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Abstract
The scaled boundary finite element method (SBFEM) is a relatively recent bound-
ary element method that allows the approximation of solutions to partial differential
equations (PDEs) without the need of a fundamental solution. A theoretical frame-
work for the convergence analysis of SBFEM is proposed here. This is achieved by
defining a space of semi-discrete functions and constructing an interpolation operator
onto this space. We prove error estimates for this interpolation operator and show that
optimal convergence to the solution can be obtained in SBFEM. These theoretical
results are backed by two numerical examples.

Keywords Scaled boundary finite element method · Error analysis ·
Singular solutions
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1 Introduction

The scaled boundary finite element method (SBFEM), first proposed by Song and
Wolf, is a boundary element method that does not require a fundamental solution. It
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has proven to be particularly effective for problems with singularities or posed over
unbounded media, see [6, 7, 9]. In SBFEM, a semi-analytical (or semi-discrete, as
we shall call it here) solution to a partial differential equation (PDE) is constructed by
transforming the weak formulation of the PDE into an ordinary differential equation
(ODE). Essentially, given a star-shaped domain Ω ⊂ R

n, a coordinate transformation
is performed (the scaled boundary transformation) in terms of a radial variable and
n − 1 circumferential variables. Then, an approximate solution is sought in a space
of functions discretized solely in the circumferential direction. The resulting weak
formulation posed over this space is then transformed into an ODE which, under cer-
tain circumstances, can be solved exactly, yielding a semi-analytical approximation
of the solution to the PDE.

The SBFEM has been applied to a wide range of problems that arise in science and
engineering, such as crack propagation [8] and acoustic-structure interactions [3].
Moreover, the limitation to star-shaped domains has been overcome with the devel-
opment of scaled boundary polygon elements, in which the domain is broken into
arbitrarily shaped polygons and shape functions are constructed over these polygons
based on SBFEM [1, 4, 5].

The objective of this paper is to introduce a rigorous framework in which the error
of the approximate solution obtained by SBFEM can be estimated. In particular, the
notion of a semi-discrete solution to a PDE is formalized by defining a space of semi-
discrete functions and constructing an interpolation operator onto this space. Then,
given a semi-analytical solution obtained in the framework of SBFEM, estimates of
its error can be obtained by bounding the interpolation operator’s error using Céa’s
lemma. We limit the analysis to Poisson’s equation posed on a circular domain for
simplicity; this setting is appropriate to highlight the main features of our theoretical
setting.

The overview of this paper is as follows: in Section 2 we describe the continu-
ous problem together with the polar coordinate change of variables. In Section 3 we
introduce a semi-discretization of our problem, where the domain is discretized only
in the angular coordinate. It is shown that the semi-discrete solution converges opti-
mally to the continuous solution. Section 4, making use of the semi-discretization,
transforms the original problem into an ODE. Finally, two numerical results reported
in Section 5 show that the method is performing optimally also in the presence of
singularities.

2 Setting of the problem

Given an angle Θ in (0, 2π), we are considering the Poisson problem in the following
circular sector (see Fig. 1):

Ω :=
{
(x, y) ∈ R

2 : 0 < x2 + y2 < 1, 0 < arctan
(y

x

)
< Θ

}
.

Since we are going to consider a change of variables when defining the scaled
boundary method, we denote with •̂ (with the hat symbol) quantities defined on Ω
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Fig. 1 Sector of a disk of angle
Θ

that correspond to quantities • defined on the reference domain. Hence, our problem
reads: find û : Ω → R such that

− Δ̂û = f̂ in Ω

û = 0 on ∂Ω,
(1)

where f̂ ∈ L2(Ω) and Δ̂ = ∂2
x + ∂2

y is the Laplace operator in the Cartesian
coordinates (x, y).

Let the curved part of the boundary of Ω be parametrized by the graph

(xb(θ), yb(θ)) = (cos θ, sin θ) θ ∈ (0, Θ)

and define the open rectangle Q := (0, 1) × (0, Θ). We consider the mapping F :
Q → R

2 given by
F(r, θ) = r (xb(θ), yb(θ)) . (2)

In this particular case, the scaled boundary transformation is given by the
change of variables (r, θ) = F−1(x, y) for (x, y) ∈ Ω , i.e., by the polar coordinate
transformation. The Jacobian of F is given by

DF(r, θ) =
(

∂rx ∂ry

∂θx ∂θy

)
=

(
cos θ sin θ

−r sin θ r cos θ

)

and its determinant is |DF(r, θ)| = r . Since F is differentiable and |DF(r, θ)| is
invertible in the open set Q, we have

DF−1(F (r, θ)) =
(

∂xr ∂xθ

∂yr ∂yθ

)
= 1

r

(
r cos θ − sin θ

r sin θ cos θ

)
.

Let u(r, θ) = û(F (r, θ)), then the relation between the gradient in Cartesian coor-
dinates ∇̂ = (∂x, ∂y)

� and the gradient in polar coordinates ∇ = (∂r , ∂θ )
� is given

by
∇̂û(x, y) = DF−1(x, y)∇u(F−1(x, y)) in Ω .

Moreover, the solution û of Eq. 1 satisfies

||û||2
H 1(Ω)

=
∫ 1

0

∫ Θ

0

(
ru2 + r(∂ru)2 + 1

r
(∂θu)2

)
dr dθ < ∞. (3)
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In order to consider the variational formulation of Eq. 1 in polar coordinates, we
have to consider appropriate weighted functional spaces. While this is pretty straight-
forward and well understood, we present the procedure in detail since the notation
will be useful for the analysis of the numerical approximation.

Given a weight function w(r, θ) in Q, we define the weighted Lebesgue space

L2
w(Q) =

{
v : Q → R measurable :

∫ 1

0

∫ Θ

0
v2w dr dθ < ∞

}

with inner product

(u, v)L2
w(Q) :=

∫ 1

0

∫ Θ

0
uvw dr dθ .

We will use in particular w = r and w = 1/r; it is not difficult to see that we have
||u||L2

r (Q) ≤ ||u||L2(Q) ≤ ||u||L2
1/r (Q) for all u ∈ L2

1/r (Q). Furthermore, these spaces

are complete [2].
The bound (3) motivates the definition of the following weighted Sobolev space

H̃ 1(Q) =
{
v ∈ L2

r (Q) : ||v||L2
r (Q) + ||∂rv||L2

r (Q) + ||∂θu||L2
1/r (Q) < ∞

}

with inner product

(u, v)
H̃ 1(Q)

:= (u, v)L2
r (Q) + (∂ru, ∂rv)L2

r (Q) + (∂θu, ∂θv)L2
1/r (Q).

The following lemma shows that H 1(Ω) and H̃ 1(Q) are isometric.

Lemma 1 Let Φ : L2(Q) → L2
r (Q) be defined by û 	→ û ◦ F . Then, the spaces

H 1(Ω) and H̃ 1(Q) are isometric via Φ.

Proof Let û ∈ H 1(Ω) and, for 0 < ρ < 1, let Bρ be the ball of radius ρ centered
at the origin and Bc

ρ its complement. For Ωρ = Ω ∩ Bc
ρ , the map F : Qρ → Ωρ

with Qρ := (ρ, 1) × (0, Θ) is a bi-Lipschitz map, i.e., there exist two constants
C1, C2 > 0 such that

C1 |(r1, θ1) − (r2, θ2)| ≤ |F(r1, θ1) − F(r2, θ2)| ≤ C2 |(r1, θ1) − (r2, θ2)|
holds for all (r1, θ1), (r2, θ2) ∈ Qρ . Indeed, by the mean value theorem, we have

|F(r1, θ1) − F(r2, θ2)| ≤ ‖∇F‖ |(r1, θ1) − (r2, θ2)|
and clearly ‖∇F‖∞ ≤ 1. In the same way, F−1 : Ωρ → Qρ is a smooth, bijective
map and

∥∥F−1
∥∥∞ ≤ 1/ρ; hence, it is Lipschitz continuous and it follows that F

and F−1 are bi-Lipschitz when restricted to Qρ and Ωρ respectively. As a result of
[10, Theorem 2.2.2.], u = Φ(û) is weakly differentiable on Qρ and the chain rule
holds. For n ∈ N, define un = Φ|Ω1/n

(û) on Q by extending û by zero outside Ωρ .
For any 0 < ρ < 1 one has that

‖u‖
H̃ 1(Qρ)

= ∥∥û
∥∥

H 1(Ωρ)
≤ ∥∥û

∥∥
H 1(Ω)

, (4)
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so un and its derivatives belong to the associated weighted Lebesgue spaces. As a
result of the monotone convergence theorem, we have that u ∈ H̃ 1(Q) and

‖u‖
H̃ 1(Q)

= ∥∥û
∥∥

H 1(Ω)
.

Repeating the steps above, we can also show that for u ∈ H̃ 1(Q) one has Φ−1(u) ∈
H 1(Ω).

It is then natural to define the following space in order to take into account the
boundary conditions

H̃ 1
0 (Q) := Φ(H 1

0 (Ω)).

We are now ready to state the variational formulation of Eq. 1 in both coordinate
systems.

Definition 1 (Weak form of the Poisson problem in Cartesian coordinates) Find û ∈
H 1

0 (Ω) such that

â(û, v̂) = b̂(û) for all v̂ ∈ H 1
0 (Ω), (5)

with
â(û, v̂) =

(
∇̂û, ∇̂v̂

)
L2(Ω)

, b̂(û) =
(
f̂ , v̂

)
L2(Ω)

.

Definition 2 (Weak form of the Poisson problem in polar coordinates) Find u ∈
H̃ 1

0 (Q) such that

a(u, v) = b(v) for all v ∈ H̃ 1
0 (Q), (6)

with

a(u, v) =
∫ 1

0

∫ Θ

0

(
∂ru∂rv + 1

r2
∂θu∂θv

)
r dr dθ

b(v) =
∫ 1

0

∫ Θ

0
f v r dr dθ .

It is well-known that Eq. 5 is well posed and so is Eq. 6 thanks to the properties of
the map Φ and of the isometry shown above.

3 The semi-discrete Poisson equation

The discretization of Eq. 1 with the scaled boundary finite element method is based
on a spatial semi-discretization that is described in this section.

We introduce a partition of the parametrized boundary θ 	→ (cos θ, sin θ) given by

TΓ = {θ1, . . . , θN }
and consider a finite dimensional approximation of H 1(0, Θ) generated by a basis
{ei(θ)}Ni=1 with the property that

ei(θj ) = δij .
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Remark 1 The choice of {ei(θ)}Ni=1 at this point is arbitrary. It could be based on
finite elements, splines, global Lagrange polynomials, etc.

Due to our choice of boundary conditions, we could also have defined the basis
{ei(θ)}Ni=1 in H 1

0 (0, Θ), but we prefer to avoid this in order to allow our analysis to
be extended more easily to more general boundary conditions or to a situation where
Θ = 2π .

The main idea behind the semi-discretization is to consider families of functions
where the variables r and θ are separated formally as follows:

us(r, θ) =
N∑

i=1

ui(r)ei(θ).

Ideally, we would like to have ui(r) = u(r, θi) and this choice will be used later in
Section 3.1 for the error analysis; it will lead to the analogous of the interpolation
operator for standard finite elements. In order to do so, we need to give sense to the
radial trace u(r, θi). For the sake of readability, we now introduce an abstract setting
and we postpone the actual definition of the involved functional spaces to Section 3.1.
Ultimately, we want to define a semi-discrete space

Us :=
{

vs ∈ H̃ 1(Q) : vs =
N∑

i=1

vi(r)ei(θ) with vi ∈ Ũ for 1 ≤ i ≤ N

}
,

where Ũ is a suitable functional space on the interval (0, 1). We will then consider
its subspace Us

0 = Us ∩ H̃ 1
0 (Q), so that the semi-discretization of problem (6) will

read: find us ∈ Us
0 such that

a(us, vs) = b(vs) for all vs ∈ Us
0 . (7)

We will prove (see Theorem 1) that Us
0 is a closed subspace of H̃ 1

0 (Q) so that
problem (7) is uniquely solvable and the error between u and us is bounded as usual
by the best approximation using Céa’s lemma:

‖u − us‖H̃ 1(Q)
≤ C inf

v∈Us
0

‖u − v‖
H̃ 1(Q)

. (8)

The solution of problem (7) is actually computed by solving a system of ordinary
differential equations where the unknowns are the coefficients ui(r) of us(r, θ). This
procedure is detailed in Section 4.

In order to show the convergence of this procedure, we need to estimate the right-
hand side of Eq. 8.

3.1 Error estimates for the interpolation operator

We plan to construct an interpolation operator Π with values in Us that, if applied to
smooth functions, would act as follows

(Πu)(r, θ) =
N∑

i=1

u(r, θi)ei(θ).
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Since we will work with Sobolev functions, it is useful to define an adequate trace-
like operator that we are going to call the “radial trace operator.” To this end, the
following bound is required.

Lemma 2 For all u ∈ C∞(Q) and 0 ≤ ϑ ≤ Θ , we have
∫ 1

0
ru2(r, ϑ)dr ≤ C

(
‖u‖2

L2
r (Q)

+ ‖∂θu‖2
L2

r (Q)

)
(9)

where C > 0 only depends on Θ .

Proof Let u ∈ C∞(Q) and assume, without loss of generality, that 0 ≤ ϑ < Θ .
Then, we have

∫ θ

ϑ

∂ζ

(
u2(r, ζ )

)
r dζ = ru2(r, θ) − ru2(r, ϑ) for all θ ∈ (ϑ, Θ].

Reordering and integrating over r , we have
∫ 1

0
ru2(r, ϑ) dr =

∫ 1

0
ru2(r, θ) dr − 2

∫ 1

0

∫ θ

ϑ

u(r, ζ )∂ζ u(r, ζ )r dζ dr .

For the last term, we can apply Hölder’s inequality, so that

−2
∫ 1

0

∫ θ

ϑ

u(r, ζ )∂ζ u(r, ζ )r dζ dr ≤ 2
∫ 1

0

∫ Θ

0

∣∣u(r, ζ )∂ζ u(r, ζ )
∣∣ r dζ dr

≤ 2 ‖u‖L2
r (Q) ‖∂θu‖L2

r (Q)

≤ ‖u‖2
L2

r (Q)
+ ‖∂θu‖2

L2
r (Q)

.

Finally, integrating over θ , we have

Θ

∫ 1

0
ru2(r, ϑ) dr ≤ 2 ‖u‖2

L2
r (Q)

+ ‖∂θu‖2
L2

r (Q)
,

so that Eq. 9 holds for smooth functions.

The following space on the interval (0, 1) will be used for the definition of Ũ

H 1
r (0, 1) =

{
u ∈ L2

r (0, 1) :
∫ 1

0

(
u′(r)

)2
r dr < ∞

}
.

Given an angle 0 ≤ ϑ ≤ Θ , inequality (9) shows that the natural norm for a space U

where the radial trace operator can be defined is

‖u‖U :=
(
‖u‖2

H̃ 1(Q)
+ ‖∂rθu‖2

L2
r (Q)

) 1
2

.

It is apparent that not all functions in C∞(Q) have a bounded U -norm because in
general C∞(Q) is not included in H̃ 1(Q). This is due to the fact that ‖∂θu‖L2

1/r (Q)

might not be bounded for some u ∈ C∞(Q). Hence, we define

γ̃ϑ : C∞(Q) ∩ H̃ 1(Q) → H 1
r (0, 1) u 	→ u(·, ϑ)
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and extend it to the closure of C∞(Q) ∩ H̃ 1(Q) with respect to the U -norm. We
denote by U ⊂ H̃ 1(Q) this space and by γϑ the extension of the trace operator, so
that we have a bounded radial trace operator

γϑ : U → H 1
r (0, 1)

that extends the restriction operator γ̃ϑ defined on smooth enough functions.
It is then natural to choose Ũ = H 1

r (0, 1), so that the definition of Us reads as
follows

Us :=
{

vs ∈ H̃ 1(Q) : vs =
N∑

i=1

vi(r)ei(θ) with vi ∈ H 1
r (0, 1) for 1 ≤ i ≤ N

}
.

Theorem 1 The space of semi-discrete functions Us is a closed subspace of H̃ 1(Q).

Proof Let (un) be a Cauchy sequence in Us . By completeness, there is a function ũ

such that un → ũ in H̃ 1(Q). By Lemma 2 we have
∫ 1

0
r |um(r, θi) − un(r, θi)|2 dr ≤ C ‖um − un‖2

H̃ 1(Q)
→ 0

as n, m → ∞, so (un(·, θi)) is a Cauchy sequence in L2
r (0, 1) and by completeness

there is a limit un(·, θi) → ui for each i. Define u = ∑N
i=1 uiei in Us and note that

‖u − ũ‖L2
r (Q) ≤ ‖u − un‖L2

r (Q) + ‖ũ − un‖L2
r (Q)

≤ C

(
N∑

i=1

‖ui(·) − un(·, θi)‖2
L2

r (0,1)

) 1
2

+ ‖ũ − un‖L2
r (Q) → 0

as n → ∞, so u = ũ and therefore un → u in H̃ 1(Q).

Given u ∈ U we can then define the interpolant as

(Πu)(r, θ) =
N∑

i=1

ui(r)ei(θ),

where ui(r) is defined as γθi
(u) in H 1

r (0, 1). In order to see that the interpolant is
well defined, we need to show that Πu belongs to H̃ 1(Q). To limit the technicalities,
from now on in this section we are assuming that {ei} is the basis of continuous
piecewise linear finite elements on (0, Θ). The general case can be handled with
similar arguments.

Lemma 3 For u ∈ U , we have Πu ∈ H̃ 1(Q).

Proof We have that Πu ∈ H̃ 1(Q) if and only if
∫ 1

0

∫ 2π

0

(
r(Πu)2 + r(∂rΠu)2 + 1

r
(∂θΠu)2

)
dθ dr < ∞. (10)

34   Page 8 of 17 Adv Comput Math (2021) 47: 34



We apply Lemma 2 and obtain

‖Πu‖2
L2

r (Q)
+ ‖∂rΠu‖2

L2
r (Q)

≤ N

N∑
i=1

(∫ 1

0
ru2

i (r) dr

∫ 2π

0
e2
i (θ) dθ

+
∫ 1

0
r (∂rui(r))

2 dr

∫ 2π

0
e2
i (θ) dθ

)

≤ CN
(
‖u‖2

H̃ 1(Q)
+ ‖∂rθu‖2

L2
r (Q)

) N∑
i=1

∫ 2π

0
e2
i (θ) dθ

≤ 4π2Ch

3h2
min

(
‖u‖2

H̃ 1(Q)
+ ‖∂rθu‖2

L2
r (Q)

)
,

(11)
where h = maxi (θi+1 − θi) and hmin = mini (θi+1 − θi).

For the third term in Eq. 10, we fix r ∈ (0, 1) and observe that

u(r, θi) = (Πu)(r, θi), u(r, θi+1) = (Πu)(r, θi+1)

for i = 1, 2, . . . , N − 1. Taking into account that ∂θΠu is well defined in (θi, θi+1),
we apply the mean value theorem and

u(r, θi+1) − u(r, θi) = (θi+1 − θi)
(
∂θΠu(r, θ̃)

)

holds for some θ̃ ∈ (θi, θi+1). Since Πu is linear in this interval, the following
equality holds

|∂θΠu(r, θ)|2 (θi+1 − θi)
2 =

∣∣∣∣
∫ θi+1

θi

∂θu(r, ζ ) dζ

∣∣∣∣
2

for all θ ∈ (θi, θi+1) and r ∈ (0, 1). After multiplying by 1/r , integrating, and
applying Hölder’s inequality, we have

∫ 1

0

∫ θi+1

θi

1

r
|∂θΠu(r, θ)|2 dθ dr ≤

∫ 1

0

∫ θi+1

θi

1

r
|∂θu(r, θ)|2 dθ dr .

By integrating over each interval and summing up the terms, we have

‖∂θΠu‖L2
1/r (Q) ≤ ‖∂θu‖L2

1/r (Q) . (12)

Finally, putting (11) and (12) together, we get

‖Πu‖2
H̃ 1(Q)

≤ max

{
4π2Ch

3h2
min

, 1

}(
2 ‖u‖2

H̃ 1(Q)
+ ‖∂rθu‖2

L2
r (Q)

)
< ∞.

In the next theorem, we prove the approximation properties of Us . As usual, we
need to assume suitable regularity that will be characterized by the following space

U ′ =
{
u ∈ U : ‖∂θθu‖L2

1/r (Q) < ∞
}

.
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Remark 2 The space U ′ requires extra regularity only in the angular variable θ . We
will see in Section 5 that singular solutions (with respect to the Cartesian coordinates)
can be in U ′ and be approximated optimally by SBFEM.

Theorem 2 Let u be in U ′. Then, there exists C > 0 independent of TΓ such that

‖u − Πu‖L2
r (Q) ≤ h2 ‖∂θθu‖L2

1/r (Q)

and

‖u − Πu‖
H̃ 1(Q)

≤ Ch

(
‖∂rθu‖2

L2
r (Q)

+ ‖∂θθu‖2
L2

1/r (Q)

)
.

Proof Let u ∈ C∞(Q) and define ε(r, θ) = (u−Πu)(r, θ). Due to the properties of
the interpolation operator, we have ε(r, θi) = 0 for i = 1, ..., N . As a result, there is
a θ̃i ∈ (θi, θi+1) such that ∂θε(r, θ̃i ) = 0. It follows that

∂θε(r, ϑ) =
∫ ϑ

θ̃i

∂θθ ε(r, ζ ) dζ =
∫ ϑ

θ̃i

∂θθu(r, ζ ) dζ for θ̃i < ϑ ≤ θi+1,

since Πu is linear in (θi, θi+1) in the θ direction. Applying Hölder’s inequality we
have

|∂θε(r, ϑ)|2 ≤ (θi+1 − θi)

∫ θi+1

θi

|∂θθu(r, θ)|2 dθ .

Integrating over the domain and summing up the different terms corresponding to
each interval (θi, θi+1) we have

‖∂θε‖2
L1/r (Q) ≤ h2 ‖∂θθu‖2

L1/r (Q) . (13)

Since both || · ||L1/r (Q) and Π are continuous, inequality (13) can be shown to hold
for all u ∈ U ′ by a density argument. Likewise, for ε(r, ϑ) we have

|ε(r, ϑ)|2 =
∣∣∣∣
∫ ϑ

θi

∂θ ε(r, ζ ) dζ

∣∣∣∣
2

≤ h

∫ θi+1

θi

|∂θε(r, ζ )|2 dζ .

After integrating and using Eq. 13, we have

‖ε‖2
L2

r (Q)
≤ h4 ‖∂θθu‖2

L2
1/r (Q)

. (14)

Finally, an estimate must be found for ‖∂rε‖L2
r (Q). Once again, we consider a

smooth function u and take into account that ∂rε(r, θi) = 0 for all r ∈ (0, 1) and
i = 1, . . . , N . Hence,

∂rε(r, ϑ) =
∫ ϑ

θi

∂rθ ε(r, ζ ) dζ

and it follows that
‖∂rε‖2

L2
r (Q)

≤ h2 ‖∂rθ ε‖2
L2

1/r (Q)
. (15)

In the same way as Eq. 12 is obtained, we apply the mean value theorem to the
function ∂r(Πu)(r, ϑ) for ϑ ∈ (θi, θi+1) and obtain

(∂rθ (Πu)(r, ϑ)) (θi+1 − θi) =
∫ θi+1

θi

∂rθu(r, ζ ) dζ
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and therefore we can establish that

‖∂rθΠu‖L2
r (Q) ≤ ‖∂rθu‖L2

r (Q) . (16)

Given (16), we have the following error estimate for all smooth functions u:

‖∂rε‖2
L2

r (Q)
≤ 2h2

(
‖∂rθu‖2

L2
r (Q)

+ ‖∂rθΠu‖2
L2

r (Q)

)

≤ 4h2 ‖∂rθu‖2
L2

r (Q)

(17)

which, by a density argument, holds for all u ∈ U ′. Therefore, putting (13), (14),
and (17) together, we obtain the required bound. More precisely, we have

‖u − Πu‖2
H̃ 1(Q)

≤ h2
(
h2 + 4

) (
‖∂rθu‖2

L2
r (Q)

+ ‖∂θθu‖2
L1/r (Q)

)
.

4 Constructing semi-discrete solutions with SBFEM

In order to solve our problem, the scaled boundary finite element method rewrites the
formulation (7) as a system of ordinary differential equations; this is carried out in
Section 4.1. This is possible thanks to the representation of semi-discrete functions
in Us

0 as the product of r-dependent functions ui(r) with θ -dependent test functions.
The resulting system of differential equations is supplemented with additional condi-
tions arising from regularity requirements and the boundary conditions. This system
can be solved by an analytical method under certain conditions, a process which is
described in Section 4.2.

4.1 Rewriting the Poisson equation as an ODE

Let us consider us = ∑N
i=1 uiei and vs = ∑N

i=1 viei . An immediate consequence
of the definition of the space of semi-discrete functions Us

0 is that the bilinear form
a : Us

0 × Us
0 → R and the linear form b : Us

0 → R may be rewritten as follows:

a(us, vs)=
N∑

i,j=1

∫ 1

0

∫ Θ

0

(
u′

i (r)v
′
j (r)ei(θ)ej (θ)+ 1

r2
ui(r)vj (r)e

′
i (θ)e′

j (θ)

)
r dr dθ

=
N∑

i,j=1

(∫ 1

0
u′

i (r)v
′
j (r)r dr

∫ Θ

0
ei(θ)ej (θ) dθ

+
∫ 1

0
ui(r)vj (r)

dr

r

∫ Θ

0
e′
i (θ)e′

j (θ) dθ

)

=
n∑

i,j=1

(
Aij

∫ 1

0
u′

i (r)v
′
j (r)r dr + Bij

∫ 1

0
ui(r)vj (r)

dr

r

)

Page 11 of 17    34Adv Comput Math (2021) 47: 34



and

b(vs) =
N∑

j=1

∫ 1

0

∫ Θ

0
f (r, θ)vj (r)ej (θ)r dr dθ

=
N∑

j=1

∫ 1

0
Fj (r)vj (r)r dr,

where

Aij =
∫ Θ

0
ei(θ)ej (θ)dθ

Bij =
∫ Θ

0
e′
i (θ)e′

j (θ)dθ

Fj (r) =
∫ Θ

0
f (r, θ)ej (θ) dθ .

We now proceed formally with the derivation of the differential equation. To this
aim, we will use the following integration by parts formula

∫ 1

0
u′

i (r)v
′
j (r)r dr = −

∫ 1

0
u′′

i (r)vj (r)r dr −
∫ 1

0
u′

i (r)vj (r)dr + u′
i (1)vj (1)

which is clearly valid for smooth enough ui and vi .
In order to simplify our notation, we introduce a name for the space of the

coefficients in Us as follows

U s
0 =

{
u = (ui)

N
i=1 : ui ∈ H 1

r (0, 1) for 1 ≤ i ≤ N,

N∑
i=1

uiei ∈ Us
0

}
.

It follows that if us ∈ Us
0 is smooth enough, it solves a(us, vs) = b(vs) for all

vs ∈ Us
0 if and only if

N∑
j=1

∫ 1

0
vj (r)

N∑
i=1

[
−rAij u

′′
i (r) − Aij u

′
i (r) + 1

r
Bij ui(r) − Fj (r)r

]
dr = 0

(18)
holds for all v = (vi)

N
i=1 ∈ U s

0. Moreover, as a result of the fundamental lemma of
calculus of variations, (18) holds if and only if

N∑
j=1

(
rAij u

′′
j (r) + Aij u

′
j (r) − 1

r
Bij uj (r)

)
= rFi(r) for a.e. r ∈ (0, 1) (19)

is satisfied for all i = 2, . . . , N − 1, since v1 = vN = 0 by v ∈ U s
0. Because we seek

a solution u ∈ U s
0, we must also enforce the boundary conditions u1 = uN = 0 and

ui(1) = 0 for i = 2, . . . , N −1. Furthermore, we impose the compatibility condition
ui(0) = uj (0) for all i, j = 1, . . . , N to avoid a singularity at the center of the disk.
In this, we guarantee that the function u = ∑N

i=1 uiei belongs to H̃ 1
0 (Q).

Denote by A and B the matrices in R
N×N with components Aij and Bij and by

F (r) the vector function with components Fi(r). We modify the columns and rows
in A and B and we set Fi(r) = 0 for i = 1 and N in order to enforce u1 = uN = 0.
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Then, a semi-discrete solution of the Poisson equation u = (ui)
N
i=1 will satisfy the

following conditions:
⎧⎪⎨
⎪⎩

r2Au′′ + rAu′ − Bu = r2F for r ∈ (0, 1),

u(1) = 0,

ui(0) = uj (0) for all i, j = 1, . . . , N .

(20)

SBFEM provides a methodology for the construction of solutions for Eq. 20, see
the next section. Whenever such solutions exist and satisfy the integration by parts
formula for all v ∈ U s

0, then they correspond with the unique solution in Us
0 .

4.2 Solving the ODE analytically

Following [9], a solution to Eq. 20 can be constructed by finding a family of functions
that satisfy the homogeneous ODE together with a particular solution. In order to
construct the homogeneous solution, we shall define the matrix E ∈ R

2N×2N by

E =
(

0 A−1

B 0

)
.

Note that E arises when the ODE in Eq. 20 is rewritten as a first-order differential
equation by introducing the additional variable q(r) = rAu′(r). If (λ, (φ, ψ)T ) is an
eigenpair of E, with φ, ψ ∈ C

N , we can see that

Bφ = λ2Aφ. (21)

Furthermore, for u(r) = rλφ we have that

r2Au′′ + rAu′ − Bu = 0 (22)

for all r > 0. That is, u(r) = rλφ is a homogeneous solution of the ODE in Eq. 20.
This idea can be extended in such a way that we get homogeneous solutions as a
linear combination of N linearly independent functions that satisfy (22). Indeed, first
note that E is a Hamiltonian matrix and therefore, for every eigenvalue λ ∈ C, we
will also have that −λ, λ, and −λ are eigenvalues of E. Consider the following subset
of N eigenpairs of E:

{
(λi,

(
φi

ψ i

)
) : Re (λi) ≥ 0, φi , ψ i ∈ C

N, i = 1, . . . , N

}
.

From Eq. 21, we see that the pair (λ2
i , φi ) is an eigenpair of the one-dimensional

Laplace problem discretized with piecewise polynomials. As a result, λi ∈ R and
φi ∈ R

N . Moreover, the vectors (φi ) form a basis of RN . Then, for any N-tuple of
real numbers c1, . . . , cN , we have that

uh(r) =
N∑

i=1

cir
λi φi

is a homogeneous solution to the ODE in Eq. 20. Given a particular solution up for
which

r2Au′′
p + rAu′

p − Bup = r2F on (0, 1),
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the constants c1, . . . cN are then set by enforcing the boundary conditions uh(1) +
up(1) = 0. The resulting function u = uh + up is a solution of Eq. 20.

Remark 3 In the construction of u, we only consider non-negative eigenvalues
because we require ui(r) ∈ H 1

r (0, 1) for all i = 1, . . . , N . Moreover, the condition
ui(0) = uj (0) for all i, j = 1, . . . , N holds because if λi = 0 then φ is in the kernel
of B, which consists of vectors whose entries are all equal.

The analytical construction of a particular solution relies on the form of F (r). For
example, if F (r) = rαf , where f ∈ R

N and α ∈ R, then it is simple to see that
up(r) = rα+2φp, with φp ∈ R

N solving the linear system
(
(α + 2)2A − B

)
φp = f ,

is a particular solution of Eq. 19.

5 Numerical examples

One of the main features of the method presented in the previous sections is that it can
achieve high order of convergence also in the presence of singular solutions. We are
going to show this behavior with two simple examples. The approximate solutions to
Eq. 19 are obtained by means of the analytical method described in Section 4.2. In
these tests, the basis functions ei in the angular direction are piecewise polynomials
of order 1 or higher.

5.1 A first numerical test

We take Θ = 3π/2 and consider the function

ue(r, θ) = r
2
3 sin

(
2

3
θ

)
.

This function satisfies �ûe = 0 on �, where ûe = �−1(ue), so it is a solution to
the homogeneous problem: find û ∈ H 1(Ω) such that

−Δu = 0 in Ω

û = ûe on ∂Ω .

Our theory can be easily extended to accommodate non-homogeneous boundary con-
ditions. Moreover, it is well-known that ue belongs to H 1(Ω) but not to H 2(Ω).
Indeed, this follows from the fact that the following inequality holds for any 0 <

R < 1 and 0 < ε < R

∥∥ûe

∥∥2
2,Ω

≥
∫ R

ε

∫ 3
2 π

0

(
∂ue

∂r

)2

r dθ dr =
(

4

81

∫ 3
2 π

0
sin2

(
2

3
θ

)
dθ

)∫ R

ε

r− 5
3 dr

= C
(
ε− 2

3 − R− 2
3

)
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Fig. 2 Convergence plots of L2 and H 1 errors for the first numerical test with basis functions ei of
polynomial orders 1, 2, 4, and 6

which tends to infinity as ε goes to 0. On the other hand, it can be easily seen that
ue belongs to U ′ and this makes it possible to use the result of Theorem 2 which
implies, in particular, that first-order elements achieve second order of convergence
in L2 even in presence of a corner singularity.

We report in Fig. 2 the results of our numerical test that confirm our theoreti-
cal findings. We include also higher order approximations (up to order six) and a
convergence plot in H 1.

Fig. 3 Convergence plots of L2 and H 1 errors for the second numerical test with basis functions ei of
polynomial orders 1 and 2
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5.2 A second numerical test

For the second numerical test, we consider a slightly more complicated example.
Once again, we set Θ = 3π/2 and consider the function

ve(r, θ) = r
2
3

((
1 − 4θ

3π

)
cos (2θ/3) − 4

3π
log (r) sin (2θ/3)

)
.

For this function we once again have that �v̂e = 0, where v̂e = �−1(ve), and
ve = r2/3 at θ = 0 and θ=Θ . This function therefore is a solution to the problem:
find û ∈ H 1(Ω) such that −Δû = 0 in Ω

û = v̂e on ∂Ω .

The results to our numerical tests are presented in Fig. 3 for polynomial orders
1 and 2. The resulting convergence rates confirm the theoretical predictions from
Section 3.

Acknowledgements We would like to thank the project partners Prof. Carolin Birk (Universität Duisburg-
Essen, Germany) and Prof. Christian Meyer (TU Dortmund, Germany) as well as Professor Gerhard Starke
for the fruitful discussions.

Funding The first author was supported by the German Research Foundation (DFG) in the Priority Pro-
gramme SPP 1748 Reliable simulation techniques in solid mechanics under grant number BE6511/1-1.
The second author is a member of the INdAM Research group GNCS and his research is partially sup-
ported by IMATI/CNR and by PRIN/MIUR. The first and third authors were supported by Mercator
Research Center Ruhr (MERCUR) under grant Pr-2017-0017.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Gravenkamp, H., Saputra, A.A., Song, C., Birk, C.: Efficient wave propagation simulation on quadtree
meshes using SBFEM with reduced modal basis. Int. J. Numer. Methods Eng. 110(12), 1119–1141
(2016)

2. Kufner, A.: Weighted Sobolev Spaces. Teubner-Texte zur Mathematik. B.G. Teubner, Berlin (1985)
3. Liu, L., Zhang, J., Song, C., Birk, C., Saputra, A.A., Gao, W.: Automatic three-dimensional acoustic-

structure interaction analysis using the scaled boundary finite element method. J. Comput. Phys. 395,
432–460 (2019)

4. Ooi, E.T., Song, C., Tin-Loi, F., Yang, Z.: Polygon scaled boundary finite elements for crack
propagation modelling. Int. J. Numer. Methods Eng. 91(3), 319–342 (2012)

5. Ooi, E.T., Song, C., Tin-Loi, F.: A scaled boundary polygon formulation for elasto-plastic analyses.
Comput. Methods Appl. Mech. Eng. 268, 905–937 (2014)

6. Song, C., Wolf, J.P.: The scaled boundary finite-element method-alias consistent infinitesimal finite-
element cell method-for elastodynamics. Comput. Methods Appl. Mech. Eng. 147(3), 329–355 (1997)

34   Page 16 of 17 Adv Comput Math (2021) 47: 34

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


7. Song, C., Wolf, J.P.: The scaled boundary finite element method–alias consistent infinitesimal finite
element cell method–for diffusion. Int. J. Numer. Methods Eng. 45(10), 1403–1431 (1999)

8. Song, C., Wolf, J.P.: Semi-analytical representation of stress singularities as occurring in cracks in
anisotropic multi-materials with the scaled boundary finite-element method. Comput. Struct. 80(2),
183–197 (2002)

9. Wolf, J.: Scaled boundary finite element method. Wiley, New York (2003)
10. Ziemer, W.P.: Weakly differentiable functions. Springer, Berlin (1989)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Page 17 of 17    34Adv Comput Math (2021) 47: 34


	Convergence analysis of SBFEM
	Abstract
	Introduction
	Setting of the problem
	The semi-discrete Poisson equation
	Error estimates for the interpolation operator

	Constructing semi-discrete solutions with SBFEM
	Rewriting the Poisson equation as an ODE
	Solving the ODE analytically

	Numerical examples
	A first numerical test
	A second numerical test

	References


