEE (2010)

39. Namjoshi, K.S., Pavlinovic, Z.: The impact of program transformations on static
program analysis. In: International Static Analysis Symposium. pp. 306–325.
Springer (2018)

40. Namjoshi, K.S., Singhania, N.: Loopy: Programmable and formally verified
loop transformations. In: International Static Analysis Symposium. pp. 383–402.
Springer (2016)

41. Namjoshi, K.S., Xue, A.: A Self-certifying Compilation Framework for WebAssem-
bly. In: International Conference on Verification, Model Checking, and Abstract
Interpretation. pp. 127–148. Springer (2021)

42. The OpenCL 1.2 specification (2011)
43. Osama, M., Wijs, A.: Parallel SAT Simplification on GPU Architectures. In:

TACAS, Part I. LNCS, vol. 11427, pp. 21–40. Springer (2019)
44. Osama, M., Wijs, A., Biere, A.: SAT Solving with GPU Accelerated Inprocess-

ing. In: Proceedings of the 27th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), Part I. Lec-
ture Notes in Computer Science, vol. 12651, pp. 133–151. Springer (2021).
https://doi.org/10.1007/978-3-030-72016-2 8

45. de Putter, S., Wijs, A.: Verifying a verifier: on the formal correctness of an LTS
transformation verification technique. In: International Conference on Fundamen-
tal Approaches to Software Engineering. pp. 383–400. Springer (2016)

46. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.:
Halide: a language and compiler for optimizing parallelism, locality, and recompu-
tation in image processing pipelines. Acm Sigplan Notices 48(6), 519–530 (2013)

47. Rocha, R.C., Pereira, A.D., Ramos, L., Góes, L.F.: Toast: Automatic tiling for
iterative stencil computations on GPUs. Concurrency and Computation: Practice
and Experience 29(8), e4053 (2017)

48. Safari, M., Huisman, M.: Formal verification of parallel stream compaction and
summed-area table algorithms. In: International Colloquium on Theoretical As-
pects of Computing. pp. 181–199. Springer (2020)

49. Safari, M., Huisman, M.: A generic approach to the verification of the permutation
property of sequential and parallel swap-based sorting algorithms. In: International
Conference on Integrated Formal Methods. pp. 257–275. Springer (2020)

50. Safari, M., Oortwijn, W., Huisman, M.: Automated verification of the parallel
Bellman–Ford algorithm. In: Drăgoi, C., Mukherjee, S., Namjoshi, K. (eds.) Static
Analysis. pp. 346–358. Springer International Publishing, Cham (2021)

51. Safari, M., Oortwijn, W., Joosten, S., Huisman, M.: Formal verification of parallel
prefix sum. In: NASA Formal Methods Symposium. pp. 170–186. Springer (2020)

350 Ö. Şakar et al.

https://doi.org/10.1109/MM.2008.31
https://doi.org/10.1109/DATE.2012.6176615
https://doi.org/10.1007/978-3-030-72016-2_8

52. Şakar, O.: Extending support for axiomatic data types in vercors (April 2020),
http://essay.utwente.nl/80892/

53. Shimobaba, T., Ito, T., Masuda, N., Ichihashi, Y., Takada, N.: Fast calculation of
computer-generated-hologram on AMD HD5000 series GPU and OpenCL. Optics
express 18(10), 9955–9960 (2010)

54. Sundfeld, D., Havgaard, J.H., Gorodkin, J., De Melo, A.C.: CUDA-Sankoff: using
GPU to accelerate the pairwise structural RNA alignment. In: 2017 25th Euromicro
International Conference on Parallel, Distributed and Network-based Processing
(PDP). pp. 295–302. IEEE (2017)

55. The CUDA team: Documentation of the CUDA unroll pragma (Accessed Oct
6, 2021), https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#
pragma-unroll

56. The Halide team: Documentation of the Halide unroll function (Ac-
cessed Oct 6, 2021), https://halide-lang.org/docs/class halide 1 1 func.html#
a05935caceb6efb8badd85f306dd33034

57. The verification of tictactoe program, https://github.com/utwente-fmt/vercors/
blob/0a2fdc24419466c2d3b7a853a2908c37e7a8daa7/examples/session-generate/
MatrixGrid.pvl

58. Unkule, S., Shaltz, C., Qasem, A.: Automatic restructuring of GPU kernels for ex-
ploiting inter-thread data locality. In: International Conference on Compiler Con-
struction. pp. 21–40. Springer (2012)

59. Van Werkhoven, B., Maassen, J., Bal, H.E., Seinstra, F.J.: Optimizing convolution
operations on GPUs using adaptive tiling. Future Generation Computer Systems
30, 14–26 (2014)

60. Viper project website: (2016), http://www.pm.inf.ethz.ch/research/viper
61. Wahib, M., Maruyama, N.: Scalable kernel fusion for memory-bound GPU applica-

tions. In: SC’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. pp. 191–202. IEEE (2014)

62. Wang, G., Lin, Y., Yi, W.: Kernel fusion: An effective method for better power
efficiency on multithreaded GPU. In: 2010 IEEE/ACM Int’l Conference on Green
Computing and Communications & Int’l Conference on Cyber, Physical and Social
Computing. pp. 344–350. IEEE (2010)

63. Werkhoven, B.v.: Kernel Tuner: A search-optimizing GPU code auto-tuner. Future
Generation Computer Systems 90, 347–358 (2019)

64. Wienke, S., Springer, P., Terboven, C., Mey, D.: OpenACC - First Experiences
with Real-World Applications. In: Proceedings of the 18th European Conference
on Parallel and Distributed Computing (EuroPar). Lecture Notes in Computer
Science, vol. 7484, pp. 859–870. Springer (2012). https://doi.org/10.1007/978-3-
642-32820-6 85

65. Wijs, A.: BFS-Based Model Checking of Linear-Time Properties With An Appli-
cation on GPUs. In: CAV, Part II. LNCS, vol. 9780, pp. 472–493. Springer (2016)

66. Wijs, A., Engelen, L.: REFINER: Towards Formal Verification of Model Transfor-
mations. In: NFM. LNCS, vol. 8430, pp. 258–263. Springer (2014)

67. Wijs, A., Neele, T., Bošnački, D.: GPUexplore 2.0: Unleashing GPU Explicit-State
Model Checking. In: Proceedings of the 21st International Symposium on Formal
Methods. Lecture Notes in Computer Science, vol. 9995, pp. 694–701. Springer
(2016). https://doi.org/10.1007/978-3-319-48989-6 42

68. Wu, H., Diamos, G., Wang, J., Cadambi, S., Yalamanchili, S., Chakradhar, S.:
Optimizing data warehousing applications for GPUs using kernel fusion/fission.
In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium
Workshops & PhD Forum. pp. 2433–2442. IEEE (2012)

Alpinist: an Annotation-Aware GPU Program Optimizer 351

http://essay.utwente.nl/80892/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#pragma-unroll
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#pragma-unroll
https://halide-lang.org/docs/class_halide_1_1_func.html#a05935caceb6efb8badd85f306dd33034
https://halide-lang.org/docs/class_halide_1_1_func.html#a05935caceb6efb8badd85f306dd33034
https://github.com/utwente-fmt/vercors/blob/0a2fdc24419466c2d3b7a853a2908c37e7a8daa7/examples/session-generate/MatrixGrid.pvl
https://github.com/utwente-fmt/vercors/blob/0a2fdc24419466c2d3b7a853a2908c37e7a8daa7/examples/session-generate/MatrixGrid.pvl
https://github.com/utwente-fmt/vercors/blob/0a2fdc24419466c2d3b7a853a2908c37e7a8daa7/examples/session-generate/MatrixGrid.pvl
http://www.pm.inf.ethz.ch/research/viper
https://doi.org/10.1007/978-3-642-32820-6_85
https://doi.org/10.1007/978-3-642-32820-6_85
https://doi.org/10.1007/978-3-319-48989-6_42

69. Xu, C., Kirk, S.R., Jenkins, S.: Tiling for performance tuning on different models
of GPUs. In: 2009 Second International Symposium on Information Science and
Engineering. pp. 500–504. IEEE (2009)

70. Yang, Y., Xiang, P., Kong, J., Zhou, H.: A GPGPU compiler for memory opti-
mization and parallelism management. ACM Sigplan Notices 45(6), 86–97 (2010)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

352 Ö. Şakar et al.

http://creativecommons.org/licenses/by/4.0/

	Alpinist: an Annotation-Aware GPU Program Optimizer
	1 Introduction
	2 Annotation-Aware Optimization using Alpinist
	3 The Design of Alpinist
	4 GPU Optimizations
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

