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Abstract 
Learner-emotions are intrinsically linked with learning experiences and academic 

outcomes. Therefore, intelligent learning environments need to be emotion-aware to bring 

learners to their zone of proximal development. In this paper, we describe the first steps 

towards such a system. In this study, we manipulated task difficulty with the aim of 

detecting the physiological indicators of accompanying emotions, namely boredom/anger 

(during an easy task), enjoyment (during a moderately challenged task) and 

frustration/boredom (during a difficult task). Twenty-one adults (13 females and 8 males, 

Mage = 24.1 years) participated in a repeated- measures quasi-experimental set-up. Data 

were collected via Empatica E4 wristbands and self- reports. Results indicate that varying 

task difficulty may be associated with changes in skin temperature, phasic and tonic skin 

conductance, and heart rate. Findings encourage further exploration and thoughts on study 

design are discussed. 
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1. Introduction and background 
 

1.1. Emotions in learning 
 

Emotions play a significant role in learning 

and this is evidenced by the growing body of 

work on the interaction of learner emotions, 

well-being, and learning outcomes [1], [2], 

[3], [4], [5]. For example, [5] found that the 

induction of positive emotions in learners 

resulted in higher learning transfer, greater 

mental engagement and lower levels of 

reported task difficulty. In another study, [6] 

found that positive emotions (namely 

enjoyment and pride) predicted high learning 

achievements while the opposite was true for 

negative emotions (namely anger, anxiety, 

shame, boredom and hopelessness). Therefore, 

to optimise learning experiences and 

outcomes, it is essential that one takes learner 

emotions into account. In today’s era of digital 

learning, this calls for intelligent learning 

systems that can detect learners’ emotions to 

provide optimally  adjusted support.
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1.2. Theoretical perspectives 
 

In their meta-study that showed strong 

correlations between emotional, cognitive and 

learning processes in e-learning environments, 

[7] suggest fostering optimal levels of 

subjective control (i.e., a learner’s appraisal of 

how much control over a task they have) and 

value (i.e., the value a learner places on a 

task). Their results align with and suggestions 

rely heavily on Pekrun’s [4] Control-Value 

theory that states that the subjective appraisals 

of control and value are central to emotions 

related to learning. For example, if the learner 

sees positive value in a task and has high 

control of actions, they experience enjoyment. 

On the other hand, if they see no value in the 

task, they feel bored irrespective of whether 

they have high or low control. Similarly, if 

learners find themselves unable to control an 

activity, they experience frustration 

irrespective of the value they placed on the 

same. Pekrun’s [4] activity related emotions 

draw on Csikszentmihalyi’s [1] seminal work 

on ‘flow’ – a state of extreme concentration, 

when someone is so engaged in the task at 

hand that they forget the passage of time. Flow 

theory suggests that learners in ‘flow’ 

experience enjoyment and happiness and that 

this is achieved when one not only has a clear 

goal, a sense of purpose and immediate 

feedback, but also a balance of challenge and 

skill (with challenge and skill level being just 

above the average for the person) [1], [8]. This 

in turn shares similarities with one of the most 

significant concepts in learner centric 

education – the Zone of Proximal 

Development (ZPD) [9], which posits that 

learning is optimal when a task is just out of the 

learner’s reach and they have available the 

assistance of a more skilled/knowledgeable 

person. Taking cue from this, in this study, we 

look at emotions in light of learner’s 

perceptions of task difficulty, challenge to 

skill balance, absorption in a task and control-

value appraisals. 

 

1.3. Detecting emotions 
 

Emotion detection has traditionally been 

done through learner reported data [10]. Such 

an approach has several limitations including 

the subjective nature of self-reports and the 

likely temporal mismatch between when an 

emotional state has occurred and data are 

collected [11]. The latter could result in the 

collection of data for another moment in time 

or even inaccuracies when recalling past 

experiences. Consequently, there is much 

interest in alternate approaches to emotion 

detection that can provide objective, time-

specific and reliable data. One approach that is 

notably gaining traction is the use of 

physiological measures to understand 

underlying psychological processes. For 

example, [12] found that emotional valence 

(i.e., the extent to which an emotion is 

negative or positive) was positively related to 

blood volume pulse (i.e., a measure of the 

changes in blood volume flowing through one's 

arteries and capillaries). Skin conductance (i.e., 

skin’s property of conducting electricity) has 

been found to reflect stress during a task [13], 

and emotional arousal [14]. In recent 

educational research specifically, [15] studied 

adolescent girls learning in maker-spaces and 

found that skin conductance was positively 

related to engagement. In another study, [16] 

measured average student heart rates (i.e., the 

number of heart beats per minute) during 

medical school lectures and found a steady 

decline from the start to the end of a lecture. 

They also found that heart rate significantly 

increased during periods of student interaction 

such as group-based problem solving. More 

recently, [17] in a study involving 67 students 

solving statistical exercises of varying 

difficulty found that heart rate and skin 

temperature were significantly related to self-

reported cognitive load and skin temperature 

specifically to task performance. Studies like 

these suggest that these measures are useful 

indicators of challenge to skill balance, 

perceived task difficulty and task absorption 

and can therefore offer a glimpse into learner 

emotions. Physiological signals that can now 

be assessed with portable devices give us 

access to vast amounts of uninterrupted, time- 

specific and objective data points, thus 

bringing us closer to understanding a learner’s 

emotional state in real-time. However, 

research is still at a nascent stage and there is 

value in advancing the body of literature on 

the same (e.g., [18], [19], [20]). 

 

2. Research aims of present study 
 

The present study is the first step in our 



research project that is geared towards 

developing an intelligent learning system that 

adapts to a learner’s emotions so as to bring 

them to their ZPD. Therefore, this paper 

focuses on emotion detection. To this end, a 

repeated-measures quasi- experimental design 

was adopted wherein physiological data in 

combination with self- reported measures were 

used to detect emotional states. The 

physiological signals investigated in the study 

were skin conductance, skin temperature, 

blood volume pulse and heart rate. Emotional 

states were elicited primarily through the 

manipulation of task difficulty in a digital 

learning environment designed to teach 

programming skills. This manipulation (see 

Methods) was done with the expectation that it 

would lead to differences in learners’ 

perceptions of challenge to skill balance, task 

absorption and therefore emotions. Drawing on 

the ideas of Csikszentmihalyi [1] and Pekrun 

[4] and past studies on psychophysiological 

measures, several conjectures were made: 

1. For the task that was too easy, 

learners would perceive a mismatch 

between challenge and skills and 

have low absorption in task. Based on 

their appraisal of control over and 

value of the task, they would 

experience either boredom (no 

value, high control) or anger 

(negative value, high control). 

Boredom being a deactivating 

emotion (i.e., one that is associated 

with low arousal) would be 

associated with low skin 

conductance and heart rate. Anger on 

the other hand being an activating 

emotion (i.e., one that is associated 

with high arousal) would be 

associated with high skin 

conductance and heart rate. 

2. For the task that was too difficult, the 

expectation was that learners would 

perceive a mismatch between 

challenge and skills and have low 

absorption in task. Based on control 

and value appraisal of the task, they 

would either experience frustration 

(positive/negative value, low 

control) or boredom (no value, low 

control). Unlike boredom, frustration 

being an activating emotion would 

be associated with high skin 

conductance and heart rate. 

3. For the task that was neither too 

difficult nor too easy, it was  

expected that learners would 

perceive a balance between the 

challenge and their skills and have 

high task absorption. An appraisal of 

high control and high value of the 

task would be associated with a 

positive emotional state (i.e., 

enjoyment). Enjoyment being an 

activating emotion would be 

associated with high skin 

conductance and heart rate.We also 

expected blood volume pulse to be 

an indicator of  emotional valence 

[12] and skin temperature to be high 

during the difficult task [17]. 

Emotional states were also elicited through 

a sample taken from the Open Affective 

Standardised Image Set (OASIS) [21] 

(described in Methods). The hypothesis was 

that the valence and arousal associated with the 

different images would be reflected in the 

physiological signals. Therefore, these could 

act as reference points when interpreting 

emotions during the programming tasks. 

Thus, this study aimed to detect 

psychophysiological indicators (if any) of 

learner emotions associated with tasks of 

varying difficulty. 

 

3. Methods 
 

3.1. Participants 
 

Participants consisted of 21 (13 females 

and 8 males, 19-32 years old, Mage = 24.14 

years) university students and working 

professionals based in the Netherlands. The 

sample consisted of persons of 6 nationalities 

and different educational levels (11 bachelor 

students, 1 bachelor’s degree holder, 8 master’s 

degree holders and 1 PhD student). All 

participants had at least working knowledge of 

English and basic computer skills. Participation 

was voluntary and active consent had been 

received from all participants before the start 

of the experiment. 

 

3.2. Materials 

3.2.1. Primary stimuli set – 
programming tasks 



In the learning environment [22], 

participants programmed instructions by 

joining blocks of code to control a red ‘robot’ 

(see Figure 1). The goal was to make the robot 

reach the end of its path by coding its trajectory. 

Paths could be 5-, 10- or 15-step, each requiring 

a longer or more sophisticated piece of code 

than the previous. The environment also had a 

free-play ‘Sandbox’ mode, in which 

participants were free to explore the 

environment in any way they wanted – there 

was no specific aim to this activity. Three 

tasks of varying difficulty were designed 

within the learning environment. The 

moderately challenging task was to complete a 

5-, 10- and 15-step path (see Figure 2) within 

10 minutes. The easy task was to do a 5-step 

path over and over again for 10 minutes. The 

difficult task was to ‘decipher the aim and rules 

of the Sandbox’ and ‘complete it successfully’ 

in 10 minutes. This was considered ‘difficult’ 

because the Sandbox mode does not actually 

have a tangible goal or rules, thus making the 

task a wild goose chase (however, participants 

were not aware of this fact). User responses 

during pilot testing of the environment and 

tasks concurred with these expectations. 

 
 

 
Figure 1: In the digital learning 
environment, participants selected blocks 
of code (left pane), edited and joined them 
to form a piece of code (center pane) that 
would move the red robot to the end of its 
path (right pane) 

 

 
Figure 2: In the learning environment, one 
could either code to make the red robot 
reach the end of its 5- (Top-Left), 10- (Top-
Right) or 15-step (Bottom-Left) path, or 
explore freely in the Sandbox mode 
(Bottom-Right) 

 

3.2.2. Baseline-
measurement     stimulus 

 

A video with the instructions, “Sit still 

and relax” was displayed for 5 minutes. At 

the 4 m 50s mark, an audio signal indicated 

the end of the rest period. At this point, the 

phrase “I feel: ” followed by a smiley meter 

(described in a subsequent sub-section) 

appeared on the screen for 10 seconds. 

 

3.2.3. Secondary stimuli set – 
images 

 

A set of 35 500x400 pixel images – 13 

positive (for example, a puppy in a teacup), 

10 negative (for example, garbage) and 12 

neutral (for example, a tiled roof) were 

sampled from OASIS [21]. The value 

given to these images was based on 

participant-reported valence in the original 

study. While sampling, graphic and 

sexually explicit images were excluded. The 

images were presented one after the other 

with intermittent 5 s pauses wherein a blank 

screen was inserted. Each image was 

displayed for 10 seconds. On the 6th 

second, a smiley meter (described in a 

subsequent paragraph) along with the 

phrase “This photo makes me feel…” 

appeared below the image and stayed 

visible till the end of the 10th second. 

 



3.2.4. Hardware and software set 
up 

 

Physiological data were collected using the 

biosensing wristband E4. The E4 makes use of 

an electrodermal activity sensor that measures 

sympathetic nervous system arousal via 

stainless steel electrodes that are placed on the 

ventral wrist. This arousal is quantified in 

terms of skin conductance which is measured 

in microSiemens (µS) and sampled at 4 Hz 

(i.e., 4 readings per second). Skin temperature 

was collected in degree Celsius (°C) via the 

E4’s infrared thermopile sensor at a sampling 

frequency of 4 Hz. Blood volume pulse was 

collected from the E4’s photoplethysmography 

(PPG) sensor placed on the dorsal wrist and 

was sampled at 64 Hz. Heart rate (calculated 

per 10 s) was derived from blood volume 

pulse. In addition to this, acceleration data 

(indicating movement) from the E4’s 

accelerometer were collected at 32 Hz. All data 

were streamed to Empatica’s cloud-based 

repository via an android application set up on 

a mobile phone which in turn was connected 

via Bluetooth to the E4. The internal clock of 

the E4 was synchronised with that of the 

computer on which the stimuli were loaded. A 

screen recorder was set up on the computer so 

as to capture timestamps of the different 

stimuli and digital behaviour during the 

programming tasks. A handheld timer was 

used to facilitate and keep track of the different 

activities in the study. 

 

3.2.5. Self-reports 
 

Self-reported data were collected using 

several tools: 

Smiley meter: A five point smiley meter 

[23] was used to collect participants’ 

perception of different stimuli during the 

study. Participants were expected to reflect on 

how the stimulus (a programming task, a 

baseline activity or an image) made them feel 

and point to the smiley that best represented 

their emotional state. The scale was used 

unmarked to avoid putting specific affect-

related words into the participant’s head. 

Short flow scale (SFS) and task difficulty 

scale: A 20-item short flow scale [24] was used 

as a self-report of experiences during the three 

programming tasks. The SFS has 2 sub-scales, 

‘Challenge to skill balance’ (Chal2Skill) (11 

items) and ‘Task Absorption’ 

(Task_Absorption) (9 items) [24]. Since the 

two statements in the scale , “It was boring for 

me” and “My attention was not engrossed at 

all by the activity” were negatively framed, 

they were recoded. Testing for reliability, we 

found Cronbach’s α = .92, α = .79 and α = .91 

of the SFS for the moderately challenging, 

easy and difficult task respectively. Reliability 

tests were also performed for each subscale 

‘challenge to skill balance’ (‘Chal2Skill’) and 

‘task absorption’ (‘Task_Absorption’). We 

found that the sub-scales Chal2Skill and 

Task_Absorption had a) Cronbach’s α = .95 

and α = .74 respectively, for the moderately 

challenging task, b) α = .91 and α = .93 

respectively, for the easy task, and c) α = .88 

and α = .90 respectively, for the difficult task. 

Consequently, new variables valued as the 

mean of each subscale were computed to be 

used for further analyses. It is important to 

note that low and high Chal2Skill ratings denote 

an imbalance of challenge and skill (i.e. a task 

is too difficult or a task is too easy, 

respectively) and a moderate Chal2Skill rating 

denotes a balance of challenge and skill. 

Another self-report measure used after the 

programming tasks was a one- item scale on 

perceived task difficulty (henceforth referred to 

as the Task_Difficulty scale). The scale 

consisted of the following item – ‘Was this task 

1) Too easy 2) Easy 3) Just right 4) Difficult 5) 

Very difficult?’ 

Interview: An audio-recorded face-to-face 

semi- structured interview was conducted at the 

end of the study to glean participants’ 

experiences during the experiment. 

Participants were asked how they were feeling 

at the start and end of the study, if they could 

describe their experiences during the different 

programming tasks and baselines, and their 

rationale for selecting a particular smiley on 

corresponding smiley meters. 

 

3.3. Procedure 
 

This study took place during the Covid-19 

pandemic. Consequently, participants received 

hygiene and safety guidelines by e-mail and 

the experimental space and all equipment were 

sanitized before each use. On the day of the 

study, participants were individually seated in 

a closed lab space set up to minimize external 

distractions. Demographic data of participants 



namely age, sex, nationality, handedness, prior 

knowledge in programming and educational 

level were collected. Participants then received 

a general outline of the experimental set-up, 

procedure, tools and expected code of conduct. 

Once ready, they were fitted with the 

Empatica E4 on their non-dominant hand to 

mitigate the effects of hand movements, 

making sure that the wristband’s sensors made 

complete skin contact and the electrodes for 

skin conductance detection were in line with 

the gap between the middle and ring finger. 

The E4 was then switched on, and readings 

were checked to see that a stable connection 

had been established. Participants then faced a 

computer screen with their non-dominant hand 

either on their lap or on the table. Participants 

first watched an instructional video outlining 

the components of the learning environment 

and how to navigate it. They were then guided 

by the baseline video during which they sat 

still and could either look at the computer 

screen or the white wall behind it, or keep their 

eyes closed. Then participants proceeded to do 

the three programming tasks one after the 

other. The completion of the tasks was 

followed by another baseline reading, then a 

viewing of the images and a third and final 

baseline reading. After each baseline, 

programming task and image, participants 

indicated their emotional state on the smiley 

meter. Thus for each participant, a total of 41 

smiley meter ratings were collected. 

Meanwhile, the researcher kept time, took 

notes and checked that the wristband was 

collecting a continuous stream of data. 

Participants then filled three copies of the SFS 

and Task_Difficulty scale, once for each 

programming task, were interviewed and 

finally debriefed about the purpose of the 

study. Figure 3 shows the experimental 

procedure. 

 

 

Figure 3: Study procedure 

 

3.4. Data pre-processing 
 

Blood volume pulse, heart rate, skin 

conductance and skin temperature readings 

were obtained as separate files. These were 

combined using a Python program that took 

the earliest and latest time stamps and 

interpolated all readings between the two. This 

involved bringing all data capturing times to a 

0.25 second temporal resolution (in keeping 

with the 4 Hz sampling rate of the 

electrodermal activity sensor). Timestamps for 

various user actions and events (i.e., start and 

end of a stimulus) were obtained from screen 

recordings and added to these data. These 

were used to determine the duration of time 

windows to be analysed. Baselines were 

computed as the start of the baseline video to 

the reading just before the appearance of the 

smiley meter. The duration of an image 

stimulus was coded as the moment the image 

was displayed to the moment just before the 

appearance of the smiley meter. Task duration 

was 10 minutes unless a participant took less 

time to complete a task. All continuous 

physiological readings falling within a time 

window were averaged. These were then 

standardised by subtracting from them the 

average of all the baseline readings. Further 

analyses were performed using these 

standardised values. 

Skin conductance was pre-processed using 

the MATLAB (The MathWorks, Inc., Natick, 

MA, U.S.A. ) software package ‘Ledalab’ 

(version 3.4.9 http://www.ledalab.de). Signal 

pre-processing included decomposition to its 

two components, phasic skin conductance 

(rapidly changing signal) and tonic skin 



conductance level (slow-moving signal), using 

the continuous decomposition analysis method 

[25] and feature extraction. Feature extraction 

was done using a threshold of 0. 01 µS. Phasic 

signal features that were extracted were 

namely onset and amplitude of non-specific 

significant skin conductance responses 

(nSCRs). These were used to compute nSCR 

frequency (nSCR/min) for each programming 

task. Baseline nSCR frequency was computed 

as the average of all three baselines. Taking 

cue from Pijeira-Díaz et al. (2018), phasic skin 

conductance was computed as a categorical 

variable with 3 values: 0 (low nSCR frequency 

– 0 to 3 SCR/min), 1 or (medium nSCR 

frequency – 4 to 20 nSCR/min) and 2 (high 

nSCR frequency – 21 and above nSCR/min). 

Tonic skin conductance data was extracted as 

a continuous variable. 

 

4. Results 
 

To answer the exploratory question of 

whether we could detect psychophysiological 

indicators (if any) of learner emotions 

associated with tasks of varying difficulty, we 

made comparisons across the three tasks and 

deviations from the baseline. We used linear 

mixed models while controlling for 

acceleration and demographic data. Pairwise 

comparisons were computed having applied 

Bonferroni correction. Across tasks, we found 

a significant variation in skin conductance 

[F(3, 60) = 15.09, p = 0.00] , heart rate [F(3, 

60) = 9.61, p = 0.00] and temperature [F(3, 

60) = 3.13, p = 0.03]. Please refer to Figures 4, 

5 and 6 for more details. 

 

Figure 4: SC at baseline (B) was significantly 
higher than that during the easy (E) [mean 
difference = 0.62, p = 0.00], moderately 
challenging (M) [mean difference = 0.38, p = 
0.02] and difficult (D) tasks [mean difference = 
0.76, p = 0.00]. SC during the moderately 

challenging task (M) was significantly higher 
than that during the difficult (D) task [mean 
difference = 0.38, p = 0.02]. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Heart rate during the moderately 
challenging task (M) was significantly 
greater than that during the baseline (B) 
[mean difference = 4.22, p = 0.00], easy (E) 
[mean difference = 4.02, p = 0.00] and 
difficult (D) tasks [mean difference = 5.33, p 
= 0.00]. 

 

 

 

 

 

 

 
 
 
Figure 6: Temperature during the easy (E) 
task was significantly higher than that 
during the baseline (B), [mean difference = 
0.33, p = 0.03]. No significant changes during 
the moderately challenging (M) and difficult 
(D) tasks were observed. 

 

Results indicated no significant changes in 

blood volume, F(3, 60) = 1.20, p = 0.32 and 

tonic skin conductance, F(3, 66) = 1.46, p = 

0.23. 
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Relationships between physiological data 

and appraisals of challenge to skill balance, 

task difficulty and task absorption were 

explored. To do this, demographic data were 

included as fixed factors and participant was a 

random factor in the linear mixed model. We 

found no effect of Chal2Skill (F(1,   38.04)   =   

0.79,   p   =   0.38), Task_Absorption   (F(1, 

37.61) = 0.06, p = 0.81) and Task_Difficulty 

(F(4, 36.06) = 0.10, p = 0.98) on phasic skin 

conductance. We also found no effect of 

Chal2Skill (F(1,   33.69) = 1.97,  p   =   0.17), 

Task_Absorption  F(1, 33.58) = 0.46, p = 0.50) 

and Task_Difficulty (F(4, 33.35) = 0.96, p = 

0.44) on heart rate. No significant effect of 

Chal2Skill (F(1, 34.88) = 1.45, p = 0.24), 

Task_Absorption (F(1, 34.61) = 1.45,              

p = 0.24) and Task_Difficulty                    

(F(4, 33.96) = 0.93, p = 0.46) was found on 

blood volume pulse. Chal2Skill (F(1, 38.60) = 

1.29, p = 0.26), Task_Absorption (F(1, 38.22) 

= 0.80, p = 0.38) and Task_Difficulty (F(4, 

36.37) = 2.09, p = 0.10) had no significant 

effects on temperature. Chal2Skill was found 

to have a positive effect on tonic skin 

conductance (β = 0.43, t(36.96) = 2.93,           

p = 0.00, 95% CI [0.13, 0.73] and 

Task_Absorption was found to have a 

negative effect (β = -0.37, t(37.38) = -3.56,    

p = 0.00, 95% CI [-0.59, -0.16]). There are 

some indications that Task_Difficulty ratings 

negatively affect tonic skin conductance: For 

Task_Difficulty = 1, β = -2.27, t(34.67) =        

-4.33, p = 0.00, 95% CI [-3.34, -1.21], for 

Task_Difficulty = 2, β = -1.20, t(33.77) =     

-2.48, p = 0.02, 95% CI [- 2.19, -0.22], for 

Task_Difficulty = 3, β = -0.88, t(34.70) =     

-2.09, p = 0.04, 95% CI [-1.74, -0.03] and for 

Task_Difficulty = 4, β = 0.036, t(34.91) = 

0.12, p = 0.90, 95% CI [-0.56, 0.63].  

Next, to examine whether the valence of 

(OASIS image-induced) emotions would be 

reflected in physiological data, relationships 

between the latter and smiley meter ratings for 

images were analysed. We found no significant 

relation between smiley meter ratings and 

tonic skin conductance levels [F(4, 677.72) = 

1.63 , p = 0.17 ] , blood volume pulse [F(4, 

654.02) = 0.97 , p = 0.42 ], heart rate [F(4, 

683.29) = 1.66 , p = 0.16 ] and skin 

temperature [F(4, 676.20) = 1.37 , p = 0.24 ]. 

Feature extraction from phasic skin 

conductance data corresponding to the image 

stimuli resulted in no significant SCRs for 

practically the whole dataset (except 1 to 2 

images of few participants). 

Finally, we also evaluated the stimuli, i.e., 

examined whether participants perceived the 

programming tasks as they were intended to 

be (namely, task 1 – moderately challenging 

and positive-emotion inducing, task 2 – too 

easy, negative-emotion inducing, and task 3 

– too difficult, negative-emotion inducing). 

We used linear mixed models while 

controlling for demographic data. Results 

indicated significant differences in Chal2Skill 

ratings [F(2, 40) = 43.59, p = 0.00]. The 

average Chal2Skill rating for the moderately 

challenging task exceeded that of the difficult 

task (mean difference = 1.43, p = 0.00), while 

that of the easy task was greater than that of the 

moderately challenging (mean difference = 

0.76, p = 0.01) and difficult task (mean 

difference = 2.20, p = 0.00). We found 

significant differences in Task_Difficulty 

ratings [F(2, 39) = 40.97, p = 0.00]. As 

expected, Task_Difficulty ratings for the 

difficult task were greater than those of the 

moderately challenging task (mean difference 

= 1.86 , p = 0.00) and easy task (mean 

difference = 2.60, p = 0.00), while ratings for 

the moderately challenging task were higher 

than those for the easy task (mean difference = 

0.75, p = 0.05). No significant differences in 

Task_Absorption ratings were found [F(2, 40) 

= 2.15, p = 0.13]. We also found no significant 

differences in smiley meter ratings for the 

different tasks, F(2, 46) = 1.14, p = 0.33. This 

is corroborated by the interviews in which 

several participants exhibit recall bias at the 

time of responding to the smiley meters. For 

example, one participant provided a low 

smiley meter rating despite having enjoyed the 

task simply because they felt disappointed at 

not being able to complete it on time. In 

another case, a participant displayed agitation 

through most of the task period but gave a 

high rating because they managed to 

understand the task towards the end. 

Consequently, smiley meter ratings for the 

tasks were not included in any other analyses. 

During the interviews, some words used to 

describe experiences during the moderately 

challenging task were “confused”, 

“challenging”, “enjoyable” and “fun”. Some 

participants (n = 5) described feeling slightly 

stressed or frustrated when they could not find 

a solution at the beginning, but feeling better 

afterwards. Some (n = 4) displayed 

disappointment at not being able to complete 



the task. Talking about the easy task, most 

participants (n = 13) mentioned its repetitive 

nature or described being bored at some point 

during the task. While describing their 

experience during the difficult task, most 

participants (n = 11) mentioned frustration, 

annoyance, a sense of hopelessness or 

incompetence. 

 

5. Discussion 
 

In this study, we attempted to detect 

physiological indicators of learning related 

emotions by using multimodal data from a 

biosensing wristband and self-reports. To this 

end, we presented participants with an easy, 

moderately challenging and difficult task with 

the expectation that these would be associated 

with different emotions. It was expected that 

during the easy and difficult tasks, participants 

would experience negative emotions 

(boredom/frustration/anger). This negative 

emotional state would be associated with a 

combination of low blood volume pulse and 

either low skin conductance and heart rate, or 

high skin conductance and low heart rate. We 

also expected that during the moderately 

challenging task, participants would experience 

a positive emotional state (i.e., enjoyment), 

which in turn would be associated with high 

blood volume pulse, skin conductance and 

heart rate. Results show that participants in 

general had lower phasic skin conductance and 

heart rate during the difficult task as compared 

to the moderately challenging task. In fact, 

heart rate during the moderately challenging 

task was also higher than that during baseline 

and the easy task. On the other hand, no 

significant differences in blood volume pulse 

were found. The findings of high heart rate and 

phasic skin conductance during the moderately 

challenging task align with our expectation of 

indicators of enjoyment. Similarly, low phasic 

skin conductance, tonic skin conductance and 

heart rate during the difficult task could 

indicate boredom. While we did not see high 

skin temperatures during the difficult task as 

expected, indications of high skin temperature 

and tonic skin conductance levels during the 

easy task could indicate anger [26], [27]. These 

indications of enjoyment, boredom and anger 

also align with our expectations based on the 

control-value theory [6]. However, a 

comparison with self-reports and certain 

limitations of the study (discussed below) 

suggest that more evidence is required to 

ascertain whether all these physiological 

changes are indeed due to the emotional 

stimuli. 

The biggest limitations of this study are the 

fixed order of the programming tasks and a 

lack of sufficient evidence to ascertain clear 

relationships between all the physiological 

signals and self- reports. Therefore, we cannot 

write off order-effects and there is a great 

likelihood that the changes in physiological 

signals are simply due to the passage of time. 

Also, there is the issue of obtaining clear 

self-reports on emotions. In this study, data 

from the smiley meters did not add value to the 

analysis. The decision to use a smiley meter 

was to ensure that we did not put words into 

participants’ heads. However, this resulted in 

not having direct measures of learner emotions 

and having to make inferences based only on 

learner appraisals of task difficulty, challenge 

to skill balance and task absorption. We also 

gathered that the 10 minute intervals between 

smiley meter ratings on the programming tasks 

were likely too long as several participants 

displayed recall bias. Since these limitations 

warrant further research, in our next study, we 

will tweak our design to ensure increased 

reliability of our findings. Firstly, we plan to 

randomise the order of tasks for each 

participant. And secondly, we will collect 

regular and intermittent reports during the task 

(for example, every 3 to4 minutes) on a more 

sophisticated scale such as the Affect Grid 

[28]   or Self-Assessment Manikin [29]. 

The use of physiological measures of 

emotion detection has important theoretical 

and practical implications. As mentioned 

earlier, the vast majority of studies in learner 

emotion have utilized self-reported data [10]. 

These include the building of significant 

educational theories such as [6]. An approach 

utilizing multimodal data including 

physiological data (such as what we do in this 

study) opens up the possibility to test such 

theories in a more robust manner and advance 

our knowledge base on learner psychology. 

Additionally, such studies take us closer 

towards realizing intelligent systems that can 

detect and therefore cater to the emotions of 

learners. The results of the present study thus 

contribute towards the field of emotions in 

learning. 

 



6. Conclusion 
 

In the present study, we found indications 

that certain learner emotions related to 

different task difficulties may possibly be 

characterised by a combination of phasic and 

tonic skin conductance, heart rate, and skin 

temperature. Such a psychophysiological 

approach to emotion detection can open the 

doors to real- time adaptive support that can 

bring learners to their zone of proximal 

development and consequently greatly 

improve learning outcomes. Therefore, though 

the results of the present study are far from 

definitive, we see value in advancing research 

in this area. Our next steps include a) 

furthering our exploration of signals collected 

from the E4 after including design changes 

derived from this study, b) exploring other 

nonintrusive measures of learner engagement 

such as camera based eye tracking and screen 

activity, c) developing a multimodal system of 

emotion detection, d) prototyping an adaptive 

system based on affective feedback. 
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