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Phase field method for quasi-static brittle fracture: an adaptive
algorithm based on the dual variable
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An adaptive phase field method for quasi-static brittle fracture is developed. The adaptive refinement of the meshes is based
on the error between two stresses: the discontinuous post-processed stresses computed with the displacement approximation
and a H(div) conforming dual approximation of the stresses. The algorithm is validated by solving a benchmark problem
considering a plate with an edge crack subjected to tension load.
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1 Introduction

Fracture propagation is one of the core topics in applied mathematics and engineering. In particular, brittle fracture is an
undesirable mode of fracture: it involves crack growth with little deformation of the material around the crack tip and can lead
to complete failure of the material very rapidly when a critical load is reached.

Despite the high relevance of the fracture propagation in many challenging
applications, the standard finite element method is not accurate enough and
only expensive numerical schemes are available to adequately approximate
the crack propagation. New classes of highly efficient numerical methods
that compute crack propagation with extremely high guaranteed accuracy are
therefore essential. In particular, the displacements of an arbitrary cracked body
is not likely to be a smooth solution. Therefore the a priori error estimates
cannot be achieved using a uniform refinement and the issue of error control is
usually tackled via the a posteriori estimates theory and the design of an adaptive
strategy (AFEM, see [1]).

Recently, a procedure to implement the staggered phase field model for brittle
fracture problems was presented in [2]. The purpose of this paper is to investi-
gate if an adaptive strategy can be developed, such that very accurate simulation
results can be obtained with as little computational effort as possible. The error
estimator will be based on the dual variable, the stresses. This approach leads to a
reconstruction of H(div)-conforming stresses from the displacement approxima-
tions in a post-processing step. In fact, accurate flux and stress approximations
are of crucial interest in fracture mechanics, although the standard Galerkin ap-
proximation usually minimize an energy depending on the primal variable, the
displacements. The divergence of those approximation does usually not belong
to the Sobolev space H(div), consisting of vector fields for which the components
and the weak divergence are square-integrable. A lot of attention has therefore
been devoted to the reconstruction of the flux from a primal formulation. The
reconstruction procedures for fluxes are also of particular importance for a pos-
teriori error estimation and have a long history with ideas dating back at least
as far as [3] (see also [4]). A unified framework for Stokes is presented in [5],
polynomial-degree robustness is shown in [6] and extensions to three space di-
mensions in [7].
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Fig. 1: Geometry of the benchmark test

Fig. 2: Initial mesh

In contrast to the case of PDEs involving the full gradient, where equilibrated fluxes can be used, the linear elasticity system
involves the symmetric part of the displacement gradient for the definition of the associated stress. This requires the control
of the antisymmetric part of the equilibrated stress for the use in an associated a posteriori error estimator.

One possibility is to perform the stress reconstruction in one of the available symmetric H(div)-conforming stress spaces
like those introduced by Arnold and Winther [8–10]. However, this complicates the stress reconstruction procedure signif-
icantly compared to unsymmetric conforming H(div) elements like the Raviart-Thomas element and motivates equilibrated
stress reconstructions with weak symmetry. Weakly equilibrated stress reconstructions were considered for linear elasticity
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in [11–13]. In particular, a practical algorithm based on the idea of equilibration in broken Raviart-Thomas spaces was pre-
sented. In [14], the results were extended to hyperelasticity. The extension to the two-field formulation of the Biot problem
involves the reconstruction of the flux of the fluid pressure as well as the reconstruction of total stress tensor and was presented
in [15, 16]. In particular, in the tensor reconstruction, the anti-symmetric part was controlled for the use in an associated a
posteriori error estimator leading to an a posteriori error bound obtained by a weakly symmetric reconstruction of the total
stress tensor combined with a reconstruction of the Darcy velocity.

The paper is organized as follows. The next section reviews the considered model for phase-field method for quasi-static
brittle fracture. In section 3, the a posteriori error estimator is derived, together with the conditions for a weakly symmetric
stress equilibration. Finally, section 4 shows numerical results and compares uniform and adaptive refinements.

2 Model

Following [2], a linear elastostatic body is considered with a discontinuity occupying the domain Ω ⊂ Rd, d = 2, 3 and
(u, ϕ) : Ω → Rd denote the displacement field and the scalar damage variable. The boundary Γ admits the decomposition
Γ = ΓD ∪ ΓN ∪ ΓC into three disjoint sets. and essential boundary conditions (û, ϕ̂) are imposed on ΓD, i.e.

u = û on ΓD, ϕ = ϕ̂ on ΓD (1)

Moreover, we impose
[
(1− ϕ)2 + k

]
∇ · σ = t on ΓN ∇ϕ · n = 0 on ΓN (2)

with the outward normal n, the stress tensor σ = 1
2λ(tr(ε))

2 + µ tr
(
ε2
)
, the symmetric gradient ε = 1

2

[
∇u+∇uT

]
and µ

and λ the Lamé constants.
For a given material, we define κ as the product of critical energy release rate and characteristic length while κ̄ denotes

their ratio. When subjected to external tractions t̄ on ΓN , the boundary value problem in the absence of body force reads: find
(u, ϕ) : Ω → Rd such that

[
(1− ϕ)2 + k

]
∇ · σ = 0 in Ω, − κ∇2ϕ+ [κ̄+ 2H]ϕ = 2H in

under the boundary conditions (1) and (2), where the history variable H is defined as:

H =

{
ψ(ε), ψ(ε) < Hn

Hn, otherwise

Let V = H1(Ω)d, V 0 = H1
ΓD

(Ω)d the subspace of H1(Ω)d where the trace of the functions vanishes on ΓD and V u

denote the subspace of H1(Ω)d where the essential displacements boundary conditions are satisfied. Similarly, let V ϕ the
subspace ofH1(Ω)d where the essential damage boundary conditions are satisfied. The weak form of the governing equations
is given by: find (u, ϕ) ∈ V u × V ϕ such that

∫

Ω

[
(1− ϕ)2 + k

]
σ(u) : ε(v)dΩ =

∫

Ω

b · vdΩ +

∫

Γt

t · vdΓ (3)
∫

Ω

(κ∇ψ∇ϕ+ ψ [κ̄+ 2H]ϕ) dΩ =

∫

Ω

2HψdΩ +

∫

Γ

∇ϕ · nψdΓ (4)

Fig. 3: Divergence free RT0 function on a non-
structured patch

Fig. 4: Divergence free RT0 function on a struc-
tured patch
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holds, for all (v, ψ) ∈ V 2
D. We now can consider discrete subspaces consisting of piecewise linear polynomials with respect

to a triangulation T . In order to simplify the notation, we denote by V T the subspace of V consisting of piecewise linear
polynomials with respect to a triangulation T . Our discrete formulation therefore reads: find (uh, ϕh) ∈ V u,T × V ϕ,T such
that

∫

Ω

[
(1− ϕh)

2 + k
]
σ(uh) : ε(vh)dΩ =

∫

Ω

b · vhdΩ +

∫

Γt

t · vhdΓ (5)
∫

Ω

(κ∇ψh∇ϕh + ψh [κ̄+ 2H]ϕh) dΩ =

∫

Ω

2HψhdΩ +

∫

Γ

∇ϕh · nψhdΓ (6)

holds, for all (vh, ψh) ∈ V 2
D,T .

3 Adaptive Strategy

As in [2], the above variational form is solved using a staggered solver: we first solve for the displacement field using the
damage variable. Then, the updated displacement field is used to solve for the damage variable. In a first step, we therefore
chose to reconstruct only the displacement variable. For the purpose of the exposition, we restrict ourself to the benchmark
problem of the square plate with an edge crack subjected to a displacement at the top in the y direction, as in Figure 1. At a
given time iteration, the equation to solve for the displacement is given by

κ̃(∇uh,σ(vh)) = 0 (7)

This means that we can reconstruct a stress-like variable σ̃ with div σ̃ = 0. Since vh is a piecewise linear function we
reconstruct σ̃ in the lowest order Raviart-Thomas space RT0. Using a partition of unity, we are interested in divergence free
functions on a nodal patch, with vanishing flux boundary conditions. The advantage of using the lowest-order Raviart-Thomas
space is that, up to a multiplicative function, there is only one (in each dimension) correspondingRT0 divergence free function
σB on each nodal patch z, namely the curl of a corresponding Lagrange basis function ϕz (see Figure 3). We can therefore
project σ(uhϕz) onto the span {σB} to obtain σ̃. The error estimator is then given by η(T ) = ||σ(uhϕz)− σ̃||0,T

4 Numerical results

We consider the initial structured triangulation consisting of left triangles presented in Figure 2, and further refinement from
this initial mesh. We first refined this mesh 5 times uniformly and compared the results on the second, third, fourth and
five triangulation for the time step δt = 10−5. The effect of the time step is shown in Figure 6 and the effect of the mesh
refinement is shown in Figure 5 for the finest time step. Figure 7 shows the crack propagation at successive stages of applied
displacements while Figure 8 shows the error estimator. We can see that the adaptive strategy allows for very accurate results
with as little computational effort as possible. Future works will extend these results to the higher order case. The behaviour
of Raviart-Thomas elements on curved boundaries (see [17–20]) will be crucial to approximate curved crack propagation.

Fig. 5: Effect of the time step and uniform refinements Fig. 6: Comparison of adaptive and uniform refinements
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Fig. 7: Error estimator at different time steps

Fig. 8: Damage variable at time steps t = 0.0057 and t = 0.006
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