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ABSTRACT

SAR image interpretation is always impaired by speckle
that is a multiplicative noise due to interference among the
backscatterings from targets inside a resolution cell. Many al-
gorithms for both single and multi-channel SAR despeckling
have been proposed in the last forty years following different
approaches. Recently, a multi-objective convolutional neu-
ral network, named MONet, has been proposed for single
channel SAR despeckling. It relies on a mulit-objectvie cost
function that takes into account three main aspects of the SAR
images: noise removal, details and statistics preservation. In-
spired by MONet, in this paper a deep learning method for
InSAR phase filtering is proposed. The idea is to benefit
from the multi-objective cost function defined in MONet that
seems to perfectly fit with the interferogram denoising. This
is the first step towards a solution able to provide a complete
processed multi-channel product.

Index Terms— SAR, Deep Learning, Denoising, Multi-
Channel

1. INTRODUCTION

Multichannel SAR systems are composed of multiple anten-
nas acquiring data from same scene with either a temporal
or spatial shift. The data acquired by the single antenna are
complex images whose amplitudes contain the backscattering
information of the scene and phase embodies the range dis-
tance between the scene and the SAR.

Systems that exploit complex phase deriving from at least
two complex SAR images are referred as interferometric SAR
(InSAR) systems. While the amplitude is fundamental for
the scene understanding while the difference between the (at
least) two phases (interferogram) allows to retrieve different
information such as scene’s height profile, deformation of the
earth’s surface and topographical signals [1]

Therefore, InSAR products are very useful for a complete
understanding of the scene. The problem lies in the diffi-
cult interpretation of the InSAR products: first, the amplitude
images are characterized by the presence of a multiplicative
noise called speckle impairing the interpretation [2]; second,

interferograms are provided in their wrapped shape (in the in-
terval (−π, π)) hiding the real value of the phases; third, the
interferograms are affected by noise related to the coherence
among the acquisitions (closer are the acquisitions higher is
the coherence and less is the noise) [3]. A method for pro-
ducing a complete clean InSAR product is crucial for further
task such as scene classification, segmentation, detection, and
height retrieval applications (tomography, DEM, etc...). The
aim of this paper is to extend a recently proposed method for
single SAR amplitude image despeckling (MONet [4]) to the
multi-channel case (i.e. two or more SAR complex images).
In particular, we propose to extend the network to the inter-
ferogram filtering, as first step towards a complete and unique
solution for multi-channel SAR framework.

2. MONET

In this paper the backbone of the MONet architecture and its
multi-objective cost function have been considered. In partic-
ular, the original version of MONet is a seventeen CNN for
SAR amplitude image despeckling whose training relies on a
synthetic dataset, where an optical image serves as noise-free
reference X and the noisy input Y is obtained by multiplying
X with a speckle realization simulated under the fully de-
veloped hypothesis. The architecture of MONet is shown in
Figure 1: it is composed of seventeen convolutional layers, in-
terleaved by a skip connection every two layers, followed by
the Rectified Linear Unite (ReLU) [5] after (except the last)
and with batch normalization [6] only in the inner layers.

The main aspect of MONet is the definition of a multi-
objective cost function taking care different aspects of the
filtering process. In particular, the cost function is composed
of three terms: L2 computes the mean square error (MSE)
between the filtered output X̂ and the reference X; L∇ com-
putes the MSE between the gradient of X̂ and X; LKL,
through the the Kullback-Leibler divergence, estimates the
distance of the distribution of the estimated noise N̂ = Y/X̂
and the Rayleigh distribution of the fully developed speckle.
These three terms allow the network to balance the noise sup-
pression and detail preservation: the L2 helps in removing
noise, while L∇ and LKL tend to preserve spatial details and
statistical properties, respectively.
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3. THE MODEL

In a multi-channel SAR framework the dataset is composed
by at least two complex SAR images. In this paper we con-
sider a two-channel system. Let us define Z1 = A1 exp(jψ1)
and Z2 = A2 exp(jψ2) two complex SAR images, with A1

and A2 being the amplitudes and ψ1 and ψ2 being the phases,
respectively. It is widely known that by multiplying the first
image by the complex conjugate of the second one and by
taking the phase of the result, it is possible to extract the so-
called interferometric phase φ (i.e. the difference between the
two phases). It follows that, in a two-channel framework, the
useful parameters that can be estimated or restored are three:
the two amplitudes A1 and A2 and the interferometric phase
φ. As a first step towards a complete and unique solution for
multi-channel SAR framework, in this paper we focus on the
latter.

Let us consider the noise free (wrapped) interferometric
phase φ, and let us define φn the noisy measured (wrapped)
interferometric phase. The relation between the two interfer-
ometric phases can be characterized by an additive model [7]:

φn = φ+ n (1)

where n is a zero-mean noise. In Eq.(1), the original phase
and the noise are assumed to be independent from each other.

Given the statistical distribution of the noise, the proba-
bility density function of the measured phase, given the actual
noise free one is given by [3]:

PΦn
(φn) =

1

2π

1− γ2

1− γ2 cos2(φn − φ)
·

·
(
1 +

γ cos(φn − φ) cos−1(−γ cos(φn − φ))
(1− γ2 cos2(φn − φ))1/2

)

(2)

where γ is the absolute value of the coherence coefficient.

4. PROPOSED METHOD

MONet has shown that the filtering process works well
mainly when the testing cases match the statistical distribu-
tion used in the training dataset [4]. Inspired by this outcome,
the aim of this paper is to take advantage of the MONet
scheme for the InSAR phase filtering.

Starting from several DEM SRTM, a wrapped phase φ
has been simulated using different baselines B. The wrapped
noisy phase φn has been obtained using the additive model of
Eq. (1). The noise has been simulated using different coher-
ence values γ. Considering the formalism of MONet, in this
context, the noise-free phase serves as reference of the net-
work X = φ, while the noisy phase serves as input Y = φn.

The MONet cost function of Fig. (1) needs to be particu-
larised to the considered case. The LKL(N, N̂) term is com-
puted between the known statistical distribution of the noise

N , derived from Eq. (2), and the statistical distribution of the
difference image N̂ , obtained from Y and X̂ . Concerning the
L2(X, X̂) and the L∇(X, X̂) terms , they are computed us-
ing the noise free interferometric phase X , and the estimated
noise free phase X̂ . Summarizing, the proposed network is
mainly the same as the classical MONet one, shown in Fig.
(1) except for the different definition of the input and refer-
ence and considering a difference operation instead of a ratio
one in the Loss Function (KL term).

4.1. Experiments

Seven different DEM SRTM have been used for constructing
the dataset. From each of them, wrapped noisy phases with
three values of coherence γ = [0.5, 0.7, 0.9] and three differ-
ent baselines B = [40, 60, 90] meters have been simulated.
In total, 120, 000 patches of dimension 128 × 128 have been
extracted.

In order to test the proposed method a noisy interferogram
with baseline B = 60 and three values of γ = [0.5, 0.7, 0.9]
have been simulated for adding the noise according to the
above description.

In order to validate the method, a comparison with other
state of art solution has been carried out: Box Car, Gold-
estein [8], NL-InSAR [9] and InSAR-BM3D [10]. The first
four have been tested using the free on-line framework[11]
and the default values here indicated have been used for the
filters. For the last, the implementation of the authors and
their default values have been considered. Moreover, con-
stant amplitude images have been considered for those filters
that require them in addition to the interferograms. Results
are shown in Figure 2. From the filtered phase with γ = 0.9
appears that MONet, toghether with NL-InSAR, is the best in
preserving the fringe’s shape, while InSAR-BM3D tends to
produce some artefacts in correspondence of the tiniest ones.
Goldestein is still noisy, while BoxCar delete some details
even if the average quality is high. With the decreasing of
the coherence γ = [0.7, 0.5], and the consequent augment of
noise level, the drawbacks of Goldstein and Boxcar are more
evident. NL-InSAR begins to suffer tiny fringes producing
many artefacts and deleting important details. InSAR-BM3D
is almost stable even if its behaviour on tiny fringes is slightly
more accentuated. MONet is able to better preserve the shape
of the fringes with respect to all the other methods but tends
to produce more smoothed results limiting the dynamic of the
output. To better spot the differences among the filters, the
residual images where the absolute difference among the ref-
erence phase and filtered ones are shown in Figure 3. The
zero difference is set on gray level.

It can be noted how MONet and NL-InSAR tends to pro-
duce stronger differences with the increasing of the coher-
ence. Similarly, even if attenuated, happen for InSAR-BM3D.
In particular, it is possible to note that in all cases NL-InSAR
and InSAR-BM3D produce stronger errors (black and white
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Fig. 1. Architecture of MONet: first convolution layer followed by a ReLU, after that a series of fifteen convolutional layers
with ReLU and Batch are present alternated with a skip connection every three layers; at the end a simple convolutional layer.
On the right the composition of the cost function is described.

structures) in correspondence on the edges of the fringes than
MONet.

These outcomes are confirmed from the numerical eval-
uation shown in Table 1 where the averaged values of the
MSE, the SSIM and the FOM have been computed on the
three shown test cases. All the metrics confirm that InSAR-
BM3D and MONet are the most competitive ones. In par-
ticular, MSE and FOM confirm the good preservation of the
interferogram details and edges from MONet.

MSE SSIM FOM

BoxCar 1.61 0.58 0.83

Goldenstein 2.99 0.31 0.83

InSAR-BM3D 1.23 0.67 0.87

NL-InSAR 1.89 0.52 0.84

MONet 0.86 0.66 0.97

Table 1. Numerical evaluation carried out on the three test
cases.

5. CONCLUSION

In this paper a CNN based solution for InSAR phase filtering
has been proposed. The aim is to move the first step towards
a solution that can provide a complete processing of multi-
channel SAR products. To this goal, the single SAR image
despeckling algorithm MONet has been extended to the in-
terferogram phase filtering. Inspired by the good results of
MONet, the idea is to take advantage from its architecture
and its multi-objective cost function. The results, compared
with other State-of-Art methods, show a good performance
mainly on the preservation of the fringe’s shape while some
difficult arise in the dynamic management. Future work will
focus on the joint elaboration of SAR amplitude and phase

Noisy(γ = 0.9) Reference Box Car Goldestein

InSAR-BM3D NL-InSAR MONet

Noisy(γ = 0.7) Reference Box Car Goldestein

InSAR-BM3D NL-InSAR MONet

Noisy(γ = 0.5) Reference Box Car Goldestein

InSAR-BM3D NL-InSAR MONet

Fig. 2. Result on simulated interferograms. Three noisy in-
terferograms have been testes with three different coherence
values: γ = 0.9 in the top, γ = 0.7 in the middle, γ = 0.5 in
the bottom.
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Wrapped Phase Reference Box Car Goldestein

InSAR-BM3D NL-InSAR MONet

Wrapped Phase Reference Box Car Goldestein

InSAR-BM3D NL-InSAR MONet

Wrapped Phase Reference Box Car Goldestein

InSAR-BM3D NL-InSAR MONet

Fig. 3. Absolute difference among reference interferograms
and filtered ones. Results on the three different coherence
values are shown: γ = 0.9 in the top, γ = 0.7 in the middle,
γ = 0.5 in the bottom.

data in order to produce a complete multi-channel processed
product.
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