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Abstract: The action sequences of respondents in problem-solving tasks reflect rich and detailed
information about their performance, including differences in problem-solving ability, even if item
scores are equal. It is therefore not sufficient to infer individual problem-solving skills based solely
on item scores. This study is a preliminary attempt to incorporate process data analysis into the
measurement of problem-solving ability. The entire procedure consists of using information from
process data as prior information for the estimation of problem-solving proficiency in an item
response model. The purpose of this study is twofold: (1) to investigate the impact of adding
process information on the estimation of latent ability; (2) to examine the extent to which the
ability estimates obtained from the combination model can reflect the information of the
problem-solving process. Seven problem-solving items from the Programme for International
Assessment of Adult Competencies were used. Results indicate that the inclusion of process priors
enhances the correlation between proficiency estimates and process information related to the
problem-solving strategies adopted by respondents, as well as to their solution efficiency. The
inclusion of process priors further reveals differences in the problem-solving performance of
respondents exhibiting the same score pattern and increases precision of latent ability estimation.
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Problem-solving ability is defined as “an individual’s capacity
to engage in cognitive processing to understand and resolve
problem situations where a method of solution is not imme-
diately obvious” (OECD, 2013, p. 122). It is regarded as one of
the most sophisticated aspects of human cognition (Newell
& Simon, 1972), and it has been recognized as one of the
most important skills in the 21st century (Care et al., 2012;
National Research Council, 2012). The measurement of this
skill poses a major challenge, however, due to its complexity.
Advances in technology have promoted a new approach to

educational and psychological assessment—computer-based
assessment (CBA)—which further facilitates the growing
interest in assessing problem-solving skills and knowledge
in technology-related environments. The Programme for the
International Assessment of Adult Competencies (PIAAC)
was the first international assessment of adult skills to be
administered predominantly by computer. It targets adults
between the ages of 16 and 65 years, and it assesses three
domains of cognitive skills: literacy, numeracy, and problem-
solving in technology-rich environments (PSTRE; Schleicher,
2008). The PSTRE domain focuses on the ability to set goals,
plan and monitor progress, as well as to acquire, evaluate
and make use of information through digital technology,
communication tools, and networks (OECD, 2016). Using
computers as a delivery platform, the PSTRE assessment
in the PIAAC consists of interactive scenario-based items
that simulate real-life situations as closely as possible. The
data collected include information on not only whether

respondents were able to solve tasks (i.e., item outcomes),
but also how they approached the solution and how much
time they spent doing so. Such data are known as process
data (He & von Davier, 2016).
As a by-product of computer-based assessment, process

data are detailed records of the behaviors of respondents in
solving digital tasks. They are typically presented as time-
stamped sequences of actions generated during problem-
solving processes. The information in process data is partic-
ularly valuable when examining interactive problem-solving
tasks, because the action sequences are detailed records of
how test-takers achieve the success or failure of tasks, provid-
ing valid evidence for identifying the problem-solving strate-
gies used by respondents (Goldhammer et al., 2013; He, Bor-
gonovi, et al., 2019), as well as their cognitive processes
(e.g., Arieli-Attali et al., 2019) and other aspects. Thus, pro-
cess data allow the possibility to gain deeper insight into the
latent construct measured in problem-solving items, which
cannot be captured by item scores (Stadler et al., 2020). Ac-
cordingly, traditional measurement models inferring the la-
tent trait based solely on item outcomes or scores may be in-
appropriate for problem-solving tasks, due to the use of insuf-
ficient information.
To estimate the latent trait more accurately, researchers

have started to include timing data (a part of process data)
into the construction of the measurement model (e.g., Guo
et al., 2016; van der Linden et al., 2010; Wang & Xu, 2015).
The exploitation of behavioral information is still in the early

© 2021 by the National Council on Measurement in Education 1

https://orcid.org/0000-0002-2836-2906
https://orcid.org/0000-0003-3543-2164
https://orcid.org/0000-0002-3472-9102


stages, however, due to its complexity and unstructured na-
ture. Most previous efforts have focused on extracting infor-
mation fromprocess behaviors (e.g., Goldhammer et al., 2013;
Greiff et al., 2015; He, Veldkamp, et al., 2019). Only a few stud-
ies have explored how the information contained in response
behaviors can be used to facilitate the estimation of latent
traits (e.g., Lamar, 2018; Liu et al., 2018; Shu et al., 2017).
The models proposed in these studies have different require-
ments for the application situation and the form of process
information, as discussed later in this article. Therefore, this
study aims to combine the extraction of process information
with the measurement model to improve the estimation of la-
tent ability, and subsequently to explore the impact of includ-
ing process information in this manner on the estimation of
problem-solving proficiency, as compared to the use of item
scores alone.

A Brief Review of Process Data Analysis
Process data are more complex than traditional test re-
sponses, in which a univariate response is observed for each
item. Each response process is a sequence of categorical ac-
tions, and its length varies across individuals. Due to the
highly detailed information in the records, process data ap-
pear quite unstructured, such that traditional measurement
models are largely inapplicable. In addition, analysis is com-
plicated by a lack of understanding of the cognitive process
underlying human-computer interaction and the noises in the
response process.
The utilization of process information can be divided

roughly into the use of response time and the use of response
behaviors. Measurement models have been proposed to esti-
mate latent traits based on both traditional responses (i.e.,
item outcomes or item scores) and response time (e.g., Guo
et al., 2016; van der Linden et al., 2010; Wang & Xu, 2015). In
comparison, research on process behaviors is still in the ex-
ploratory stages, which can be roughly categorized into meth-
ods of information extraction andmeasurement models. Most
investigations have been limited to the extraction of item-
specific information to explore meaningful behavioral char-
acteristics. For example, researchers may derive behavioral
indicators from process data according to theory or expert in-
put (such as the number of clicking “reset,” the time spent on
one page, the number of times a certain strategy was used),
and then examining the relationships between these indica-
tors and other variables of interest (e.g., Greiff et al., 2015;
Han et al., 2019; Lee & Haberman, 2016). Some researchers
have also proposed bottom-up approaches to identify be-
havioral patterns directly from complete or short action se-
quences, for example, using n-grams (He& von Davier, 2016),
hidden Markov models (e.g., Biswas et al., 2010), and social
network analysis (Zhu et al., 2016). The information obtained
through these approaches facilitates the understanding of
the problem-solving process. However, it is difficult to aggre-
gate the information across multiple items due to the item-
specific nature, and it is also difficult to use this information
in measurement models.
Various scholars have proposed new ideas of transforming

behavioral sequences into single numbers or vectors to facil-
itate generalization of information extraction across items.
In many cases, the distance between two or more sequences
is computed. For instance, He, Borgonovi, et al. (2019)

apply the longest common subsequence (LCS) method to
identify the distance between each observed action sequence
for an item and the predefined sequence that subject-matter
experts consider optimal for solving the item. A longer dis-
tance corresponds to less likelihood of a correct response.
Tang, Wang, et al. (2020) propose extracting latent variables
from process data through multidimensional scaling (MDS).
Specifically, this method involves constructing a multidimen-
sional space according to the pairwise dissimilarities between
observed sequences. After proper rotation, the coordinates of
this space can be treated as features that store process infor-
mation. Both simulation and empirical studies have demon-
strated that the latent variables extracted through MDS re-
tain complete information about problem-solving processes
(Tang, Wang, et al., 2020). Although MDS is applied to single
items, the latent variables obtained are in standard numer-
ical format, such that the features extracted from multiple
items can be incorporated into many well-developed statisti-
cal methods to facilitate inferences related to the problem-
solving skills of respondents.
In addition to extracting information, researchers have

attempted to infer problem-solving ability or relevant latent
constructs based on process behaviors. Given the complexity
and categorical nature of action sequences, however, only a
few such studies have been conducted. Moreover, the models
that have been proposed are not well suited to broad use
in practice, due to their respective application conditions.
For example, Shu et al. (2017) proposed the Markov-IRT
model by treating the transitions between observed actions
as dichotomous indicators and using multidimensional item
response theory (MIRT) models to estimate latent traits.
The obtained two latent variables were respectively highly
correlated with the systematicity and efficiency scores de-
signed by the test developers, which are only relevant aspects
of problem-solving. Although this procedure is generic, it
can be applied to only one item at a time, and the number
of all possible actions cannot be too many. Liu et al. (2018)
developed a modified multilevel mixture IRT (MMixIRT)
model that can estimate ability at the level of both process
and student, based on process data from only one item. This
model requires recoding process steps into dichotomous data
according to the only correct solution, which can be difficult
for some items. Lamar (2018) integrates a cognitive theory
and the IRT approach based on the Markov decision process
to develop a Markov decision process measurement model
(MDP-MM) for estimating individual capability to solve a
problem optimally. The model assumes that an individual’s
decision-making (i.e., probability of taking an action) in the
current state depends on that individual’s ability and the
expected rewards obtained by taking a given action. Rooted
in cognitive theory, this model can be regarded as a top-down
approach, but its estimation depends on the extent to which
the specification of the cognitive model deviates from reality
(Lamar, 2018). The complexity of human behaviors often
results in differences between predefined models and the
processes performed by individuals. Although the MDP-
MM can be updated iteratively based on these differences,
doing so would require considerable effort, and it would
be difficult for practitioners. This model further requires
the definition of problem states in which the actions are
taken—a process that can be difficult to realize for some
problems.
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Figure 1
An example item in the PIAAC PSTRE assessment
[Color figure can be viewed at wileyonlinelibrary.com]

Note. Available at www.oecd.org/skills/piaac/Problem%20Solving%20in%20TRE%20Sample%20Items.pdf.

The Present Study
Stadler et al. (2020) have revealed that individual differ-
ences in test-taking behavior sequences indicate differences
in problem-solving ability, despite the same scores. In other
words, process data containmore information about individu-
als’ problem-solving proficiency than item scores. However, it
is difficult to construct measurement models directly based
on process data, due to the characteristics of process data
and the unclear relationship between process information
and problem-solving ability. For these reasons, we consider
combining the information extraction of process datawith the
traditional measurement model based on item outcomes, so
as to use process information to improve the estimation of
problem-solving ability.
In psychological and educational assessments, supplemen-

tary prior information that is related to the observable out-
come variables and latent variables in the measurement
model can be added into thesemodels in order to increase the
accuracy of estimation, which is realized through Bayesian
methods. For example, some background variables of stu-
dents (e.g., demographic variables, scores on other tests)
have been used as prior information to enhance the accuracy
of their ability estimates (Matteucci & Veldkamp, 2013). Sim-
ilarly, He, Veldkamp, et al. (2019) included the score from the
textual assessment as input for a prior distribution of the la-
tent trait measured according to questionnaire items using
an IRT model, thereby enhancing accuracy in the detection
of posttraumatic stress disorder (PTSD).

Since the process data are related to problem-solving item
outcomes and individual problem-solving ability and can pro-
vide additional information to latent ability beyond item
scores, in this study, we propose incorporating process data as
prior information to improve the IRT estimation of the latent
trait and focus on the impact of including process informa-
tion on the estimation of latent traits, as compared to using
item scores alone. More specifically, we focus on the extent
to which the proficiency estimates obtained from the com-
bination model can reflect the information of the problem-
solving process. To extract process information, the multidi-
mensional scaling approach was used. The proposed method
was applied to process data of the United States sample on
seven PSTRE items in PIAAC 2012.

Materials and Method
Instrument

The PSTRE assessment included a total of 14 items and it was
administrated in two booklets. In this study, we focused on
the seven items in the second booklet. An example of PSTRE
items in the PIAAC is displayed in Figure 1. This item involves
only one environment: the web. To solve the item, respon-
dents need to click each link on the result page (displayed
in Figure 1) and the associated pages and examine whether
the site meets the requirements given in the left panel. Re-
spondents can navigate using the back and forward arrows or
the home icon in the toolbar, and they can bookmark websites
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or manage bookmarks either by using the bookmark icon in
the toolbar or by going through the bookmark menu item.

Data

The data used in this study include process data and item
scores of seven PSTRE items. The process records used have
been preprocessed from the raw PIAAC 2012 log file data,
during which only records representing respondents’ actions
were kept and recoded, while other records were removed
(such as system events activated by respondent’s actions). A
fragment of the process data for an item and the correspond-
ing recoded action sequence are shown in Appendix Table A1.
For the final responses, seven items were scored either di-
chotomously or polytomously.

Sample

This study focused on the US sample of participants who com-
pleted the second PSTRE booklet, including 1355 test-takers.
Of these participants, 630 were male and 713 were female.
For 125 test-takers, the highest level of education was lower
than secondary school; 534 had secondary school as the high-
est level of education; and 682 had completed higher educa-
tion. For the rest of the respondents, there were no relevant
records for gender and education.
The shortest action sequence observed was “Start, Next,

Next_OK,” meaning that the respondent skipped to the next
item immediately after starting and did not interact with the
task, resulting in incorrect item outcomes. Because it is diffi-
cult to distinguish whether this was due to low engagement or
insufficient proficiency and this study does not focus on how
to address these cases, we regarded such process sequences
as exhibiting the “Nonresponse (NR)” pattern and excluded
them from the analysis. The corresponding outcomes were
also coded as missing. When extracting process information,
we used the process data of respondents who did not exhibit
an NR sequence pattern for each item. Therefore, the sample
sizes used for the seven items were different, ranging from
1127 to 1271 (listed in Appendix Table A2). When estimating
ability based on data from seven items, we used data on the
final 938 respondents whose process data did not reflect any
NR sequence patterns.

The Combination Model of IRT and Process Information

In this section, we introduce our proposed approach: the
combination model of IRT and process information. This ap-
proach involves two stages: (1) extracting features from the
process data, and (2) combining process features and IRT
within a Bayesian framework.

Stage 1: feature extraction from process data. This stage
comprises two steps: (1) feature extraction using multidi-
mensional scaling (MDS) and (2) feature selection based on
the random forest algorithm. Tang, Wang, et al. (2020) intro-
duce the MDS approach into the analysis of process data for
single items and report that the extracted features retained
sufficient information from the problem-solving process. In
this study, therefore, we apply the MDS approach to extract
continuous variables representing information from the pro-
cess sequence for each item.
Briefly, the MDS procedure involves constructing a la-

tent space with K raw latent dimensions based on the

dissimilarities between each pair of sequences, which re-
quires the prespecification of K. For seeking interpretations,
Tang, Wang, et al. (2020) further performed principal compo-
nent analysis for these K dimensions, thus producing K fea-
tures. Thereafter, cross-validation is adopted to compute the
information loss (i.e., the discrepancy between the estimated
and true similarities) for each possible K, and the K with the
minimum loss (denoted as Kloss later) is ultimately selected.
In this study, the possible K ranged from 2 to 30 for each of
the seven items. This step was implemented directly using
the ProcData package (Tang, Zhang, et al., 2020) in R. Ta-
ble 1 lists the number of features determined based on the
minimum loss (Kloss) for each item.
As shown in Table 1, a total of 171 features were extracted

based on minimum loss. Adding all of these features into the
prior of the model would result in too many parameters to
be estimated for the current sample size. In addition, when
K was large, the decreasing trend of the loss value with the
increasing K was quite flat. It may thus be unnecessary to
retain all of these features. Consider the fact that each pro-
cess feature was extracted to account for the remaining dis-
similarities between sequences for each item after excluding
the part accounted for by the previous process features. In
other words, the first feature accounted for the most impor-
tant difference between sequences, and the second feature
accounted for the second most important difference, and so
on. Therefore, we retained the first three features for each
item, which are expected to contain most of the information
about themajor differences between respondents’ sequences.
Based on the measure of information loss in MDS (see Tang,
Wang, et al., 2020, for more details), for each item, we cal-
culated an indicator to measure the amount of information
retained by the first three features. Its formula is

(
1−

∑
i, j

(
dij −

∣∣∣∣xi − x j∣∣∣∣)2∑
i, j

(
dij
)2

)
× 100%, 1 ≤ i < j ≤ n(1)

in which di j = d(si, s j) is the pairwise dissimilarity between
response process si and s j, xi is the feature vector of si (in-
cluding only the first three features here), and ||xi − x j|| =√
(xi − x j)T (xi − x j). The percentage of retained informa-

tion for each item is listed in the last column of Table 1, which
is higher than or about 90%. Therefore, it can be considered
that the three features did represent most of the information
about the differences between sequences. However, it should
be noted that the number of features extracted for each item
is not required to be the same, nor does it have to be three.
If any, researchers can use other suitable methods to further
select the extracted process features.
Although Tang,Wang, et al. (2020) introduced an approach

to seeking possible interpretations for features extracted by
MDS, the obtained interpretations and the criteria for validat-
ing them were subjective, and the procedure would require
considerable effort. We did not devote much attention to la-
belling these extracted variables, as this was not the focus
of the current study. As stated above, a total of 21 variables
from process data on seven items were selected for use as
prior information for estimating latent ability. The values of
these process features were mostly between –0.6 and approx-
imately 0.5. Descriptive statistics of these variables and their
correlations are shown in Appendix Tables A3 and A4.
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Table 1
Number of Variables Extracted from Process Data for Seven PIAAC PSTRE Items

Item Score Level Naction Kloss

Percentage of Retained Information for the
First 3 Features

U19a 0, 1 54 19 90.5%
U19b 0, 1, 2 254 29 92.9%
U07 0, 1 52 17 92.7%
U02 0, 1, 2, 3 142 29 92.4%
U11b 0, 1, 2, 3 359 30 92.8%
U16 0, 1 136 24 87.6%
U23 0, 1, 2, 3 85 23 96.8%
Sum 171

Note. Naction = number of unique actions; Kloss = number of features extracted based on the minimum loss. The items are listed in order of
administration. We finally retained only the first 3 features for each item, thus 21 features in total.

Stage 2: adding process features into IRT. After obtaining
process information in the form of continuous variables, pro-
cess features and item response modelling were combined
within a Bayesian framework. The IRT model used here was
the unidimensional generalized partial credit model (GPCM;
Muraki, 1992), which is used in item calibration based solely
on item outcomes in the PIAAC 2012 (OECD, 2016). For an
item j with mj + 1 ordered categories (0, 1, …, mj), the
probability of the respondent i being in the response category
k can be written as follows:

P
(
Yi j = k

) = exp
[∑k

r=0 1.7α j
(
θi − β j + d jr

)]
∑mj

u=0 exp
[∑u

r=0 1.7α j
(
θi − β j + d jr

)] , (2)

where θi is the latent ability of respondent i;α j is the slope pa-
rameter of item j (i.e., the item discrimination parameter);
β j is the location parameter (i.e., item difficulty); and d jr is
the category threshold parameter.
The next step in our approach involved using the 21 vari-

ables obtained from process data in the previous step as prior
information for the latent ability θi. The relationship between
the latent ability θ of individual i, and the process information
x1 ∼ x21 is given by the following linear regression structure:

θi = b0 + b1x1i + · · · + b21x21i + εi, (3)

where b0 and b1 ∼ b21 are the regression intercept and slopes,
and εi is the error term that is assumed to follow a normal
distribution N(0, σ 2) with i = 1, 2, . . . ,N individuals. In
other words, given the process variables, the prior distribu-
tion of θi is as follows:

θi ∼ N
(
b0 + b1x1i + · · · + b21x21i, σ 2) . (4)

The regression parameters in the prior structure
(b0, b1, . . . , b21, and εi) are assumed to be independent
of the item parameters in Equation 2.

Model Comparison and Specification

To examine the performance of the inclusion of process in-
formation, we compared the latent ability estimates from the
combination model to those from the IRT model based on re-
sponse outcomes alone. In practice, the Bayesian Expected a
Priori (EAP) is often used to estimate the IRT ability scores
after the item parameters are obtained. In addition, consider-
ing the ideas of the EAP and MCMC algorithms are different,

we considered both EAP and MCMC for the IRT model based
on responses (denoted as IRT_EAP and IRT_MCMC), in or-
der to make the ability estimation with and without process
information more comparable. In all, we compared three ap-
proaches.
The IRT model used in the three approaches was the same

GPCM, which is reduced to the two-parameter logistic (2PL)
model for binary outcomes. To maintain the comparability of
the three sets of estimates, for each of the three approaches,
we employed the same set of fixed item parameters that had
been calibrated using the GPCM and published in Technical
Report of the Survey of Adult Skills (PIAAC) (2nd Edition)
(OECD, 2016).
The MCMC estimation procedures were run in JAGS 4.3.0

(Plummer, 2017) through the rjags package (Plummer, 2019)
in R. In the combination model, we specified relatively dif-
fuse prior distributions for the parameters in the regres-
sion of θ : b0 ∼ N(0, 102), b1, . . . , b21 ∼ N(0, 22), and σ 2 ∼
IG(1, 1), since we had no prior knowledge for the distribu-
tion of θ or those parameters. For the MCMC estimation with-
out process information, we assigned a common normal prior
with relatively large variance, θi ∼ N(0, 32), to the per-
son parameter (latent ability). The EAP estimation was per-
formed using the irtplay package in R (Lim & Wells, 2020),
also with the normal prior N(0, 32).
The convergence of the MCMC estimation for each param-

eter was monitored using the potential scale reduction fac-
tor R̂ (Brooks & Gelman, 1998; Gelman & Rubin, 1992), as
well as the trace plot of MCMC. Generally, approximate con-
vergence is diagnosed when R̂ is close to 1 (often opera-
tionalized as being <1.1). We also used the plot of the evo-
lution of R̂ as the number of iterations increases to check
whether the R̂ happened to be close to 1 by chance or had
really converged (Brooks & Gelman, 1998). The estimation
of the latent ability in both IRT_MCMC and the combination
model was performed using two MCMC chains. Each chain
was run for 20,000 iterations. As suggested by Brooks and Gel-
man (1998), the first half of the iterations can be discarded
for each MCMC chain to avoid the burn-in (i.e., running the
chain until stationarity is reached; Patz & Junker, 1999) pe-
riod. Combined with the convergence results, the first 10,000
iterations were discarded for each chain, yielding a total of
10,000× 2= 20,000 iterations that served to empirically ap-
proximate the posterior distribution. We used the median of
the distribution as a posterior summary of each parameter.
As an empirical study, the true values of the latent abil-

ity are unavailable. To examine the influence of adding prior
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information from process data, we conducted two investiga-
tions.

Investigation 1
The first investigation aimed at examining the association be-
tween ability estimates and several indicators of the problem-
solving process that are related to the latent construct. A
higher correlation suggests that the set of ability estimates
obtained by the corresponding method is more reflective of
the characteristics of the response process. This analysis was
based on the entire sample of 938 respondents.
Specifically, we adopted the indicators of similarity and

efficiency to quantify the problem-solving information
across multiple items, as proposed by He, Borgonovi, et al.
(2019). These indicators are based on the distances between
observed sequences (OS) and the optimal or reference
sequences (RS), that is, the length of the longest common
subsequence (LCS) between OS and RS. As mentioned in the
article of He, Borgonovi, et al. (2019), reference sequences
represent the theoretical range of sequences that should
be the most efficient way to solve the problem. Therefore,
there may be more than one RS for an item. We invited three
experts in the field of cognition who are familiar with PIAAC
and problem solving to discuss and identify the reference
sequences for each PSTRE item. To access the non-released
items, they also signed the confidentiality agreement.
The similarity for each item is calculated as the ratio be-

tween the length of LCS and the length of RS (Formula 5).
The larger the ratio, the more closely the individual follows
the reference strategy to solve the problem, thus indicating
higher ability. The efficiency for each item is the ratio of the
LCS length to the OS length (Formula 6). A large value im-
plies that the individual solved the problemwithout many un-
necessary behaviors, also implying high ability (Stadler et al.,
2020). In order to synthesize information across items, we
calculated the mean of the similarity (or efficiency) across
items, generating two indicators: average similarity (SM) and
average efficiency (EM) (Formulas 7 and 8). In addition, we
calculated the standard deviation of similarity across items
(SSD) to denote the consistency of similarity (Formula 9),
with larger values corresponding to inconsistent problem-
solving behaviors. For additional details, see He, Borgonovi,
et al. (2019).

Similarity for each item : Sim = length (LCS) /length (RS) , (5)

Efficiency for each item : Eff = length (LCS) /length (OS) , (6)

Average Similarity : SM = Mean (Sim1, Sim2, . . . , Sim7) , (7)

Average Efficiency : EM = Mean (Eff1,Eff2, . . . ,Eff7) , (8)

Consistency of Similarity : SSD = (Sim1, Sim2, . . . , Sim7) . (9)

Given that each item may have more than one optimal se-
quence, an observed sequence was compared to each opti-
mal sequence, thus generating multiple LCSs. The longest
LCS and the corresponding reference sequence are used in
the calculation. In our research, the presence of two or more
longest LCSs for a single observed sequence indicates that the

observed sequence might not contain some key operations
that could match the corresponding reference sequences. In
these cases, we selected the length of the longest reference
sequences that produce the longest LCS as the denomina-
tor of the similarity. More specifically, we chose to generate
a smaller similarity to reduce the information contained in
the value of this indicator. In addition, when computing the
length of LCS for each item, three actions were excluded from
both observed and reference sequences: START at the begin-
ning, and NEXT and NEXT_OK at the end of each sequence.
These actions were excluded, as they were required by each
item and did not contain any useful information. After obtain-
ing the process indicators for all respondents, we calculated
the correlation between the latent trait estimates and the in-
dicators.

Results
Table 2 presents descriptive statistics and correlations among
ability estimates from three models. Logically, the IRT_EAP
and IRT_MCMC approaches produced highly consistent es-
timates with a correlation of 0.983 and a wider range. The
correlation between estimates of the combination model and
those without process priors appeared to be slightly lower, in-
dicating that the inclusion of process priors led to some dif-
ferences in ability estimates.
In statistics, the precision of a parameter estimate is mea-

sured by the variability of the estimates around the value
of the parameter (Baker, 2001). More about the parameter
value could be known if the corresponding estimate is ob-
tained with higher precision. Accordingly, the SDs were com-
puted according to the posterior draws for the MCMC estima-
tion (IRT_MCMC and the combination model). Precision was
measured by the SE for the IRT model with EAP estimation.
The smallest average posterior SD of the combination model
indicates that the addition of the process priors helped to im-
prove the precision of the estimates.
The distributions of three process indicators (SM, EM, and

SSD) are presented in Appendix Figure A1. We expected that
the estimates produced by the combination model would con-
tain more information about the process performance than
those of the outcome-based IRT models, which should be re-
flected by a higher correlation between estimates of the com-
bination model and the process indicators.
The Spearman’s correlation was used to explore the rela-

tionship, thereby avoiding the influence of extreme values in
estimates.We first calculated the Spearman’s correlations be-
tween SM/EM and the three sets of estimates. Given the find-
ing of He, Borgonovi, et al. (2019) that the relationship be-
tween the consistency of similarity and problem-solving pro-
ficiency differed by level of average similarity, we decided not
to consider SSD here and to examine its relationship with
ability estimates later.
In general, the estimates without using process informa-

tion were already highly correlated with average similarity
(0.879), and were moderately correlated with average effi-
ciency (0.663), in which there was no difference between
IRT_EAP and IRT_MCMC estimates. The inclusion of process
priors enhanced the relationship between ability estimates
and SM/EM. Specifically, the correlation of the combination
model estimates with the similarity is 0.905 and the corre-
lation with the efficiency is 0.739. These findings imply that
the estimates using process information contain more infor-
mation related to problem-solving strategies and efficiency.
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Table 2
Descriptive Statistics and Correlations among Ability Estimates with and without Process Priors

Approach M SD Range

Average
Posterior SD or

SE 1 2 3

1. Combination model –0.040 0.804 [–2.874, 1.772] 0.204 1.000
2. IRT_EAP –0.024 1.270 [–3.500, 3.397] 0.467 0.931 1.000
3. IRT_MCMC –0.030 1.164 [–3.264, 3.196] 0.519 0.898 0.983 1.000

Note. IRT_EAP = the IRT model with EAP estimation; IRT_MCMC = the IRT model without process information using MCMC estimation.

Table 3
Spearman’s Correlations between Process Indicators and Latent Ability Estimates with Process
Priors for Score Patterns with More than 15 Respondents

Number of
Respondents

Correlation with Process Indicators
Score Pattern Ability Estimates SM EM

0000000 42 –1.856 (0.385) 0.471** 0.325*

1213313 30 1.144 (0.287) 0.288 0.696**

1212313 23 0.972 (0.219) –0.141 0.291
1212013 20 0.678 (0.194) 0.519* 0.689**

1000000 19 –1.535 (0.316) 0.672** 0.291
1200010 17 –0.398 (0.183) 0.422† 0.213

Note. Numbers in the parentheses are the standard deviations of the ability estimates in each score pattern.
SM = average similarity; EM = average efficiency.
†p < 0.10.
*p < 0.05.
**p < 0.01.

Table 4
Spearman’s Correlations between Consistency of Similarity (SSD) and Latent Ability Estimates from
Three Approaches under Different Levels of Average Similarity

Approaches High Similarity Medium Similarity Low Similarity

Combination model –0.361** –0.188** 0.460**

IRT_EAP –0.256** –0.063 0.463**

IRT_MCMC –0.256** –0.059 0.461**

Note. Consistency of similarity is calculated as the standard deviation of similarity, with larger values corresponding to lower consistency.
IRT_EAP = the IRT model with EAP estimation; IRT_MCMC = the IRT model without process information using MCMC estimation.
**p < 0.01.

We conducted a further examination of the correlations
between the estimates with process priors and the average
similarity or average efficiency for respondents within the
same score pattern (see Table 3). For groups with too few
respondents, the correlation may not accurately capture the
relationship between variables. For this reason, we selected
the score patterns with at least 15 respondents. Because the
item scores provided the same information, the estimates
with no prior information were/should be the same for indi-
viduals having the same score pattern. Therefore, IRT_EAP
and IRT_MCMC estimates were not included. According to
Table 3, the estimates with process priors were often strongly
correlated with similarity and/or efficiency. For the high
score patterns (“1213313” and “1212013”), the combination
model estimates were strongly correlated with efficiency.
Their small to moderate correlations with the similarity may
be because their average similarity was already high with a
narrow range of variation. The low correlation of estimates
with efficiency for the high-score pattern “1212313” could be
attributed to the low variance of average efficiency amongst
these respondents. This response mode indicates that re-
spondents received partial credit on the fourth item and full

scores on all other items, possibly implying high proficiency.
The combination-model estimates for the low score pattern
(“1000000” and “1200010”) were more strongly correlated
with average similarity than they were with average ef-
ficiency. For the zero-score group (“0000000”); however,
the correlations of the combination model estimates with
average similarity or efficiency were both moderate and
significant.
The correlations between the consistency of similarity

(SSD) and latent ability estimates from three approaches un-
der different levels of the average similarity are listed in Ta-
ble 4. In general, the association between SSD and ability es-
timates was not very strong. For respondents with high and
low similarity, the direction of this association was opposite.
Given that higher SSD values indicate lower consistency, the
negative correlation for the high similarity group means that,
for this group, respondents performing more consistent be-
haviors tended to obtain higher estimates. The opposite situ-
ation applied for the low similarity group. The influence of in-
cluding process priors was reflected primarily in respondents
with high similarity, for whom the correlation increased from
0.256 to 0.335.
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Table 5
Spearman’s Correlations between Proficiency Estimates from Three Approaches and Average
Efficiency/Similarity under Different Levels of Average Similarity/Efficiency

Correlation with Average Efficiency
Approach High similarity Medium similarity Low similarity

Combination model 0.465** 0.262** 0.481**

IRT_EAP 0.196** 0.111 0.382**

IRT_MCMC 0.199** 0.109 0.379**

Correlation with Average Similarity
High efficiency Medium efficiency Low efficiency

Combination model 0.742** 0.837** 0.903**

IRT_EAP 0.702** 0.806** 0.847**

IRT_MCMC 0.703** 0.806** 0.846**

IRT_EAP = the IRT model with EAP estimation; IRT_MCMC = the IRT model without process information using MCMC estimation.
**p < 0.01.

Logically, the interpretation of the efficiency index de-
pends on whether the respondents adopt the correct
problem-solving strategies.We, therefore, divided the average
similarity and efficiency values into low, medium, and high
levels, based on the percentiles 33.3 and 66.7.We then investi-
gated the association between estimates and average similar-
ity (efficiency) at different levels of average efficiency (sim-
ilarity) (see Table 5). According to these results, the corre-
lation between efficiency and estimates under each level of
similarity was much lower than the correlation for the whole
sample. In addition, for different levels of similarity (or ef-
ficiency), the estimates reflected efficiency (or similarity)
to differing degrees, while the inclusion of process informa-
tion enhanced the degree of reflection in all cases. Of these
results, the effect of the combination model was the most
salient at the high similarity level. More specifically, for re-
spondents with high average similarity, the estimates of the
combination model were able to reflect much more informa-
tion related to their solution efficiency.

Investigation 2
The second investigation aimed to explore the efficiency of
the combination model. Given that process information can
be regarded as supplementary information for estimating
problem-solving proficiency, we expected that adding pro-
cess information would improve the precision of the latent
variable estimates, thereby helping to reduce the number of
items without compromising the precision of the estimation.
Therefore, we fitted the combination model, as well as the
two IRT models based on only item outcomes, to the data of
different numbers of items. We expected that the combina-
tion model would produce more precise estimates with fewer
items than the models without process priors. The precision
of θ -estimates was indicated by the posterior standard devi-
ation (SD) in the MCMC estimation and the standard error
(SE) in EAP estimation.
Due to the unavailability of the prior knowledge for the

regression parameters in the combination model, we ran-
domly split the sample into two halves and fitted the com-
bination model with large-variance priors (b0 ∼ N(0, 102),
b1, . . . , b21 ∼ N(0, 22), and σ 2 ∼ IG(1, 1)) to the first half
of the sample. We then used the obtained posteriors as pri-
ors and fitted the combination model to the remaining half
of the sample. The other two IRT models were also fitted to
the same second half of the sample, using the same priors as
in the first investigation. These procedures were repeated for

Figure 2
Relationship between precision of proficiency estimates and num-
ber of items with or without process priors

IRT_EAP = the IRT model with EAP estimation; IRT_MCMC = the IRT model
without process information using MCMC estimation.

data of different numbers of items. For example, when one
item (U19a) was used, only three process variables from the
process data of item U19a were included in the prior for the
combination model. By checking the estimation precision of
three approaches when different numbers of items were used,
the effect of process information in improving estimation pre-
cision and thus reducing test length could be better shown.
Given that there appear to be no criteria for selecting items,
the items were ranked in the order in which they had been
administrated in the assessment. When using the combina-
tion model, the priors of the parameters in the regression of
θ for the second half of the sample (i.e., the posteriors ob-
tained from the first half of the sample) when one to seven
items were used are shown in Appendix Table A5.
Note that the two investigations were based on different

prior specifications used in the combination model, that is,
the large-variance priors with no prior information and infor-
mative priors from half of the sample. To check the sensitivity
of the results to priors, we also made a brief comparison be-
tween the ability estimates for the same subsample resulting
from the two sets of priors.

Results
As shown in Figure 2, IRT_EAP and IRT_MCMC had highly
similar estimation precision in all situations: the SE or
posterior SD of estimation without process priors started
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at about 2 (when only the first item was included) and
dropped to about 0.5 (when all seven items were included).
By comparison, the posterior SD of the combination model
stayed at the lowest level and was much less affected by the
number of items, decreasing from 0.53 to 0.21 as the number
of items increased. The estimation precision of the combina-
tion model using only one item was close to that of the IRT
models based on item scores of seven items. Further, with
more items, the difference between the estimation precision
of the three approaches decreased at the beginning, but then
remained relatively stable after reaching four items.
We investigated the standard error of estimation for re-

spondents at different proficiency levels in greater detail.
The proficiency levels were divided based on the 20th, 40th,
60th, and 80th percentiles of the IRT_MCMC estimates, given
the very high correlation between ability estimates. Profi-
ciency levels 1∼5 correspond to very low, low, medium, high,
and very high levels, respectively. From Figure 3, the de-
creasing trend of the standard errors without using process
information differed between different groups. When fewer
than four items were used, the standard errors obtained from
IRT_MCMC and IRT_EAP were high for all proficiency lev-
els. When 4∼7 items were used, the standard errors obtained
without process information were higher for the very low
and very high proficiency group than they were for the other
three proficiency groups. In contrast, the standard errors
from the combination model were not affected by proficiency
levels and remained the lowest in the comparison between
approaches.
These results suggest that the inclusion of process infor-

mation improved the precision of latent trait estimation, with
the effect being more apparent when using fewer items and
for respondents with very low and very high levels of profi-
ciency.
Considering that two sets of prior specifications (i.e., the

large-variance priors and the posterior-informed priors) were
used respectively for two investigations, we compared the θ -
estimates of the second half sample that resulted from them,
in order to check the influence of these priors on the results.
The differences between the two sets of estimates fell be-
tween –0.067 and 0.071, and the differences between the two
sets of posterior SDs were mostly between 0.010 and 0.032.
These results show that the ability estimation was not sensi-
tive to the priors for the regression coefficients of the process
variables.

Discussion
Summary and Implications

Process data record rich details about how respondents solve
problems while providing additional information related to
problem-solving ability beyond item outcomes. However, the
construction of measure models directly based on the behav-
ioral sequences is a big challenge, considering the lack of
definition of how process data are related to item outcomes
and latent ability, as well as the possible dependency between
process variables. Therefore, starting from the other perspec-
tive, this study is a preliminary attempt to incorporate data-
driven process information into the IRT measurement model
in order to improve the estimation of problem-solving ability.
Specifically, information from process sequences is extracted
using MDS and used as prior information for the estimation
of latent ability based on item outcomes. Because process in-

formation provides additional information about latent abil-
ity beyond item outcomes, more informative and precise abil-
ity estimates can be obtained using the combination model.
The whole procedure does not require prior knowledge of the
items or response processes.
To examine the impact of including process information

into the measurement model, we compared the ability es-
timates with and without using process information, based
on their correlations with process indicators, along with the
precision for the estimates. The process indicators used in
this study—similarity and efficiency—are important mani-
festations of problem-solving ability. The similarity indicator
describes the consistency between the observed action se-
quence and the optimal solution, which can be regarded as
an indicator of strategy use (He, Borgonovi, et al., 2019). The
efficiency of different sequences also indicates differences in
problem-solving ability (Stadler et al., 2020).
Results based on data from the US sample on seven PSTRE

items in the PIAAC indicate that the inclusion of process pri-
ors renders the ability estimates more informative, reflected
by a stronger correlation with similarity and/or efficiency. Ex-
amining the correlation between the estimates and one pro-
cess indicator at different levels of another process indicator
reveals the process information contained in the estimates
with process priors from a more detailed perspective. The
inclusion of process priors resulted in a larger increase in
the correlation between the estimates and the consistency of
similarity for respondents with high similarity than it did for
those with medium or low similarity. It is conceivable that re-
spondents who consistently perform sequences that are close
to optimal solutions tend to have higher abilities than do
those exhibiting performance that is high, on average, but
unstable. Process information also caused a much higher in-
crease in the correlation between the estimates and the aver-
age efficiency of respondents with high similarity than it did
for those with medium or low similarity. This result is mean-
ingful for the high similarity group, as the sequences with
high similarity are more similar to each other. For these re-
spondents, efficiency can provide a better reflection of dif-
ferences in ability. The weaker effect for the medium or low
similarity group may have occurred because sequences with
medium or low similarity exhibit much more variation in
other aspects, in addition to similarity and efficiency. The ef-
ficiency indicator may not be able to capture the reflection of
process information for these sequences, especially for those
with low similarity. In addition, low similarity indicates that,
in general, the respondents did not use appropriate solutions.
In this regard, efficiency may not provide a good reflection of
differences in ability.
The higher estimation precision of the combination model

also indicates the positive impact of using process priors.
When process priors were introduced, even one item was suf-
ficient to make latent trait estimations as precise as those
obtained using only the outcomes of all seven items. This re-
sult is similar to findings reported in He, Veldkamp, et al.
(2019), in which the textual assessment information that was
used as prior information increased the precision of PTSD
latent trait estimates based on IRT, thereby eliminating the
need for the follow-up items. Likewise, the findings of our
study suggest that the use of process priors can help to
shorten test length, improving the efficiency of test devel-
opment and implementation. In addition, decreases in the
standard errors were more apparent for respondents of very
low and very high ability levels. This indicates that the use of
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Figure 3
Relationship between precision of proficiency estimates and number of items for different proficiency levels

Note. Panels A to E show the changes of average standard errors with increasing number of items for Proficiency Levels 1–5, which correspond to very low, low,
medium, high, and very high levels, respectively. These levels were divided based on the 20th, 40th, 60th, and 80th percentiles of the IRT_MCMC estimates.
IRT_EAP = the IRT model with EAP estimation; IRT_MCMC = the IRT model without process information using MCMC estimation.

process priors could help to address the problem of low esti-
mation precision associated with the IRT model for respon-
dents at both ends of the ability scale.
In the proposed approach, process information was in-

cluded into the priors of θ through the Bayesian approach,
thus requiring to specify the priors of the regression coeffi-
cients. In this study, we used both diffuse priors and posterior-
informed priors and found that the informativeness of the

priors of the regression coefficients had little effect on the la-
tent trait estimation. In addition, as extracted and selected
by data-driven approaches, the process variables of differ-
ent samples may be different and difficult to match. If re-
searchers want to get the prior information of those coef-
ficients of process variables, they need to derive the pro-
cess variables based on the whole sample first, so as to keep
these variables consistent between the split-half samples.
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Therefore, considering the insensitivity of estimation to the
priors and the efficiency of implementation, large-variance
priors may be a better choice for the combination model.
One thing that may cause confusion is that the ranges

of ability estimates for the three models are different (see
Table 2). The range of estimates for the combination model
is smaller than those for the other two models. This is
probably due to the different priors of the latent ability. In
the IRT_MCMC and IRT_EAP models, a weak-informative
prior N(0, 32) was specified for the latent ability, while an
informative prior based on the process features was used in
the combination model. According to the value ranges of the
process features, it can be easily inferred that the prior vari-
ance is much smaller than 32, leading to a smaller range of
the estimates. Actually, the estimated abilities of individuals
resulting from different estimation procedures should not be
directly compared. It may be more appropriate to focus on
the relative positions of individuals based on the estimates.
For this reason, we used correlation in the first investigation
to make comparison between methods.

Limitations and Future Directions

First, this combination model is only a preliminary attempt
to include process information in the estimation of latent
traits for problem-solving items. The ability estimates from
the combination model need further validation by using
other external criteria and more process indicators related
to problem-solving skills.
Second, in the current study, we used the precalibrated

item parameters, referring to the study of He, Veldkamp, et al.
(2019) in which the information from the textual assessment
was used as prior information in the item response modelling
for the questionnaire. In our approach, however, it is not nec-
essary to fix item parameters. Future studies could investi-
gate the impact of fixing or freely estimating itemparameters.
Third, the selection of the extracted process features and

the construction of the regression-like prior structure need
to be further explored. In this study, we directly used the first
three features for each item, which retained most of the in-
formation about the major differences between respondents’
sequences. However, there are other options for choosing the
number of features to take into account. For example, the
selection of features based on the contribution of each fea-
ture can be considered. Also, as suggested by Levy andMislevy
(2016), the covariates in the regression-like structure of the
latent variable should be collateral information related to the
trait captured by the latent variable. This means that addi-
tional information reflecting respondents’ latent traitsmay be
needed to select the process features. However, if this is the
case, the test efficiency improved by the use of process infor-
mation may be greatly reduced because of the need to collect
additional information. Therefore, how to select the process
features to be used as prior information remains to be studied
in detail. Besides, given that the relationship between process
data and ability is not yet known, we adopted a simple linear
form of adding process information in this study. The actual
relationship is likely to be more complicated. These may par-
tially explain the limited increase in the correlation between
estimates and the process indicators due to the use of process
priors. Further research could consider other methods to use
process variables as prior information and focus on achieving
further improvements in the impact of using process informa-
tion, for example, by constructingmore complex relationships

between process information and the latent ability, as well as
by using more information from the process data.
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Appendix A.

Figure A1
Histograms of process indicators

Panel A: Histogram of the average similarity. Panel B: Histogram of the aver-
age efficiency. Panel C: Histogram of the consistency of similarity.

Appendix B.
The Main R Code to Implement Approaches Used in This
Study

#################################################
########################
###### To extract features from response processes of an

item by MDS ######
###############################################

##########################
# Item1.csv is the process data file of an item, including

two columns: “SEQID” indicating respondents’ ID, and “se-
quence” that contains the recoded action sequences of all re-
spondents.
# So in the data file, each row indicates a recoded action

of a respondent.
library(ProcData)
seqs ← read.seqs(file = “Item1.csv”, style = “multiple”,

id_var= “SEQID”, action_var= “sequence”)

K_res← chooseK_mds(seqs, K_cand = 3:30, return_dist
= T) # extracting 3 to 30 features from the process of this
item
K← K_res$K # the number of process variables selected

based on the minimum loss
lv_mat ← seq2feature_mds(K_res$dist_mat,

K_res$K)$theta # the numeric matrix giving the K extracted
features
############################################

#############################
######### To fit the IRTmodel through the irtplay package

#########
#############################################

############################
library(irtplay)
item_para← read.csv(“item_para.csv”) # read the file of

item parameters of GPCM, including six columns: category,
alpha, beta, t1, t2, and t3. The column “category” defines the
number of response categories in each item. The remaining
columns are the item paramters.
# Because the formula of GPCM used in the PIAAC tech-

nical report is a little different from that defined in irtplay
package, the step parameters given by PIAAC technical re-
port needs to be transformed before they can be used in irt-
play package.
# Items 1,3,6,7 are polytomouly scored, and had step pa-

rameters.
d_1 ← as.numeric(item_para$beta[1] - item_para[1,

c(“t1”,“t2”,“t3”)])
d_3 ← as.numeric(item_para$beta[3] - item_para[3,

c(“t1”,“t2”,“t3”)])
d_6 ← as.numeric(item_para$beta[6] - item_para[6,

c(“t1”,“t2”)])
d_7 ← as.numeric(item_para$beta[7] - item_para[7,

c(“t1”,“t2”,“t3”)])
x ← shape_df(par.dc = list(a =

item_para$alpha[c(2,4,5)], b= item_para$beta[c(2,4,5)],g
= NULL), par.py = list(a = item_para$alpha[c(1,3,6,7)],
d = list(d_1,d_3,d_6,d_7)), item.id =
item_para$item, cats = item_para$category, model =
c(“GPCM”,“2PLM”,“GPCM”,“2PLM”,“2PLM”,“GPCM”,“GPCM”))
# create a data.frame which includes item meta data (e.g.,
item parameter, categories, models) to be used for the IRT
model-data fit analysis.
# Conduct theta estimation by EAP
lv← est_score(x, data= resp, D= 1.7, method= “EAP”,

range= c(-12,12), norm.prior= c(0,3), se= T) # resp is the
matrix storing item responses, each col is an item, each row
indicate a respondent
#############################################

############################
######### To fit the IRT model through the Rjags package

#########
##############################################

###########################
library(rjags)
library(MCMCvis)
item_para ← read.csv(“item_para.csv”) # read the file

of item parameters of GPCM, including five columns: alpha,
beta, t1, t2, and t3
t0← rep(0,7)
d← cbind(t0, item_para[,c(“t1”,“t2”,“t3”)])
d[is.na(d$t1),“t1”]← 0
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Table A2
Sample Sizes Used to Extract Information from Process Data for Each Item

Item Original Sample Sizea
Number of Respondents with NR

Sequence Patternb
Sample Size for Extracting Process

Variables

U19a 1355 84 1271
U19b 1355 189 1166
U07 1355 119 1236
U02 1355 196 1159
U11b 1353 226 1127
U16 1354 157 1194
U23 1353 125 1228
a
The original sample size for some items is less than 1355, due to missing records.

b
The NR sequence pattern represents the nonresponse pattern defined in the current study: “Start, Next, Next_OK.”

Table A3
Descriptive Statistics of 21 Process Features Extracted from Process Data of Seven Items

Features Min Max M SD Skewness Kurtosis

u19a
u19a_lv1 –0.237 0.366 0.018 0.125 0.276 –0.287
u19a_lv2 –0.280 0.283 –0.007 0.107 –0.320 0.091
u19a_lv3 –0.219 0.281 –0.002 0.092 0.650 0.357
u19b
u19b_lv1 –0.601 0.263 –0.015 0.168 –1.385 2.247
u19b_lv2 –0.285 0.391 –0.018 0.131 0.688 –0.072
u19b_lv3 –0.435 0.197 0.002 0.113 –0.456 –0.580
u07
u07_lv1 –5.946 0.239 0.026 0.257 –13.604 (–0.872)a 309.840 (–0.439)a
u07_lv2 –0.266 0.302 0.009 0.108 0.043 1.336
u07_lv3 –0.167 0.363 –0.001 0.098 1.989 4.521
u02
u02_lv1 –0.252 0.445 0.032 0.137 –0.237 –0.589
u02_lv2 –0.314 0.219 –0.002 0.069 –1.094 2.361
u02_lv3 –0.209 0.284 0.001 0.058 0.111 3.880
u11b
u11b_lv1 –0.325 0.384 0.023 0.200 0.101 –1.462
u11b_lv2 –0.300 0.414 0.016 0.166 0.136 –0.524
u11b_lv3 –0.295 0.121 –0.002 0.074 –0.829 0.526
u16
u16_lv1 –0.337 0.302 –0.013 0.147 0.261 –0.933
u16_lv2 –0.287 0.254 –0.022 0.117 –0.178 –0.545
u16_lv3 –0.321 0.268 –0.005 0.112 –0.385 –0.013
u23
u23_lv1 –0.462 0.333 0.041 0.167 –0.418 –0.173
u23_lv2 –0.371 0.283 0.004 0.138 0.736 –0.324
u23_lv3 –6.085 0.328 –0.009 0.214 –24.449(0.063)b 694.547(2.341)b

Note. The results were summarized based on process features of N = 938 respondents. The items are listed in order of administration.
a
The numbers in parentheses are the skewness and kurtosis of the first process variable of U07 calculated after removing the extreme value –5.946.
Only one respondent (ID = 2037) had the extreme value (–5.946) in that variable.
b
The numbers in parentheses are the skewness and kurtosis of the third process variable of U23 calculated after removing the extreme value

–6.085. Only one respondent (ID = 2743) had the extreme value (–6.085) in that variable.

Y← resp + 1 # resp is the matrix storing item responses,
each col is an item, each row indicate a respondent. The re-
sponse category in the raw data starts from 0, and is trans-
formed to start from 1 here for the MCMC estimation.
#### 1. define the model ####
GPCM← ’
var pai[J,I,4],eta[J,I,4,4],eta_sum[J,I,4],nume[J,I,4],

nume_eta[J,I,4,4];
model{
# likelihood for Y
for (j in 1:J){ # person j
for (i in 1:I){ # item i
# the denominator of GPCM

for (u in 1:m[i]){
for (r in 1:u){ eta[j, i, u, r] ← 1.7*alpha[i]*(theta[j]-

beta[i]+d[i,r])}
eta_sum[j, i, u]← exp(sum(eta[j, i, u, 1:u]))}
deno[j,i]← sum(eta_sum[j, i, 1:m[i]])
for (k in 1:m[i]){
# the numerator of GPCM
for (r in 1:k){ nume_eta[j, i, k, r] ←

1.7*alpha[i]*(theta[j]-beta[i]+d[i,r])}
nume[j,i,k]← exp(sum(nume_eta[j, i, k, 1:k]))
# probability of the kth category
pai[j,i,k]← nume[j,i,k] / deno[j,i]}

xxxx 2021 © 2021 by the National Council on Measurement in Education 15



Table A4
Spearman’s Correlations of 21 Process Features Extracted from Process Data of Seven Items

u19a_lv1 u19a_lv2 u19a_lv3 u19b_lv1 u19b_lv2 u19b_lv3 u07_lv1 u07_lv2 u07_lv3 u02_lv1 u02_lv2

u19a_lv1 1.000
u19a_lv2 0.053 1.000
u19a_lv3 –0.112** –0.004 1.000
u19b_lv1 –0.381** 0.011 –0.055 1.000
u19b_lv2 –0.232** 0.114** –0.075* 0.148** 1.000
u19b_lv3 –0.400** –0.090** –0.168** 0.295** 0.034 1.000
u07_lv1 0.144** –0.134** 0.073* –0.128** –0.306** –0.025 1.000
u07_lv2 0.044 –0.014 –0.031 –0.033 –0.099** –0.026 0.016 1.000
u07_lv3 –0.054 0.018 0.005 0.040 0.093** –0.025 –0.008 –0.251** 1.000
u02_lv1 0.247** –0.222** 0.046 –0.176** –0.423** –0.067* 0.296** 0.110** –0.074* 1.000
u02_lv2 0.119** –0.043 –0.005 –0.020 –0.011 –0.102** 0.028 0.011 –0.006 0.079* 1.000
u02_lv3 –0.110** 0.073* –0.075* 0.082* 0.177** 0.075* –0.141** –0.009 –0.009 –0.308** –0.040
u11b_lv1 0.179** –0.127** 0.007 –0.167** –0.226** –0.090** 0.148** 0.052 –0.043 0.264** 0.028
u11b_lv2 0.039 –0.051 –0.016 –0.056 –0.119** 0.005 0.123** –0.036 –0.006 0.146** –0.043
u11b_lv3 –0.028 0.023 0.026 –0.008 0.056 0.013 –0.019 –0.027 0.051 –0.067* 0.089**

u16_lv1 –0.092** 0.049 0.045 0.036 –0.016 0.005 –0.001 –0.045 0.035 –0.046 –0.035
u16_lv2 –0.250** 0.271** –0.007 0.192** 0.303** 0.091** –0.251** –0.071* 0.058 –0.355** –0.040
u16_lv3 –0.022 0.022 0.059 0.023 0.013 –0.071* –0.039 0.058 0.001 –0.022 –0.046
u23_lv1 0.177** –0.193** 0.045 –0.189** –0.367** –0.072* 0.284** 0.122** –0.075* 0.368** 0.033
u23_lv2 –0.026 0.042 0.018 0.020 –0.103** 0.082* 0.065* 0.079* –0.013 0.027 0.019
u23_lv3 .071* –0.005 –0.001 –0.092** –0.055 –0.057 .074* –0.040 0.023 –0.017 –0.071*

u02_lv3 u11b_lv1 u11b_lv2 u11b_lv3 u16_lv1 u16_lv2 u16_lv3 u23_lv1 u23_lv2 u23_lv3
u02_lv3 1.000
u11b_lv1 –0.112** 1.000
u11b_lv2 –0.065* –0.042 1.000
u11b_lv3 0.045 –0.039 0.115** 1.000
u16_lv1 0.028 –0.030 –0.012 0.023 1.000
u16_lv2 0.142** –0.177** –0.125** 0.043 –0.048 1.000
u16_lv3 –0.062 –0.028 –0.061 0.011 0.024 –0.027 1.000
u23_lv1 –0.200** 0.207** 0.122** –0.041 –0.095** –0.381** –0.014 1.000
u23_lv2 0.044 0.012 –0.025 0.045 0.093** 0.004 0.028 –0.123** 1.000
u23_lv3 –0.022 0.047 –0.014 0.024 –0.057 –0.014 0.002 0.105** –0.068* 1.000

Note. According to Table A3, some process variables were not normally distributed. Therefore, the Spearman’s correlations were computed,
instead of the Pearson’s correlations. The process variables of all items are listed in order of item administration.
*p < 0.05.
**p < 0.01.

Y[j,i] ∼ dcat(pai[j,i,(1:m[i])]) # because the category
start from 1}}
# prior models
for (j in 1:J){
# define the prior of theta:mean and precision (the inverse

of variance)
theta[j]∼ dnorm(0, 1/9)}}’
#### 2. compile the model ####
irt_jags← jags.model(textConnection(GPCM),
data= list(Y= Y, # response data matrix
I= 7, # number of items
J= nrow(data), # number of respondents
m= item_para$category, # each item has m[i] categories
alpha= item_para$alpha,
beta= item_para$beta,
d= d),
inits = list(list(.RNG.name = “base::Wichmann-Hill”,

.RNG.seed= 10),
list(.RNG.name = “base::Marsaglia-Multicarry”,

.RNG.seed= 20)),
n.chains= 2)
#### 3. update the model, constituting the burn-in phase

####
update(irt_jags, n.iter= 10000)
#### 4. simulate posterior ####

params← c(“theta”)
irt_sim ← coda.samples(model = irt_jags, vari-

able.names= params, n.iter= 10000)
plot(irt_sim) # trace plot of the posterior samples
# convergence diagnostics
gelman.diag(irt_sim) # the Gelman-Rubin diagnostic:

scale reduction factors for each θ
gelman.plot(irt_sim) # the development of the scale-

reduction over the chain iterations
# get posterior summary of the 10000 draws for all θs
para.sum← MCMCsummary(irt_sim)
#############################################

############################
######### To fit the combination model through the Rjags

package #########
##############################################

###########################
library(rjags)
library(MCMCvis)
data← read.csv(“combined_score&lv.csv”) # the file con-

taining both response data and process variables, in which
each row represents a respondent, including 29 columns: the
first column is respondents’ IDs, the 2nd to 8th columns are
scores of seven items, the 9th to 29th columns contains the
21 process variables.
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Table A5
Priors of Regression Parameters of θ in the Combination Model for the Second Half of the Sample

Number of Items Used Item Used Priors

1 U19a b0∼N(–0.496, 0.014)
b1_1∼N(4.622, 0.581)
b1_2∼N(–3.913, 0.655)
b1_3∼N(1.615, 0.688)

σ 2∼IG(241.500, 105.278)
2 U19a, U19b b0∼N(–0.447, 0.002)

b1_1∼N(1.453, 0.159)
b1_2∼N(–1.440, 0.167)
b1_3∼N(0.591, 0.221)
b2_1∼N(–2.654, 0.086)
b2_2∼N(–4.839, 0.167)
b2_3∼N(1.161, 0.190)

σ 2∼IG(241.500, 24.764)
3 U19a, U19b, U07 b0∼N(–0.400, 0.001)

b1_1∼N(1.520, 0.041)
b1_2∼N(0.305, 0.085)
b1_3∼N(–0.369, 0.107)
b2_1∼N(1.347, 0.117)
b2_2∼N(–1.103, 0.119)
b2_3∼N(0.982, 0.169)
b3_1∼N(–1.907, 0.053)
b3_2∼N(–3.689, 0.110)
b3_3∼N(1.145, 0.129)

σ 2∼IG(241.500, 23.365)
4 U19a, U19b, U07, U02 b0∼N(–0.242, 0.001)

b1_1∼N(1.697, 0.063)
b1_2∼N(1.238, 0.194)
b1_3∼N(–2.919, 0.271)
b2_1∼N(1.379, 0.037)
b2_2∼N(0.298, 0.084)
b2_3∼N(–0.349, 0.100)
b3_1∼N(1.055, 0.089)
b3_2∼N(–0.742, 0.079)
b3_3∼N(0.479, 0.107)
b4_1∼N(–1.610, 0.040)
b4_2∼N(–3.152, 0.089)
b4_3∼N(0.692, 0.084)

σ 2∼IG(241.500, 34.901)
5 U19a, U19b, U07, U02, U11b b0∼N(–0.279, 0.001)

b1_1∼N(1.357, 0.053)
b1_2∼N(1.145, 0.165)
b1_3∼N(–2.656, 0.226)
b2_1∼N(1.215, 0.032)
b2_2∼N(0.223, 0.068)
b2_3∼N(–0.232, 0.085)
b3_1∼N(–0.734, 0.036)
b3_2∼N(–1.656, 0.073)
b3_3∼N(0.074, 0.054)
b4_1∼N(0.891, 0.076)
b4_2∼N(–0.436, 0.071)
b4_3∼N(0.432, 0.090)
b5_1∼N(–1.402, 0.035)
b5_2∼N(–2.730, 0.077)
b5_3∼N(0.622, 0.073)

σ 2∼IG(241.500, 29.584)
6 U19a, U19b, U07, U02, U11b, U16 b0∼N(–0.215, 0.001)

b1_1∼N(1.199, 0.048)
b1_2∼N(1.044, 0.146)
b1_3∼N(–2.355, 0.202)
b2_1∼N(1.136, 0.026)
b2_2∼N(0.228, 0.057)
b2_3∼N(–0.252, 0.070)
b3_1∼N(0.911, 0.018)
b3_2∼N(0.087, 0.024)
b3_3∼N(0.055, 0.105)

(Continued)
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Table A5
(Continued)

Number of Items Used Item Used Priors

6 U19a, U19b, U07, U02, U11b, U16 b4_1∼N(–0.670, 0.029)
b4_2∼N(–1.453, 0.062)
b4_3∼N(0.018, 0.045)
b5_1∼N(0.744, 0.066)
b5_2∼N(–0.394, 0.058)
b5_3∼N(0.467, 0.077)
b6_1∼N(–1.266, 0.030)
b6_2∼N(–2.424, 0.066)
b6_3∼N(0.594, 0.063)

σ 2∼IG(241.500, 23.241)
7 U19a, U19b, U07, U02, U11b, U16,

U23
b0∼N(–0.246, 0.001)
b1_1∼N(0.974, 0.039)
b1_2∼N(0.989, 0.114)
b1_3∼N(–1.988, 0.162)
b2_1∼N(0.958, 0.021)
b2_2∼N(0.233, 0.049)
b2_3∼N(–0.294, 0.057)
b3_1∼N(0.751, 0.014)
b3_2∼N(–0.012, 0.019)
b3_3∼N(0.202, 0.084)
b4_1∼N(–0.474, 0.024)
b4_2∼N(–1.163, 0.053)
b4_3∼N(0.011, 0.037)
b5_1∼N(0.669, 0.052)
b5_2∼N(–0.314, 0.048)
b5_3∼N(0.386, 0.060)
b6_1∼N(–1.073, 0.024)
b6_2∼N(–2.005, 0.053)
b6_3∼N(0.575, 0.052)
b7_1∼N(1.162, 0.030)
b7_2∼N(–0.657, 0.032)
b7_3∼N(0.935, 0.082)

σ 2∼IG(241.500, 16.848)

Note. The priors listed in this table are the posteriors for the same parameters obtained from the first half of the sample. N represents the normal
distribution and the numbers in the paratheses are the mean and variance respectively. IG denotes the inverse-gamma distribution.

item_para← read.csv(“item_para.csv”)
t0← rep(0,7)
d← cbind(t0,item_para[,c(“t1”,“t2”,“t3”)])
d[is.na(d$t1),“t1”]← 0
Y← data[,2:8] + 1 # the response data and the response

category starts from 1
#### 1. define the model ####
GPCM← ’
var pai[J,I,4],eta[J,I,4,4],eta_sum[J,I,4],nume[J,I,4],

nume_eta[J,I,4,4];
model{
# likelihood for Y
for (j in 1:J){ # person j
for (i in 1:I){ # item i
# the denominator of GPCM
for (u in 1:m[i]){
for (r in 1:u){
eta[j, i, u, r]← 1.7*alpha[i]*(theta[j]-beta[i]+d[i,r])}
eta_sum[j, i, u]← exp(sum(eta[j, i, u, 1:u]))}
deno[j,i]← sum(eta_sum[j, i, 1:m[i]])
for (k in 1:m[i]){
# the numerator of GPCM

for (r in 1:k){
nume_eta[j, i, k, r] ← 1.7*alpha[i]*(theta[j]-

beta[i]+d[i,r])}
nume[j,i,k]← exp(sum(nume_eta[j, i, k, 1:k]))
# probability of the kth category
pai[j,i,k]← nume[j,i,k] / deno[j,i]}
Y[j,i] ∼ dcat(pai[j,i,(1:m[i])]) # because the category

start from 1}
# define the prior of theta
theta[j] ∼ dnorm(miu[j], tau.sq) # tau.sq is 1/er-

ror_variance
for (cv_i in 1:21){ # 21 is the number of covariates.
cv_product[j,cv_i] ← b1[cv_i]*X[j,cv_i] # X denote the

matrix of covariates}
miu[j]← b0+ sum(cv_product[j,1:21]) # 21 is the num-

ber of covariates!!!}
# prior models
b0∼ dnorm(0, 0.01) # give b0 a prior N(0, 10ˆ2)
for (b1_i in 1:21){ # 21 is the number of process variables
b1[b1_i] ∼ dnorm(0, 1/4) # give each slope parameter a

prior N(0,2ˆ2), all slopes are stored in b1}
tau.sq∼dgamma(1, 1) # give variance an inverse-gamma

prior by giving the inverse of variance a gamma prior}’
#### 2. compile the model ####
irt_jags← jags.model(textConnection(GPCM),
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data= list(X= data[,9:(9+21-1)], # the data of 21 process
variables
Y= Y, # response data
I= 7, # number of items
J= nrow(data), # number of respondents
m= item_para$category, # each item has m[i] categories
alpha= item_para$alpha,
beta= item_para$beta,
d= d),
inits = list(list(.RNG.name = “base::Wichmann-Hill”,

.RNG.seed= 10),
list(.RNG.name = “base::Marsaglia-Multicarry”,

.RNG.seed= 20)),
n.chains= 2)
#### 3. update the model, constituting the burn-in phase

####

update(irt_jags, n.iter= 10000)
#### 4. simulate posterior ####
params← c(“b0”, “b1”, “tau.sq”,“theta”)
irt_sim ← coda.samples(model = irt_jags, vari-

able.names= params, n.iter= 50000)
plot(irt_sim) # trace plot of the posterior samples
#### convergence diagnostics
gelman.diag(irt_sim) # the Gelman-Rubin diagnos-

tic:scale reduction factors for each parameter
gelman.plot(irt_sim) # the development of the scale-

reduction over the chain iterations (also useful for determin-
ing a burn-in)
#### get posterior summary of the 10000 draws for all θs
para.sum← MCMCsummary(irt_sim)
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