i

ealizing Traceability

between

the Enterprise Architecture

and

Business Value

Wilco Engelsman

REALIZING TRACEABILITY BETWEEN
THE ENTERPRISE ARCHITECTURE AND
BUSINESS VALUE

Wilco Engelsman

REALIZING TRACEABILITY BETWEEN
THE ENTERPRISE ARCHITECTURE AND
BUSINESS VALUE

DISSERTATION

to obtain
the degree of doctor at the Universiteit Twente,
on the authority of the rector magnificus,
prof. dr. ir. A. Veldkamp,
on account of the decision of the Doctorate Board
to be publicly defended
on Thursday 20 January 2022 at 16.45 hours

by
Wilco Engelsman

born on the 5th of July, 1980
in Zwolle, The Netherlands

This dissertation has been approved by:
Supervisor
prof. em. dr. R.J. Wieringa

Co-supervisor
dr. ir. M.J. van Sinderen

Cover design: shutterstock.com
Printed by: Ipskamp b.v.

ISBN: 978-90-365-5320-9
DOI: https://doi.org/10.3990/1.9789036553209

DSI: No. 22-002 ISSN 2589-7721
UNIVERSITY OF TWENTE. \ DIGITAL SOCIETY INSTITUTE

© 2021 Wilco Engelsman, The Netherlands. All rights reserved. No parts of
this thesis may be reproduced, stored in a retrieval system or transmitted in
any form or by any means without permission of the author. Alle rechten
voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd, in enige
vorm of op enige wijze, zonder voorafgaande schriftelijke toestemming van

de auteur.

https://shutterstock.com/
https://doi.org/10.3990/1.9789036553209

Graduation Committee:

Chair / secretary:
Supervisor:

Co-supervisor:

Committee Members:

prof. dr. J.N. Kok
prof. em. dr. R.J. Wieringa

dr. ir. M.J. van Sinderen

prof. dr. M.E. Tacob
prof. dr. G. Guizzardi
prof. dr. O. Pastor
prof. dr. G. Poels
prof. dr. A. Wegmann

Realizing Traceability
between the Enterprise
Architecture and Business

Value

WILCO ENGELSMAN

December 26, 2021

ii

iii

Abstract

An enterprise architecture (EA) is a high-level representation of the enterprise.
An EA is designed to realize the business value of an organization. First, we
design and evaluate a traceability relation between ArchiMate and the business
goals. We define a goal modeling language for EA, called ARMOR. Next, we
continue our validation with practitioners and academics in terms of utility and
understandability. We conclude that the concepts of ARMOR are difficult to
understand, because the concepts are closely related. We propose and validate
a simplified version of ARMOR in this thesis, with only stakeholder and goal
as modeling constructs. This language and first evaluations have influenced
the creation of the motivation layer in ArchiMate 2.0.

Second, we define a traceability relation between an e3value model and an
ArchiMate model. We present guidelines of how to align an ArchiMate model
with an e3value model. We perform a conceptual analysis of the meta-models
of both languages and derive a set of alignment hypotheses. These are refined in
an experiment with practitioners and evaluated in a case study. A key finding
from this case study is that for the traceability to be useful, the quantifications
of an e3value model have to be aligned with those in an ArchiMate model.

We end this thesis with a quantitative alignment of an ArchiMate model
with the quantifications of an e3value model. We export the economic transac-
tions from an e3value model to an ArchiMate model as workload requirements.
We use the ArchiMate profiling mechanism to store the economic transactions
of an evalue model in an ArchiMate model. The economic transactions are
propagated throughout the ArchiMate model as workload requirements. We
also annotate an ArchiMate model with ‘nvestments and erpenses and argue
how these can be inserted into an e?value model.

This thesis has the following contributions. Traceability between business
goals and ArchiMate models enable us to perform impact of change and com-
pleteness analyses. Traceability between the e?value models and ArchiMate
models allows us to reason about the economical and technological feasibility

of a business model.

iv

Acknowledgments

When I started my PhD-research in 2010 I never thought it would take 12
years to finish. A series of severe complications after colon surgeries ended
my life as I knew it. I had to focus on getting well and had to find some sort
of new stability in my life. This took the better part of a decade to achieve.
After a time of careful consideration, if I would be able to finish the project
I started 9 years earlier, I decided that it had to be done. I lived as a hermit
for about two years, aided by covid-19 lockdowns, and steadily worked from
conference deadline to conference deadline to deliver the work I needed to be
able to defend my PhD-research. However, the achievement of this goal would
not have been possible without the contributions of others, in some way or
another.

First, I need to start with my parents, Gerrit and Wilma, for the continuous
support from working myself up from the mavo to a doctorate degree. I also
need to thank my sister Suzanne for providing the support I always needed.

A very special mention goes to Eelco, without his support during the time
I was ill, I would not have been able to finish this project. Driving me to the
hospital at a moment’s notice and making sure I was all right before going
home, only to return the next day. This was lifesaving. Thank you. I do not
have the space to thank everyone for their support one way or another during
that time, but I would like to mention (in random order) Michael, Sjoerd,
Tamara, Tobias, Geert, Elmer, Rien and many others.

Roel, thank you for not only giving me the chance once, but twice to obtain
a PhD. I had almost accepted that the project had come to an unfruitful
end when you contacted me with the request to finish it. I also need to
mention Jaap and the co-supervisor Marten. You sacrificed a lot of time
when co-authoring the papers we wrote together and listening to all the half-
baked ideas. Similarly, I need to thank my current employer and colleagues at
Saxion for the very pleasant working environment, and in particular, Raimond,
Hesther, Paul and Timber for the support and opportunity to finish my thesis.
I am grateful that my previous employer BiZZdesign gave me the opportunity
to start this project more than a decade ago. Although it is a decade later, I
have not forgotten the colleagues of the former IS-group. It was a good place
to work and the social events were always special.

To the participants from Company X from the case studies in chapter 10
and chapter 11. We did not get as far with the topic as we initially wanted,
but it provided a validation for why we started this work and the case study
massively improved my guidelines. Thank you.

The committee, I appreciate the time you took the read the work, the

vi

very useful feedback I received and the improvement suggestions. Thank you:
Alain, Geert, Giancarlo, Maria, and Oscar. For the many others that helped

me during my illness or provided any other contribution to this thesis. Thank
you.

Contents

I

1

Introduction

Introduction

1.1 Research Motivation
1.2 Business Models
1.3 Enterprise Architecture
1.4 Traceability
1.5 Problem Statement
1.6 Research Design and Outline Thesis
1.7 Contribution

Related Work

2.1 Introduction
2.2 Related Work for Goal Modeling
2.3 Related Work For Understandability GORE
2.4 Related Work For Business Models

II Goal Modeling

3

Extending ArchiMate:ARMOR

3.1 Imtroduction.
3.2 Enterprise Architecture L.
3.3 Requirements Modeling
3.4 Language definition oo oL
3.5 Application of ARMOR
3.6 Tool Support
3.7 Outlook Architectural Principles
3.8 Conclusions

vii

10
11
13
17
23

25
26
26
28
30

4 First Evaluation
4.1 Introduction L
4.2 Research Methodology
4.3 Definition of ARMOR
4.4 CaseStudy 1
45 Redesign. L
4.6 Casestudy 2
4.7 Lessons learned Lo
5 Second Evaluation
5.1 Imtroduction.
5.2 Research problem L.
5.3 Research methodology
5.4 Defining understandability oL
5.5 Dataanalysis L o
5.6 Answers to research questions
5.7 Discussion
6 Literature Review: Understandability of GORE
6.1 Introduction.
6.2 Research Problem
6.3 Research Methodology
6.4 Results.
6.5 Answers to research questions L.
6.6 Detailed Listing of Results
7 Third Evaluation
7.1 Imtroduction.
7.2 Research problem L L.
7.3 Research methodology
7.4 Defining understandability oL
7.5 Observations
7.6 Answers to research questions
7.7 Discussion

IIT Business Models

8 Traceability between e?value and ArchiMate
8.1 Introduction.

viii

67
68
68
70
72
78
79
82

85
86
86
87
88
90
96
97

99
100
100
102
103
107
108

121
122
122
123
124
125
130
131

133

135

8.2 Evaluation of Existing Solutions
8.3 ArchiMate strategy layer
8.4 Application: Cirque du Soleil
8.5 Discussion

9 Definition of Alignment Guidelines
9.1 Introduction
9.2 Research Problem
9.3 Introduction to e*value and ArchiMate
9.4 Research Methodology
9.5 Results
9.6 Application
9.7 Discussion

10 Evaluation of Alignment Guidelines
10.1 Introduction
10.2 Methodology and research questions
10.3 Redesigned guidelines
104 Casestudy
10.5 Discussion e
10.6 Conclusion

11 Quantitative Alignment of ArchiMate with e3value
11.1 Introduction
11.2 Design goals, research questions and methodology
11.3 Design of Quantitative Alignment
11.4 Case Study: Company X
11.5 Discussion L

IV Conclusion

12 Conclusion
12.1 Evaluation of Design Goals
12.2 Answering Main Research Questions
12.3 Lessons Learned
12.4 Future Work
12.5 Limitations e

ix

137
142
144
149

151
152
153
155
157
158
164
168

171
172
173
174
180
185
186

189
190
190
191
197
201

List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

3.1

A conceptual overview of the traceability relations between the
business model, stakeholder goals and the enterprise architec-
ture in this thesis. The lines are a bidirectional traceability re-
lation. The scope is traceability between the EA, the business
model and stakeholder goals. The traceability relation between
the business model and stakeholder goals is out of scope.

Educational e®*value model. This model describes the exchanges of
books between a bookstore and a reader and between the book store
and the publisher.o Lo

This is a high-level educational example of an ArchiMate Model.
The yellow tinted elements are business layer elements, the blue
tinted elements are application layer elements and the green
tinted elements are technology layer elements. Section 3.2.1
discusses ArchiMate in more detail.

A conceptual overview of the traceability relation between the
business model and the enterprise architecture realizing the
business model. They grey shapes illustrate the scope of this
thesis (focal company). The lines between the enterprise ar-
chitecture, stakeholder goals and the value network depict a
bi-directional traceability relation. The arrows are value trans-
fers. . .o

An overview of the design cycle of Wieringa [127]. This thesis
is structured around this cycle.o L.

The design science framework proposed by Wieringa[127]

The original ArchiMate framework.

Xi

3.2

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3

4.4

5.1
5.2

6.1
6.2

8.1
8.2

8.3
8.4
8.5
8.6

xii

The ArchiMate framework extended with a motivation column
and a value layer. This framework was proposed in the original
articles [101, 29] and became irrelevant. It has been replaced
in many iterations during the development of ArchiMate. The
motivation column can still be found in the latest version of
ArchiMate. The new strategy layer replaced the value layer [114]. 42

The Business Motivation Model. 45
Example goal decomposition. 51
Example means-end relation, 52
Realizing requirements by architecture elements. 55
The meta-model of ARMOR. 56
An example goal model based on the stakeholder view. 59
A more elaborate goal model using the goal refinement view. . 61
Goal realization by an element from the Enterprise Architecture. 62
Conflicting goals, illustrated by the conflict relation. 62
Alternative evaluation using the contribution relation for the
online registration from check-in stations. 63
Design research methodology of this chapter 69
Structure of validations Tand 2 70
ARMOR’s meta-model The arrow represents specialization. Car-
dinalities are not shown in the figure. 73
Meta-model of Light ARMOR 79
Frequency of use of goal-oriented concepts in 246 EA models . 91
example goal model created by a subject during the assign-

ments. This model has been redrawn in the latest version of

ArchiMate. 95
The conceptual framework. 101
Summary of GORE results. 104
The ArchiMate 3.1 framework [73]. 139

Meta-model of ARMOR-Light with part of the metamodel of Archi-
Mate [30]. The lines represent many to many relations, the arrow

represents a subset. 140
Educational e®value model of a bookstore. 141
Meta-model of actors and dependency paths in e3value[49] . . . 142
Partial Cirque du Soleil Goal Model 146

e3value model of Cirque du Soleil 146

8.7
8.8

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

10.1
10.2
10.3
10.4
10.5

11.1
11.2

11.3

11.4

12.1

ArchiMate model of the business layer of Cirque du Soleil . . . 146
Combined traceability model of our hypotheses. All hypotheti-

cal relationships are many-many unless otherwise stated. 149
Educational example e3value 153
Educational example ArchiMate 155
Building Block 1, derived from guidelines 1-4 160
Building Block 2, derived from guidelines 5-8 163
Building Block 3, derived from guidelines9 164
Building Block 4, derived from guidelines 11 and 12 165
e3value model Cirque Du Soleil 166
Resulting ArchiMate model 167
Legends for e3value and ArchiMate 175
e3value model of company X. 181
Layered EA model of X. 182

A market scenario for company X. “f”is a generic currency symbol.183
Sketch of a time series for company X. A time series is a se-
quence of market scenarios for consecutive contract periods.
Each market scenario quantifies an e3value model. In an in-
vestment analysis, the models in a time series usually are the
same and the only thing that is different is the quantification
in the consecutive market scenarios. However, for the compu-
tations that follow that is not important and we may create a
time series where consecutive models are different. The three

models are extracted from the market scenario in figure 10.4. . 184
e3value model and ArchiMate model of a toy example. 192
Relations among e*value concepts (grey) and ArchiMate con-

cepts (white). 196
A market scenario for company X. “f”is a generic currency sym-

bol. Pronounce “florin™. o000 199
Architecture for innovation spotting 200

Guidelines for business-model driven enterprise architecture de-
sign. These guidelines provide a holistic link between different
design phases. It is not meant as a concrete manual. 214

Xiv

List of Tables

1.1

1.2

3.1
3.2
3.3

4.1

5.1

6.1
6.2

7.1
7.2
7.3

thesis outline and methodology for realizing and evaluating trace-
ability between business goals and ArchiMate EA models. The
references in the table refer to the articles where results of this
research are published. Individual chapters are based on these
articles. Lo

thesis outline and methodology for realizing traceability be-
tween e3value and ArchiMate. The references in the table refer
to the articles where results of this research are published. In-
dividual chapters are directly based on these articles.

Concepts of the requirements domain.
Relations of the requirements domain.
Concepts in the stakeholder domain

Overview of GORE and ARMOR constructs.

Understandability of goal-oriented concepts in ArchiMate by a
sample of 19 practitioners. Row i column j shows the percent-
age of times that practitioner 7 used concept j correctly.

Summary of search strings L.

Overview of GORE understandability experiments (first part)
and UML understandability experiments (second part).

Entry questionnaire.o oo oL oL
Data about correct construct usage by the 18 participants.

Summary of the exit survey. Lo

XV

8.1

9.1
9.2
9.3

10.1
10.2
10.3

11.2
11.1

XVi

Our initial hypothesis about correspondences between concepts

in ArchiMate and in e3value. 143
Results of our initial analysis [27] 158
Overview of guidelines derived from the experiment 161

Overview of guidelines derived from additional conceptual analysis162

e3value mapping to the motivation layer of ArchiMate. 176
e>value mapping to the Business layer. 177
e3value mapping to the Business layer 178
Guideline G9. 193

Definitions of e3value and ArchiMate concepts. The first parts
lists corresponding concepts. Using a business interface to rep-
resent a port is optional. Using a Serves relation to represent a
value transfer is optional too. oL 193

Part 1

Introduction

1

Introduction

1.1 Research Motivation

Every organization exists to deliver some sort of value to its customers. This is
true for both for-profit organizations and non-profit organizations. For-profit
organizations sell goods or provide services to customers for money with the
intention of delivering value to the customers. Selling products for money
increases the value of a company. If the company does well in making a
profit, the shareholders benefit. A non-profit organization creates a collective
or social benefit in exchange for some sort of (monetary) contribution. These
exchanges between the customers and the organization are transfers of value. A
customer receives something they wish and they are willing to pay for it. Non-
profit organizations therefore deliver stakeholder value instead of shareholder
value. In essence these value transfers are the most important reason why an
organization exists. An organization is designed to realize these transfers of
value.

However, a focus purely on these value transfers leads to an organization
that only focuses on the shareholder value of the organization and the needs
of the consumer. This is not desirable. First, an organization is embedded in
a society. This is where we find the external stakeholders of an organization
with their goals, like legislators and interests groups. These impose rules and
design constraints on these value exchanges. But an organization also has
internal stakeholders, these all have their goals in how an organization must
realize the value transactions.

The delivery of value to the customers of an organization is described in
the business model [93, 49]. A business model abstracts away from how
this value is realized internally, but only focuses on the delivery of value to the
customers. In other words, a business model is only a conceptual model of how
to create, deliver and capture value to the customers. It does not say anything
about how this is realized [49]. An organization also needs to think about
how to (internally) realize the business model. In this thesis we assume an
enterprise architecture is used to describe the organization in more detail.
Within large organizations, Enterprise Architecture (EA) is used to design an
organization based on the goals it needs to support. EA is a way to design
and steer an organization in such a way that it facilitates the improvement
of business-IT alignment. In other words, the EA helps realizing the business
value of the organization. An EA is a high level design of an organization
that needs to deliver the transfers of value between economically independent
actors.

The relation between business models and enterprise architecture is there-
fore as follows; the business model focuses on value creation to the customers

Stakeholder

Business Model
Goals

Enterprise Architecture

Figure 1.1: A conceptual overview of the traceability relations between the
business model, stakeholder goals and the enterprise architecture in this thesis.
The lines are a bidirectional traceability relation. The scope is traceability
between the EA, the business model and stakeholder goals. The traceability
relation between the business model and stakeholder goals is out of scope.

of an organization and provides the initial puzzle pieces. Enterprise Architec-
ture will put these puzzle pieces together and will add design decisions how
to (internally) realize the value exchanges [5]. The business model and the
enterprise architecture are both based on relevant stakeholder goals.

In this thesis we will define an approach for realizing traceability between
the stakeholder goals, the business model and the enterprise architec-
ture. This chapter is structured as follows. Section 1.2 introduces the concept
of business models. Section 1.3 discusses the concept of enterprise architec-
ture and section 1.4 discusses the types of traceability we aim to achieve. We
continue this chapter with a definition of the problem statement in section
1.5 and the research design in section 1.6. We conclude this chapter with the
contributions of this thesis in section 1.7.

1.2 Business Models

A business model (BM) is a conceptual model of how an enterprise creates,
delivers, and captures value [93, 112]. It can be described as a plan for a
company to make a profit. It is not just a description of financial aspects, but
a business model describes conceptual elements needed to make a profit.

For example, in the Business Model Canvas (BMC) a business model con-
tains a description of the key partners needed to sustain a company, a de-
scription of the key activities that are needed to deliver value to the customer,
a description of the products and services needed, a description of how the
company can maintain the customer relations, which customers the company
wants to serve and also the cost structures and revenue streams of the company
[93].

Alt and Zimmerman [5] take a similar, but slightly different perspective on
business models. They argue that a business model should at least contain
the following elements:

o Mission

e Structure
o Processes
o Revenues

o Legal Issues
e Technology

If we look more closely at these elements, they identify goals, vision and
the value proposition for the mission element of the business model. For the
structure element they define actors and governance. For processes they define
coordination mechanisms and for the revenues the sources of revenue and the
business logic.

Legal issues have to be considered with all dimensions of the business model
(i.e. they influence the general vision). These legal issues can influence the
design decisions (e.g. privacy law will influence design decisions regarding
the processing of personal information). Technology is both an enabler and a
constraint for IT-based business models. Technological developments impact
business model design, for example Spotify and Netflix would not have been
possible without the current state of the internet. Therefore, according to Alt
and Zimmerman [5], a business model articulates the logic, data and other
evidence that supports the value proposition to a customer, combined with a
structure for revenues and costs how to deliver that value.

In this thesis we take the view that the business model should represent
the entire value network [126] that creates and delivers value to the customers.
This includes enterprises and their stakeholders. Every business operates in a
value network, so in order to be successful as an individual organization the

profitability of the value network needs to be taking into account [44]. We
have chosen this view because we believe that the success of a single organi-
zation is dependent on the success of other companies in the ecosystem. For
example, one of the reasons Windows Mobile failed is the lack of a functioning
ecosystem (e.g., app developers were unwilling to develop apps for the Win-
dows Mobile platform or hardware developers unwilling to develop hardware
based on Windows Mobile) ! 2.

In a value network products and services are exchanged between at least
two, but often more enterprises. Each enterprise focuses on its core compe-
tences and jointly they satisfy a complex customer need. Following Moore [89],
we define a value network as a collection of companies that work cooperatively
and competitively to satisfy customer needs. Organizations in a value network
are economically independent, each must have a positive cash flow to survive.
A value network can contain competitors who compete for the same customers.
For example, Apple has created an extensive ecosystem for its products and
services, which contains an organization responsible for taking back old Apple
products for recycling. However, this company decided to cherry pick the still
functioning Apple products and sell them as refurbished products, directly
competing with Apple 3.

1.2.1 éEvalue

In this thesis we use e3value to design and describe the business model of a
value network [49, 44]. We have chosen e3value because it takes an ecosystem
approach and it is a conceptual modeling language. This approach consists
of a lightweight graphical modeling notation and is aware of value exchanges.
The notation contains elements like actor, market segment, value activity and
value exchanges. e3value allows for describing the value proposition of an
organization and the activities that are required to do so. These value activities
lead to a value exchange underpinned with formulas to state the amount of
value exchanged.

In Figure 1.2 an educational e3value model is presented, annotated with
the name of the modeling constructs, which we discuss below. This example
should be read as follows. The reader has a consumer need to read a book,

Thttps://www.zdnet.com/article/microsoft-and-windows-phone-what-went-wrong-and-
where-can-they-go-from-here/

2https:/ /www.zdnet.com/article/windows-10-mobile-microsoft-just-put-the-final-nail-in-
the-coffin/

3https://appleinsider.com/articles/20,/10/01/apple-sues-recycler-for-allegedly-reselling-
100000-devices-it-was-hired-to-scrap

https://www.zdnet.com/article/microsoft-and-windows-phone-what-went-wrong-and-
https://www.zdnet.com/article/windows-10-mobile-microsoft-just-put-the-final-nail-in-
https://appleinsider.com/articles/20/10/01/apple-sues-recycler-for-allegedly-reselling-

Market segment Value interface Actor Value port

Book store Publisher
[MONEY] [MONEY]
)
[Book] [BOOk]

Consumer need Value transfer Dependency path Value object Boundary element

Reader

C;

read a book

Figure 1.2: Educational ¢*value model. This model describes the exchanges of books
between a bookstore and a reader and between the book store and the publisher.

therefore the reader needs to acquire a book from the bookstore and is willing
to pay money for it. In order for the bookstore to be able to sell a book, it
needs to acquire the book from the publisher, also in exchange for money. The
need of the customer can only be satisfied through value creation in the entire
value network and is therefore dependent on the acquisition of the book by
the bookstore from the publisher.

In e3value an actor is some entity capable of performing value activities,
e.g., a business, department or partner. In the example, the book store is an
actor. Actors in e3value are economically independent, they are responsible
for creating a profit for themselves. A special case of an actor is the market
segment (e.g., the reader or the publisher). A market segment models many
actors of the same kind. In e*value this means that all actors in a market
segment assign economic value precisely in the same way. A wvalue activity
(not shown in the example) is a task performed by an actor which potentially
leads to a benefit for the actor [44, 46]. In a for-profit organization a value
activity can result in a positive net cash flow. In a non-profit organization a
value activity should lead to a contribution to the mission of the organization,
and in the case of an individual it can lead to an increase in economic utility.

A walue interface represents what the actors offers and requests to/from its
environment in terms of value objects. Value objects are things that are per-
ceived by at least one actor as of economic value. A value interface consists of
at least one in-going and one out-going port, through which the actor requests
or offers value objects from or to its environment. The value interface models

(1) the notion of economic reciprocity and (2) bundling. Economic reciprocity
is the idea that someone only offers something of value, or something else of
higher economic value is obtained in return.

In the example, the book is exchanged for money, hence the transfers are
economically reciprocal. Bundling is the case where it is only possible to offer
or obtain value objects in combination (not seen in this example). Value ports
between actors are connected by means of value transfers, which represent the
willingness of actors to exchange things.

Internally in an actor there is the dependency path, which shows how value
objects are exchanged via a value interface. For example, the sale of a book
by the book store requires that this store obtains the book from a publisher.
The boundary element of a dependency path indicates the boundary of our
modeling interest. Any further transactions that take place in the real world
to satisfy the consumer need are not included in our model. A customer need is
a lack of something valuable that the actor wants to acquire. In this example,
the reader wishes to read a book and acquire a book to do so.

1.2.2 The Concept of Value

Value is an important concept in this thesis and in the e3value methodology.
One of the goals of this thesis is to realize a traceability link between the
value exchanges in e3value and the internal organization realizing them. When
speaking of value there are two different types of value, value-in-exchange and
value-in-use [121], that are of concern to us. With e*value both types are
applicable. In e*value goods and services can be exchanged for money (or
goods). This is related to value-in-exchange, goods are exchanged on the
marketplace for money or other goods. This is the classical view on value
creation. A product is built and sold on the marketplace. Value is added
through a production process. This is not how value is exclusively seen in
e3value. Value-in-use is also applicable for e}value, value-in-use determines
the relative value of the value-in-exchange [121]. In this case the value is
the economic benefit of some good or service for an economic actor. This
value depends on the increase in utility when the actor uses a good or service.
Different people may assign different value to goods and services. In this case
value is co-created by consumers and providers.

10

1.3 Enterprise Architecture

An enterprise architecture is a design or a description that makes clear the
relationships between products, processes, organization, information services
and technological infrastructure; it is based on a vision and on certain assump-
tions, principles and preferences; consists of models and underlying principles;
provides frameworks and guidelines for the design and realization of products,
processes, organization, information services, and technological infrastructure.
It comprises a collection of simplified representations of the organization, from
different viewpoints and according to the needs of stakeholders [72]). A coher-
ent description of EA provides insight, enables communication among stake-
holders and guides complicated change processes[59].

Enterprise architectures are often described with diagrams. The architects
construct diagrams of products, business processes, business services, appli-
cations, infrastructure elements and the relation between these. The goal of
these diagrams is to provide consistent, holistic design decisions to realize the
business goals of the organization. It provides the (IT) realization projects
with consistent design decisions, thus preventing that in each project different
interpretations of the business goals lead to inconsistent design decisions.

These blueprints are used in the solution realization projects to serve as
constraints or design scope of the solution under development [33]. By mak-
ing high level design decisions early and consistent business-IT alignment can
be achieved and maintained. Projects that are developed under architecture
deliver more business value [106].

1.3.1 ArchiMate

In this thesis we will use ArchiMate [73] as our EA modeling language. We
have chosen ArchiMate, because it is one of the most used languages [77] for
EA descriptions. Also, ArchiMate has been adopted by The Open Group as a
companion tool for TOGAF [114], which also will further its use in practice.

The basic idea behind ArchiMate is that it is structured around layers and
aspects. At the start of this thesis ArchiMate comprised out of three layers, the
business layer, the application layer, and the technology layer. The business
layer models the operational organization in a technology independent manner.
For example, the business services, the business processes, and the business
actors. The application layer typically models the application architecture
that describes the structure, behavior, and interaction of the applications of
the enterprise. Finally, the technology layer models the technology architecture
of the enterprise, for example the servers and network of an organization.

11

Each layer contains three aspects, passive structure, behavior, and active
structure. The active structure elements are the actors in an organization,
at the business layer we can identify business actors, at the application layer
application components and at the technological layer nodes and devices. The
aspect behavior represents the behavior performed by the business actors (e.g.,
business services and business processes). The aspect passive structure repre-
sents the objects on which behavior is performed (e.g., business objects, data
objects). These layers and aspects are still in ArchiMate 3.1 today, it is called
the ArchiMate Core framework [73].

Figure 1.3 illustrates some of the different aspects of an organization that
can be described. We see the central notion of a sell books business service.
We modeled the customer as an end user of the service by using the serves
relation. The book store is responsible, through the assignment relation, for
exposing the service to the environment. The business service is realized by
a selling process to which a sales person is assigned. An application serves
the process and the application runs on a server with Windows 10 (through
the composition relation). Please note, that this figure is only for illustration
purposes. We omitted most of the concepts and relations of ArchiMate [114].

1.4 Traceability

The main goal of this thesis is to realize traceability between the enterprise
architecture and business value. In this section we will explain which kinds
of traceability we aim to achieve. The first kind of traceability is traceabil-
ity between a design artifact, in our case the enterprise architecture, and its
requirements preceding the design. This kind of traceability is described by
Ramesh [102]. This is the classical requirements engineering traceability where
the problem domain (stakeholders, goals and requirements) is linked with the
design realizing the requirements.

This way, there is a trace between the stakeholders, their requirements and
to the design implementing the requirements, in a forward and backward man-
ner. Forward traceability is tracing the requirement to refined requirements or
the design artifact. Backward traceability is tracing from the design artifacts
to its originating sources in the problem domain.

The other kind of traceability we wish to realize is found in model-driven
engineering (MDE). This is where models in different phases of the design
process are transformed from abstract models to more detailed models. In
our case we wish to create traceability between e?value models and ArchiMate
[42]. In e*value the focus lies on designing and evaluating the profitability

12

Book Store % Sell Books = Customer %
(Business Actor) . (Business Service) ‘ (Business Actor)
Books Selling = Sales Person &
Process (Business ~ «—e (Business Actor)
Process) |
Supporting
L Application _
(Application BEAINESS
Layer
Component)
Application
Layer
Server (Node)
Windows 10 O —
echnology
(System liyer
Software)

Figure 1.3: This is a high-level educational example of an ArchiMate Model.
The yellow tinted elements are business layer elements, the blue tinted elements
are application layer elements and the green tinted elements are technology
layer elements. Section 3.2.1 discusses ArchiMate in more detail.

of economic independent actors in a value network. ArchiMate designs the
concrete organization of a single company in this value network in terms of

business services, processes and IT systems.

In this thesis we aim to realize alignment between two types of models
with a large difference in the level of abstraction. We therefore do not aim to
realize traceability through automated formal transformations. The alignment
is done using manual interventions (i.e., design decisions that need to be made).

13

Going from e?value to ArchiMate is a vertical alignment of two different models
of different levels of abstraction with requires manual interventions [82]. The
main goal is alignment between e*value and ArchiMate in order to reason from
an e3value model into an ArchiMate model and back. We do not aim to create
bi-directional model transformations where both models can be transformed
into each other.

1.5 Problem Statement

When we started this thesis, ArchiMate 1.0 was the standard. It did not
contain the possibility to relate stakeholder goals to EA. So, there was no
way to reason about the underlying goals of the enterprise architecture. This
means that ArchiMate did not have the ability to show the contribution of
the enterprise architecture to the business goals of the organization. This is a
problem because an EA is a design artifact. An EA is therefore not a static
design, it is subject to change. If we would be able to link an EA with the
goals preceding its design, we could perform a change impact analysis. This
would answer questions like which part of the organization needs a redesign
when a business goal changes, or which stakeholders cannot be satisfied when
a project or I'T system fails. A second type of analysis is that of completeness
analysis. Every element of the organization should be traceable to the goals
preceding it.

Second, we also believe that ArchiMate should be linked to e?value because
this would enable us to reason about (technological) feasibility of an e3value
model. An e3value model only focuses on the (abstract) value transfers be-
tween economically independent actors. It has no notion of how to internally
realize these elements. An e3value model might be feasible in terms of prof-
itability of the actors involved, but the organization still has to deliver these
transfers of value between actors. By adding traceability between ArchiMate
and evalue reasoning about the (technological) feasibility of the value trans-
fers. Second, if we operationalize an actor in e3value with an ArchiMate model
we can also more specifically identify the investments and expenses needed to
deliver the value transfers. A lack of traceability between the EA and the goals
of stakeholders (problem 1 and 2) and between the BM and the EA (problem
3,4 and 5) will lead to the following problems:

1. It is impossible to perform an impact of change analysis, for example,
when a business goals changes the impact on the enterprise architecture
becomes impossible to assess.

14

2. It is hard to determine if a developed enterprise architecture is actually
a complete architecture. If certain business goals or value exchanges are
not satisfied by the enterprise architecture, then the architecture design
is incomplete, or the business goals are not realistic.

3. It is hard to demonstrate that a developed (IT) architecture is more than
just a cost center, instead of being a central component to realize the
revenue of an organization.

4. Tt is hard to determine if a developed enterprise architecture can actu-
ally process the number of economic transactions it needs to support.
In other words, without traceability, we cannot be sure whether the de-
veloped architecture will perform or whether a business model is at all
technologically feasible.

5. It is hard to determine if an IT architecture is financially feasible, re-
alizing a designed architecture requires investments and operational ex-
penses. If this outweighs the benefits, it is not a financially feasible
architecture.

Figure 1.4 elaborates the topic under investigation. We have a value net-
work described in e3value. This network contains several economic indepen-
dent actors to realize some sort of customer need. Each actor has their own
goals on which a business model is designed (e.g., mission and vision). To form
a functional ecosystem there should be at least some sort of implicit ecosystem
goals. These collective goals can conflict with the individual goals. Organi-
zations in an ecosystem can be both competitors and allies. e3value does not
support goal modeling. The goals underlying an e3value model are not made
explicit, but they are part of e3value design methodology. For pragmatic rea-
sons we will treat these goals of an individual actor in the ecosystem as goals
of the stakeholders of the EA for the remainder of this thesis.

15

Value Network

Money
—>
X Organization Organization Organization
0od or Service
—|

v

i

Enterprise Enterprise Enterprise
Architecture Architecture Architecture
Stakeholder Stakeholder
Goals Goals

Figure 1.4: A conceptual overview of the traceability relation between the
business model and the enterprise architecture realizing the business model.
They grey shapes illustrate the scope of this thesis (focal company). The lines
between the enterprise architecture, stakeholder goals and the value network
depict a bi-directional traceability relation. The arrows are value transfers.

In this traceability relation we model the focal company, the focal company
is the company for which a value network is analyzed. Each organization in
this value network has its own enterprise architecture. This EA should realize
the value activities of an e3value model. For each e*value model alternative
architectures can exist, depending on the goals of the stakeholders. Therefore,
our problem under investigation is as follows. We wish to investigate of how to
realize traceability between a single organization of the value network, modeled
in e3value, the enterprise architecture, expressed in ArchiMate, and to the
business goals. We have formulated the following primary design goals:

1. To design and evaluate a traceability relation between enterprise archi-
tecture and the business goals.

e To be able to design and evaluate an enterprise architecture based
on the goals of the stakeholders of the organization.

o To be able to perform an impact of change analysis from the busi-
ness goals to the enterprise architecture and back.

e To be able to perform a completeness analysis of the enterprise
architecture based on business goal realization.

16

o To evaluate the traceability relation in terms of understandability
of the defined concepts.

2. To design a traceability relation between the business model and the
enterprise architecture.

e To evaluate the contribution of enterprise architecture to the busi-
ness model.

e To determine if a business model is feasible in terms of financial
sustainability and technological feasibility.

To do so we must realize traceability to both the business goals of an orga-
nization and the value exchanges of an organization. This traceability is not
an end by itself, but a means to evaluate alternative enterprise architectures.

1.5.1 Research Questions

This research has three main research questions. The first and the third ques-
tion are design questions. As discussed in the research motivation part of
this thesis, an EA implements a business model and is a design artifact based
on business goals. Our first research question is about realizing traceability
between the business goals and EA.

¢ Q1: How can we extend ArchiMate with business goal modeling to realize
traceability?

The second research question is a knowledge question. After constructing
the goal-modeling extension we evaluated it in practice.

e Q2: How well can practitioners use this extension? Which constructs do
they use correctly, which incorrectly and why?

The third research question is a design question of how to realize trace-
ability between an e?value business model and an ArchiMate EA model. This
traceability is later evaluated to determine its utility. The last part of the
design question is a validation question.

e Q3: How can we align an e*value model with an ArchiMate model and
how can we incorporate the quantifications of e3value into ArchiMate?

17

These questions are further fleshed out in the individual chapters of this
thesis. The focus of this thesis shifted during its execution. We started with
extending and evaluating ArchiMate with goal modeling. This is described in
the second part of this thesis. We made a design decision early that we needed
elements from goal-oriented requirements engineering (GORE) and align this
with ArchiMate. We believe that goal modeling for enterprise architecture is
part of the same design iteration. During our validation we found out that
the extension was complex and needed simplification. We end the second part
with a simplification of the language.

In the third part of this thesis, we realize traceability between between
e>value models and ArchiMate models. We believe that business model design
and enterprise architecture design are two distinct phases in organizational de-
sign, performed by different actors, which requires tooling specifically designed
with these users and goals in mind. We chose to create traceability between
e>value and ArchiMate, because we want a separation of concerns strategy.
We want to keep the value modeling in e?value and the operationalization of
the value model in ArchiMate. Therefore, it is not our end-goal to bring value
modeling to ArchiMate, but to align ArchiMate with value models expressed
in evalue. In other words, we want to operationalize an e?value model with
ArchiMate by adding design decisions.

1.6 Research Design and Outline Thesis

To achieve our design goals, we follow a design science methodology [94]. This
thesis follows a variant of a design science approach proposed by Wieringa
[127]. Design science is the design and investigation of an artifact in context
with the goal to improve the artifact. The artifacts we study are designed
to interact with a problem context to improve something in that context, or
as Van Aken [117] puts it, the scientist must develop knowledge that can help
the practitioners in the field about the artifact under investigation. Design
science is iterative in nature, therefore we perform repeat studies to evaluate
and refine the artifacts we created.

Wieringa [127] describes that a design science project iterates over de-
signing and investigating. Design entails to investigate a problem, design a
treatment and validate this treatment. It is a cycle because it is of an iterative
nature. This design cycle is part of a larger cycle, in which the results of the
design cycle, a validated treatment, is transferred to the real world, used, and
evaluated. The later cycle is called the engineering cycle, see figure 1.5. This
chapter only describes the high-level design cycle. The individual chapters of

18

* Stakeholders?

Goals?
Implementation * Conceptual
Treatment Evaluation / Problem
- framework?
Implementation Prol:.>|erT_1 « Phenomena?
Investigation Causes,
mechanisms,
reasons?

* Effects? Goal
contribution?

Requirements?
¢ Artifact X context Requirements

produces effects? Treatment Treatment contribute to
* Trade-offs for Validation Design goals?

different artifacts? * Available
¢ Sensitivity for treatments?
different contexts? * Design new ones!

* Effects satisfy
Requirements?

Figure 1.5: An overview of the design cycle of Wieringa [127]. This thesis is
structured around this cycle.

this thesis provide a more detailed description of each iteration of the design
cycle. This thesis is structured around individual iterations of the engineering
cycle.

The combination of the two provide a logical structure of tasks. It tells
us to design a treatment we must understand the problem and justify the
choice for this treatment, and it must be validated before it is implemented.
We also must learn from an implementation, so we need an evaluation of the
implementation.

The second part of this thesis describes the definition and primarily the
evaluation of a goal-oriented requirements engineering language for enterprise
architecture. We start with a definition of a language and through lab valida-
tions and transfer to practice we analyze this modeling language in terms of
understandability. In each iteration we learn from the implementation. The
third part of this thesis is fundamental design, but still follows the same phi-
losophy. A treatment, a traceability relation between e3value and ArchiMate,
is designed and evaluated. But the evaluation is of a much lesser extent than
the second part of this thesis. However, we still pursue an iterative design
combined with practical cases or practitioners.

19

Social Context
(Stakeholders)

Goals Designs

Design Science

Artifact + Context

Design Knowledge + new design Investigation

problems

Existing New knowledge
knowledge and and new designs
designs

Existing answers New answers

Knowledge context

Figure 1.6: The design science framework proposed by Wieringa[127]

Figure 1.6 provides the design science framework used in this thesis. The
social context of the framework contains the stakeholders of the artifact that
is to be designed and evaluated. The knowledge context consists of existing
theories from science, engineering, etc. The design science project uses this
knowledge and may add to it by producing new designs or answering knowledge
questions [127].

We will elaborate this framework with the results from our research. In
general, we have two variants of this framework, applied in multiple iterations
of the design cycle. For the definition and evaluation of the GORE exten-
sion to ArchiMate (called ARMOR in this thesis) the social context contains
companies that use ArchiMate for their enterprise architecture design. The
projected end-users of the language are enterprise architects or business ana-
lysts. Our design goals coincide with the (expected) goals of the stakeholders.
Enterprise Architecture diagrams are designs, based on organizational goals
and stakeholder goals. They need to show that their designs are compliant
with those goals. Also, goals change over time, that would mean that the
designs are possibly no longer compliant with those goal models.

20

Using the design cycle, we defined and evaluated an early version of AR-
MOR and its later derivatives. We used existing goal-oriented languages and
techniques from requirements engineering and added a new language to the
knowledge context [29]. During the investigation phase we investigated utility
and more primarily understandability. For this investigation we used existing
knowledge about GORE understandability and added to this as well [36, 37,
30].

For the third part of the thesis the social context contains companies that
wish to align their ArchiMate models with e?value models in order to reason
about the feasibility and scalability of their business model. Direct stakehold-
ers are enterprise architects and business modelers. The goals, we assume they
have, are described in our second set of design goals. We expect that stake-
holders wish to evaluate the contribution of the enterprise architecture to the
business model and that they wish to determine the feasibility of a business
model in terms of financial sustainability and technological feasibility. We used
the design cycle to design an artifact from scratch [27, 28, 31]. We rejected
existing designs [65, 64] (motivated in chapter 8) and designed guidelines for
realizing traceability between e3value and ArchiMate. We used existing ap-
proaches for quantitative alignment [54, 25] but had to make them concrete
to work with our approach [32].

We have realized and evaluated traceability between business goals and
ArchiMate EA models in four iterations of the design cycle, illustrated in
table 1.1. We have realized traceability between e3value business models and
ArchiMate EA models in four iterations of the design cycle, illustrated in table
1.2.

21

Table 1.1: thesis outline and methodology for realizing and evaluating trace-
ability between business goals and ArchiMate EA models. The references in
the table refer to the articles where results of this research are published.

Individual chapters are based on these articles.

Conceptual Design: we analyzed the literature on goal-
oriented requirements engineering (GORE) to define an extension
to ArchiMate (called ARMOR) with a Case Study[29].

Chapter 3

Real-World Validation and Redesign based on two case stud-
ies [36]. We tested our approach at a governmental institute for
pension payments and at a large drinking water provider in the
Netherlands.

Chapter 4

Real-World Validation where we investigated the understand-
ability of ARMOR by enterprise architects. We tested the un-
derstandability of ARMOR during official ArchiMate 2.0 certified
courses [30].

Chapter 5

A Literature Review of experiments about understandability
issues of conceptual modeling languages. The results are used to
refine our last experiment.

Chapter 6

Real-World Validation where we investigated the understand-
ability of ARMOR by academics during a workshop at the
REFSQ conference and we provided a final Redesign of AR-
MOR [37]. This chapter is an iteration of the design cycle where
we perform a sensitivity analysis. We changed the level of edu-
cation of the users of the language.

Chapter 7

22

Table 1.2: thesis outline and methodology for realizing traceability between
e3value and ArchiMate. The references in the table refer to the articles where
results of this research are published. Individual chapters are directly based

on these articles.

Conceptual Design: We analyzed the meta-models of e3value
and ArchiMate to define an initial version of the guidelines (ver-
sion 1). We tested it on a small real-world example: an EA for
the Cirque du Soleil [27]. This is a first iteration of the design
cycle.

Chapter 8

Lab Validation and Redesign: We tested the guidelines in an
experiment where we compared the EAs designed by practitioners
from a business model in a laboratory assignment, with the EA
that results from our application of the guidelines [28]. Although
the assignment took place in the lab, the cases for which the
practitioners designed an e3value model and an EA were from
the real world: the companies where they were employed. The
analysis of the models from this experiment led to a redesign of
the guidelines (version 2).

Chapter 9

Real-World Validation and Redesign: We applied the guide-
lines to a real-world case to redesign the business layer of the
enterprise architecture of an enterprise. This experience led to a
further improvement of the guidelines (version 3) [31].

Chapter 10

Conceptual Design and an Initial Field Validation of the
quantification of ArchiMate. After an initial validation in prac-
tice of our guidelines we had to perform an additional conceptual
analysis to import the quantifications of e3value into ArchiMate
and to extend ArchiMate with investments and expenses. We
propagate the economic transactions from e*value over an Archi-
Mate model as workload requirements. We then collect these
investments and expenses for the architecture and insert them
into an e3value business model. We validated this idea with an
initial field validation [32].

Chapter 11

This thesis is a bundle of published articles. We added an introduction
and conclusion based on these articles and removed the related work from
each individual paper and placed it in a separate chapter. This thesis has the
following outline. Chapter 2 introduces the theoretical foundations, based on
the related work from the original articles. We investigate related work in
realizing traceability between business goals and enterprise architecture, un-

23

derstandability of GORE, and between business models and enterprise archi-
tecture. Chapter 3 introduces the goal modeling extension for ArchiMate and
provides an initial evaluation through a case study and answers Q1. Chapters
4, 5, and 7 discuss three validations of this extension in practice and answer
Q2. Chapter 4 focuses on utility and understandability of ARMOR, chapters
5 and 7 focus mainly on understandability of ARMOR. Using our results from
these validations, we also provide a redesign of the goal modeling aspects in
chapter 7. Chapter 6 discusses a literature review regarding understandability
of graphical modeling notions of GORE and UML. We identify theories and
explanations of why these languages are so difficult to understand and perform
our last experiment based on the conclusions of this review.

Chapter 8 provides us with an initial design of the traceability between an
e>value model and an ArchiMate model. We extend this work in chapter 9
by analyzing different e3value models and we introduce guidelines that would
help practitioners in creating their own model alignments. In chapter 10 we
evaluate and improve these guidelines. Based on this validation we introduce
a quantification of an ArchiMate model in chapter 11 with economic transac-
tions, investments and expenses. Chapters 8, 9, 10 and 11 answer Q3. We
conclude this thesis in chapter 12 with an evaluation of our design goals and
we provide a research outlook for future research based on the results of this
thesis.

1.7 Contribution

The main contribution of this thesis is that it provides multiple ways to evalu-
ate alternative enterprise architectures. This is realized by defining and eval-
uating a goal modeling extension to ArchiMate. This extension realizes trace-
ability between the stakeholders, business goals and the enterprise architec-
ture. The third part of the thesis realizes traceability between e?value models
and ArchiMate models, in order to evaluate the technological and financial
feasibility of a business model.

The first problem this thesis solves is the traceability between the busi-
ness goals and the enterprise architecture. It extends and evaluates Archi-
Mate with goal modeling to realize traceability between business goals and
enterprise architecture. This allows us to perform impact of change and com-
pleteness analyses of the enterprise architecture. Evaluation of alternatives is
made more concrete as well. This extension is then evaluated multiple times in
practice. During these case studies we interviewed enterprise architects or eval-
uated their constructed models to determine the utility and understandability.

24

Finally, we introduce a redesigned and extremely simplified goal-modeling ex-
tension for ArchiMate.

The evaluation of ARMOR also resulted in an evaluation of how under-
standable GORE constructs are. Our language is based on similar languages
found in the literature. We identified which GORE constructs are understood
best and which poorly.

The third part of this thesis realizes traceability between e3value models
and ArchiMate models. We realize traceability between e?value and ArchiMate
and use this traceability to operationalize the business model with ArchiMate
diagrams. We use this traceability to evaluate if an enterprise architecture
can support the economic transactions of an EA and we enrich ArchiMate
models with financial quantifications and insert these into an e?value model
to evaluate the financial and technological feasibility of a business model. We
define workload requirements based on the economic transactions in e3value
and propagate these over the ArchiMate model. We extend ArchiMate with
attributes for fixed expenses, variable expenses and investments and insert
these into an e3value model.

2

Related Work

25

26

2.1 Introduction

The topics of our research are goal-oriented requirements engineering (GORE),
understandability of GORE, Business Models (BM) and the relation to En-
terprise Architecture (EA). In order to position and scope our work we inves-
tigated the literature for related work. Section 2.2 discusses related work for
goal-modeling, section 2.3 discusses related work regarding understandability
of goal modeling and finally section 2.4 introduces and discusses related work
for business models related to EA and ArchiMate.

2.2 Related Work for Goal Modeling

Requirements management plays a central role in TOGAF’s ADM [115]. TO-
GAF provides a limited set of guidelines for the elicitation, documentation
and management of requirements, primarily by referring to external sources.
TOGAF’s content meta-model, part of the content framework, defines a num-
ber of concepts related to requirements and business motivation; however, this
part has been worked out in little detail compared to other parts of the content
meta-model, and the relation with other domains is weak. Also, the content
framework does not propose a notation for the concepts.

The Integrated Architecture Framework (IAF) is Cap Gemini’s architec-
tural framework [120]. Like TOGAF, this framework also recognizes the im-
portance of requirements for EAs. IAF recognizes requirements at both the
contextual and conceptual level. At the contextual level they identify busi-
ness requirements that answer the why question and at the conceptual level
they provide more detailed requirements. But IAF lacks a detailed descrip-
tion of how to represent either business requirements or the more detailed
requirements. It mainly lacks concept definition and a requirements language
to represent the requirements.

Clements & Bass extend software architecture modeling with Goal Oriented
Requirements Engineering (GORE), but remove all notational conventions of
GORE techniques and return to a classic bulleted list of possible goals and
stakeholders [21]. This makes goal-oriented modeling usable for requirements
and architecture engineering workshops with practitioners, but does not help
to support the kinds of analysis that we mentioned earlier in the introduction
part of this thesis.

Stirna et al. describe an approach to enterprise modeling that includes
linking goals to enterprise models [109]. However they do not describe concrete
modeling notations that are needed to extend existing EA modeling techniques.

27

Jureta and Faulkner [60] sketch a goal-oriented language that links goals and
a number of other intentional structures to actors, but not to EA models.
Horkhoff and Yu present a method to evaluate the achievement of goals by
enterprise models, all represented in i* [52].

i* has also been used as a problem investigation technique for architecture
design and business modeling [128]. This way the motivation for architectural
elements is linked to their implementation. Yu et al. [128] illustrate the po-
tential benefit of using BMM and i* in combination to support intentional
modeling and analysis of EAs. This work does not consider the integration
or alignment of these languages with existing enterprise modeling languages.
Gordijn et al. [48] extends intentional modeling with value modeling, by com-
bining the i* framework and the e3value methodology.

Braun and Winter [12] discuss relevant meta-models for EAs. They intro-
duce three layers for EA modeling, the strategy layer, the organizational layer
and the application layer. This work is mostly relevant for ArchiMate, but
they do introduce relevant concepts. These concepts are found in the strategy
layer. The strategy layer models the business units, services, goals and their
performance indicators. However, it maps mostly to the ArchiMate business
layer whereas they introduce services and business units. Their notion of a
goal is also limited to only the strategy layer, whereas we identify goals for the
business layer, application layer and technology layer. We also introduce ways
how to relate goals to the behavioral elements in the EA, in such a way that
already exists in existing RE languages like KAOS [23]. We also introduce
modeling concepts, which Braun and Winter [12] lacks.

Kurpjuweit and Winter [67] and Lagerstrom et al. [70] propose a way
of working similar to the modeling concepts introduced in this thesis. They
take both a stakeholder and goal-oriented approach to derive architectural
models based on both stakeholder needs and causal effect relations, which is
also similar to an approach we suggested here [34]. Our work supplements
this work with a modeling language that can be used to capture these results
and explicitly show how the derived models implement the stakeholder needs
and goals. Our work has a better grounding in GORE theory, thus supporting
more concrete concepts and relations, like a distinction between goals and
requirements, and a distinction between means-end, decomposition, conflict
and contribution.

Concerning tool support for EA, many tools claim to support requirements
modeling (e.g. System Architect and Powerdesigner). However, this support
is often limited to the documentation of requirements as structured lists, or
the modeling of use cases. Furthermore, they do not offer graphical modeling
techniques, nor the integration with other modeling domains.

28

Design and Engineering Methodology for Organizations (DEMO) [26] is
a methodology for the design, engineering, and implementation of organiza-
tions and networks of organizations Originally meant as an RE approach for
information systems, however the authors quickly found out that it was also
applicable for business process engineering and workflow management. DEMO
is used to not only specify organizations at a behavior level, but also at the
component level, trying to bridge the gap between behavior specification and
design specification DEMO focuses on specifying the essential models of an
organization The approach is well validated and growing in popularity.

Our work takes elements from GORE and applies it to the field of enter-
prise architecture. We introduce techniques to record the business goals of
an organization and create traceability between the stakeholders, goals and
the enterprise architecture. This traceability enables us to perform an impact
of change analysis in both a top-down and bottom-up manner. We can also
perform a completeness analysis of the enterprise architecture, in which gaps
between the goals of the organization and the enterprise architecture can be
used to evaluate the completeness of the design. Finally, using GORE analysis
techniques we can systematically bridge the gap between the problem domain
and the solution domain and aid the enterprise architecture design process.

2.3 Related Work For Understandability GORE

Goal-oriented requirements engineering (GORE) modeling languages have been
around for almost thirty years [23, 130]. However, transfer to practice so far
has been very limited [79]. The leading notations are KAOS and i*. Previ-
ous research showed that these GORE languages are very rich in notational
concepts and therefore possibly difficult to understand.

Moody et al.[88] identified improvements for i* and validated the constructs
of i* in practice, based on Moody’s theory of notions [87]. Moody et al. [85,
86] identified many opportunities for clarification and simplification of the i*
notation. This contrasts with our work, since we will not propose an update
of the visuals.

Caire et al. [19] also investigated the understandability of i*. They focused
on the ease of understanding of a concept by asking subjects to infer its def-
inition by its visual representation. They had novices design a new icon set
for i* and validated these icons in a new case study. This contrasts with our
work because they focus on notations and we focus on concepts.

Carvallo & Franch [20] provided an experience report about the use of i* in
architecting hybrid systems. They concluded that i* could be used for this pur-

29

pose for stakeholders and modelers, provided that i* was simplified. Our work
extends on these findings. We also found out that related concepts are hard to
distinguish (i.e the distinction between driver,assessment,goal, the distinction
between requirement and goal and the distinction between decomposition and
influence).

Matulevi¢ius & Heymans [79] compared i* and KAOS to determine which
language was more understandable. The relevant conclusions for this work
were that the GORE languages had ill defined constructs and were there hard
to use, GORE languages also lacked methodological guidelines to assist users in
using the languages. i* and KAOS contain constructs not used in practice and
contain different constructs representing the same thing. After an ontological
analysis they concluded that the i* goal and soft goal are essentially the same
concept, just as the means-end relation and the contribution relation [79].
Carvallo et al [20] recommended that practitioners should not and need not
learn the entire syntax of i*. These conclusions were also found in our work.

The literature only provides a few explanations why GORE languages are
so hard to understand.

The first explanation is that of experience: The more experience a user
has, the higher the ability to understand the language. This was found by
Hadar et al, [50], Soh et al [107], and Cruz et al [22]. This explanation goes
both ways: Someone who does not understand a notation will avoid using the
notation, and if he or she uses it, will stop using it very soon. Conversely,
repeated use of a notation that one understand reasonably well, will produce
increased understanding.

The second explanation authors give is is that there are design flaws with
the languages, e.g. are too many concepts, semantic definitions are unclear,
or the visualization of the constructs is ill designed. This was found by Mat-
ulevicus and Heymans [79], Purchase et al [100] and Siau and Loo [105]. This
was also the explanation we used in [36] and [30].

The third explanation given in the literature provides is is that supporting
materials are badly designed. Several authors mention that languages are
plagued with bad tooling and bad training material [20], [79] and [105].

Our work builds and adds on this. We investigate and evaluate an active
understanding of GORE concepts by practitioners and academics. We evalu-
ate understandability of well known concepts found in GORE literature. We
provide (hypothetical) explanations regarding the underlying understandabil-
ity issues. Our explanations are in line with an ontological analysis of the
motivation layer of ArchiMate [8].

Since our language is based on existing GORE languages our results should
apply to those languages as well. During the evaluation process initial results

30

from were used to simplify the motivation part of ArchiMate in some part.
The difference between soft goal and hard goal was removed and the conflict
relation between goals was replaced by a double negative influence.

Another contrast is that most of the empirical studies of the usability of
GORE languages have been done with students, while we do our empirical
studies mostly with practitioners and academics.

2.4 Related Work For Business Models

There is some existing work done trying to link business models, goal modeling
and EA. The topic of this thesis is in essence realizing traceability from the EA
to business context. In previous work we were involved in extending ArchiMate
with goal-oriented concepts [101, 29] to enable goal modeling and reasoning
about the contribution of the EA to the business goals of the organization.
Related to this is the work of Tacob et al. [56] where they propose a method
for IT portfolio evaluation using ArchiMate and the motivation extension.
Aldea et al. also propose a way to link EA to the business strategy of the
organization [4]. The difference with our work is that this more linked to
organizational goals than business models. But it is related in such a way that
it realizes traceability to be able to perform different kinds of analysis.

De Kinderen, Gaaloul and Proper [65] propose to link ArchiMate to e3value
using DEMO [26]. They do not propose a direct mapping between ArchiMate
and e3value. They wish to introduce transactionality in ArchiMate by using
the DEMO language as an intermediary language [26]. They do not use the
realized traceability for quantitative alignment. We use the economic trans-
actions from e3value as workload requirements for IT systems and quantify
the ArchiMate model with investments and expenses to identify the invest-
ments and expenses and insert them into the e3wvalue model for Net Present
Value (NPV) calculations. We also do not agree with the mappings they made
between e3value and ArchiMate. We will elaborate on this in chapter 8.

Janssen and Gordijn directly map ArchiMate to e3value but they use a
different approach, which according to us, is incorrect. They link value activi-
ties to business processes instead of business services. We believe the business
service is the correct mapping to a value activity. We will elaborate this in
chapter 8. Also, they determine much less instances of possible mappings.
But they do agree that the business layer of ArchiMate should be mapped to
evalue directly [17].

Gordijn et al. [48] propose a method to combine i* with e3value with no
focus realizing on traceability. Andersson et al. [6] describe the alignment of

31

business models and goals. They have developed templates that align goal
statements with value propositions.

Meertens et al. [81] propose similar work, but instead of using e3value they
provide a mapping from the Business Model Canvas to ArchiMate. Pessoa et
al. [95] developed a method for requirements elicitation for business models
using an early version of the motivation extension of ArchiMate.

Gordijn et al. [47] propose a method for requirements engineering for e-
services. Aldea et al. [3] propose adaptations of ArchiMate to incorporate
value modeling, but does not try to create traceability between different lan-
guages and the concepts introduced are less detailed than those using e3value.
In general, the major difference of our work with related work is our focus on
traceability through models.

Gordijn et al [47] propose a method for requirements engineering for e-
services. In this work they take the requirements engineering perspective to
design an e-service. They identify different viewpoints and design a service
using WSDL and BPEL. This work is of a completely different scope than
ours. We stay at a higher level of abstraction to answer different questions.
We wish to link the BM and the EA. De Kinderen, Gaaloul and Proper propose
to link ArchiMate to e3value using an intermediary language (DEMO [26]).
They do not propose a direct mapping [65].

Petrikina et al. [96] describe a preliminary investigation about linking
business models with EA at the meta-model level. The authors propose to
link the business model to the products and services and create a new meta-
model. However, this work is preliminary and they have not identified any
alignment guidelines.

The most recent relevant work is that by The Open Group [123]. They in-
corporate additional new concepts in ArchiMate, based on the business model
canvas (BMC). Meertens et al. propose similar work, but instead of using
evalue they provide a mapping from the Business Model Canvas (BMC) to
ArchiMate [81, 55].

Also relevant is the work of Fritscher and Pigneur [41, 40]. They link EA
with business models with the BMC as well, but on a very coarse grained
level. They do not realize actual traceability to different concepts of different
languages nor do they provide guidelines or building blocks. Aldea et al.
propose adaptations of ArchiMate to incorporate value modeling [3], but do not
try to create traceability between different languages. They also used different
concepts to expose the value to the environment (i.e business processes instead
of services). We believe that adding more concepts to ArchiMate is not the
solution. Adding traceability between the different models (and users) would
allow for the same reasoning, without making the language cognitive harder to

32

understand. Also, we believe that business models that do not take the entire
value network in to account are of limited use in the future [126, 80].

Tacob et al. [55, 81] propose a mapping from the Business Model Canvas
(BMC) [93] to ArchiMate. Since the BMC is oriented towards the single
enterprise, this work misses the networked ecosystem point of view that is
crucial to most ecosystems. We claim that exploration of the ecosystem, e.g.
all participating actors and the ICT systems, need to be included in business
model analysis, rather than just a single enterprise and its direct customers
and supplier. Moreover, the BMC does not have the capability to quantify the
business model and simulate market scenarios, as e>value has, nor does the
BMC have the capability to quantify ArchiMate and bring this quantification
to a business model expressed in e3value.

Recently The Open Group also proposed to incorporate business modeling
concepts in ArchiMate [123]. The result is a version of ArchiMate that has
even more symbols and concepts than it has now. And it does not solve the
problem of traceability between business models and enterprise architectures,
because guidelines are absent.

An application of graph-based semantic techniques to specify, integrate and
analyze multiple, heterogeneous enterprise models is explored by Caetano et
al. [18]. They use e*value, ArchiMate and the BMC. The difference with our
work is that we focus mainly on guidelines for practitioners.

Derzi et al. [25] realize traceability between UML deployment diagrams and
e3value. They annotate UML diagrams with investments and expenses and cre-
ate traceability between UML and e3value to be able analyze the profitability
of an organization with the proposed IT. Deployment diagrams are used be-
cause they indicate ownership of ICT components, and ownership comes with
an investment and operational expenses. These financials are important for
the e3value business model. Our work shares some similarities, we take the ba-
sic idea, but extend on this. We realize bi-directional traceability. We import
economic transactions into ArchiMate for scalability reasoning in conjunction
with aggregating investments and expenses from ArchiMate into e3value. Our
solution also has more semantics, which can be used to create tool support.
el.

Tacob and Jonkers introduce a generic quantification approach for Archi-
Mate [54]. They describe a generic approach of how to perform performance
analysis using workload and response times on an ArchiMate model. Our work
is based on the same principles, we derive our performance requirements from
e3value and we quantify ArchiMate with investments and expenses. Obviously,
the work of Tacob and Jonkers is restricted to ArchiMate only and therefore
does not include a networked business model point of view.

33

Miguens [83] proposes to introduce an additional viewpoint for ArchiMate
where investment information can be assigned and calculated. We do not want
to perform actual investment calculations in ArchiMate beyond aggregating
the information. We do all the calculations in e3value because they are part
of business model analysis. Miguens also does not take the business ecosys-
tem perspective as we do, nor do they have a way to identify performance
requirements based on economic transactions.

Summarizing, the major difference of our work with related work is our
focus on the value network, traceability, extended with alignment guidelines,
and building blocks to construct EA models based on the BM.

Our approach differs from others because we use a networked approach to
business models, allow quantification of business models, and define and test
traceability guidelines to align business models with an enterprise architecture.

We are also able to export the quantifications of e3value to ArchiMate.
The economic transactions in e3value are brought to ArchiMate models and
we enrich ArchiMate models with investments and expenses and can insert
these back into an evalue model. Our quantitative alignment between e3value
and ArchiMate allows us to reason about if IT can support the economic
transactions found in the business model, thus providing a form of scenario
analysis where the feasibility of a proposed business model is tested in terms
of technological support. Quantification of ArchiMate with investments and
expenses allows us to identify investments and costs in IT and insert them into
an e3value model and evaluate the financial feasibility of a business model.

34

Part 11

Goal Modeling

35

37

3

Extending ArchiMate:
ARMOR/!

1This chapter is based on an the article in the Journal of Enterprise Information Systems
29]

38

3.1 Introduction

Requirements modeling is an important activity in the process of designing
and managing enterprise architectures (EAs). Brooks (1986) mentions [15],
‘No other part of the work so cripples the resulting system if done wrong’
This quote refers to the design of software architectures, but applies as well
and maybe even more so to the elicitation and analysis of the requirements
that should be addressed by enterprise architecture design.

Nonetheless, most EA modeling techniques focus on what the enterprise
should do by representing ‘as-is’ and ‘to-be’ architectures in terms of infor-
mational, behavioral and structural model elements at different architectural
layers, e.g., a business, application and technology layer. When we started
this research, little or no attention was paid to represent (explicitly) the mo-
tivations or rationale, i.e. the why, behind the architectures in terms of goals
and requirements.

In contrast to EA modeling techniques, methods for EA, such as The
Open Group Architecture Framework [115], acknowledge that goals and re-
quirements are central drivers for the architecture development process. In
TOGAF’s architecture development method (ADM), requirements manage-
ment is a central process that applies to all phases of the ADM cycle. The
ability to deal with changing requirements is crucial to the ADM, since ar-
chitecture by its very nature deals with uncertainty and change, bridging the
divide between the aspirations of the stakeholders and what can be delivered
as a practical solution.

Requirements modeling helps to understand, structure and analyze the
way business requirements are related to information technology (IT) require-
ments, and vice versa, thereby facilitating business—IT alignment. For ex-
ample, the concept of ‘goal’ in goal-oriented requirements modeling is used
to define some intended effect that is desired by some stakeholder, i.e. what
should be achieved. This goal may be related to more abstract (business) goals
that define why the goal is needed, and may also be related to more concrete
(IT) goals that defines how the goal can be realized.

The explicit definition of these relations facilitates traceability among the
motivations and concerns of stakeholders, their goals and the (design) artifacts
that ultimately realize the goals. Goals have to be refined into requirements
before their realization can be assigned to some artifact, such as a business
service, business process, application service or application component. When
talking about requirements modeling, we mean the modeling of goals and
requirements. For now, goals can be considered as abstract requirements that
need to be made more concrete before they can be realized by elements of

39

the EA. The explicit modeling of the motivation underlying EAs using goals
enables new types of analysis from the requirements engineering (RE) domain.
For example, one can analyze to what extent the EA meets the stakeholder’s
goals, whether these goals may conflict, the impact of revised goals on the
enterprise, and vice versa.

Furthermore, alternative architectures may be assessed based on their abil-
ity to meet stakeholder goals. In this chapter, we assume that ArchiMate 1.0
[73]) is used for EA modeling.

The purpose of this chapter is to define a language, called ARMOR, for
modeling the motivation of EAs in terms of goals and requirements and to
provide an initial validation of the language based on a case study. This
language is aligned with the ArchiMate language. Furthermore, we illustrate
the use of ARMOR for analyzing EAs, while focusing on business—IT alignment
issues.

The remainder of this chapter is structured as follows. Section 3.2 describes
the ArchiMate modeling framework and its extension towards motivation mod-
eling. Section introduces the language requirements 3.3. Section 3.4 presents
ARMOR in terms of its concepts and their notations. Section 3.5 illustrates
ARMOR by means of a real-life example. Section 3.6 provides an overview
of the available analysis techniques and tool support for ARMOR. Section 3.7
describes preliminary work into the integration of principles into ARMOR and
finally section 3.8 presents our conclusions.

3.2 Enterprise Architecture

EA is a design or a description that makes clear the relationships between
products, processes, organization, information services and technological in-
frastructure; it is based on a vision and on certain assumptions, principles and
preferences; consists of models and underlying principles; provides frameworks
and guidelines for the design and realization of products, processes, organiza-
tion, information services, and technological infrastructure.

It comprises a collection of simplified representations of the organization,
from different viewpoints and according to the needs of different stakeholders
[72]). A coherent description of EA provides insight, enables communication
among stakeholders and guides complicated change processes[59]. ArchiMate
is an open standard of The Open Group, provides a language to create such
descriptions in a precise and formal way. ArchiMate defines concepts for de-
scribing architectures at the business, application, and technology layers, as
well as the relationships between these layers. Thus, it addresses the ubiqui-

40

Business

Application

Technology

Information Behaviour Structure

Figure 3.1: The original ArchiMate framework.

tous problem of business—IT alignment. ArchiMate originally results from a
public/ private research project, a cooperation of companies, universities and
research institutes.

3.2.1 ArchiMate framework

Figure 3.1 depicts the modeling framework that underlies the ArchiMate lan-
guage [72]. This framework decomposes an enterprise along two dimensions:
layers, which represent successive abstraction levels at which an enterprise is
modeled, and aspects, which represent different concerns of the enterprise that
need to be modeled. The layer dimension distinguishes three main layers:

e business layer, which offers products and services to external customers
that are realized in the organization by business processes;

e application layer, which supports the business layer with application
services that are realized by (software) application components;

o technology layer, which offers infrastructural services (e.g. processing,
storage and communication services) that are needed to run applications,
and are realized by computer and communication devices and system
software.

41

The aspect dimension distinguishes the following modeling aspects:

e structure aspect, which represents the actors (systems, components, peo-
ple, departments, etc.) involved and how they are related;

o behavior aspect, which represents the behavior (e.g. processes and ser-
vices) that is performed by the actors, and the way the actors interact;

o information aspect, which represents the problem domain knowledge that
is used by and communicated between the actors through their behaviors.

The structuring into dimensions allows one to model an enterprise from
different viewpoints, where a viewpoint [57] is characterized by one’s position
along each dimension. A viewpoint represents a certain perspective on the en-
terprise that is of interest to one or more stakeholders. A stakeholder typically
focuses on a (small) range along each of the dimensions. The intersection of
these ranges spans a viewpoint. For example, each cube in figure 3.1 represents
the intersection of a single layer and single aspect. A viewpoint may span mul-
tiple or only part of a layer or aspect. Furthermore, depending on the choice
of viewpoints, they may (and often will) overlap. Each viewpoint comprises a
number of concepts that are used to model an EA covering the levels of ab-
straction and aspects represented by that viewpoint. Accordingly, overlapping
viewpoints may comprise overlapping concepts. In order to define, maintain
and apply concepts for EA modeling in a structured and consistent way, these
concepts are organized in orthogonal, i.e. non-overlapping ‘viewpoints’, called
domains. Each domain represents a set of concepts that is used to model sys-
tems from a particular viewpoint. The ellipses in figure 3.1 represent common
modeling domains that have been defined for ArchiMate.

3.2.2 Extended Framework

To support the modeling of intentional properties an extension of the Archi-
Mate framework is proposed, as depicted in figure 3.2. This extension consists
of the motivation aspect, which resembles the motivation (or why) column of
the Zachman framework [131].

The value layer represents the value of the services and products that are
offered to customers. For example, existing work on value modeling, such
as value modeling with e3value, can be positioned in this layer. The ‘Value’
concept of ArchiMate fits in this layer, and could be extended to model specific
types of value, such as cost, and networks of value exchanges.

42

ArchiMate does not provide any concepts for modeling the motivation as-
pect. The remainder of this section introduces three modeling domains within
the motivation aspect: the stakeholder domain, the principles domain and the
requirements domain.

Principles
Value 2
Stake-
holders
Business
Goals/
Application Require-
ments
Technology

Meaning Information Behaviour Structure Motivation

Figure 3.2: The ArchiMate framework extended with a motivation column
and a value layer. This framework was proposed in the original articles [101,
29] and became irrelevant. It has been replaced in many iterations during the
development of ArchiMate. The motivation column can still be found in the
latest version of ArchiMate. The new strategy layer replaced the value layer
[114].

Stakeholder domain

This domain models the stakeholders of the enterprise, including their concerns
and the assessment of these concerns. A concern is interpreted as some area of
attention or interest. For example, a CEO may be concerned with executing
the mission of the enterprise, a CIO with the clarity of the EA and its ability
to adapt to change, and a system’s manager with the capacity and reliability
of the computing and networking platforms used within the enterprise. These
concerns may be assessed using a strengths, weaknesses, opportunities and
threats (SWOT) analysis. For example, this analysis may reveal that the
enterprise’s architecture lacks traceability, which makes it difficult to change.

In addition, the users or customers of the enterprise may be considered
as stakeholders. Customers may be concerned with e.g. the diversity of the
products and services that are offered or the privacy of their information. Also

43

these concerns may be assessed (not necessarily in terms of SWOT) to reveal
customer needs.

Requirements Domain

This domain models the goals, requirements and expectations that constrain
the design of the EA. These goals, requirements and expectations typically
originate from the assessment of concerns in the stakeholders domain. This
assessment may reveal strengths, weaknesses, opportunities or threats that
need to be addressed by changing existing goals or setting new ones.

Principles domain

This domain models the architectural principles used in architecture design.
Principles are normative restrictions on the EA. The principles use business
drivers of the organization, found in the stakeholder domain and requirements
domain. The current version of the domain merely identifies the need for
such a domain. Section 3.7 will provide more information about the possible
integration of principles into ARMOR.

3.3 Requirements Modeling

Besides its alignment to ArchiMate, we want the ARMOR language to align
with concepts and ideas from existing languages for requirements modeling,
wherever possible. Our intention is not to introduce a new language per se, but
one that meets our modeling requirements. These requirements are described
first, followed by an overview of the following techniques for goal modeling:
the Business Motivation Model [16], the i* framework [129], and the KAOS
notation from Dardenne [23].

3.3.1 Language Requirements

1. Re-use of concepts and ideas from existing languages and methods for
goal modeling.

2. Alignment with ArchiMate.

3. Traceability. Adaptation to change is an important requirement for EAs.
In order to support impact of change analysis, abstract goals should be
traceable to the more concrete goals and design artifacts such as services
and processes that implement these abstract goals; and vice versa.

44

4. Facilitate documentation, communication and reasoning about require-
ments.

5. KISS (keep it small and simple). ARMOR should be based on a small
set of generic concepts that allows one to model the motivation aspect of
EAs in an intuitive way. This should also help in obtaining a language
that is easy to learn, understand and apply.

6. Extensible. It should be possible to extend ARMOR with specialized
concepts and associated analysis techniques. This would allow users to
choose between basic and advanced versions of ARMOR.

Requirements 46 are considered as ‘soft’ requirements. In practice, this means
that they are used as guidelines for making decisions rather than hard crite-
ria with predefined norms that can be validated afterwards. Our goal is to
capture the business context leading to EA, in other words to capture the
high-level goals that lead to the architectural designs. GORE facilitates cap-
turing the business context [118] and provides a structured way to refine these
goals into requirements that can be assigned to elements from the architec-
ture. GORE itself also provides a number of advantages [118], like improved
traceability, evaluation of alternatives and reasoning about conflicts. We opted
for a goal-oriented RE language, based upon these goals and possible advan-
tages. Therefore, the subsequent sections will only focus on goal oriented RE
languages.

3.3.2 Business Motivation Model

BMM provides a structure of concepts for developing, communicating and
managing business plans. The concepts can be used to model (i) the factors
that motivate a business plan, (ii) the elements that constitute the business
plan and (iii) the relationships between these factors and elements [16]. The
central notion of the BMM is motivation. An enterprise should not only define
in its business plan what approach it follows for its business activities, but
also why it follows this approach and what results it wants to achieve. Figure
3.3 depicts an overview of the BMM. The following three major parts are
distinguished:

1. Ends, which describe the aspirations of the enterprise, i.e. what the
enterprise wants to accomplish;

2. Means, which describe the action plans of the enterprise to achieve the
ends, and the capabilities that can be exploited for this purpose;

45

Ends Means
(Aspirations - being) (Action plans - doing)

Vision

Goal I
realized by
—
Objective I Tactic
impact : impact

Influencers

Figure 3.3: The Business Motivation Model.

3. Influencers, which describe the assessment of the elements that may in-
fluence the operation of the enterprise, and thus influence its ends and
means.

3.3.3 i*

The i* framework [129, 128] focuses on concepts for modeling and analysis
during the early requirements phase. It emphasizes the ‘why’ that underlie
system requirements, rather than specifying ‘what’ the system should do. The
i* framework has been developed to model and reason about organizational
environments and their information systems. The central notion is the inten-
tional actor.

Actors within an organization are viewed as having intentional properties
such as goals, beliefs, abilities and commitments. Actors depend on each
other to achieve goals, to perform tasks and to use resources. Furthermore,
actors are strategic and will try to rearrange these dependencies to deal with
opportunities and threats. Two types of models are distinguished: the SD
model and the strategic rationale (SR) model. An SD model describes the
dependencies among actors in an organizational context. A dependency models

46

an agreement between two actors, where one actor (the depender) depends on
another (the dependee) to fulfil a goal, perform a task or deliver a resource
(the dependum). A dependency may involve a soft goal, which represents a
vaguely defined goal with no clear criteria for its fulfillment. The SR model
describes stakeholder interests and concerns, and how they can be addressed by
various configurations of systems and environments. An SR model adds more
detail to the SD model by looking ‘inside’ actors to model internal intentional
relationships. Intentional elements, i.e. goals, tasks, resources and soft goals,
appear both as external dependencies and as internal elements. Intentional
elements can be linked by means-end relations and task decompositions. A
third type of link is the contribution relation, which represents how well a goal
or task contributes to a soft goal. The i* framework allows various types and
levels of analysis, for example, to assess the ability, workability, viability and
believability of goals and tasks.

3.3.4 KAOS

KAOS is a methodology for RE [23, 118, 119]. In comparison to i*, KAOS
seems to focus more on the late requirements phase. Having said this, the goal
concept in KAOS does allow one to model the motivations, i.e. the why, behind
system requirements. But, in contrast to i*, KAOS seems less concerned with
modeling the ‘intentions’ of actors.

The key concept underlying KAOS is goal. Van Lamsweerde [119] defines
a goal as ‘a prescriptive statement of intent that the system should satisfy
through cooperation of its agents’. Here, an agent can be any actor involved
in the satisfaction of the goal, e.g. an existing information system, an appli-
cation to be developed, or a human user. Goals can be defined at different
abstraction levels. Higher level goals and lower level goals are related through
refinement relations, which define what lower-level goals are needed to satisfy
a higher level goal. At the same time, these refinement relations define the
justification for (why) a lower level goal is introduced. Typically, a (high-level)
goal requires the cooperation of multiple systems. One important outcome of
RE is the decision which goal can be automated (partly) and which not. A
goal that is assigned to a system-to-be, such that the system is made respon-
sible for the satisfaction of a goal, is called a requirement. Instead, a goal that
is assigned to the environment of the system-to-be is called an expectation.
Unlike requirements, expectations cannot be enforced by the system-to-be. In
KAOS, a conflict relation can be used to model that the satisfaction of one
goal prevents the satisfaction of another goal (and vice versa). An obstacle
can be used to represent a situation that hinders or obstructs the satisfaction

47

of some goal or requirement. An obstacle may be resolved by other goals. Fur-
ther, KAOS allows the modeling of properties of the problem domain: domain
hypotheses, which describe properties that are expected to hold, and domain
invariants, which describe properties that always hold. KAOS supports var-
ious kinds of analysis, such as traceability, completeness, formal validation,
refinement checking, and risk, threat and conflict analysis [119].

3.3.5 Observations

The following observations aim at guiding the decisions about the concepts
that should be supported by ARMOR. The BMM cannot be considered a true
requirements modeling language. The model focuses on business plans, which
may involve high-level goals and objectives. A business plan that is developed
using the BMM can be used as a starting point for (early-phase) RE. Elements
of the BMM, such as goals and strategies, and also SWOT that result from
the analysis of business influencers, may serve as sources or motivations for
high-level goals. The i* framework focuses on the early requirements phase
and is an expressive language, allowing various types of analysis. However,
the expressiveness of the language and corresponding rich notation may be
experienced as (too) complex and prevent people from using it [128]. Other
observations are:

1. i* focuses on modeling the intentions of agents (actors) and allows the
analysis of these intentions, concerning intentional concepts such as abil-
ity, workability, viability and believability;

2. the distinction between a means-end relationship and a decomposition
relationship in i* in terms of semantics and consequence for further design
steps is not always clear and may lead to confusion;

3. a similar remark can be made about the distinction between goals and
tasks;

4. i* distinguishes between the internal intentions of an actor, and its exter-
nal intentions in terms of dependencies on other actors. This is consis-
tent with the distinction between the internal and external perspective
on system design in ArchiMate.

The KAOS graphical notation [23] seems to be less complex and easier to
use than i*. This comes at the price of less expressiveness, such as the inability
to model the extent to which a goal contributes to another goal (although this
ability can be introduced). Other observations are:

48

¢« KAOS does not use a separate actor model, but introduces the actors in
the goal model via responsibility assignment relations;

o« KAOS distinguishes between goals that typically must be satisfied by
multiple cooperating agents, and requirements that are assigned to in-
dividual agents. This distinction corresponds to the distinction between
activities and inter-activities (interactions, collaborations) in ArchiMate.

3.4 Language definition

In order to align the conceptual model of ARMOR with existing requirements
modeling languages, the following approach is followed:

(1) Determine the common concepts underlying the languages studied in
Section 3.3 and use these concepts as basis for ARMOR. This may involve the
abstraction of concepts of one language to relate them to concepts of another
language. (2) Extend the basic concepts of ARMOR in case its expressiveness
is insufficient.

In these steps, guidelines like ‘KISS’ and suitability of the proposed con-
cepts for the EA domain are taken into account. Furthermore, a ‘minimal’ set
of generic concepts is strived for in order to keep ARMOR, broadly applicable
and to facilitate modifications and extensions later on when more experience
has been gained with the use of ARMOR. The definition of ARMOR is divided
into two domains: the requirements domain and the stakeholder domain.

3.4.1 Requirements domain

Table 3.1 depicts the requirements concepts that are supported by ARMOR,
including their notation.

Table 3.1: Concepts of the requirements domain.

Concept Notation Concept Notation

Hard goal Soft goal

Use-Case

Requirement

49

Goals and Requirements

The key concept is the concept of goal, which is supported by BMM, i* and

KAOS. Their definitions have in common that a goal represents some desired
effect in the problem domain, or some desired properties of a solution. Fur-
thermore, the goal concept can be used as an abstraction or generalization of
other concepts:

e The concepts of vision and objective in BMM can be modeled as an
abstract (high-level) and concrete (low-level) goal, respectively. Also
the concepts of mission, strategy and tactic can, from a goal-oriented
perspective, be seen as (sub-)goals that are obtained by ‘operationalising’
the concepts of vision, goal and objective, respectively.

e The concept of task in i* can be modeled as a concrete goal that defines
how (part of) a more abstract goal can be satisfied.

e The goal concept in KAOS is an abstraction of the requirement and
expectation concepts, since it abstracts from the agent (actor) to which
the goal can be assigned.

An abstract notion of goal reduces the number of required concepts. How-
ever, this may be at the expense of precision and intuition. For example, a
designer of a business plan does not only think in terms of ‘goals’, but spe-
cializes in terms of strategies, tactics, objectives, etc. For a similar reason, we
want to distinguish between goals that can and cannot (yet) be assigned to
actors. The distinction between hard and soft goals is made both in i* and
KAOS (and implicitly in BMM via the distinction between goals and objec-
tives). This distinction is considered significant and is therefore also supported
in ARMOR. In particular, soft goals are useful in the evaluation of alternative
designs. Based on the aforementioned analyses, we define the concepts of goal
and requirement as follows:

e A goal models some end that a stakeholder wants to achieve. The desired
end can be anything, e.g. some effect in or state of the problem domain,
a produced value, tasks, or a realized system property. Hard goals are
quantifiable goals with norms that specify when a goal is achieved. Soft
goals are qualitative, i.e. not quantified, and in general more abstract.
Typically, soft goals have to be refined into more concrete goals to make
them quantifiable.

e A requirement models some end that must be realized by a single actor.
A requirement can be considered as a specialization of a goal that is

50

delimited in scope and functionality, such that it can be assigned to a
single actor.

e The modeling of (business) use cases is strongly related to the modeling
of goals and requirements. Therefore, ARMOR also supports use-cases,
similar to UML use-cases, including the include and extend relation. Use
cases are used as a technique to elicit and specify system requirements.
A use case describes the interactions between a system and some external
actor, i.e. user [58]. This user typically initiates the use case having some
goal in mind. This goal is satisfied when the use case completes success-
fully. Multiple, alternative sequences of interactions (called scenarios)
may satisfy the goal. In addition, a use case may describe alternative
sequences of interactions that handle failure, e.g. exception or error han-
dling. By specifying only interactions, the system is considered as a ‘and
box’, abstracting from internal detail. Because a use-case is associated
with a single system that implements it, a use-case is considered as a
type of requirement in ARMOR.

Relations in goal refinement

Table 3.2 depicts the relations that are supported with ARMOR, including
their notations. BMM, i* and KAOS all support the refinement of goals into
sub-goals. Moreover, BMM and i* distinguish two types of refinement rela-
tions: means-end relationships and decomposition relations. It is important
to understand the distinction between means-end and decomposition. Exist-
ing languages like i* and KAOS do not distinguish correctly between these
relations. Decomposition decomposes a goal into more concrete sub goals in
such a way that a part-whole relationship exists between the goal and its de-
composition. A means-end relation is much more a causal effect relation. The
achievement of a means leads to the realization of the end. If there are mul-
tiple means identified, the realization of just one will facilitate the realization
of the end. Therefore, we provide the following definitions:

e A goal decomposition decomposes an abstract goal into multiple more
concrete sub-goals, such that the abstract goal is achieved if and only
if all sub-goals are achieved. Typically, goal decomposition is used to
define a goal more precisely, resulting in goal trees with measurable in-
dicators, e.g. key performance indicators, at the leaves of the trees. A
decomposition answers the WHAT question in goal refinement.

e A means-end relation relates a goal (the end) to some artifact (the

Table 3.2: Relations of the requirements domain.

Concept Notation Concept Notation
Decomposition < Means-End 4 o
+/-
Contribution <"m",_ T Conflict | 77775)y' T
<. <sinclude>>
Include Lo Extend o Siaandza

Figure 3.4: Example goal decomposition

51

means) that realizes the goal. This artifact can be another goal or re-
quirement, or can be an architectural element, such a service, process
or application. While goal decomposition is used for the more precise
definition of goals, the means-end relation is typically used to illustrate
causal effect relations between goals and other artifacts. The means-end
relation answers the HOW and WHY questions in goal refinement.

Figure 3.4 illustrates a decomposition. It creates a definition of what de-
creasing the support staff actually means. In this example the goal decrease
support staff is only achieved if both the web support staff and phone support
staff are achieved. The stakeholders create a definition of what should be done

in more detail.

Figure 3.5 illustrates a means-end relation. Reducing the amount of cus-
tomer calls is believed to realize decreasing the support staff. By reducing the
amount of customer calls we can reduce the support staff. The stakeholders
believe there is a cause effect relation between these two goals. This causal

52

Figure 3.5: Example means-end relation

effect is based on some goal theory, or assumptions, from the stakeholder that
if customers stop calling, you do not need staff answering them.

Conflicts, obstacles and contributions

Both i* and KAOS allow one to model that some goal or situation has a
negative influence on the satisfaction of another goal.

o« KAOS supports the conflict relation and the obstruct relation in combi-
nation with the obstacle concept. Furthermore, the resolution relation
can be used in KAOS to resolve, i.e. ‘dissatisfy’, an obstacle;

o i* supports the contribution relation to model positive and negative in-
fluences on the satisfaction of soft goals. These influences are defined in
qualitative terms, e.g. using the range: ++ + +- - —. The obstruction of
goals by obstacles is not modeled as part of a goal model in ARMOR. An
obstacle is considered the result of the assessment of some stakeholder
concern, like the assessment of an influencer as a threat or weakness in
the BMM. The modeling of assessments should however be supported by
ARMOR - not as part of the goal domain — but as part of the stakeholder
domain.

The following relations can be modeled as part of goal models in ARMOR:

¢ A contribution relation from some goal G1 to another goal G2 to repre-
sent that G1 contributes (influences) the satisfaction of G2 positively or

53

negatively. Typically, the contribution relation is used to facilitate the
evaluation of alternative goal refinements. The need to be able to qualify
the strength of the contribution, and in what detail may depend on the
situation at hand. Therefore, different qualification ranges may be used.

e A conflict relation between two goals G1 and G2, such that the satisfac-
tion of G1 inhibits the satisfaction of G2, and vice versa. A conflict is
only possible between hard goals (and requirements), since the criteria
for the satisfaction of soft goals is unclear; i.e. it is unclear when the
satisfaction of a soft goal inhibits the satisfaction of another goal.

Assumptions

The refinement of some goal may be based on certain assumptions about (el-
ements in) the problem domain. i* and KAOS introduce the notions of as-
sumption, belief and domain property for this purpose. Since it is considered
useful to make such assumptions explicit, ARMOR supports the general no-
tion of ‘assumption’, however an assumption is not recorded as a concept but
as a property of a goal. Our main design goal for ARMOR is to keep it as
simple as possible. We chose not to model an assumption as a construct but
as a property of a goal. This is seen as contextual information of a goal. We
wish to be able to record this contextual information, but not introduce an
additional modeling concept.

Stakeholder Domain

Table 3.3 depicts the concepts of the stakeholder domain, which are used to
model the origin and owners of goals and requirements. The concepts have
the following interpretation:

Table 3.3: Concepts in the stakeholder domain

Assessment R

Concept Notation
[Stakeholder % I
Stakeholder
Concern \

Assessment

54

o A stakeholder represents an individual, team, or organization (or classes
thereof) with interests in, or concerns relative to, the outcome of the ar-
chitecture. This definition is adopted from TOGAF [115]. A stakeholder
typically associates value to certain aspects of the enterprise, and thus
also its reflection in the enterprise’s architecture. Examples of stakehold-
ers are not only the board of directors, shareholders, customers, business
and application architects, but also legislative authorities.

e A concern represents some key interest that is crucially important to
certain stakeholders in a system, and determines the acceptability of the
system. A concern may pertain to any aspect of the system’s functioning,
development or operation, including considerations such as performance,
reliability, security, distribution, and evolvability. This definition is also
adopted from TOGAF[115].

e An assessment represents the outcome of the analysis of some concern.
This outcome may trigger a change to the EA, which is addressed by the
definition of new or adapted business goals.

The association relation of ArchiMate is (re-)used to relate stakeholders to
concerns and concerns to assessments. A stakeholder can have one or more
concerns, and a concern may be shared by multiple stakeholders. An assess-
ment typically assesses a single concern, but could involve multiple concerns.
A concern may be analyzed through different assessments.

3.4.2 Meta Model

Figure 3.7 depicts the abstract syntax, or meta-model, of ARMOR. The col-
ored classes represent the new concepts introduced by ARMOR, the white
classes represent the reused concepts from ArchiMate. Concepts from the
stakeholder domain are: stakeholder, concern, assessment and their relations:
stakeholder concern relation, concern assessment relation and assessment goal
relation. These relations are all based upon the existing association relation
from ArchiMate. In the requirements domain we find the goal concept, which
is specialized into hard goal and soft goal. The hard goal is further specialized
into requirement. A use case is a specialization of a requirement. The contri-
bution and conflict relation are two new relations. The means- end relation is
a specialization of the ArchiMate realization relation. The goal decomposition
relation is a specialization of the ArchiMate aggregation relation.

The realization of requirements through ArchiMate concepts corresponds
with the way KAOS relates requirements to behavior, actors and data. Behav-

55

ioral elements realize the requirements; actors are responsible for performing
this behavior and data is processed through performing this behavior, see
Figure 3.6. In this figure an insurance service is used to realize a functional re-
quirement sell insurances over the internet. The service is assigned to an actor
insurance department as behavior is performed and some business information

is involved.
Insurance
e service

v

Insurance %
department

Insurances

Figure 3.6: Realizing requirements by architecture elements.

56

OV JO [PPOW-ejot o, :L°¢ omSL]
| i |

fa e | GEmO |

suvoped

anoweyeq | |

UORERNUOREROSSY

o7

3.5 Application of ARMOR

We will demonstrate the application of ARMOR through a real life example
in the healthcare industry. Through the remainder of this example we will call
the hospital where this project took place Hospital X. This particular hospital
specializes in movement and posture disorders.

3.5.1 Case Description

Hospital X strives to ensure satisfied patients, responsible and satisfied em-
ployees, safe and efficient care, steering based on quality and service and finally
accomplishment and growth. Hospital X elaborated this in its mission, which
is included in the policy plan; this mission has four core elements:

o Patient focus, deliver care based on the needs and wishes of the patient;

o Excellence, develop treatments based upon the latest scientific break-
throughs;

e Innovation through research and development;
e Entrepreneurial through expanding and seizing business opportunities.

Hospital X experienced a number of problems, the major concern being
that patients had trouble with the lengthy registration process, which was
basically in conflict with their patient focus goals. Secondary concerns were
incomplete patient information, incomplete information delivery and no insight
in whether patients should be billed or not based upon their insurance status.
Last but not least, the new electronic patient record (EPR) act forces hospitals
to record patient information in a national database to improve information
delivery between care givers. Hospital X also identified a number of business
opportunities, healthcare 2.0 being the most important one. Healthcare 2.0 is
patient centered working using the most modern (communication) technologies
available.

The project goal was to elicit high-level business requirements and analyze
these using the modeling language presented in this chapter. We used two
workshops to elicit and validate the high-level requirements and designed a to-
be architecture based on these results. This part of the architecture was then
discussed and approved by the senior information architect at the hospital.

Through this example we will demonstrate that ARMOR facilitates EA
design through relating stakeholder goals to elements from the EA through
goal refinement, thus demonstrating the need for that particular architecture.

58

We will demonstrate that: (i) ARMOR captures the relevant business con-
text, comprising assessments of stakeholder concerns and information found in
business plans; thus facilitating improved traceability from high-level goals to
architecture requirements and architecture elements, (ii) that this traceability
facilitates adapting to change easier, through following the relationships from
high-level strategic goals to the architecture realizing it, (iii) ARMOR also
facilitates improved detection of conflicting interests and solutions and (iv)
using ARMOR it becomes possible to evaluate alternatives against soft goals
from the organization.

3.5.2 Goal Modeling with views

This example uses three kinds of modeling views. The first view is the stake-
holder view. In this view we model the relevant stakeholders of this project,
their concerns, assessments of these concerns and the first high-level goals. The
second view we use is a goal refinement view. Here we select a stakeholder
concern and refine the initial goals into requirements for the EA. The final
view is a requirements implementation view. Here we show which architec-
tural elements realize the requirements. This example is structured according
to these views. We will provide at least on example of each view.

3.5.3 Stakeholder View

This stakeholder view is limited to the board of Hospital X, as shown in Fig-
ure 3.8. The board is concerned with innovation, patient focus, excellence and
entrepreneur- ship. These concerns were identified in the policy plan of Hos-
pital X. Two major assessments were identified at Hospital X. To address the
innovation concern all new products and services should fit within healthcare
2.0.

Healthcare 2.0 means patient centered working and using modern technol-
ogy to bring the healthcare provider and the patient closer together and give
the patient a sense that he is more involved in the care process. A second area
of concern is the current patient registration system. This system is trouble-
some for the patient; he has to wait in line before he can register himself as
a patient at the hospital. Patient registration is a lengthy process, and has a
negative impact on the patient, where he is preoccupied with his illness and
should not be bothered with a lengthy registration process.

Based upon these assessments and concerns Hospital X identified a number
of change goals, patient registration should happen based upon consumer feed-
back, healthcare 2.0 has to be introduced in the organization and new products

59

Figure 3.8: An example goal model based on the stakeholder view.

and services should be developed on an innovative way. Based upon surveying
the customers they decided to improve the patient registration process.

3.5.4 Goal Refinement View

Figure 3.9 models the goal refinement view. In this view the initial goals are
structured and refined. To demonstrate the goal refinement view we refine the
security concern from the information manager. His main goal was to provide a
safe to use service. Safety is by itself a vague statement, therefore we modeled
this as a soft goal, it requires a decomposition into measurable goals. Safety
in this case is decomposed into ‘protect identity of the patient’ and ‘protect
patient information’ Protecting the identity of the patient is realized through
checking the identity of each individual patient. This is decomposed into
automated and manual checks. Protecting personal information is realized
through denying access to third parties and this led to the requirement of
encrypting the patient information.

60

3.5.5 Requirements Realization View

Figure 3.10 depicts a so-called requirements implementation model. Require-
ments are realized by some form of behavior from the EA, which falls under
the responsibility of an actor and some data is processed. In this view we
operationalize the requirement for manual checks through a business process
‘patient identification’, which is the responsibility of the employee at the reg-
istration desk and during this process identification information is used.

3.6 Tool Support

Any modeling language, especially when applied in realistic situations where
models may become quite large, can only be successful if supported by ade-
quate and professional tooling. A good model editor makes sure that the lan-
guage is applied correctly and consistently, and may offer facilities for, among
others, version control and multi-user editing. A modeling tool may also sup-
port the use of viewpoints and views on models. We have implemented the
ARMOR language in the architecture modeling tool BiZZdesign Architect (see
http://www.BiZZdesign.nl), as an add-on to the ArchiMate language. This
tool provides all of the functionalities described above. Visualization and anal-
ysis of models can hardly be carried out by hand and requires tools as well.
For ARMOR, we have implemented a number of useful analysis techniques for
requirements models in BiZZdesign Architect, which we will briefly describe
below (illustrated with the Hospital X example).

3.6.1 Traceability

Figure 3.9 depicts a viewpoint based upon a stakeholder concern. What we
see here is that the board is concerned with innovation. An assessment of this
concern reveals that using healthcare 2.0 is an opportunity in new product and
service development. Two goals are elicited for this concern and these goals
are realized through the first high-level requirement that Hospital X should
offer some sort on online registration from home. Figure 3.10 depicts the first
architectural model based upon this requirement. In this way, we can trace
from the stakeholders, their concerns and assessments from these concerns to
the high level goals, refined goals, requirements and ultimately the relevant
enterprise architectural elements.

http://www.bizzdesign.nl/

61

Figure 3.9: A more elaborate goal model using the goal refinement view.

3.6.2 Impact of Change Analysis

Traceability of stakeholder concerns introduces powerful analysis possibilities;
one of these is the impact of change analysis. To demonstrate this analysis we
use the goal models from figures 3.9 and 3.10. This impact of change analysis is
one of the more powerful analysis types. Every organization interacts with the
environment; this environment contributes to the goals of the organization.
One of the high-level goals here is to comply with the data protection act,
which is decomposed into the requirement check identity of the patient and
compliance with security guidelines. Suppose changes occur in the legislation
concerning the data protection act, through these goal refinement links we can
trace into the architectural models and analyze which parts of the organization
are affected by these changes. This way we know which services processes,
actors and IT systems are affected by a change.

3.6.3 Detection of conflicts

We were able to identify conflicting goals between two different requirements
views. The manager care was interested in creating an information exchange
service based upon registered patient data. However, this was not allowed be-
cause patient data are confidential and this was contained in the information
security guidelines within the hospital, see figure 3.11. Because of the im-
portance of complying with information security guidelines, extracting patient

62

Patient = Employee 2
identification registration desk
Identification

information

Figure 3.10: Goal realization by an element from the Enterprise Architecture.

information from registration data was dropped as a goal by the manager care.

3.6.4 Evaluation of Alternatives

Two main solution alternatives emerged at Hospital X. One possibility was
that customers preregister from home via the internet. The second alternative
was that they could register at different sign-in stations located throughout
the hospital. The latter is also used by Schiphol airport for a speedy check-
in procedure. Based upon these alternatives Hospital X selected a number
of important soft goals. These alternatives are then evaluated based upon
their contribution to said soft goals. Figure 3.12 the modeled results from this
evaluation. The presented alternatives were evaluated against a number of
soft goals. In this case stakeholders ‘graded’ the contributions on friendliness,
safety, improved registration, feedback from customers and healthcare 2.0.
Based upon these contribution models Hospital X decided to pursue the online
registration service.

Figure 3.11: Conflicting goals, illustrated by the conflict relation.

63

b o e e e e i

e e e e 2P e

Figure 3.12: Alternative evaluation using the contribution relation for the
online registration from check-in stations.

3.7 Outlook Architectural Principles

An important research development in the field of EA is the use of principles
[76, 92, 11]. This section will describe the future development of ARMOR to
integrate principles into the language.

A precise definition of the concept of principles as well as the mechanisms
and procedures needed to turn them into an effective regulatory means still lack
[108]. This article will only discuss the generic attributes of a principle and
how principles can supplement the ARMOR language. Generally speaking,
two different types of principles can be distinguished, normative principles and
engineering principles. Normative principles are rules of conduct, or guidelines.
They provide a norm that designers have to take into account. A normative
principle can be broken; someone can choose not to follow them.

Engineering principles describe some law of nature that underlies the work-
ing of some artificial device. Engineering principles are based upon causality,
if we apply this principle these effects will happen. An example of an engi-

64

neering principle is that any object, wholly or partially immersed in a fluid, is
buoyed up by a force equal to the weight of the fluid displaced by the object.

An engineering principle is more a fact and cannot be broken. Architec-
tural principles are normative principles based upon causality motivating the
working of this principle. In more concrete words, architectural principles use
the business drivers as the goal they should realize, for example business goals,
architecture goals and IT goals. When an architectural principle is applied,
the organization expects that it has some positive contribution on the busi-
ness drivers, this is the causality aspect. This is very similar how we use the
contribution relation in ARMOR.

For example, when an organization identifies that user productivity is a
goal they should pursue, they can identify principles that realize this goal.
‘All applications must be easy to use’ could be such principle. It is based on
the assumption (or fact) that when users do not have to struggle with learning
the applications they are more productive.

Since an architectural principle is a normative principle it constrains the so-
lution space of the designer. A principle applies to all solutions in a particular
context and should be stable enough to be reusable.

This chapter discusses the modeling of goals and requirements for organi-
zations. A goal is a desired state or desired effect that a stakeholder wants to
bring about in the problem domain. A requirement is also a desired state or
desired effect, but for an actor instead of a stakeholder.

In this context a principle is a preferred way to reach a desired state.
A principle brings about a desired proven (or assumed proven) effect in the
problem domain, by constraining the solution space.

A principle is not a requirement. A requirement is associated with a single
solution, whereas a principle is associated with all solutions in a particular
context. When a principle has to be applied to a single solution it needs to
be refined into requirements. This is where the introduced goal refinement
techniques from this chapter can assist.

For example, the principle ‘compliance with law’ is provided by TOGAF as
an architectural principle. Applying this principle leads to the desired effect
that the legislators will not sanction the organization. This principle constrains
every possible solution an organization can develop, from business services to
IT infrastructure. However, it is still too general to be applied to a single solu-
tion. It therefore requires refinement, much in the way this chapter proposed.
Compliance with law could be decomposed into more concrete legislation that
applies to the organization and then refined into requirements.We expect to
adapt ARMOR in the future with the principle concept.

65

3.8 Conclusions

In this chapter, we have presented a language, called ARMOR, for modeling
goals and requirements in EAs. The origin of high-level goals is modeled
in terms of stakeholders, their concerns and the (SWOT) assessments that
are addressed by the goals. Goals are refined into (alternative sets of) sub-
goals, via goal trees. Low-level goals (requirements) are related to the services,
processes and applications that implement the requirements. This enables
forward and backward traceability between goals and requirements.

The ARMOR language is based on the existing requirements modeling lan-
guages and is aligned with the standard enterprise modeling language Archi-
Mate. This brings existing theory and analysis techniques to the domain of
EA modeling. We have demonstrated how to realize traceability of stakeholder
concerns to the architectural elements. This traceability is realized through
goal refinement and providing means to integrate this into the architecture
domain. We are able to model and refine strategic goals and policies found in
business plans.

Through goal refinement we are able to link this business context to the
new architecture elements, thus realizing traceability. Through capturing these
links it becomes possible to reason about the effects of changing goals on the
EA. Through following links from goals via requirements to EA elements, we
can derive which architectural elements are affected by a change in a high-level
goal. We also showed how ARMOR can be used to support stakeholders in
reasoning about conflicting interests and solutions. Visualizing the effects of
conflicting goals helps to understand what the effects are of these conflicts on
the EA and leads to dropping or changing certain goals by certain stakeholders.
Finally we presented the use of ARMOR to reason about two emerging solution
alternatives and to evaluate them based upon the soft goals provided by the
stakeholders. Through explicitly modeling these contributions the stakeholders
can select the most favorable alternative.

Currently, we apply ARMOR, combined with an architecture-oriented RE
approach in a number of consultancy projects. These projects help to validate
and improve ARMOR and the associated approach. For example, through ap-
plying ARMOR in practice we evaluate the appropriateness and completeness
of our concepts and derive guidelines for goal decomposition and means-end
analysis. These can be captured in consistency rules and refinement patterns.
Consistency rules guarantee the correctness of the requirements model and
refinement patterns describe common goal refinements.

66

67

4

First Evaluation!

1This chapter is based on an article in the proceedings of the International Working
Conference on Requirements Engineering: Foundation for Software Quality [36]

68

4.1 Introduction

In large companies the gap between business and IT is usually bridged by
designing and maintaining a so-called enterprise architecture (EA), which is
a high-level representation of the enterprise, used for managing the relation
between business and IT. A full-scale EA consists of (i) an architecture of
the business, in terms of products, services and processes, (ii) an application
architecture in terms of of application components, functions and services, (iii)
an infrastructure architecture in terms of servers, mainframes, network, and
(iv) the relationships between these different architectures [115].

Enterprise architectures are typically modeled in larger organizations (say
starting from 500 employees) and are used to coordinate IT projects and to
manage the cost of IT. Increasingly, they are also used to increase flexibility of
the organization and to justify the contribution of IT to business goals. This
requires traceability of business goals to IT architecture (to quickly identify the
impact on IT of changes in business goals) and of IT architecture to business
goals (to justify the contribution of an IT component to a business goal). This
requires a goal-oriented addition to the current crop of EA modeling languages.

An important constraint is that we want the resulting language to be us-
able and useful for enterprise architects in practice. Usability means at least
tool support and understandability for the architects; utility means that the
resulting language and tool can indeed be used to realize traceability in prac-
tical cases. In this chapter, we evaluate the language defined in chapter 3
in terms of understandability and utility. Section 4.2 discusses the research
methodology. Section 4.3 summarizes the definition of ARMOR. Section 4.4
introduces the first case study and section 4.5 introduces an initial redesign.
This redesign is evaluated in section 4.6. We end this chapter with a discussion
of the results in section 4.7.

4.2 Research Methodology

We used a design research methodology in which we alternate over an engi-
neering cycle, where we design an artifact, and a research cycle, where we
investigate the properties of this artifact and of the problems it is intended
to solve [127]. Figure 4.1 shows that we executed the engineering cycle twice.
In the first iteration, we investigated the problem to be solved, designed a
method called ARMOR to treat the problem (section 4.3), supported by a tool
for editing and traceability analysis? and validated the artifact (section 4.4).

2http://www.bizzdesign.nl/download/downloads-trial-software

http://www.bizzdesign.nl/download/downloads-trial-software

69

. L Problem re-

Problem investigation: . N
Relation between EA and LRCEUIEE S in
B Which goals of

business objectives not

architects do we really
known

need to serve?

v ‘

Treatment design:

Extend EA method with Treatment redesign:
GORE techniques Simplify the extended
(ARMOR) method (light ARMOR)
- Y —— Validation 1: Y Validation 2:
Artifact validation: Architects use Redesign validation: Researcher
Usable? the extended Usable? uses simplified
Useful? method to Useful? method to help
Trade-offs? solve a real- Trade-offs? architects solve
Sensitivity? world problem Sensitivity? a real-world
| problem

Figure 4.1: Design research methodology of this chapter

In the second iteration, we stripped ARMOR to its essentials, called Light
ARMOR (section 4.5), and validated this lightweight version and supporting
tool (section 4.6).

ARMOR is an extension of an EA modeling language called ArchiMate
1.0 [73] with goal-oriented requirements engineering (GORE) techniques [29,
101]. We call this a treatment rather than a solution because it would be
simplistic to assume that any real-world problem can be totally solved, just
as it would be simplistic to assume that any medical problem could be totally
eliminated by a medicine.

ARMOR combined concepts from all well-known GORE languages, which
is why this research also provides insights into GORE concepts in general. To
validate ARMOR, we taught the method to enterprise architects of a large
governmental organization, who then used it to perform an EA design project.
This is a form of technical action research (TAR), in which an artifact is
validated by actually using it to solve a real-world problem. This TAR project
itself has the structure of an engineering cycle performed by the enterprise
architects (figure 4.2).

These insights from case study 1 led to an improved problem understanding
and in a second engineering cycle we simplified ARMOR in the light of the

70

Problgm Ll Treatment design: Design validation:
Business goals to be } ; P
; Design EA and link to EA justifiable?
achieved? > . N : > . .
. business objectives using Impact analysis possible?
Goals of architecture to be e
. Armor Trade-offs & sensitivity?
designed?

Figure 4.2: Structure of validations 1 and 2

lessons learned. Light ARMOR was then used by to design an EA for another
client, acting as consultant. This is validation 2 in figure 4.1. This is a second
TAR project, but this time with the researcher as actor, rather than the client
itself, as in validation 1.

The lessons learned from validation 2 were used to answer the researchers’
validation questions about Light ARMOR. These answers were then general-
ized to GORE concepts in general, when used in similar contexts (section 4.7).

4.3 Definition of ARMOR

Table 4.1 lists the major GORE concepts and shows how we have used them
in ARMOR. The following list summarizes the motivation for the construction
of ARMOR. More detail is provided elsewhere in chapter 3 and the original
articles [29, 101].

e Goals belong to stakeholders, and different stakeholders may have con-
flicting goals. This is important in practice but is left undefined in most
GORE languages, although the i* concept of intentional actor has some
similarity with our stakeholder concept. We have adopted the stake-
holder concept of TOGAF [115].

o« BMM, i* and KAOS all define a goal as an end (or desire or intention) of
a stakeholder but differ in defining this goal as a property of the system
or of its environment. We define goal as some end a stakeholder desires
to achieve and leave open what it is a property of.

o We follow i* in distinguishing hard and soft goals but make the require-
ment "clear satisfaction criteria" explicit by requiring measurability.

e Goal decomposition is in terms of conjunction of sub goals. It is called
“refinement” in KAOS. Tropos uses the concept of satisficing. i* and
BMM have rather vague definitions.

71

Table 4.1: Overview of GORE and ARMOR constructs

GORE construct

ARMOR construct

“Organizational actors are viewed as having
intentional properties such as goals, beliefs,
abilities, and commitments” i* [129].

A stakeholder is an individual, team, or
organization (or classes thereof) with in-
terests in, or concerns relative to, the out-
come of the architecture ARMOR [29].
adopted from TOGAF [115].

?Goals are desired system properties that
have been expressed by some stakeholder(s)”
KAOS [119]. ‘Goals are the intentions of a
stakeholder” i* [129].

A goal is some end that a stakeholder
wants to achieve [29].

“Hard Goals are the intentions of a stake-
holder” i* [129].

A hard goal is a goal with measurable in-
dicators [29].

“Soft Goals are goals without clear satisfaction
criteria” i* [129].

A soft goal is a goal without measurable
indicators [29].

“An element that is linked to its component
nodes” i* [129]. “An end that includes an
other end” BMM [16]. "The parent is satisfied
if all of the offspring are satisfied” Tropos [13].
“The conjunction of all the sub goals must
be a sufficient condition entailing the goal”
KAOS [119].

A goal can be decomposed into two or
more concrete sub-goals, such that the
goal is achieved if and only if all its sub-
goals are achieved.

“The contribution of a design on a qualitative
goal ..” KAOS [119]. “Link elements to a
soft goal to analyze its contribution” i* [129].
“Contribution analysis identifies goals that
can contribute positively or negatively in the
fulfillment of the goal to be analyzed..” Tro-
pos [13].

A goal G1 contributes to another goal G2
if satisfaction of G1 influences the satis-
faction of G2 positively or negatively [29].

“These links indicate a relationship between
an end, and a means for attaining it i* [129]”.
”Relationship linking a requirement to opera-
tions KAOS [119]".

A means-end relation relates a goal (the
end) to some artifact (the means) that
realizes the goal [29].

“Goals are conflicting if under some boundary
condition the goals cannot be achieved alto-
gether” KAOS [119]”.

A conflict relation exists between two
goals if under some boundary conditions
they cannot be achieved together [29].

“Goal assigned to an agent of the software be-
ing studied. KAOS [119]”. “A quantitative
statement of business need that must be met
by a particular architecture or work package”
TOGAF [115] .

A requirement is some end that must be
realized by a single component of the ar-
chitecture [29].

“Concerns are the key interests that are cru-
cially important to the stakeholders in the sys-
tem, and determine the acceptability of the
system” TOGAF [115].

A concern is some key interest that is cru-
cially important to certain stakeholders in
a system, and determines the acceptabil-
ity of the system [29].

“An Assessment is a judgment about some In-
fluencer that affects the organization’s abil-
ity to employ its Means or achieve its Ends
BMM [16]”.

An assessment is the outcome of the anal-
ysis of some concern [29].

72

e The contribution relation is defined most clearly in Tropos and is taken
to mean influence, positive or negative.

¢ The means-end relation is used in i* to identify tasks to realize goals and
in KAOS to identify operations to realize goals. In ARMOR we define
it as relating a goal (the end) to some artifact (the means) that realizes
the goal. This artifact can be anything, such as a goal, requirement or
an element from the architecture.

e Only KAOS defines the conflict relation. However we believe it to be so
different from the contribution relation that we include it, adopting the
KAOS definition.

o KAOS is also the only GORE language that explicitly defines the require-
ment concept. It is defined as a concrete goal that has been assigned to a
single actor. TOGAF defines requirement as a business need allocated to
an architecture. The ARMOR definition combines these two definitions.

e The concepts of concern and assessment are not part of GORE but of
the EA literature. We therefore included these concepts, taking our clues
from BMM and TOGAF.

ARMOR has a notation that extends the EA language ArchiMate 1.0 [73],
and tool support in the form of an editor. The editor supports the creation of
integrated goal models and EA models. The tool also provides functionality to
trace requirements to EA and vice versa. The resulting language served as an
input for the ArchiMate 2.0 specification process. The notation is described
and motivated elsewhere [29, 101] and does not concern us here.

Figure 4.3 shows the core part of ARMOR’s meta model. Cardinalities
are not shown so as not to clutter up the diagram, except the cardinality
from requirement to architecture component, which is many-one. The diagram
shows that stakeholders have concerns, that they assess in a certain way, which
leads to goals, that are hard or soft; hard goals can be requirements, and each
requirement is allocated to exactly one architecture component. Goals can
be decomposed, can have contribution and means-end relations, and they can
conflict. The complete meta-model of ARMOR has been described elsewhere
[29].

4.4 Case Study 1

To validate ARMOR we first wanted to test usability by enterprise architects.
The further question of utility can only be answered once we have a usable

73

Contribution Means-end

s N
[/\
| \
| \ /] Decom-

__ position
Stakeholder Concern Assessment Goal \\/
; 1
AT Requirement » Hard goal S0l el
component
Conflict\ /
\/

Figure 4.3: ARMOR’s meta-model The arrow represents specialization. Car-
dinalities are not shown in the figure.

language. However, we did want to know whether ARMOR misses potentially
useful constructs. We therefore identified the following research questions.

e Q1. What constructs of ARMOR do enterprise architects use in practice?
e Q2. Why (for which purpose) do they use these concepts and relations?
e Q3. Is this the intended use of the constructs?

e Q4. Which construct not in ARMOR are considered by architects useful
additions to ARMORY?

The only way to answer these questions is to have practicing enterprise
architects use ARMOR, and observe how they do it. Since ARMOR will not
be transferred to a practical context unless we do the transfer, we needed to
perform an action case study, where we first transferred knowledge of ARMOR
to a company and then observed ARMOR use.

4.4.1 Case description and research design

The case study took place at a large governmental organization in the Nether-
lands that we will call Organization 1. The organization is responsible for state
pensions and child support payments by the Dutch Government. The budget

74

available for these payments is around thirty billion euros, consisting entirely of
taxpayer money. The company employs around 3000 civil servants distributed
over several locations in the country. Relevant stakeholders include enterprise
architects and information analysts, who are looking for a technique that can
show the value of their designs to business stakeholders. Relevant stakeholders
also include information managers, who are looking for a technique that would
enable them to analyze the effect of changing organization goals on the EA.

Organization 1 contacted BiZZdesign if they could help with improving
traceability between the business objectives and the enterprise-architecture.
BiZZdesign offered to provide ARMOR with tool support, which the organi-
zation accepted.

We provided a one-day training on ARMOR to six enterprise architects
of Organization 1. The architects of Organization 1 then proceeded to create
ARMOR models of business goals and their links to the existing EA. They
did this on their own, by investigating business documents of Organization 1
and by conducting workshops. No help was provided. However, we visited
Organization 1 every two weeks to review the models made by the architects
and to provide advice. On those occasions we also made notes of discussions
among the architects.

To summarize, the treatment applied to the case consisted of (1) a one-day
training and (2) bi-weekly advice. Data collection took place by collecting
documents produced by the architects and by making notes during discussions
among architects. There was no possibility to collect observations by other
means, such as questionnaires or interviews, as the enterprise architects were
too busy for that.

4.4.2 Observations and explanations
We extracted the following observations from the data.

e The architects used the stakeholder concept as intended, to record the
existence of some entity that has a stake in the development of the or-
ganization. The (obvious) explanation is that the stakeholder concept
is widely known in businesses, and has a meaning well-captured by the
TOGAF definition that we adopted.

e The architects also used the goal concept as intended. This too is a
concept well-known in the practice and theory of business management.
However, they did not see why the distinction between soft goals and
hard goals would be relevant in their models. This is explained by their
way of working: The architects started out identifying relevant business

75

goals and then proceeded, later on in their work, to decompose these
into key performance indicators (KPIs). So initially, all goals are soft;
eventually, all goals are decomposed into hard goals. For example, the
soft goal to maintain quality of service was decomposed into the goals to
maintain timeliness of service requests and to maintain legality of service,
which are hard goals because measurement procedures were defined for
them: the maximum amount of time for a service request, and for every
decision a reference to the law on which the decision is based, must
be documented. They did not see the point of making this transition
explicit by using a different symbol for soft and hard goals.

The decomposition relation was used as intended: to refine a goal into
more concrete sub-goals, in such a way that achievement of the conjunc-
tion of the sub-goals implies the achievement of the higher level goal. For
example, the goal to decrease cost was decomposed into the sub-goals
to decrease cost of internal services, to decrease cost of external services
and to decrease cost of IT.

The contribution relation was used by the architects as intended, namely
to indicate that achievement of one goal influences the achievement of
another goal. For example, the goal to increase automatic service de-
livery contributed positively to the goal of decreasing cost of external
services.

The means-end relation is constrained in the ARMOR tool to be an influ-
ence relation from a system requirement to a goal. This was understood
by the architects and they used it in this way. But they did not under-
stand why a separate means-end relation was included to represent this,
where a contribution relation expresses in their view exactly the same
thing: Influence.

The conflict relation was not used by the architects in this case. The ar-
chitects explained that in this case there simply were no conflicts between
different stakeholder goals. In addition, they did not see any difference
between a conflict and a negative contribution.

In ARMOR, a requirement is a goal that must be achieved by a single
component of the architecture. This definition was not quite understood
by the architects, and they often formulated requirements that were not
goals of a single architecture component. An example of this is the
“requirement” that the use of marketing techniques must be improved.
This is a business goal, not a system requirement.

76

e The architects had difficulty understanding the difference between con-
cerns and goals. The intention of the concept is that it be used for areas
of concern for the stakeholder, such as sales, cost or profit. Instead, ar-
chitects in our case used it to denote stable goal-like statements, such
as the goal to achieve excellent service delivery, or to achieve a result-
oriented working environment. Even after explaining the difference in
one of our bi-weekly meetings, they kept using it the same way. An
explanation of this could be that the concern concept is too general to
be of use. What concerned the architects in our case was goals; so they
used it to express goal-related concerns.

e The architects found it difficult to understand the difference between
concern, goal and assessment. They sometimes used the assessment
concept to store the contextual reasons for having a goal. For example,
the goal of cost-reduction was annotated with an “assessment”, that is a
contextual reason, namely that the Dutch government faces the need for
large budget cuts due to the financial crisis and the aging population.

4.4.3 Answers to research questions

Q1 What constructs were used? All constructs except the conflict relation were
used by the architects in this case. The conflict relation was not used because
the architects stated that there were no conflicting goals in this case. There is
not much we can conclude from this: surely there are some cases where there
are no conflicting goals, and we believe this is one of them; but there are other
cases where there are conflicting goals. At the very least we can conclude that
the idea of conflicting goals (goals that cannot always be all satisfied at the
same time) was understood by the architects.

Q2 Why (for which purpose) do they use these concepts and relations?
Q3 Is this the intended use of the constructs? The constructs of stakeholder,
goal, decomposition and contribution were used as intended. The concept of
requirement was not used as intended, but rather was used as if it were the
same concept as that of a goal. That is, requirements were not always allocated
to one architecture component.

The means-end relationship was used as intended, namely as relation from
requirement to goal, because the tool did not allow any other use. The archi-
tects did not see a relevant difference with the contribution relation.

Finally, the concepts of concern and assessment were not understood by
the architects.

Q4 Which potentially useful constructs do architects miss in ARMOR? The

T

architects found it useful to express contextual reasons for a goal, and used
the assessment construct to do this.

4.4.4 Validity

Our observations may have been influenced by the fact that we were involved
with the definition of the language; this may have impacted the training pos-
itively (exceptionally inspiring explanations) or negatively (too much knowl-
edge taken for granted). It may also have motivated the architects to have
a socially desirable opinion about ARMOR. However, the architects had to
do a real-world project with limited resources and as they are paying for this
consultancy in money, and spending time on using ARMOR, they have no
reason to present their experiences more favorably.

Also, we may have let his desire to have a usable and useful language
influence his observations. This may have impacted the observations where
architects where observed to use the ARMOR constructs as intended, but
not the observations where the architects were observed to misunderstand
the constructs of ARMOR. We regard at least those latter observations as
credible. We also wish to emphasize that there was no ’golden standard’ for
determining if a concept was correctly used or not. The only standard we were
able to use were the working definitions of the concepts [29]. We determined
if a concept was correctly used or not. There was no budget available to hire
a second observer. However, the results and selected examples were discussed
with with the co-author of the original article and the authors of the language.
Since, we were involved in defining the definitions, we were also the most suited
in evaluating its use.

Finally, could we generalize from this case to other cases? Generalization
from case studies cannot use statistical inference but can use reasoning by
analogy [39, 111]. This means that we should explain our observations in terms
of some general characteristics of the case, and provide a plausible argument
that in cases with the same general characteristics, the same observations will
be made.

Our observations all relate to understandability, and this relates to the
cognitive competences of the enterprise architects in Organization 1. The ar-
chitects in Organization 1 had to be able to design and understand a enterprise
architecture for an organization of 3000 employees. Each of them had at least
2 years of experience as enterprise architect, and the organization operated
its EA process at a maturity level comparable with level 2 of the US Depart-
ment of Comments Architecture Capability Maturity Model. All of this may
explain why they used the constructs of stakeholder, goal, decomposition and

78

contribution as intended, and we expect that in other organizations, similar
to Organization 1 in the aspects just mentioned, architects will understand
and use these constructs as intended too. But we also expect that in many
of those organizations, the constructs of hard and soft goal, requirement (as
defined in ARMOR), concern and assessment will not be understood and be
used in a way not intended by the designers of ARMOR, that the means-end
relation will be considered superfluous and that negative contribution will not
be distinguished from conflicts. This generalization is a hypothesis that must
be validated in replications of this case study. We do not claim that it will be
found to be true for all future case studies. However we do expect to encounter
in the future cases similar to this one. This was a sufficiently strong reason
for us to redesign the language.

4.5 Redesign

Figure 4.4 shows the meta-model of a stripped down version of ARMOR that
we call Light ARMOR. We dropped the constructs of concern, assessment,
hard and soft goal and means-end from the language as these were not un-
derstood, or the relevance not understood, by the architects. To facilitate
recording contextual reasons for a goal (the construct missed by the architects
in Organization 1), the Goal construct was extended with a text attribute in
which this reason could be recorded in free text.

The construct of Contribution was replaced by that of Influence so that
we can avoid the locution “negative contribution”, which we ourselves find as
confusing as the concept of negative income. A goal G1 influences another goal
G2 if satisfaction of G1 has an effect on the satisfaction of G2. So influence is
a causal relation.

We did keep the notion of Conflict as the inability to satisfy two goals
simultaneously can be a case of causal prevention (“negative contribution”)
but it may also be a case of logical inconsistency, legal exclusion, ethical in-
compatibility, or plain monetary conflict (satisfying the goals jointly exceeds
the budget). The concept of conflict is complex and awaits future exploration;
but we find it too important to drop from the language just because it has not
been used in one case.

Finally, requirements are a special case of goals, just as before, but we
dropped the idea that we require a separate modeling concept for it. A re-
quirement is just a goal assigned to a component of the architecture.

79

Conflict
Influence N

Architecture

Stakeholder | Goal 4| Requirement
component

Figure 4.4: Meta-model of Light ARMOR

4.6 Case study 2

In addition to learning about the understandability of Light ARMOR, we
would now like to learn about the utility of the language. Did our drastic
reduction in the number of constructs impact the ability of enterprise architects
to use the language (and supporting tool) to trace business goals to architecture
components and vice versa?

The best way to find an answer to this question is to have enterprise archi-
tects use Light ARMOR to model the goals of an enterprise architecture, and
then actually let them do the backward and forward tracing. This turned out
not to be possible on short notice, and so we chose another form of action re-
search, namely one in which the researchers themselves use their technique to
solve a customer problem. In case study 2, we used Light ARMOR to solve an
organizational problem following the engineering cycle of figure 4.2 and then
used this experience to answer some validation questions about the design of
Light ARMOR (figure 4.1). The research questions of case study 2 are, then:

e Q1 Is Light ARMOR understandable to architects?

e Q2 Can Light ARMOR be used to trace back and forth between business
goals and enterprise architecture components?

4.6.1 Case description and research design

The case company, called Organization 2 henceforth, is at a drinking water
production facility in the Netherlands. The company is responsible for the
production and delivery of fresh drinking water to 1.2 million people and trans-

80

ports 73 billion liters of drinking water each year. It has about 500 employees
divided over three divisions, viz. Production, Sales and Environment.

Enterprise-architects and information analysts in Organization 2 are facing
rapid change and shrinking budgets and are looking for a technique that will
enable them to assess the impact of changing business goals (forward tracing)
and to determine the value of the architecture (backward tracing). We were
given the opportunity to use Light ARMOR to link business goals to their
current enterprise architecture model in a no-fee small consultancy project.
This would allow them to see if they would want to use this technique in the
future, and gave us the opportunity to perform a first test of Light ARMOR.

We planned and performed the following interactions with Organization 2.
The first author interviewed the architect responsible for the EA of Organi-
zation 1, and studied primary documents documenting the EA and business
goals. He designed a Light ARMOR model of the links with the two, and
then interviewed the enterprise architect a second time, asking her, without
providing training in Light ARMOR, (1) to explain the Light ARMOR model
and (2) to assess whether she could use this model to solve her traceability
problem. This provided the enterprise architect with sufficient information to
conclude her problem solving cycle (figure 4.2) and provided the researcher
with information to find initial answers to his validation questions (validation
2 in figure 4.1). The researcher kept a diary of his own modeling process and
made a transcript of the interview to be able to answer his own research ques-
tions. We emphasize that in this case we interacted with only one enterprise
architect of the organization.

4.6.2 Observations and explanations

e The major observation recorded in the researcher’s diary is that it was
often difficult to identify the stakeholders responsible for the goals from
the primary documents or from the first interview with the enterprise
architect. There are several possible explanations of this, such as that
there is so much agreement about goals in Organization 2 that there is
no need to record the goal owner; or that there is so much disagreement
among the stakeholders that it is too dangerous to record a goal owner.

e The influence relation in this case is truly a causal relationship; includ-
ing it in a model is an empirical statement that must be true about the
world. For example, the goal to perform water filtering influences the
goal to achieve clean drinking water. A second example is that the goal
to achieve lower operating cost is influenced by the goal to achieve eco-

81

nomics of scale with collaborative buying. Like all empirical statements,
these influence statements could turn out to be falsified by events in the
real world.

e The decomposition relation by contrast is not empirical, but definition.
It was used to create a definition of a term that the stakeholders agreed
on. It only expresses an agreement between those stakeholders and not
necessarily between other stakeholders. For example, the goal to achieve
excellent drinking water quality was decomposed into the goals of suffi-
cient pressure, safe drinking water, odorless drinking water and visually
clean drinking water. This is a definition that turns a soft goal into a
hard goal.

o The architect judged that Light ARMOR could be used to link business
goals to architecture components to realize forward traceability (assess-
ing impact of goal change) and backward traceability (justifying an ar-
chitecture component). She suggested that this would also be useful to
link project goals to business goals, providing a way to scope projects.

e In the opinion of the architect, the conflict relation would be useful in
the assessment of project risks. This would however also require a way
to document the resolution of these risks. For example, record that one
of the goals was dropped or that an other way was found to resolve the
conflict.

e To test understandability of Light ARMOR we asked the architect to
explain the model to us. The architect did not have prior training on
GORE or Light ARMOR, but she could readily identify what the models
meant.

4.6.3 Answers to research questions

The last observation provides support for the claim that Light ARMOR is
understandable for practicing enterprise architects, which answers Q1 for this
case.

The positive opinion of the architect about forward and backward traceabil-
ity provides support for the claim of utility of Light ARMOR, answering Q2.
In addition to the use for (1) estimating impact of change and (2) justifying
the presence of an architecture component, the enterprise architect suggested
using the model for (3) setting project goals and (4) documenting project risks
and their mitigation. We will include these possible uses of Light ARMOR in
our future research.

82

4.6.4 Validity

The major threat to internal validity is that the architect answered our ques-
tions in a socially desirable way. There is in this case nothing we can do to
mitigate these risks, but in this case too we note that Organization 2 is looking
for a way to exercise tighter control over its enterprise architecture in order
to respond to changes in goals and a decreasing budget, and, doing so, has
little reason to please the researchers. A negative response of the architect
would have been really informative (and disastrous for the designers of Light
ARMOR); the positive response that we actually received is less informative
but is still encouraging.

The observations in this case make it plausible that if we were to repeat such
a project in a similar organization (similar size, maturity of EA, experience of
enterprise architect, dynamics of changing goals and shrinking budgets), we
are likely to get similar results (positive opinion of the architect). This is a
hypothesis to be tested in future case studies.

4.7 Lessons learned

We found that GORE concepts such as means-end relations and the distinction
between hard and soft goals could not be used in our two case studies; and the
concepts of concern and assessment taken from BMM and TOGAF could not
be used either in our two cases. Also, the idea that a requirement exists, next
to a goal, as a separate modeling concept puzzled the practitioners in case 1.
They had difficulty distinguishing between the two.

Stripping these elements away and including the results from case study 2,
we conclude that our case studies provide support to the claim that the GORE
concepts of stakeholder, goal, decomposition, influence and conflict are usable
in practice and potentially useful for the practitioner. The particular syntax
of the language that we used in our case studies did not play a role in these
evaluations.

A third lesson we draw from these two case studies is that a stripped down
language adding only these elements to an EA language can be useful for
maintaining traceability between business goals and enterprise architecture.

A fourth and final lesson is that the conflict relation can be confused with
the negative contribution relation, but still can be useful to keep because it
allows representing project risks and their mitigation. Risk in this case is
limited to that the goals of the stakeholders are in conflict with each-other
and if this conflict is not resolved, the project has no chance of succeeding. In

ARMOR the resolving of an obstacle is modeled through an assessment.

83

84

85

5

Second Evaluation!

1This chapter is based on an article in the proceedings of the International Conference
on Advanced Information Systems Engineering[30]

86

5.1 Introduction

In chapter 3 we have defined an initial version of a goal-modeling exten-
sion to ArchiMate, called ARMOR. The context of our work is the Archi-
Mate language for enterprise architecture modeling [114]. ARMOR has been
adopted in The Open Group standard for enterprise architecture modeling
ArchiMate [114] as the motivation extension, through a standardization pro-
cess we had no control over.

In chapter 4 we have provided an initial empirical validation of the usabil-
ity and understandability of ARMOR, the language that was used as input to
specify this official extension [36]. This validation showed that some users of
the language experienced difficulty in understanding the extension to Archi-
Mate, and we proposed a simplification of the goal-oriented extension.

We present and analyze further data about understandability of goal-
oriented concepts by enterprise architects, and we present explanations of
the understandability issues. We present tentative generalizations about goal-
oriented concepts in the context of enterprise architecture. We believe that
the population of enterprise architects have no difficulty in using the stake-
holder, goal and requirement concept. Regarding the relations, the influence
relation is the best understood relation. These findings should also be true for
the languages we based the motivation extension of ArchiMate on, namely i*,
Tropos, KAOS and GBRAM.

We start with listing the research questions in section 5.2. Next we describe
our research methodology in section 5.3. We detail our conceptual framework
in section 5.4. Section 5.5 presents our data and analyzes the implications of
these data for goal-oriented requirements concepts. In section 5.6 we provide
answers to our research questions. In section 5.7 we discuss some implications
for practice and for further research.

5.2 Research problem

We want to know how understandable the goal-oriented requirements extension
to an enterprise architecture language is for practicing enterprise architects.
So our population of interest is the population of enterprise architects, and
in our research we investigate a small sample of them, and we investigate the
understandability of the goal-oriented extension of the ArchiMate language.
At the end of the chapter we discuss the generalizability of our results to the
larger population of interest. Here we state our research questions:

87

Q1: How understandable is the motivation extension of ArchiMate by enter-
prise architects?

Q2: Which concepts are understood correctly? Why?
Q3: Which concepts are not understood? Why?
Q4: What kind of mistakes are made? Why?

We will define the concept of understandability, used in Q1, as the percentage
of language users who understand the concept correctly. Q2 and Q3 ask which
concepts are understood by all users or misunderstood by at least some users,
respectively. For the concepts that are misunderstood, Q4 asks what kinds of
mistakes are made. In all cases, we want to know not only an answer to the
journalistic question what is the case, but also the research question why it is
the case.

5.3 Research methodology

In terms of design research methodology, our empirical study is an evaluation
of a technology implemented in practice, namely ArchiMate[125]. However,
ArchiMate 2.0 had only recently been implemented at the time of the case
studies and although it was used, it had not been used long enough on a large
scale to make an evaluation by survey possible. Moreover, although surveys
may reveal large-scale trends, they are inadequate at providing the detailed
data about understandability that we need.

Our data comes from two groups of practitioners who followed a course
on ArchiMate (in total two courses). Their homework provided the material
we needed to assess understandability of goal-oriented concepts to enterprise
architects, and to answer our research question above. The first group had
7 participants, and the second group had 12 participants. Their homework
was an exercise based on an actual problem within their organization. These
were real requirements engineering or EA design problems and therefore a fair
representation of the difficulty level.

The participants of the two groups self-selected into the course, and so
they may be more motivated or more talented than the “average” enterprise
architect. They were also highly motivated to pass the course, since they
were sent by their employer. They had to pass their homework exercises in
order to get a certificate. Not passing the exam would have reflected badly on
the subject and weakened their position in the organization.This would make
understandability problems all the more telling.

88

All participants had at least 5 years of experience as an enterprise architect
(or a similar role) and all had at least a bachelors degree (not necessarily in
computer science or software engineering). The median experience is based
on the linkedin profiles of the subjects. They have had some modeling experi-
ence, since this is common in their role of architect or business analyst. Since
we did not do random sampling, and the groups are too small for statistical
inference anyway, we cannot draw any statistical inferences from our results.
We can only give descriptive statistics of our sample, but not draw statistical
conclusions about the population of enterprise architects.

A controlled experiment would have given us more flexibility, but this is
beyond our budget to do such an experiment with practitioners (i.e., we would
have to pay them commercial fees).

However, because we have detailed data from the homework done by the
participants, we will analyze possible causes for (mis)understanding goal-oriented
concepts in ArchiMate, and then consider whether these explanations provide
a reason for expecting (mis)understanding of goal-oriented concepts to occur
outside our sample in a similar way that it happened in our sample. We will
also compare our results with those in the published literature to see if results
similar to ours have been found in other studies too, which would strengthen
the plausibility of generalizations.

The assignments were relatively small compared to real-world enterprise
architecture concepts. That reduces the generalizability of our results, but in
a useful direction: we expect that in larger, real-world projects, understand-
ability problems would increase, not decrease compared to what we have ob-
served in our courses. This is useful because our findings provide suggestions
for improvement of teaching and using goal-oriented concepts in enterprise
architecture in practice.

Correction was done twice, and we assume that few mistakes in correcting
the assignments have been made. A sample of the corrections of the stu-
dent exercises have been discussed between the two authors (Engelsman and
Wieringa) of the original paper where this chapter is based on, and no mistakes
were found [30]. However, later we will see that even if we would increase or
decrease the percentages (in)correct in the gradings with as much as 10 points,
this would not change our explanations and qualitative generalizations.

5.4 Defining understandability

Many authors operationalize understandability in terms of the time needed to
understand a model [50, 22] or the number of mistakes made in answers to

89

questions about a model [61, 100, 91, 110]. Houy et al. [53] surveyed these
definitions of model understandability and classified them in five types:

o Recalling model content. Subjects are given a model, and are given time
to study the model. Afterwards they have to recall how the model looked
like.

e Correctly answering question about model content. Subjects are given
a model and are given time to study the model. Afterwards they are
presented with a questionnaire and have to answer questions about the
information in the model (e.g. the constructs used in a model).

e Problem solving based on the model content. Subjects are given a model
to analyze, and are asked to solve problems (answer questions) based on
this model. For example, if the model were a route for a bus, they were
asked questions about the route of the bus.

e Verification of model content. Subjects are given a model and a textual
description. They have to answer questions regarding the correctness of
the model content based on the problem description.

e Time needed to understand the model. Subjects are given a model to
study. The time needed to answer questions about the model is mea-
sured.

Another interesting approach to measuring understandability, not mentioned
by Houy et al., is that of Caire et al. [19], who measured the ability of subjects
to guess the definition of an i* construct by looking at the icons.

All of these measures indicate a passive form of understanding because they
concern the understanding of a given model. We are however interested in a
more active kind of understanding of a modeling language, this is needed when
an analyst uses the language to build models. Such an active concept of under-
standing is used by, for example, Carvallo & Franch [20] and by Matulevicius
& Heymans [79], who measured the number of mistakes made in constructing
i* models, and by Abrahao et al., who measured the time needed to build a
model [2].

We define the understandability of a concept for a set of language users
in this chapter as the percentage of language users who, whenever they use
the concept when building a model, use it correctly. Understandability is thus
relative to a set of language users. In this chapter we measure the understand-
ability of goal-oriented concepts in ArchiMate 2.0 in a sample of 19 language
users. From our observations, we draw conclusions about understandability of

90

the GORE concepts of ArchiMate, and of goal-oriented concepts in general,
for enterprise architects.

5.5 Data analysis

Table 5.1: Understandability of goal-oriented concepts in ArchiMate by a sam-
ple of 19 practitioners. Row 4 column j shows the percentage of times that
practitioner ¢ used concept j correctly.

Practitioner 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | 17 18 19 | avg
Stakeholder 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

Driver 66,6 | 100 | 100 | 100 | 77 | ma | 69 | 50 | 38 | 100 | 55 | 100 | 100 | 100 | 69 | 33 | 100 | 85 | 100 | 47
Assessment 25 | 83 | 100 | 44 | 100 | na | 13 | 50 | 100 | 100 | 100 | 71 | 100 | 100 | 83 | 90 | 100 | 97 | 100 | 47
Goal 94 82 | 100 | 95 | 100 | 92 | 98 | 100 | 100 | 50 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 68

Requirement | 100 | 100 | 100 | 75 | 100 | na | 100 [100 | 0 80 [100 | 91 | 62 | 100 | 100 | 100 [100 | 95 | 85 | 57
Decomposition 0 na | na | 100 | 100 | 83 | 24 | na | 62 | na | 100 | 100 | 100 | 50 | na | na | 79 | 57 15 | 26
Influence 100 | 50 | na | 100 | 100 | 100 | 100 | na | 100 | na | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 79
Realization 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

Table 5.1 summarizes the scores that the 19 enterprise architects received
on their homework. The numbers are the percentage of correctly used concepts
by each subject. When a subject did not use a concept at all, the corresponding
cell contains “na”. Subject 1-7 are the subjects from 2011 and subject 8 - 19
are the subjects from 2012. The avg column shows the percentage of users
that always uses the concept correctly. Looking at this column we see that
only four concepts were used correctly by at least half of the subjects: the
concepts of stakeholder, goal, requirement and influence. We now discuss our
findings in detail.

5.5.1 Description of model complexity

In total the 19 subjects constructed 246 diagrams and on average the models
contained 9 concepts. However, complexity of the models varied. Some dia-
grams contained as little as 2 concepts, and others contained 35 concepts. Not
every diagram contained every concept. This is because ArchiMate uses views
to reduce model complexity. There are roughly three kind of views. The first
is a stakeholder view, showing the stakeholders, drivers, assessment and initial
goals. The second is a goal refinement view showing the modeling of goals, goal
influence, goal decomposition and goal realization through requirements. The
third view shows the realization of requirements by architecture components.
Figure 5.1 shows the frequency with which different concepts were used. The
most frequently used concepts are those of goal, stakeholder and assessment.

91

800
700
600
500
400

300 -
- .
& & & &

X > X
. QO a N
NN f—,@z & e@e o‘;\o x\oé\ <>
S &
& N & A ¢
\e ¢ Q <&
<& &

<
F
O
&
NG
>
&

Figure 5.1: Frequency of use of goal-oriented concepts in 246 EA models

5.5.2 Analysis of GORE concepts and relations in Archi-
Mate

Stakeholder The first concept under analysis is the stakeholder concept.
This concept is based on definitions from TOGAF, i* and Tropos. TOGAF
defines a stakeholder as an individual, team, or organization (or classes thereof)
with interests in, or concerns relative to, the outcome of the architecture [115].
This seems more general than the definition of actor in i* and Tropos as entities
with intentional properties such as goals, beliefs, abilities, and commitments
[129]. The motivation extension of ArchiMate adopted the more general defi-
nition of TOGAF [29, 73].

In our experiments the stakeholder concept was perfectly understood by
every student. There was not a single mistake made in all instances of use.
This can be explained by the fact that the TOGAF stakeholder concept is a
well known concept by the subjects. Its definition is very clear, and it is sub-
stantially different than the other concepts used in the motivation extension,
so that it is not easy to confuse the stakeholder concept with any other con-
cept. For these reasons we think this finding will generalize to other ArchiMate
users too. To the extent that the concept of actor in i* and Tropos coincides
with that of TOGAF stakeholder, we expect that users of i* and Tropos will
find the actor concept unproblematic too, and to be able to use it without
mistakes.

Driver The driver concept is not found in the GORE literature, but used in
the EA literature. TOGAF defines driver as the key interests that are crucially

92

important to the stakeholders in the system, and determines the acceptability
of the system [115]. The motivation extension of ArchiMate adopted this
definition[29, 73]. In our experiments only nine subjects (47%) understood
the driver concept correctly. The most common mistake made with driver was
that it was used as a goal. For example, subjects modeled the goal 'to improve
Financial Information’ as a driver. But the driver corresponding to this goal is
the key interest 'Financial Information’. Apparently the definition of driver is
not very clear, and it is so close to the concept of a goal that it generates more
confusion than clarity. We see no reason why this would not confuse other
practicing enterprise architects, so we think that this finding will generalize to
other ArchiMate 2.0 users as well.

Assessment The concept of an assessment too is based on definitions found
in the EA literature. The Business Motivation Model (BMM) defines an as-
sessment as a judgment about some influencer that affects the organization’s
ability to employ its means or achieve its end [16]. The motivation extension
of ArchiMate attempted to make this more concrete by defining an assessment
as the outcome of the analysis of some driver [29, 73]. In our experiments
nine subjects used the concept perfectly. The most common mistake was that
the assessment concept was used as a goal. For example, correct use of an
assessment would be ’the financial information is incorrect’. This is a possible
outcome of an analysis of the key stakeholder interest ‘financial information’.
However the subjects used the concept often to denote a goal like 'improve
financial information’, just as we saw with the driver concept above. The dis-
tinctions between a key interest, an analysis of a key interest, the outcome of
the analysis, and the goal motivated by this outcome, were lost on most of our
subjects. Moreover, the outcome of an analysis of a key interest can indeed
be to ’improve something’. For these reasons we think this confusion will be
present in other enterprise architects who use ArchiMate, as well as in users
of the assessment concept in BMM.

Goal The ArchiMate definition of goal is based on a combination of the EA
literature and the GORE literature. KAOS defines goals as desired system
properties that have been expressed by some stakeholder(s)[119]. This seems
more technical and solution oriented than the i* and Tropos concepts of a
goal as the intentions of a stakeholder i*[129]. BMM defines goal as a state
or condition of the enterprise to be brought about or sustained through ap-
propriate means BMM][16]. ArchiMate defines goal as some desired end that
a stakeholder wants to achieve[29, 73]. In our experiments 13 subjects under-

93

stood the goal concept perfectly. The most common mistakes made were that
a goal was either used as a driver or as a requirement. For example, the sub-
jects would write down 'financial information’ as a goal, but it should actually
be something like ’improve financial information’. When it was used as a re-
quirement, it was written down as ’the system should have 100% availability’.
We can reuse our explanation that the distinction between driver, goal and
requirement were lost by the subject in that instance. The concept of goal
can therefore be understood and used by practicing enterprise architects, but
mistakes are made too. Since the ArchiMate concept of a goal is similar to
that in KAOS, i* Tropos and the BMM we expect that this will happen in
users of those languages too. This calls for clearer guidelines in the application
of the goal concept.

Requirement We based our definition of the requirements concept on the
GORE literature. In KAOS a requirement is a goal assigned to an agent of the
software being studied [119]. In GBRAM a requirement specifies how a goal
should be accomplished by a proposed system [7]. The ArchiMate motivation
extension defines requirement as some end that must be realized by a single
component of the architecture [114]. In our experiments in total 11 subjects
(57%) perfectly understood the concept. In general the requirement concept
was reasonably well understood. This can be explained by the fact that it is
a well known concept already known in practice by the subjects.

However, there were quite a large number of mistakes. Many subjects
specified requirements that were goals not yet allocated to a system. For ex-
ample, instead of the ’the system should have a financial reports function’,
they specified the goal 'improve financial reports’. We see again that semanti-
cally close concepts are confused by practitioners, even though the definitions
of the concepts are clear. We expect this confusion to be present in other users
of ArchiMate as well.

The decomposition relation ArchiMate 2.0 based this relation on a com-
bination of concepts from the EA and GORE literature. i* defines a decompo-
sition as an element that is linked to its component nodes. [129]. BMM uses a
similar definition, but it is more aimed at goals. BMM defines decomposition
as an end that includes an other end BMM [16]. In Tropos, a parent goal is
satisfied if all of its children goals are satisfied[13]. In KAOS the conjunction of
all the sub-goals must be a sufficient condition entailing the goal KAOS [119].

The motivation extension of ArchiMate defines decomposition as a some
intention that is divided into multiple intentions.[73]. This was understood

94

correctly by only five subjects (26%). When the decomposition relation was
used incorrectly, it was used as a influence relation, which in ArchiMate is
defined as a contribution relation. For example, correct decomposition of the
goal 'improve correctness financial information’ should be 'improve correctness
financial information regarding outstanding debt and improve correctness fi-
nancial information sales’. This decomposes a goal into more detailed goals.
However, many subjects decomposed the goal 'improve correctness financial
information’ into the component goal ’acquire a financial reports system that
records sales information’. But this is an influencer, i.e. a new goal that con-
tributes to the original goal. The confusion is probably caused by the fact
that satisfaction of an influencer increases the satisfaction of the influenced
goal, just as satisfaction of the components increases the satisfaction of the
composite goal. Based on this analysis we expect other users of ArchiMate to
have similar problems.

The influence relation In i* a contribution is a link of elements to a soft
goal to analyze its contribution[129]. Tropos defines contribution analysis as
goals that can contribute positively or negatively in the fulfillment of the goal
to be analyzed [13]. ArchiMate defines this as a goal G1 contributes to an-
other goal G2 if satisfaction of G1 influences the satisfaction of G2 positively
or negatively [29, 73]. The influence relation was understood correctly by 15
subjects (79%). In the cases were the relation was not used correctly, the
subjects linked requirements with goals on a 1 on 1 basis, which amounted to
stated the same goal twice. Others used a standard ArchiMate association re-
lation where they should have used an influence relation. To further reduce the
misunderstandings of the influence relation, better guidelines must be found.

The realization relation This relation is based on relations found in the
GORE literature. i* defines a means-end relation, which is a relation between
an end and a means [129]. KAOS defines a relation for linking requirements
to operations [119]. The ArchiMate motivation extension defines the realiza-
tion relation as a relation that some end that is realized by some means [29,
73]. All subjects used the realization relation correctly. This can be easily ex-
plained by the fact that the support tool only allows connecting a requirement
to a goal and an architecture element to a requirement so that the relation
cannot be used incorrectly. 100% correct use therefore has no implication for
(mis)understanding of the concept by tool users.

95

5.5.3 Sample model created by a subject

We have provided an example model with the types of mistakes a subject
made in figure 5.2. In this example we have stakeholder X. The stakeholder
was modeled correctly. The subject identified two drivers. The first to prevent
incorrect usage of the videos and to redesign the operational activities in a lean
model. These two drivers are stated as a desired state, and therefore should
be a goal. Second, we have two assessments prevent reputation damage and
to facilitate employees in their work. These two should have been modeled
as a goal, as they are desired states. Finally, the subject identified a goal
independent employees. This is stated how a driver should have been stated.

Stakeholder X O

R A B

Prevent @ | Redesign @ |

Incorrect Usage operational
of the videos activities in a
lean manner

B e

Prevent 0O Facilitate the O
rzputatlon employees in
amage their work

S R

Independent @
employees

Figure 5.2: example goal model created by a subject during the assignments.
This model has been redrawn in the latest version of ArchiMate.

96

5.6 Answers to research questions

Q1: How understandable is the motivation extension of ArchiMate by enter-
prise architects? As shown by the last column of table 5.1, not all of the
motivation extension is understood very clearly.

Q2: Which concepts are understood correctly? Why? Only the stakeholder,
goal, requirement concepts and the influence relation were understood by the
majority (scoring more than 55%). However the requirement concept was a
borderline case where a lot of mistakes were made. Our explanation of this level
of understanding is that they are well known concepts already used in practice,
and that they have a semantic distance that prevents confusion. However, the
distance between requirement and goal is smaller than the other concepts and
immediately we saw an a drop in understandability.

Q3: Which concepts are not understood? Why? The concepts of driver,
assessment and decomposition were not very well understood. They were
often confused with other concepts, such as that of a goal. Our explanation
is that drivers, assessments and goals are very closely related and may even
overlap, and that the definition of the decomposition relation overlaps with
the definition of the influence relation.

Q4: What kind of mistakes are made? Why? The subjects made two
types of mistakes. Drivers and assessments were modeled as goals. A driver
is related to a stakeholder and an interest area of the stakeholder. A goal is
a statement of desire about this interest area. This makes goals and drivers
conceptually very close and created confusion in our subjects.

The same is true for the assessment concept. An assessment is the outcome
of some analysis. It is not defined what this outcome should be. It can very
well be a goal or something else, which is confusing again. The use of the
requirement concept to model a goal is similar. Because both concepts are
closely related, the difference between desired functionality from the viewpoint
of a stakeholder is very much similar to the stated functional need of a system.
The only difference is the perspective.

The second type of mistake is that an influence relation was expressed by
means of a decomposition relation. Again, the definitions turn out to be too
close to each other for many of our subjects.

97

5.7 Discussion

5.7.1 Generalizability

To which extent are our results generalizable beyond our sample of practition-
ers? In our experiments every subject had at least five years experience, the
minimal of a bachelors degree. Enterprise architects usually have the same
educational background as our subjects. Our subjects were responsible for
translating business strategy and business goals into requirements models and
they had to design an enterprise architecture based on these requirements.
This is similar to the tasks enterprise architects have to perform in general.

Moreover, the results from this study match with our previous research. In
our previous work [36] we reported about a real-world project in which practic-
ing enterprise architects used ArchiMate to redefine an enterprise architecture
and link it to changed business objectives. They used the stakeholder and goal
concepts as intended. They had some trouble understanding the requirement
concept and often formulated requirements as if they were business goals. We
also saw that the subjects had a difficult time to see the difference between
goals and drivers. The driver concept was too general to use for the subjects.
The same was true for the distinction between driver, goal and assessment.
Those finding and their explanations agree with the ones reported about this
in chapter 4.

All of this justifies the claim that other enterprise architects may under-
stand and misunderstand goal-oriented ArchiMate concepts in the same way
as our subjects did. This is a weak generalization, as it says “this can happen
more often” without giving any quantification how often it could happen [43].
But such a quantification is not needed to draw some implications for practice,
as we do below.

Because the goal-oriented concepts that we used have been taken from
other existing goal-oriented languages, we hypothesize that our conclusions
may be generalized to those languages too. Again, we cannot quantify this
beyond the weak claim that this may happen in those languages too. But
we do claim that our findings are sufficiently generalizable to motivate similar
research for those languages.

5.7.2 Validity

Construct validity is the extent to which theoretical constructs are applied and
measured correctly in our study. The only theoretical construct that we use
is that of understandability, and we defined it in section 5.4. Our definition

98

agrees with that used by other authors [20, 79] but with that of all other
authors. Our definition refers to the number of mistakes made when building
models, and not the the amount of time (indicator of effort) required to build
the models. Other definitions refer to the number of mistakes or the amount of
time needed to answer questions about the models. Comparison of our results
with that of studies that use another definition of understandability should be
done with caution.

Internal validity is the support for our causal explanations of the phe-
nomena. Could subjects have misunderstood some concepts for other reasons
than the ones we hypothesize? For example because they lack competence
or because they were explained badly in the training? We cannot exclude
these other explanations, but find them less plausible because all subjects had
similar background and experience, and because the teachers similarly have
several years of experience teaching these concepts. and even if these expla-
nations were true for some subjects, this would not invalidate our explanation
in terms of semantic closeness of concepts.

External validity is the support for generalization from our quasi-experiment.
Because our explanations do not refer to particular properties of our sample
but are stated in terms of the language itself, and because other practitioners
are relevantly similar in background and experience to those in our sample,
we think our conclusions are generalizable. But we do not claim that they are
generalizable to the entire population of practicing enterprise architects, nor
to all other goal-oriented languages.

5.7.3 Implications for practice

ArchiMate 2.0 is now an Open Group standard, and the concepts we inves-
tigated in this chapter will remain present in the language. However, one
practical implication of this chapter is that in future training programs we
will not teach all concepts anymore. We will make a distinction between the
recommended minimal concepts and less important concepts. We will recom-
mend that future users of the language at least should use the stakeholder
concept, the goal concept and the requirement concepts.

A second implication is that we need more practically usable guidelines for
the use of the concepts that we do recommend, because other than the goal and
realization concepts, we expect that many practitioners will misunderstand
and incorrectly apply the basic concepts of goal and requirement and the
relations of influence and decomposition. This is a topic for future research.

6

Literature Review:
Understandability of
GORE

99

100

6.1 Introduction

Goal-oriented requirements engineering (GORE) modeling languages have been
around for over twenty years [23, 130]. However, transfer to practice so far
has been very limited [79]. The leading notations are KAOS and i*. Previ-
ous research showed that these GORE languages are very rich in notational
concepts and therefore possibly difficult to understand.

In our research (chapters 4 and 5) we experienced a similar issue [36, 30].
Earlier, we defined the ARMOR goal modeling language (chapter 3), which
contains the major constructs from other goal-oriented requirements engineer-
ing languages [29]. ARMOR has been included in the Open Group enterprise
architecture modeling language ArchiMate and is currently used in the practice
of enterprise architecture modeling [115].

In order to improve ARMOR, and to improve our teaching methods of goal-
oriented concepts to practitioners, we need to better understand the cause(s) of
these understandability problems. Hence, we want to know which explanations
and explanatory theories can be found in empirical evaluation studies of GORE
languages. In this chapter we summarize what is known about this from the
literature.

During this research we found out that there is little known about GORE
understandability. There are only a few empirical evaluations of GORE and
none of them provide the theoretical explanations we seek. Therefore we ex-
tended our research to include evaluations of UML regarding understandabil-
ity, in the hope that results from that neighboring field will be relevant for the
empirical study of GORE languages as well. It is not our goal to identify all
the evaluations of all languages, but to find sufficient explanations to improve
our experiments and teachings.

We first state our research problem more precisely in section 6.2. Next,
in section 6.3 we describe our research methodology. Section 6.4 provides an
overview and an analysis of our results. Section 6.5 summarizes our answers,
discusses validity, and lists some lessons learned from this research. We provide
a detailed listing of the results in section 6.6.

6.2 Research Problem

We start with a conceptual framework for evaluating understandability. Un-
derstandability has been long investigated in the science of user interface de-
sign, where it is part of usability. The different indicators for understandability
used in the literature turn out to be indicators of usability, and we therefore

101

———— Number of errors Effectiveness
Understanda made in using the (accuracy and
bility notation to produce completeness of
aresult achieving a result)
Ability to perform \
Ease of X
| . basic tasks after the
earning)
first encounter
Usability Ease of Ability to use a.fter a Efficiency
remember- | prolonged period of > (Resources used to
ing time not using achieve the result)
Task Time required to
efficiency perform a task —
Usefulness —
p ived Obini b Satisfaction
erce}\(e p|n|onbz? out with performing the
usability usability task

Fitness for purpose
Utility (The task and its result
contribute to a user goal)

Figure 6.1: The conceptual framework.

use a conceptual framework that we borrow from usability studies. Lauesen
[74] summarizes the framework for usefulness shown in figure 6.1.

Effectiveness is the accuracy and completeness of achieving a result with
the notation; this is explained further below. Efficiency is the amount of
resources used to achieve a result, which is usually decomposed into ease of
learning, ease of remembering, and time to produce the result. Satisfaction is
the opinion of the user about usability.

In this framework, understandability of a notation is effectiveness of the
notation, which is the accuracy and completeness of achieving a result with
the notation. Houy et al [53] identified six different ways to operationalize
this.

e recalling model content. This is tested by giving a subject a certain
amount of time to study a model and then asking the subject questions
about which elements are in the model, measured with a correctness
percentage.

e questions about model content and the percentage correct answers is
taken to indicate understandability.

102

subjects are asked to solve problems using the model (e.g. to determine
the route of a bus), and the percentage correct answers is measured.

subjects are asked to verify whether certain parts of the model are a
correct representation of the problem domain. Measurement is again by
correctness percentage.

the time needed to complete a certain task is taken as indicator. In the
framework of figure 6.1, this is actually task efficiency and not under-
standability.

perceived understandability. In our framework, this corresponds to sat-
isfaction.

In our previous work [30] we have used yet another understandability con-

cept,

which is the number of errors made when using the notation to build

models. This contrasts with the operationalizations above, in which the task
is to read a model.

Understandability in the literature can thus mean different things, and we
have to take this into account if we compare research results.

6.2.1 Research questions

Based on this framework and our research goal we can identify the following
research questions:

Q1

Q2

Q3

Q4

6.3

How is understandability operationalized in usability experiments?

Which studies have been performed to measure understandability of
GORE and UML notations? (The first version of the research question
only asked about GORE notations.)

Which explanations can be found in the literature regarding understand-
ability phenomena of GORE and UML notations?

Which theories are used in these explanations?

Research Methodology

The data was gathered by performing a literature study. We have based our
work on the procedures defined by Kitchenham [66].

103

Table 6.1: Summary of search strings

Search string

Empirical evaluation understandability goal-oriented requirements engineering
Empirical evaluation understandability goal models

Empirical evaluation understandability KAOS

Empirical evaluation understandability TROPOS

Empirical evaluation understandability i*

Empirical evaluation understandability of UML

The search for literature was done with Web of Science, Scopus and Google
Scholar. Table 6.1 lists the used search terms. We have used each search string
individually in the search engines and used the default AND operator. We
made an initial selection of the required papers based on the title, keywords
and abstract. We selected our sample by defining inclusion criteria.

We initially started with only the GORE languages. However, these pro-
vided us with insufficient results, therefore we extended our search to UML
as well. So we are interested in papers that perform experiments regarding
understandability of GORE and UML notations.

During the analysis of the results we looked at the goal of the study, the
operationalization of understandability, the sampling method of the experi-
ment, the observations, and possible explanations of the results. Results not
complying were immediately dismissed. A first selection resulted in 47 papers.
Further applying the criteria by reading the papers reduced the list to 21 pa-
pers. Not all papers found where directly evaluations of understandability.
Often they were also of utility or understandability of artifacts based on UML
models.

Tracing the papers into subsequent studies revealed an additional paper.

6.4 Results

Section 6.6 lists the detailed comparisons and figure 6.2 summarizes the main
observations made in GORE understandability experiments. Here, we list our
own main observations about these experiments.

104

Extension of

Collaborative i*
Tropos

Modularized i*

4. Questions
answered faster
than for

understandable
than

??7?? Less
Errors
than

5. Less errors
than

1. Questions
answered in less
time than

1. less errors
than

3. Better X
understandable 3. Perceived as
than more
understandable
than

Figure 6.2: Summary of GORE results.

Scope of the study. We have observed that there is at the time of writing a
lack of empirical validation regarding understandability for GORE notations.
We were only able to find seven papers (including our work). One [50] of these
provided theoretical explanations for the observations made in the experi-
ments. However, this theory is aimed at why diagrams are better than textual
alternatives and no use in explaining understandability issues of diagrams. We
therefore extended our search to UML understandability experiments, hoping
to find theories relevant for our own research.

Operationalizations. We found that the most frequently used operational-
ization of understandability is the percentage of answers answered correctly.

The second most frequently used operationalization was that of task com-
pletion time, which in the usability framework of figure 6.1 indicates task
efficiency, which is a part of usability of the notation.

The third most frequently operationalization is perceived understandabil-
ity. Subjects were asked if they thought a language was understandable, how-
ever according to [74] there is little correlation between subjective satisfaction
and objective performance.

105

Sampling. Most of the subjects were students. Two of the studies (num-
bers 7 and 20) used practitioners. All samples were not randomly selected.
Non-random selection limits the possibilities to do statistical inference from
the data. If treatments were compared, then allocation of the treatments to
subjects was randomized.

Explanations. Not all papers explain their observations. Of the 22 reviewed
papers, we found 12. that provided explanations. Three kinds of explanations
are given in the literature:

o Experience
e Design flaws with languages.
o Badly designed supporting materials

The first explanation is that of experience: The more experience a user
has, the higher the ability to understand the language. This was found by
Hadar et al, [50], Soh et al [107], and Cruz et al [22]. This explanation goes
both ways: Someone who does not understand a notation will avoid using the
notation, and if he or she uses it, will stop using it very soon. Conversely,
repeated use of a notation that one understand reasonably well, will produce
increased understanding.

The second explanation authors give is is that there are design flaws with
the languages, e.g. are too many concepts, semantic definitions are unclear,
or the visualization of the constructs is ill designed. This was found by Mat-
ulevicus and Heymans [79], Purchase et al [100] and Siau and Loo [105]. This
was also the explanation we used in [36] and [30].

The third explanation given in the literature provides is is that supporting
materials are badly designed. Several authors mention that languages are
plagued with bad tooling and bad training material [20], [79] and [105].

We add to these an additional explanation of some of the findings.

We often saw that a variant of a language was defined to fit in a certain
problem domain, such as requirements for collaborative systems [113] or self-
adaptive systems [90]. The experiment then always shows that the extended
language outperforms the original language on the domain for which the ex-
tension was defined. For example, Teruel et al. adapted i* to work in CSCW
systems. The explanation of this finding is then that the extension contains
concepts that makes it easier to express requirements for this particular kind
of system.

106

Several authors did not provide explanations for their observations. This
is troublesome, because without properly identified explanations it becomes
hard to generalize the results of the study to other experiments.

Mate et al [78] provided no explanation why a modularization extension of
i* was easier to understand than vanilla i*. One explanation that we propose,
is that a modularization extension provides an abstraction mechanism that re-
duces the load on the short term memory of its users. This explanation would
be a basis for generalizing to similar cases. For example, The explanation can
be used to the study of [71] Lange and Chaudron. They investigated if an
interactive view for UML improved understandability of UML models. They
observed that by providing an abstraction layer the subjects could find in-
formation faster and they answered more questions correctly. Modularization
provided an abstraction mechanism that reduced the load on the short term
memory of its users.

Kamsties et al [61] provide no explanation why SCR specifications were
easier to understand than UML specifications.

Kuzniarz et al [69] provide no explanation why UML diagrams with stereo-
types are better to understand than UML models without stereotyping. This
can be explained by the hypothesis that Nugroho [91] (study 18) explained his
results, namely that less details allows interpretation errors. The same expla-
nation is also applicable to the findings of Reggio et al. [103]. They found
that a heavy weight version of activity diagrams was easier to understand
than a lightweight version. They do not provide an explanation for this, but
we can now see that the heavier version contained more information than the
lightweight version, which may have made it easier for the subject to answer
questions about the models. More information was explicitly specified in the
diagrams.

Theories. We only found two papers that gave a theoretical basis for its ex-
planations. Hadar et al [50] (study 1) listed a single theory why Tropos models
were more comprehensible than use-case models. They referred to cognitive
science theories, where it states that it is easier to retrieve information from
a diagram than from text. However this theory is of no use for us, since we
are only interested in understandability of graphical notations, not for textual
notations.

Siau et al [105] (study 17) Listed three theories to explain why people find
the UML difficult to understand.

The first theory is that new knowledge is always assimilated to existing
knowledge in the human brain. This can be found in the information process-

107

ing theories. If subjects were exposed to anything other than object-orientation
before learning UML, this would hinder understandability, for example expo-
sure to a functional paradigm would hinder understandability of UML (which
is object oriented).

This relates to one of the categories of explanation that we identified above,
namely that subjects with more experience understand a language better. In-
creased experience creates the constructs in the subject’s mind that help to
assimilate the constructs of the language.

The second theory given by Siau et al. is that languages with a large
number of concepts are difficult to learn. This is to the fact that the humans
are constrained by the size of their short term memory [84]. This further
substantiates the second category of explanation identified above, namely that
language design flaws create problems with understanding.

The third theory given by Siau et al. is based on human cognition and
human learning literature: people find it difficult to learn something without
assistance. Without proper assistance during the learning process the learning
curve for the UML is too steep for most people. This gives further support
to our third explanation identified earlier: To learn a new notation, proper
support is needed.

6.5 Answers to research questions

The answer to Q1 is that understandability is operationalized as a correctness
percentage, the time needed to answer questions and as a subjective evaluation
of understandability.

The answer to Q4 is that we found three explaining theories. Humans find
it difficult to learn new knowledge unassisted, humans map new knowledge to
existing knowledge and humans find it difficult to work with a large number
of concepts.

Based on the explanations provided we can identify a number of implica-
tions.

e We need to increase the experience of the users during our courses. This
would mean either to allocate more time to modeling assignments or
more sessions in our courses. In future studies, in a pre-test, subject
experience should be measured, in order to better be able to interpret
experimental outcomes.

e We need to look at the semantic definitions of our language and make
sure there is sufficient distance between the concepts. This implication

108

is also valid for other GORE languages like i* and KAOS and even to
the UML.

e We need to improve our study material. This means that designing train-
ing material should be itself a design problem as important as designing
the language. If training material is of importance to the understand-
ability results, then a more detailed description on how the subjects were
trained (or a more standardized) way is important to be able to compare
the findings of different understandability studies.

o We need to accurately capture the existing knowledge of course partic-
ipants, in order to personalize the course offering. However, for other
studies this does mean that capturing existing knowledge is important,
this again to improve comparing understandability findings to each other.

e This means that in order to get an improved understandability we need
to focus more on the core concepts during the courses. Other conceptual
languages should follow a similar path to improve understandability.

e In the future we need to improve the learning process by assisting partic-
ipants more closely. For future understandability studies, more attention
needs to be given on how intensive subjects were trained. This to be able
to better compare the different studies.

6.5.1 Future research

In future validation studies we will incorporate the results from this analysis.
The first step is to evaluate if more experience leads to better goal models.
We will organize a workshop at REFSQ 2014. We believe that the population
of REFSQ 2014 contains more experienced users of goal modeling languages.
We will record subject experience as well.

It is impossible for us to change the definitions of the goal modeling con-
structs in ArchiMate 2.0; however we can propose a subset of core concepts
which have sufficient conceptual distance to improve understandability.

Furthermore, as soon as we resume our validation studies with practition-
ers, we will focus on improved training material, and we will assist the partic-
ipants more closely.

6.6 Detailed Listing of Results

Table 6.2 provides an overview of the identified and used papers.

109

Research Operationaliza- | Sampling Observations Author expla-
Goal tion nations
To com- | For Tropos | Samples of | Tropos models | They explain
pare the | and UC the | students. were more | the results
comprehen- | comprehen- 19, 31 and | comprehensible | by cognitive
sibility of | sion level | 29 subjects. | than use-case | science theory.
Tropos and | (counting the | All non | models. It | Diagrams are
use-cases correct answers | random took more | better suited
[50] to questions | sampling. effort to an- | for searching

about model | But ran- | swer questions | and inference

content), ef- | dom as- | about Tropos.

fort (time to | signment Productivity is

complete all | to groups. equal for both

questions) and languages.

productivity

(comprehen-

sion level /

effort * 100

were measured.
To present | Comprehen- Non- i* models | i* diagramming
an experi- | sibility is | random were difficult | tools are not
ence report | measured by | sampling. to build and | suited to per-
on compre- | errors in the | No details | modify form the exper-
hensibility constructed on sample imental tasks.
of i* [20]. models. size.
To deter- | Error fre- | 19 stu- | i* and KAOS | KAOS uses
mine if i* | quencies in | dents, non | had equal | identical
or KAOS | constructing or | random icon under- | shapes for
is a better | reading models | sampling. standability different con-
language and the ability but KAOS | cepts; KAOS
[79]. of the wusers had better | is too rich in

to understand understand- concepts.

the concepts of able concepts

the language; in use. The

Opinion of the subjects found

subjects. i* easier in use

in practice.

110

Research Operationaliza- | Sampling Observations Author expla-
Goal tion nations

To deter- | Time spent in | 28 subjects, | The new ver- | No explana-
mine if | seconds to an- | unknown sion of i* | tion,

a modu- | swer questions, | type or | reduced the

larization correct answers | sampling. time spent

extension about model on answer-

of i* im- | comprehensi- ing questions

proves bility and reduced

under- the error rate

standabil- percentage

ity over

normal i*

[78].

To deter- | Correct an- | Samples The extension | Special con-
mine if an | swers in an | of 30, | improved un- | structs for
extension questionnaire. 45,9 stu- | derstandability | collaborative
of i* s dents. Non | for this task systems were
better un- random added.
derstand- sampling

able than

normal

i* when

used for

modeling

collab-

orative

systems

[113].

111

Research Operationaliza- | Sampling Observations Author expla-
Goal tion nations

To deter- | Correctness of | Samples of | This variant | Tropos was
mine if an | the answers to | 12,6 stu- | of Tropos was | extended with
extension comprehension | dents; non | more under- | constructs that
of Tropos | questions. random standable than | were needed for
for self- sampling normal Tropos | this task.
adaptive for this kind of

systems task

is more

under-

standable

than Tro-

pos itself in

the context

of model-

ing self-

adaptive

systems

[90].

To deter- | Correctness Sample of | The subjects | The subjects
mine if a | of modeling | 19 practi- | only under- | could not
GORE ex- | diagrams tioners; stood a limited | distinguish
tension for non- set of concepts | between all the
enterprise random concepts be-
architec- sampling cause of seman-
ture is tic unclarity
under- and semantic
standable distance of the
[36, 30]. concepts.

112

Research Operationaliza- | Sampling Observations Author expla-
Goal tion nations

To deter- | Correct an- | Samples of | The heavy- | No explana-
mine if | swers to com- | 62,26 stu- | weight version | tion.

a heavy- | prehension dents. Non | was better un-

weight questions; the | random derstood than

(more time needed | sampling. the light-weight

precise) per answer in version.

version of | minutes.

activity

diagrams

is better

under-

standable

than a

light-

weight

version

[103).

113

Research Operationaliza- | Sampling Observations Author expla-
Goal tion nations

9 | To de- | Correct an- | 53 stu- | UC models | i) The errors
termine swers to com- | dents, non | were faster to | were in data
if DFD’s | prehension random understand. flow modeling.
are Dbetter | questions; time | sampling ucC models | Since UC does
under- (in minutes) were of a | not contain
standable to complete higher quality. | data-flows
than UML | a question; Subjects found | the errors in
use-case perceive com- DFD models | this section
models prehensibility easier. were lower.
[10]. (opinion); ii) UC models

errors in contain less
constructed concepts and
models; time therefore are
needed to cre- less confusing.
ate a model; iii) Because
opinion about DFD diagrams
modeling looked com-
method. plicated, they
must be more
comprehensi-
ble.(Lauesens
second law)

10 | To compare | Correct an- | 124 stu- | There was | The scenarios
the under- | swers to ques- | dents, non | no difference | about which
standabil- tions about the | random between the | the students
ity of UML | models.) sampling techniques. had to answer
sequence questions were
diagrams possibly in-
and UML correct. Any
collab- difference in
oration understand-
diagrams ability is
[68]. compensated

for by increased
effort by the

subjects

114

Research Operationaliza- | Sampling Observations Author expla-
Goal tion nations
11 | To com- | Time to com- | 22 stu- | Less errors in | SCR is easier
pare SCR | plete all the | dents, non | SCR questions; | to understand.
[61] with | questions random response times | No further ex-
UML spec- | about the | sampling. for SCR were | planation.
ifications model; cor- | Allocation | faster.
[61]. rectness of the | of tasks
answers about | to sub-
the models. jects was
random .
12 | To in- | Correctness of | 124 stu- | There was no | No explana-
vestigate the answers | dents, non | difference tion.
whether about model | random
user pref- | content mea- | sampling.
erence sured through a
for ~ UML | questionnaire.
sequence
or collab-
oration

diagrams is
reflected in
improved
accuracy
in under-
standing
[14]

115

Research Operationaliza- | Sampling Observations Author expla-
Goal tion nations
13 | To deter- | The number | 44 stu- | The intro- | No explana-
mine if | of correct an- | dents. Non | duction of | tion.
UML mod- | swers for each | random stereotyping
els with | subject and | sampling. improves un-
stereo- the time which derstandability.
typing was required to
are better | answer all the
under- questions. The
standable measurement
than mod- | instrument was
els without | a question-
stereotyp- naire.
ing [69].
14 | To deter- | The number of | Samples of | Composite No explana-
mine if | correct answers | 55,178,14,13,R4tates have | tion.
UML state | in a question- | (students; a negative
chart dia- | naire. non ran- | influence on
grams with dom sam- | understand-
compos- pling. ability.
ite states
are better
under-
standable
than those
without
them [22].
15 | To deter- | Correctness 100 stu- | The total time | No explana-
mine if | percentage dents. Non | in minutes to | tion.
UML with | based on num- | random perform the
an interac- | ber of correct | sampling. task and a
tive view | answers; total correctness
is more | time in minutes percentage on
under- questions
standable
than UML
without

71,

116

Research Operationaliza- | Sampling Observations Author expla-
Goal tion nations

16 | To deter- | Difficulties per- | 79 stu- | Training mate- | i) Theories

mine why | ceived by the | dents, non | rial for UML | on cognition

subjects students random was perceived | and learn-

found UML sampling to be insuffi- | ing explain

difficult cient; difficult | this. Without

[105]. to understand | proper assis-

because it | tance during

is new; in- | the learning

consistent process, the

and confusing | learning curve

diagrams; un- | is too steep.

clearly defined
semantics; hard
to memorize
UML

ii) Information
processing the-
ory explains
this too. New
knowledge is
always mapped
to existing
knowledge (if
there is no
compatible

knowledge,

then this
hinders under-
standability)

iii) The UML
standardiza-

tion process
led to unclearly
defined se-
mantics. iv)
Number of
constructs to
remember ex-
ceeds the size
of the short
term memory
of the subjects.

117

Research Operationaliza- | Sampling Observations Author expla-
Goal tion nations

17 | To in- | The number | 53 stu- | Higher level | Less detail
vestigate of correctly | dents, non | of detail re- | leads to in-
whether answered ques- | random duces the | terpretation
UML mod- | tions about the | sampling errors made, | errors, and
els with a | models; the and questions | therefore to
higher level | time needed to are answered | mistakes, and
of detail | complete the faster. to longer times
are better | questions to figure out
to under- the answers to
stand than questions.
UML mod-
els with a
lower level
of detail
91]

18 | To inves- | Correctness of | 78 stu- | Models with | No explana-
tigate if | the answers; | dents, non- | better layout | tion.
UML mod- | time used to | random contain less
els with | answer the | sampling mistakes and
a better | questions; sub- are faster to
layout were | ject perception. construct. Also
easier to subject prefer
understand models with
than mod- better layout.
els with a
bad layout

[110].

118

Research Operationaliza- | Sampling Observations Author expla-
Goal tion nations
19 | To de- | Average accu- | 21 sub- | Practitioners The fact that
termine racy of models | jects, stu- | were more | practitioners
if experi- | that were mod- | dents and | accurate than | are more ac-
enced users | ified); time | practition- | students; stu- | tive and face
understand | spent modify- | ers. Non | dents were | real, indus-
UML mod- | ing the models; | random faster than | trial design
els better | time spent to | sampling. practitioners. problems daily
than inex- | identify the can justify
perienced part to modify; their ability to
users [107]. | time spent on a perform more
task; total time accurately than
spent. students.
20 | To com- | Correctness of | 39 stu- | They observed | No explanation
pare five | answers; time | dents. Non | that intuitive
different spent to answer | random notational vari-
UML class | all the ques- | sampling ants are better
diagram tions to understand
notations in terms of
[99]. time spent and
correctness of
answers
21 | To com- | Time in min- | 39 stu- | The extension | No explanation
pare a | utes to under- | dents. Non | was easier to
RUP UML | stand a model; | random use.
extension correctness of | sampling.
with stan- | answers about
dard UML | the model;
on un- | perception of
derstand- the subjects.
ability

).

119

Research Operationaliza- | Sampling Observations Author expla-
Goal tion nations
22 | To com- | Correctness 3 studies | UML models | UML is more

pare under- | percentage of | (40) with | were easier to | precise than
standabil- correct answers | students understand ER, contains
ity of ER and two less concepts.
with UML replications Therefore
models [24] (30,69). easier to under-

Non ran- stand.

dom sam-

pling.

Table 6.2: Overview of GORE understandability experiments (first part) and
UML understandability experiments (second part).

120

121

7

Third Evaluation !

1This chapter is based on an article in the proceedings of the Workshop on Conceptual
Modeling in Requirements Engineering and Business Analysis [37]

122

7.1 Introduction

In chapter 3 we have extended the EA modeling language ArchiMate [73]
with concepts from goal-oriented requirements engineering (GORE) [29]. The
extension is called ARMOR, and the result of extending ArchiMate with AR-
MOR is called ArchiMate 2.0. So ARMOR is the GORE part of ArchiMate
2.0. This chapter evaluates the understandability of ARMOR.

In chapters 4 and 5 we have investigated the understandability of the AR-
MOR extension by two case studies [36] and two quasi-experiments with prac-
ticing enterprise architects [30]. The results showed that practitioners find
ARMOR very complex and use only a few of the concepts of ARMOR, cor-
rectly. In chapter 6 we investigated possible explanations of why GORE is so
hard to understand.

To further test these explanations, we have replicated the experiment with
participants of the REFSQ ’14 conference that can be considered experts in
GORE languages?. We additionally asked the subjects for the perceived un-
derstandability of ARMOR, concepts in an exit survey. The results confirm our
earlier findings about understandability problems in goal-oriented notations.

We start with listing the research questions in the section 7.2. Next we
describe our research methodology in section 7.3. Section 7.4 describes our
conceptual framework. The results from the experiment, the exit survey and
the comparison with our previous results are described in section 7.5. Answers
to the research questions are summarized in section 7.6.

Section 7.7 describes some implications for practice and further research.

7.2 Research problem

In our courses teaching ARMOR to practitioners we saw that there were under-
standability issues regarding the concepts. Therefore we started to investigate
this problem. This work is a replication of our previous studies. Our research
questions are the same as in our previous quasi-experiments from Chapters 4
and 5, extended with two more questions. We added a question to compare
subjects’ perception of understandability with the understanding they exhib-
ited during the experiment. We also added a fifth question in which we ask
about the comparison across all quasi-experiments.

e QIl: How understandable is the ARMOR language?

e Q2: Which concepts are understood correctly and why?

2http://refsq.org/2014/1ive-experiment/

http://refsq.org/2014/live-experiment/

123

Table 7.1: Entry questionnaire.

What is your highest level of completed education?

What is your daily function?

e How many years of experience do you have in this function?

e How experienced are you with a (any) requirements modeling notation?
(select one: | have no experience / | understand the concepts / | can read
diagrams / | can create diagrams / | can teach a requirements modeling
technique.)

e Q3: Which concepts are not understood? Why? Does this agree with
subjects’ perceptions of understandability?

e Q4: What kind of mistakes are made? Why?

e Q5: How much do our findings differ from our previous samples and
why?

In all cases, we want to know not only an answer to the journalistic question
what is the case, but also the research question why it is the case.

7.3 Research methodology

We performed two identical experiments at REFSQ’14 of 90 minutes each.
We could not control any information flow from the first experiment to the
second experiment, and we depended on the integrity of the participants, all
researchers, to refrain from creating such a flow.

Subjects self-selected into the experiments, and to be able to assess the in-
fluence of previous knowledge of GORE concepts, we measured the knowledge
and experience of the participants with GORE notations in a short entry-
questionnaire (table 7.1).

Each experiment started with a very short lecture (30 minutes) on AR-
MOR. Next, the participants had to construct simple goal models of a case.
They were given 50 minutes for this. To fit within the available time, the
difficulty level of this case was very easy compared to the actual real world
problems of our previous experiments.

Finally, before leaving the room, each participant filled in an exit question-
naire in which for each of the GORE concepts used in the assignment, it was

124

asked (1) whether they found the concept easy, normal or hard to use, and (2)
to optionally explain their answer.

During data analysis, the answers were graded by the first author of the
original article in the same way as in the previous experiments. He compared
the used concepts to intended use of the concepts and marked if the concepts
were used incorrectly. Results were discussed with the second author of the
original article[37].

7.4 Defining understandability

In a survey of definitions of understandability of conceptual models, Houy et
al. [53] identified five types of definitions: the ability to recall model content,
the ability to correctly answer questions about a model,the time needed to
answer questions about the model, the ability to solve problems using the
model, and the ability to verify a model. These are however measures of
model understandability, whereas we are interested in measures of language
understandability. An example of a measure of language understandability is
the ability of subjects to guess the definition of a language construct by looking
at the icons. Caire et al. [19] measured this for i*.

However, these are all measures of passive understanding, whereas we are
interested in a more active form of understanding that is closer to the concept
of ease of use. How easy is it to construct a model in a language? This
concept of understanding is used by, for example, Carvallo & Franch [20] and
by Matulevi¢ius & Heymans [79], who measured the number of mistakes made
in constructing i* models, and by Abrahao et al., who measured the time
needed to build a model [2]. Our concept of understandability is close to the
first of these, and we define the understandability of a language construct as
the percentage of users that can use a concept correctly.

Construct validity is the validity of the operationalizations of a construct.
Note that our definition of understandability is close to that of ease of use, and
that our results are therefore about a different concept of understandability
than that used when studying understandability of a conceptual model. Our
definition agrees with that used by other authors [20, 79], but of the two known
operationalizations, correctness of use and time to use, we have selected the
first one only. This should be taken into consideration when comparing our
results with those of others.

125

7.5 QObservations

There were 18 participants in total, about evenly spread over the two exper-
iments. Two subjects had a bachelor’s degree, seven had a master’s degree
and nine a PhD degree. Furthermore, the majority of the subjects considered
themselves experts in requirements engineering in either industry or academia.
According to the entry survey 9 out of 18 subjects had the ability to teach re-
quirements engineering notations.

Combining this high level of expertise with the relative simplicity of the
assignment, we would not expect any serious understandability problems with
GORE notations.

126

61 0 19 00T 00T 0§ 0 14 0 6¢ 4% 0 0s 0 00T €€ uonisodwodsq
1 00T 00T 00T 00T 00T 0§ 00T 00T 00T 0 00T 00T 0 00T 00T €€ 00T 0 JanQg

€L 00T 00T 00T 00T 00T 19 00T 00T 00T 0s 0¢ 00T 00T 98 0 JuswiaIInbay
8L 00T 00T 00T €€ 00T 00T 00T 00T 00T 00T 0 00T 00T 00T 0 uolezijesy
Z8 00T 00T 00T 00T 0 00T 00T 00T 00T 00T 0OOT or 00T 00T 00T S8 00T 001 JUSWISS3SSY
88 00T 00T 00T 00T 0 00T 00T 00T 00T 00T 00T 00T 00T 00T 00T 00T 00T 69 1B0H

68 00T 00T 00T 0 00T 00T 00T 00T 00T 00T 6 2ousnjjuj
00T 00T 00T 00T OOT OOT 00T OOT OOT 00T 00T 00T 00T 00T 00T 00T 00T 00T 0OO0T J9p|oysxe1s
Sne 8T LT 9T ST)4} €1 [45 11 0T 6 8 L 9 S 4 € 4 T Jauoinideld

"sjuedidijied g1 ay3 Aq 98esn 1on43suod 1934400 noqge eleq gL S[qR],

127

Table 7.3: Summary of the exit survey.

Easy Normal Hard Most common explanation
Stakeholder 16 1 1 A very common and well known concept.
Influence 5 7 6 Unknown when to use it.
Goal 6 7 5 Hard to distinguish from driver. Hard to distinguish from require-

ment. Common concept.

Assessment 7 6 5 Difficult to distinguish from a goal.
Realization 5 5 3 What is a full realization?

Requirement 5 8 5 Very similar to goal. Common concept
Driver 6 9 3 Very difficult to distinguish from a goal.
Decomposition 4 7 7 Unknown when to use it.

Table 7.2 lists the ARMOR constructs on the left and summarizes the scores
that the subjects received on their assignments. Row ¢ column j shows the
percentage of times that practitioner ¢ used concept j correctly. The numbers
are the percentage of correctly used concepts by each subject. When a subject
did not use a concept at all, the corresponding cell is empty. The avg column
shows the percentage of users that always used the concept correctly. The
rows are ordered from best understood to least understood construct. Table
7.3 summarizes the scores of the subjective evaluation of understandability,
ordered in the same way as table 7.2. The numbers are the total number of
subjects that found a certain concept easy, normal or hard to use. The final
column summarizes the most frequently occurring explanations provided by
the subjects. We now discuss our findings in detail.

The stakeholder concept is based on definitions from TOGAF, i* and Tro-
pos [115, 129, 13]. All subjects used this concept correctly and we conclude
that the stakeholder concept is an easy to use concept. This is supported
by the subjective evaluation of the exit questionnaire. The explanation the
subjects provided is that it is a common concept.

The next best understood construct was that of influence, defined in AR-
MOR as a positive or negative influence of satisfaction of one goal on the
satisfaction of another goal. This definition is based the influence concept
on i* and Tropos [129, 13]. 89% of the subjects used the influence relation
correctly, but only 5 out of 18 users found the relation easy to use. Partic-
ipants found it difficult to choose between the decomposition and influence
relation. The most common mistake was also that it was used instead of a
decomposition.

ARMOR defines a goal as some end that a stakeholder wants to achieve, a
definition common in the GORE literature [119, 129, 16]. 89% of the subjects
used the goal concept correctly. The subjective evaluation shows that subjects
still had a hard time using the concept. They found it hard to distinguish from
the concepts of driver and of requirement. This is consistent with the types of

128

mistakes made as sometimes drivers or requirements were stated as goals.

ARMOR defines an assessment as the outcome of the analysis of some
stakeholder concern, a definition based on that of BMM [16]. 83% of the
subjects used the assessment concept correctly. However, subjects found the
concept was too close to a goal. This is supported by the types of mistakes
made by the subjects, assessments were confused with goals.

ARMOR defines the realization relation as a relation that some end that
is realized by some means, a definition found too in i* and KAOS [129, 119].
79% of the subjects used the realization relation correctly. This is consistent
with the subjective evaluation, where only three subjects found it hard to use.
The most common mistake was that it was used to relate two requirements.

A requirement is defined as some end that must be realized by a single
component of the architecture . 69% of the subjects used the requirements
concept correctly. The most common mistake was that goals were modeled as
requirement. This is consistent with the explanations the subjects provided,
that goals and requirements were difficult to distinguish.

A driverin ARMOR is that it is a key interest of a user, a definition that is
taken from TOGAF [115]. Only 67% of the subjects used the concept correctly,
which is consistent with the subjective evaluation. The subjects found it very
similar to the concept of a goal. The most common mistake made was indeed
that a goal was modeled as a driver.

The ARMOR concept of a decomposition is a combination of concepts from
the EA and GORE literature [129, 16, 13]. ARMOR defines it as a some inten-
tion that is divided into multiple intentions. Only 19% used the decomposition
relation correctly. This is consistent with the subjective evaluation where only
five users found it easy to use. The subjects found it difficult to choose between
decomposition and influence.

Some of the data in table 7.2 are consistent with the subject evaluations
of the exit questionnaire. For example, when a subject subjectively found a
concept hard to use, often they would not use the concept all. The subjects
provided an explanation that the relations were sometimes hard to identify.
We believe that therefore they just picked one. This is also the case with the
other concepts which were very similar, for example the goal and requirement
concept.

There are also discrepancies. For example, 11 subjects found the decompo-
sition relation not hard to use, but only 3 subjects used the relation correctly.
Conversely, only 5 users found the influence relation easy to use, but most
participants used it correctly. Apparently, perceived understandability does
not coincide with understanding.

129

7.5.1 Comparison With Our Previous Results

The level of understanding exhibited by the participants was much higher
than in our previous study with practitioners [30] from chapter 5. In our
earlier study from chapter 4, only 5 concepts were used correctly by more
than half of the practitioners. This agrees with the higher level of expertise of
our current group of participants compared to our previous samples.

However, there is a rough correspondence in the orderings of understand-
ability. In our earlier experiment, the concepts of stakeholder and of realization
were used correctly by all practitioners. In our current experiment, the con-
cept of stakeholder was used correctly too, but the concept of realization was
used incorrectly by some participants, and they perceived some problems in
using it. This may be a consequence of the more academic expertise of the
subjects.

In all experiments, the concepts of stakeholder, influence, goal and require-
ment were the best understood (in that order) and the concept of decom-
position was the least understood. And in all experiments, participants had
trouble distinguishing requirements, assessments and drivers from goals, and
participants wondered why all of these concepts are present in the language.

7.5.2 Explanations

Our observations support the explanations of understandability problems listed
earlier. The number of concepts in ARMOR is large, making it difficult for
novice users to choose among them. Related to this is the second explanation,
which is that the semantic distance among some concepts is very small, making
it even harder to choose the right concept to use in a modeling problem.

Finally, the distance of ARMOR concepts and the meaning of those con-
cepts in daily practice is large in our previous experiments. This explained
problems that practitioners had with assimilating ARMOR, concepts. For the
academics that participated in the current experiment, this distance is smaller,
because they teach GORE concepts or have studied them. This may explain
the higher scores that the participants in the current experiment had compared
to the practitioners’ score in the previous experiments.

One factor that affects the internal validity of these explanations is that the
explanation of ARMOR given by the first author may have created understand-
ability problems. However, The first author regularly teaches these concepts
to practitioners. And to prepare for the current experiment, he has explained
the concepts to university colleagues. This should mitigate the threat that
understandability problems have been caused by the instructor rather than by

130

the language.

7.5.3 Generalizability

Our sample is too small to do any statistical inference. Moreover, the partici-
pants self-selected in the sample, which may have biased the results. However,
given the fact that our sample consisted of GORE experts who chose to do
an assignment with a GORE language, we think that other academic subjects
would at least have the understandability problems that we observed in our
sample.

We replicated the findings of earlier experiments about most understand-
able and least understandable concepts, and this supports generalizability too.

Moreover, our explanations in terms of the large number of concepts and
the small semantic distance among some concepts, and the need of language
users to assimilate new concepts to existing knowledge, are stated in general
terms. To the extent that these explanations are generalizable, the phenomena
that they explain are generalizable too.

7.6 Answers to research questions

Q1: How understandable is ARMORY? The last column of table 7.2 shows the
answer to this. Only the stakeholder concept scored 100% an was perfectly
understood. However, the only concept that was not clearly understood was
that of the decomposition relation, scoring only 19%. The concepts of driver,
assessment and goal were very well understood scoring more than 80%. The
concepts of requirement, influence and realization were fairly well understood
scoring in the 70% range.

Q2: Which concepts are understood correctly and why? Except for the
decomposition relation all concepts were understood (scoring more than 55)
This can be explained by that most of the concepts are very common concepts.

Q3: Which concepts are not understood correctly and why? There is a
gradation in non-understanding, with the decomposition relationship at the
bottom. The decomposition relation is very difficult to distinguish from the
influence relation.

Q4: What kind of mistakes are made? Why? Does this agree with sub-
jects’ perceptions of understandability? The subjects modeled drivers and as-
sessments as goals, and modeled influence relations by means of decomposition
relations Explanations were given above. Apparently perceived understand-
ability does not coincide with actual understandability.

131

Q5: How much do the results differ and why? The results from this study
were roughly similar to the results of our previous work. The major differ-
ence is that the subjects scored much better than the subjects in our previous
experiments. This can be explained by the higher expertise level of the cur-
rent subjects, and the greater simplicity of the assignment compared to the
modeling task in the previous experiments.

7.7 Discussion

ARMOR is part of an Open Group standard [73] and the concepts we in-
vestigated in this chapter will remain present in the language. However, one
practical implication of this chapter is that in future training programs we will
make a distinction between the recommended minimal concepts such as the
concepts of stakeholder, goal, and requirement, and less important concepts,
such as those of driver and assessment, that can safely be ignored in practice.
We also have to improve our training material. When we saw that the
level of education went up, the number of understandability issues dropped.
Somehow we need to compensate a lower level of education or experience
with our training material. This can be with practically usable guidelines for
the use of the concepts that we do recommend. These guidelines could be
tailored to specific experience levels, e.g., develop guidelines for inexperienced
participants and different guidelines for experienced participants.

132

133

Part 111

Business Models

135

8

Traceability between
e’value and ArchiMatel

1This chapter is an adaptation of the article in the proceedings of the Workshop on
Conceptual Modeling in Requirements Engineering and Business Analysis [27]

136

8.1 Introduction

In chapters 3-7 we have clarified and evaluated the relation between the busi-
ness goals of the organization and its EA [29, 36, 30]. However, traceability
to business goals captures only part of the motivation for an EA. High-level
strategic goals are elaborated in a business model and the business model in
turn motivates design choices in the EA [5]. In other words, an EA should
not only be used to manage IT costs but also to manage the contribution of
IT to the value offerings of an enterprise. In this chapter we extend our work
on traceability with a hypothesis about traceability to business models. One
could say that in this traceability relationship, the business model provides us
with puzzle pieces and the EA will put these pieces together [112].

As the enterprise architecture modeling language we choose ArchiMate [114],
both because it is well-known, the defacto standard for EA modeling. We take
an ecosystem approach to business models, which means that we see a com-
pany as part of a network of companies that coordinate to produce a value
proposition. We use e3value as the ecosystem business modeling language [49].
e3value can be used to model the value exchanges in an ecosystem needed to
jointly produce a value offering to a customer, and to analyze the long-term
commercial viability of this.

In this chapter we show how the EA of one of the enterprises in an ecosys-
tem, specified in ArchiMate, can be aligned with an ecosystem business model,
specified in e3value. We expect that realizing this traceability provides us with
the following advantages:

e Tracing EA elements not just to the business goals, but actually to quan-
tifiable elements from the business model allows for better reasoning,
especially in value networks where goals of different stakeholders need to
be brought together to create a shared perception of the ecosystem, and
to analyze the commercial viability of the ecosystem.

o To assess which projects that implement the architecture have the most
business value in terms of contribution to the enterprise business goals
and the ecosystem business model.

In section 8.2 we analyze and reject existing solutions that tried to achieve
the same goal and provide an initial analysis. Section 8.3 discusses the Archi-
Mate strategy layer. In section 8.4 we test the initial hypotheses on a real-world
example and, based on this application, refine our initial traceability hypothe-
ses in the form of a meta-model of the hypotheses. In section 8.5 we discuss
the validity of our research method and outline some future research.

137

8.2 Evaluation of Existing Solutions

Before we conduct our initial analysis, we need to decide if we can use existing
work. In the related work chapter we briefly introduced and rejected the work
by de Kinderen et al. [64, 65].

De Kinderen et al [64] use the business function and the business actor
of ArchiMate as the key mapping between a value activity and actor from
e>value. We believe the choice for business function is incorrect. We will
explain our reasoning. ArchiMate is designed around the service-orientation
paradigm [73, 114]. ArchiMate models systems that offer services to the con-
sumers of these services. Even in de case of an organization that offers physical
products, services are used to expose the products (i.e., in the case of a car a
'sell car’ business service). A business service in ArchiMate should be mean-
ingful from the point of the environment, in this case the users of the business
service. The value offered to the user of the service provides the motivation
for the existence of the service [114]. ArchiMate also has the clear distinction
between externally visible behavior (services) and the internal organization,
which is hidden from the environment. In ArchiMate services are exposed to
the environment through business interfaces, it is a point of access between
the service provider and the service consumer.

In evalue we see these roles as well [49, 44]. e3value offers value propo-
sitions between a consumer and a provider in a value network. Essential to
this is the notion of a value activity. A value activity is a task performed by
an actor that potentially results in a benefit for the actor. A value activity
abstracts away from the internal processes and stresses the externally visible
outcome in terms of created value[46]. Associated with a value activity is
a value transfer [44] (through the value interface and value ports). A value
transfer is the willingness of a provider and a requester to transfer a value
object from the first to the second. This means that there are always at least
two actors associated, who are economically independent and something of
value is exchanged between them. A key component here is the value port. A
value port provides the willingness to request and provide value objects from
its environment. A value port associated with a value activity is also linked
to a value port directly connected to the actor through a dependency link to
the environment. This way the value adding activities are connected to the
external environment.

The business function does not meet these criteria. In ArchiMate [73] a
business function describes internal behavior performed by a business role. It
is an aggregation of behavior based on required business resources, skills, com-
petencies, knowledge, etc. A business function is not directly associated with

138

exchanging value between multiple economically independent actors through
some sort of connection to its environment.

The idea of building a bridge and use ArchiMate’s layered architecture to
operationalize the organization that realizes the value exchanges is something
we will use [64]. We agree with the mapping of the actor from e*value to
the business actor in ArchiMate. This would represent the organization and
can be operationalized using the internal workings of ArchiMate (e.g., adding
design decisions).

In follow-up work De Kinderen et al. [65] try to bridge value modeling
between ArchiMate and e*value with DEMO [26] based on the transactions
from e3value through a complete formal transformation. We reject this design
alternative as well. We do not wish to use an intermediate language, because
it adds too much complexity for the end user of the languages. Second, this
approach also leads to a strange mapping between concepts. We will illustrate
this with an example from this work. A transaction from e3value is mapped
onto a business interaction in ArchiMate. In e3value a transaction is the set of
value transfers triggered when a value interface is triggered [44]. Transactions
in e3value involve two or more actors in the value network. Economic trans-
actions are used to determine the profitability of the actors involved. This is
not represented by this formal transformation. The resulting transformation,
through DEMO, describes the internal process models associated with this
transaction. These process models are generated inside DEMO and plotted
on the business interaction. However, in ArchiMate a business interaction is,
positioned through the meta-model [114], as internal behavior and does not
represent the concept of economic transaction as seen in Svalue.

139

Passive Behavior Active Motivation
Structure Structure

Strategy

Business

Application

— Layers

Technology

Physical

Implementation
& Migration

I
Aspects

Figure 8.1: The ArchiMate 3.1 framework [73].

8.2.1 Initial Analysis

It is our goal to link evalue with ArchiMate in such a way that ArchiMate can
be used to design the organization needed to realize the value exchanges of an
organization in the value network, to identify investments and expenses more
precisely and collect these for insertion in the e?value model. We also wish to
have the ability to reason a about the ability of IT-infrastructure to support
the economic transactions from e3value. e3value is designed to investigate the
profitability of organizations in a value network. The focus of evalue is to
investigate the profitability of each actor in the value network and it lacks
an internal operating model and internal organizational design decisions, the
focus is on valuable exchanges between the actors in the ecosystem.
ArchiMate [114] is a conceptual modeling language used to describe the
enterprise architecture of an organization. In earlier work we co-designed and
extensively evaluated goal modeling for ArchiMate. [101, 29, 36, 30]. In the
follow-up empirical studies we observed that most of the concepts of AR-
MOR were conceptually too complex for practical use, and we proposed a
simpler version of the language that is more understandable in practice, called
ARMOR-light [30]. In ARMOR-light we only use the notions of stakeholder
and goals. When a goal is realized by an element from ArchiMate then it is
considered a requirement, similar to KAOS [23]. In this chapter we will use

140

ArchiMate 3.1 as if it only contains the constructs of ARMOR-light.

Internal

Business Business active
—_— -4 Requirement — : = A
Stakehakler Saal 4 service interface structure
element

Figure 8.2: Meta-model of ARMOR-Light with part of the metamodel of ArchiMate
[30]. The lines represent many to many relations, the arrow represents a subset.

Figure 8.2 shows part of a meta-model of ARMOR-light and ArchiMate.
For clarity reasons we have omitted the application and technology layers
and a large part of the business layer. Requirements are the subset of goals
allocated to a business service. Goals not allocated to an EA element are
ends that a stakeholder wishes to achieve. In ArchiMate an internal active
structure element is an abstraction of any actor or specialization thereof; e.g.
roles, actors, collaborations, etc. A business service is the externally visible
behavior of an internal active structure element. It exposes its behavior over
a business interface of the internal active structure element, e.g. the sales
channel.

ArchiMate models have a business layer, an application layer, and a tech-
nology layer, that have traceability links among them. To realize traceability
to ewvalue models, we need to link the business layer of an ArchiMate model
to e2value models. Within the business layer, the business service is used to
expose behavior and value of the organization to the environment. This is
where we expect to find the link between ArchiMate and e*value.

141

Market segment Value interface Alcror ‘alue port
Reader ook store Publisher
C—He)
read a book

B
[MONEY] [MONEY]
1 1 1
[Book] / [Book]

Consumer need Value transfer Dependency path Value object Boundary element

Figure 8.3: Educational e*value model of a bookstore.

In Figure 8.3 an educational evalue model is presented, annotated with
the name of the modeling constructs, which we discuss below. In e3value an
actor is some entity capable of performing value activities, e.g. a business,
department or partner. In the example, the book store is an actor. A special
case of an actor is the market segment (e.g. the reader or the publisher). A
market segment models that many actors of the same kind.

In e3value this means that all actors in a market segment assign economic
value precisely in the same way. A value activity (not shown in the example)
is a task performed by an actor which can lead to a positive net cash flow.
The value activity differs from activities in process models in e.g. the BPMN.
Value activities should be profitable while in BPMN it is perfectly allowed to
include activities that only cost money. A value interface represents what the
actors offers and requests to/from its environment in terms of value objects.

Value objects are things that are perceived by at least one actor as of
economic value. A value interface consists of at least one in-going and one
outgoing port, through which the actor requests or offers value objects from
or to its environment. The value interface models (1) the notion of economic
reciprocity and (2) bundling. Economic reciprocity is the idea that someone
only offers something of value, of something else of higher economic value is
obtained in return. In the example, the book is exchanged for money, hence
the transfers are economically reciprocal. Bundling is the case where it is
only possible to offer or obtain value objects in combination. Value ports
between actors are connected by means of value transfers, which represent
the willingness of actors to exchange things. Internally in an actor, there

142

performed-by Fere
0.* | assigned- B
to-
Value 0.1 e Value lactor has valiiaiaiae i d
R — ey [0 ependen
activity assigned interface | 1.* 0.1 i &Y
o] ol element 2
value- 1 |consists-of g 2
activity .ﬂ
1.2 1in
Value Value And-dependency
transaction offering
consists-of | 1..* 1 | consists-of [@rdependency
has- in- z d-
* qajjere:
offers- requested-
Value 0.* 1 requests __ by Value
Value port == ohicet
exchange o 1 0.® 1 L — wvalue Interface
has- out-
out connecis

— Boundary

Figure 8.4: Meta-model of actors and dependency paths in e*value[49]

is the dependency path, which shows how value objects are exchanged via a
value interface. For example, the sale of a book by the book store requires
that this store obtains the book from a publisher. The boundary element
of a dependency path indicates the boundary of our modeling interest. Any
further transactions that take place in the real world to satisfy the consumer
need are not included in our model. Figure 8.4 shows the meta-model for
actors (left) and dependency paths (right) in e3value [45]. Based on these two
meta-models, we formulate our initial hypothesis about traceability between
ArchiMate and e?value concepts in table 8.1 .

8.3 ArchiMate strategy layer

ArchiMate has been extended with a strategy layer that might be relevant
for our work. We will start with a description of the strategy layer from the
ArchiMate specification [114].

The strategy elements from the strategy layer are typically used to model
the strategic direction and choices of an enterprise, as far as the impact on
its architecture is concerned. They can be used to express how the enterprise
wants to create value for its stakeholders, the capabilities it needs for that, the
resources needed to support these capabilities, and how it plans to configure
and use these capabilities and resources to achieve its aim.

The strategy layer of ArchiMate operates at a different level than e3value.

143

Table 8.1: Our initial hypothesis about correspondences between concepts in
ArchiMate and in evalue.

ArchiMate Svalue Argument

Stakeholder Actor An e*value actor is always an ArchiMate stake-
holder, by definition. The other way around is
not guaranteed.

Goal Customer need | Customer needs are customer goals. Goal models
identify and refine customer needs.
Business Actor Actor Both are essentially the same thing. An actor in

e>value performs activities that produce value. In
ArchiMate actors perform behavior as well.
Business Service Value activity | Both concepts denote externally visible behavior
performed by an actor and made available through
an interface.

Business interface | Value interface | Both are the interfaces in which the behavior is
accessed.

e3value is used to investigate the profitability of an enterprise by focusing on
the value transfers between the customers and the organization in a value
network. The strategy layer focuses on how an organization can realize value
from an internal perspective (similar to an operating model of an organization
[93] or the value chain of Porter [98]). The strategy layer answers the question
of how value can be realized internally. This is something different than the
actual creation of value from the value activities. A value activity always has
to lead to a benefit for the actor involved.

When we look inside the strategy layer, we see the following concepts:
resource, capability, value stream and course of action. We will discuss them
briefly. In essence a course of action is a design decision, or plan to deliver
something. This has nothing to do with a value activity. They are strategies
and tactics of the operating model internal to the organization.

A capability is an ability of an organization. It is something the organi-
zation, or departments, can do well. A capability is high-level and aimed at
achieving some goal or delivering value by realizing an outcome [114]. A ca-
pability is aimed at delivering value, but it is not a value activity. The key
differentiator is that a capability is an ability, something an organization can
do. A capability influences strategic decision making. A value activity is an
activity that leads to a direct benefit through the exchange of valuable objects.
In the case of a for-profit organization a value activity should lead to financial
profit. A capability can explain how an organization can achieve this.

A resource in ArchiMate is an asset owned or controlled by the organization

144

[114]. Resources can be deployed to realize some sort of competitive advantage.
Resources can be used to deliver or realize a value activity, but they are not
the same as a value activity.

The closest element possibly related to value activities in the strategy layer
in ArchiMate is the wvalue stream. A value stream represents a sequence of
activities that create an overall result for a customer, stakeholder, or end user.
The ArchiMate definition of a value stream is how an organization organizes its
activities to realize value for the organization [114]. There is no direct mapping
possible between the value stream and a value activity since the activities of
a value stream are allowed to be a cost-center. This is not the case with value
activities. The end goal of a value activity is that must be profitable. A value
stream is also not associated with delivering value to the environment of the
organization directly, but indirectly. The value stream in ArchiMate is much
closer to a business process, but on a different level of abstraction. A value
stream describes what an organization needs to do internally to add value.
It very similar in scope and function as the value chain of Porter [98]. In
ArchiMate business processes are recommended to realize value streams [114].

We determine that the strategy layer should not be linked with an e3value
model directly. The strategy layer is used to operationalize how an organi-
zation can deliver value. This is purely internal, from our perspective the
strategy layer in ArchiMate is therefore not relevant at the moment. But it
can still be used in the way it was intended. Our work can be used in conjunc-
tion with the strategy layer of ArchiMate, but it is out of scope of this thesis
to discuss this.

8.4 Application: Cirque du Soleil

8.4.1 The example

Cirque du Soleil, based in Montreal, is known internationally for its innovative
form of circus production. Cirque was one of the first to reinvent the circus
production, without animal usage, but with a focus on artistic human perfor-
mances [75]. We collected information about this example from public sources
on the internet [63, 124] supplemented with some assumptions to round out
the example. We will show how Cirque du Soleil offers live shows and virtual
shows, offered in an attractive location and through a Virtual Reality (VR)
device, respectively. Tickets for the live shows are sold by an independent
ticket office. The VR shows are distributed by Samsung. We will construct
three different models, since there is no tool yet available to create a single

145

model (see future work). Traceability links are described in the text explaining
the models.

8.4.2 Goal model, business model and EA model

We start by constructing a goal model in ArchiMate (figure 8.5). For illustra-
tion purposes we have restricted ourselves to one goal per relevant actor.

A goal model like this is often constructed in the strategic phase of EA
development, similar to TOGAF’s preliminary and vision phases [115]

Figure 8.6 contains the e?value model that illustrates the value adding
activities. Value activities are represented by rounded rectangles inside an
actor. In our example Samsung enters into a collaboration with Cirque Du
Soleil to distribute the VR media of the circus performance to customers. An
external ticket office is used to offer a ticketing service. For example, Cirque du
Soleil wants to perform a show and Samsung wants to distribute performances.

Customers are represented by two separate actors, Visitor and Digital Cus-
tomer. Visitors have a need to enjoy a live artistic show, and satisfy this need
by paying Cirque du Soleil for performing their value activity. Cirque du Soleil
hires a ticket office to sell tickets. The inter-actor transactions and the intra-
actor dashed lines form a dependency path in e*value models, connecting a
consumer need with all transactions in the ecosystem needed to satisfy the
need. The customer need to enjoy a show from home is satisfied by a sim-
ilar dependency path. Figure 8.7 shows an ArchiMate model of the EA for
Cirque du Soleil. We have identified two different main Business Services: the
Circus Performance Service and the Digital Distribution Service. These two
business services correspond to the value activities of the e3value model from
the actors Samsung and Cirque du Soleil. The ArchiMate model also contains
four business actors, where Samsung and Cirque du Soleil collaborate together
to deliver the digital distribution service. To model the different roles of the
customers we have chosen to model the digital customer and the visitor as
separate roles.

The same can be seen with the ticket office, they collaborate (the busi-
ness collaboration) to provide the ticketing service. Since ArchiMate allows
for more detail in the modeling of the business services, design decisions like
the composition of the ticketing service in the circus performance service are
represented here. It is also possible that these translate to supporting internal
business services like the recording service. Before you can distribute a show
you do need some sort of recording service. This is not necessarily a value
adding activity and therefore not visible in the e3value model.

146

Circque du @ Visitor @ Digital @ Samsung @ Ticket Office D
Soleil Customer
Offer _unic_|ue ® To enjoy live @ To enjoy @ Distribute @ Distribute @
combination artistic show show from live tickets
theatre and circus home perfarmance

Figure 8.5: Partial Cirque du Soleil Goal Model

Visitar Circue Du Soleil Ticket office

[MONEY]) [MOMEY]

[Show]
[Ticketing])

Digital customer

Enjoy atistic N MONEY]
show fram IMONEY)

-
home (& o]

N
[Distribution

Figure 8.6: e3value model of Cirque du Soleil

Visitor ame) Digital ame) Digital Distributien service =
Customer =—
Circus Performance Service (o] Circus Tent -0 Circue Du Soleil %
-—a
Ticketing O
Service é
Recording O
| E— . :
Service Business ()] Internet =
Collaberation L
Business (@ 5 <?
Ticket t
Collaboration -> EsiamiE=g
Samsung %

¢ 9

Circue Du Soleil § Ticketing £
(copy) Office

Figure 8.7: ArchiMate model of the business layer of Cirque du Soleil

147

8.4.3 Observations

Linking ArchiMate goal models to e’value models. First, we see that
in our example, goals in the goal model correspond to value activities of busi-
ness actors in e3value. We believe this to be a general rule for strategic goals.
There are goals at every level of the organization, but only strategic goals will
be relevant for a business model and may appear there as value activities.

In addition, consumer needs in our example correspond to consumer goals
in the stakeholder model. This leads us to the following three refinements of
our initial two hypotheses about the correspondence between ArchiMate goals
models and e*value business models:

« Stakeholders with strategic goals correspond to actors in an e3wvalue
model.

o Value activities in an e3value model correspond to lower level goals in a
strategic goal model.

o Consumer needs in an e3value model correspond to lower-level consumer
goals in a strategic goal model.

Linking e®value models to ArchiMate EA models. In our example
all the value activities that do not have a consumer need attached to them
correspond to business services in ArchiMate.

Actors in the e3value model correspond to business actors in the ArchiMate
model. This may not be true in general as ArchiMate also contains the concept
of a role. An e?value actor may correspond to a role in the ArchiMate EA
rather than to a business actor. Future research should provide clarity about
this.

The value interfaces in e3value map onto the business interface in Archi-
Mate. For example, the four value interfaces from Samsung to Cirque du Soleil
translate to a single business interface in ArchiMate.

Finally, an e3value dependency path connects transactions among different
actors. This may be mapped to business collaborations in an ArchiMate model.
Whether this is true in general must be shown by future case studies.

This leads us to the following refinements of our initial hypotheses about
the correspondence between ArchiMate EA models and e3value business mod-
els:

o e3value actors map to business actors and possibly roles in an ArchiMate
EA models.

148

o e3value activities map to ArchiMate business services.
o e3value value interfaces map to ArchiMate business interfaces

o An e3value dependency path may map to a business collaboration in
ArchiMate.

Figure 8.8 summarizes our traceability rules. This meta-model is divided into
three different layers, according to the TEAM framework[126]:

o The strategic layer where we find stakeholders and goals,
o The value layer, where we see the value adding activities and

o the technical layer where we find the designs of the organization in an
EA.

Integrating e3value into ArchiMate therefore happens at the motivation layer
and the business layer. This results in traceability from stakeholder to actor
and ArchiMate equivalents. The exact meaning and the cardinalities of the
relations are uncertain at this point. We will refine our hypothetical mappings
in future chapters of this thesis. We kept the cardinalities and types of relations
as conservative as possible as they are only hypotheses.

We hypothesized that a value activity with a nested consumer need can be
mapped to a goal. If this is the case, to a maximum of one. The value activity
with the nested consumer need is the goal the actor wishes to achieve.

A value activity is mapped to a maximum of one business service and vice
versa in a possible traceability relation. But we are uncertain at this point if
every value activity can map to a business service or the other way around.

We believe every actor from e?value can be mapped to a single stakeholder.
Actors are by definition stakeholders, therefore the relation from actor to stake-
holder is 1. From stakeholder and actor we believe the cardinality has be 0..1.
Not every stakeholder is an actor, there are many different stakeholders for
each organization. We hypothesize that actors from e*>value can be linked to
either a business actor or a business role (in this model we aggregate these
to internal active structure element, as used in ArchiMate). We believe that
the mapping should be one to one. The exact cardinalities between a value
interface and business interface are unknown at this time, we assume many to
many relations.

149

ArchiMate Goal Stakeholder
E3value 0.1 Value
Value activity —— -
ity muE Walue actor
- s
Internal
Business _ Business active
SErvice interface structure
element

Figure 8.8: Combined traceability model of our hypotheses. All hypothetical
relationships are many-many unless otherwise stated.

8.5 Discussion

This work is in its early stages and our current hypotheses are based on an
analysis of meta-models plus an application to a single example. We cannot
claim generalizability based on this. To test generalizability, we will restrict
our research to e3value and ArchiMate. Generalizability to other languages
therefore remains an open issue. However, we will investigate generalizability
to other cases analyzed in e*value and ArchiMate as a next step.

Within this scope, we need to refine the hypothesis by doing more complex
real-world case studies. What is the exact meaning of the relations in our
proposed integrated meta-model? What is the relation between value activity
and goal? Could it be a realization or specialization? This could also be said
for cross-abstraction level of traceability. How do concepts like value and goals
relate?

We will test usability of our hypothesis in experiments like we did with
ARMOR [36, 30, 29]. Utility in practice will be investigated by means of
opinion research, e.g. a focus group of practitioners. A final step is to create
a tool-supported method for designing an EA based on a business model, and
for extracting a business model from a given EA.

150

151

9

Definition of Alignment
Guidelines!

1This chapter is based on the article in the proceedings of the International Enterprise
Distributed Object Computing Conference [28]

152

9.1 Introduction

Earlier, in chapter 8, we have performed an initial investigation of linking
evalue models to ArchiMate models [27]. In this chapter we extend on that
research.

A BM is a conceptual model of how an enterprise creates, delivers and
captures value [93]. Today, business models should represent the value network
by which an enterprise collaboratively delivers and captures value [126]. We
use e3value as notation to represent business models [49]. As EA notation we
will use ArchiMate [114], including the goal modeling extension [37, 36]. One
could say that in this traceability relationship, the BM provides us with the
reason why an organization exists and the initial puzzle pieces, the EA will
put these pieces together [112].

We have three main arguments to combine these topics; first, we want to
link the value offerings in a BM to the IT of an organization. This way the
realized traceability enables us to reason about the financial benefits of an I'T
system or project. IT needs operational expenses and investments in I'T. There
is a clear financial relationship.

Second, a BM only focuses on the value offerings of an organization, but
not on the technical and organizational feasibility of the BM. By using EA
we can focus on organizational and IT design of the value offerings of an or-
ganization to determine the feasibility, possibly with standardized patterns of
operationalized business models in ArchiMate. We also believe that by linking
the business model of an organization to its EA we can evaluate which orga-
nizational components contribute the most to the earnings of an organization.
This will help organizations in determining which are the most valuable parts
of their enterprise.

Third, if wish to construct an ArchiMate model of a value network,
as we recommend in previous work [126], we need to know the scope of the
organizational network we need to model. Therefore, to be able to design an
ArchiMate model for this collaboration of actors, we need to determine the
focus of the modeling effort.

This chapter is structured as follows. Section 9.2, where we introduce our
research problem. Section 9.3 introduces e3value and ArchiMate. Section 9.4
describes the methodology used. Section 9.5 describes our observations and our
new set of guidelines for aligning e*value with ArchiMate. We will illustrate
our results with a sample application in section 9.6 and we will conclude with
a discussion about validity and future research in section 9.7.

153

Market segment Value interface Actor Value port
Reader Book store Publisher
[MONEY] @ [MONEY],
C——9 1 L]—@
rcadibook [BGOH [Book] ‘

Consumer need Value transfer Dependency path Value object Boundary element

Figure 9.1: Educational example e>value

9.2 Research Problem

The main goal of our research and this experiment is to identify how to align
e3value models with ArchiMate models. This task is not straightforward, as
both languages operate at a different level of abstraction and were designed
with a different goal in mind. e*value focuses on identifying and designing
the business services of a networked organization and on analyzing their prof-
itability. ArchiMate focuses on designing the internal organization that realizes
the business services. e>value operates on a value network of multiple actors
working together, whereas ArchiMate is designed with a single organization in
mind.

An organization is an organized group of people with a particular purpose.
A value network of multiple actors can also be seen as an organization working
together on a particular purpose, namely delivering value to customers. The
difference is that the actors in a value network are economically independent,
i.e. each must have a positive cash flow. In addition, a value network can
contain competitors, who compete for the same customers. The organization
represented by a value network is therefore very complex, ranging from a
kind of ad-hoc collaboration to a more stable one. This collaboration could
have a shared business strategy and shared business goals. Also the designed
organization would also use the same concepts as a single organization (e.g.

154

services, processes, applications, all based on the shared strategy).

First, if we are able to trace from the application to the BM through dif-
ferent ArchiMate layers, we are able to show how an application contributes
to the earnings of an organization, which clarifies that IT is not seen as only
a cost factor [122]. Second, ArchiMate can be used to model the shared plat-
form needed by the extended organizations in a value network, this would
require shared processes, shared IT and a shared infrastructure, all based on
the common goals of the organization and strategy. It is our goal to create
an alignment between both languages. We wish to develop guidelines to align
ArchiMate models with e3value models in such a way that the concepts from
e3value have a counterpart in ArchiMate in such a way that we can trace from
an e>value model into an ArchiMate model and back.

To address these goals we have conducted an initial conceptual analysis of
mapping e3value to ArchiMate business layer diagrams [27]. Only a mapping
to the business layer of ArchiMate and the motivation layer is required to
align these two languages. If a mapping with the business layer is realized, the
other layers will automatically be traceable to the BM. In order to test and
refine our initial results, we have organized an experiment with practitioners
to answer the following research questions:

e QI: Which types of mistakes do practitioners make in aligning e3value
models into ArchiMate? Why?

e Q2: Which alignment guidelines can we identify based on these mistakes?

e Q3: Which ArchiMate building blocks can we identify based on these
guidelines?

Our population of interest consists of conceptual modelers responsible for
creating different kinds of organizational models, ranging from value models to
EA models. Our goal is not to create formal model-transformation rules that
can be automated, in this case a formal transformation is always incomplete.
For example, an actor from e3value can be a role or an actor. The e3value
language itself has some ambiguity in the concept definitions. Therefore, in-
formal guidelines from e?value to ArchiMate are much more useful as we wish
to provide practitioners with understandable tools and guidelines of how to
align an e3value model with an ArchiMate model.

155

Book stors % SellBocks O Beader (business %
(buziness actor) @— (buzinszz —= actor)
TETVICE)
Fay
Reader <D Selling procss => Sales person &
(stakeholder) J (businsss “—8 (business actor)
4 ; prﬂ-c:Fss}
Readbock @ | Supporting
(goal) J [application
5 o (application
component])
Laptop (node)
Windows 10 (3

Figure 9.2: Educational example ArchiMate

9.3 Introduction to e’*value and ArchiMate

In figure 9.1 an educational e>value model is presented, annotated with the
name of the modeling constructs, which we discuss below. In e*value, an
actor is some entity capable of performing value activities, e.g. a business,
department or partner. In the example, the book store is an actor.

A market segment (represented by three stacked actors) represents many
actors of the same kind. In e3value this means that all actors in a market
segment assign economic value precisely in the same way. A value activity
(not shown in the example) is a task performed by an actor which can lead
to a positive net cash-flow. Value activities differ from activities in process
models in e.g. the BPMN. Value activities should be profitable while in BPMN
it is perfectly allowed to include activities that only cost money. Also, value
activities are much more related to services than to activities.

Value interfaces represent what the actors offers and requests to/from its

156

environment in terms of value objects. Value objects are things that are per-
ceived by at least one actor as of economic value. A value interface consists
of at least one in-going and one outgoing port, through which the actor re-
quests or offers value objects from or to its environment. The value interface
models (1) the notion of economic reciprocity and (2) bundling. Economic
reciprocity is the idea that someone only offers something of value, if some-
thing else of higher economic value is obtained in return. In the example, a
book is exchanged for money, hence the transfers are economically reciprocal.
Bundling is the case where it is only possible to offer, or obtain, value objects
in combination.

Value ports between actors are connected by means of value transfers,
which represent the willingness of actors to exchange things. The value inter-
faces of one actor may be related by dependency relations, which shows how
value objects exchanged via a value interface require or assume exchanges via
other value interfaces of that same actor.

An actor can have a consumer need, represented by a bullet. It may also
contain a boundary element, which means that we do not model any further
exchanges required to fulfill the consumer need. Starting from a consumer
need, we can trace all value interfaces triggered by that need to one or more
boundary elements. This is called a dependency path.

For example, the sale of a book by the book store requires that this store
obtains the book from a publisher.

In figure 9.2 an educational ArchiMate model is presented. ArchiMate is a
language for modeling the architecture of enterprises [114]. This allows orga-
nizations to design organizational blueprints based on their business strategy
and goals. Figure 9.2 is a possible ArchiMate model based on the e3value
model of figure 9.1, using our initial guidelines from table 9.1. We also in-
cluded a sample application and infrastructure, to show the holistic approach
ArchiMate uses.

In this figure we see the central notion of a sell books business service,
derived from the book store. We modeled the customer as an end user of the
service by using the serves relation. The book store is responsible, through the
assignment relation, for exposing the service to the environment. The reader
is also included as a stakeholder with a goal read book. The business service is
realized by a selling process assigned to the sales person. An application serves
the process and the application runs on a laptop with Windows 10 (through
the composition relation). Please note, that this figure is only for illustration
purposes. We omitted most of the concepts and relations of ArchiMate [114].

157

9.4 Research Methodology

An overview of the initial guidelines from our previous research [27] can be
found in table 9.1. We wish to confirm and elaborate on our initial guidelines
in an experiment. We did not give our students the initial set of alignment
guidelines, as we wanted to test the baseline understanding of the students of
aligning these models. That is, we wish to know which concepts or combination
of concepts are hard to align to the similar concepts in ArchiMate. This will
give us a precise understanding which concepts mappings are not understood
and require help.

Our data comes from a group of practitioners who followed a course on
creating an EA with TOGAF. The practitioners had no prior experience in
e3value so we taught them the basics of e3value modeling. However, they did
have prior knowledge of ArchiMate from previous courses and some experience
in the field afterwards. The practitioners worked in a broad range of different
companies, for example energy providers, telecom providers, the Dutch tax
office but also a few smaller sized companies and the defense department. The
practitioners all had at least a few years of experience in the organization as a
business analyst, functional managers or as administrative employees. At the
time of the experiment they were educated at the vocational level, but in their
fourth year of their higher vocational education.

This course was part of an evening school for practitioners to obtain their
bachelor degree. In the end eight practitioners handed in their assignment, out
of 16 students. We disregarded one assignment, because it was of insufficient
quality, it did not contain any models to analyze. Seven students passed the
course.

We extended this course with value modeling with e3value and asked the
practitioners to align their e*value model into an ArchiMate business architec-
ture. We only used the results from the students that passed the course and
where they scored sufficiently on the e3value part. The course was supervised
and graded by the first author of the original article.

We analyzed the results of their assignment and identified the mistakes
made, based on our initial hypotheses set. And based on our analysis we
refined guidelines and constructed building blocks of e3value that align into
ArchiMate building blocks. Additionally, whilst working with the results from
the experiment we were able to perform an additional conceptual analysis.
This also led to three new alignment guidelines, given below. The research
protocol and the results from analysis are available at request from the first
author of the original article. However, the raw data cannot be shared, because
of confidentiality reasons. Due to the outbreak of covid-19, combined with the

158

Table 9.1: Results of our initial analysis [27]

Number Outcome analysis

H1 ArchiMate stakeholders with strategic goals correspond to actors in an e3value model.

H2 Value activities in an e3value model correspond to lower level goals in a strategic ArchiMate
goal model.

H3 Consumer needs in an e3value model correspond to lower-level consumer goals in a strategic
ArchiMate goal model.

H4 e3value actors map to business actors and possibly roles in an ArchiMate EA model.

H5 e3value value activities map to ArchiMate business services.

H6 e3value value interfaces map to ArchiMate business interfaces

H7 An e3value dependency path may map to a business collaboration in ArchiMate.

fact the practitioners had to perform their final internship at the same time
we were unable to organize closing interviews with the students. We did not
plan to do so initially, the option of holding them vanished entirely.

9.5 Results

9.5.1 Observations

We will discuss our observations based on table 9.1, found in our previous work
[27], using the same numbering and description. We will provide hypothetical
explanations for our observations.

H1. ArchiMate stakeholders with strategic goals correspond to actors in an
e3value model. Most of the practitioners modeled the actors from the evalue
model as stakeholders. This can be explained by the fact that an actor is
always a stakeholder by definition. This was understood by the practitioners.
However, they could not always understand that both languages operate on
different detail levels. Instead of modeling the actor as a stakeholder, they
modeled the sub-stakeholders part of a composition, combined with the fact
that naming was inconsistent throughout the solutions. For example, in one
instance the practitioner modeled his/her company as an actor, but modeled
this in the ArchiMate model to departments of the company. This can destroy
traceability relations. We refined H1 from Table 9.1 into G1 and G4 in table
9.2.

H2. Value activities in an e3value model correspond to lower level goals in
a strategic ArchiMate goal model. No practitioners modeled value activities
as a goal. This points at an error in our previous analysis. We identified a
possible match between a business goal (problem domain) and a value activity
(solution domain). But, these are two different things at a different layer
of abstraction. The relationship is more of the means-end type than of an

159

equivalence type relation, were a value activity is the means towards a goal.
H2 has been removed.

H3. Consumer needs in an e*value model correspond to lower-level con-
sumer goals in a strategic ArchiMate goal model. Some of the practitioners
modeled consumer needs as goals. However, they did not always indicate they
were the same goals. So there were deviations in the names. It was interesting
to see that the goals were often part of a larger goal tree. The practitioners did
understand that goal modeling resulted in more elaborate models. We refined
H3 (table 9.1) into G2 (Table 9.2).

H4. e3value actors map to business actors and possibly roles in an Archi-
Mate EA model. Most practitioners were able to model at least some of the
actors from e3value as actors in ArchiMate. Roles were not used. The prac-
titioners did make errors in scope, where they forgot to model the main or-
ganization and went into detail too fast. This made the models inconsistent.
Actors in e3value are legal or natural persons, such as organizations or con-
sumers. These can also be actors in ArchiMate, but ArchiMate additionally
represents software and hardware entities as actors. Second, e3value does not
know the concept of a role. This is also caused by that e3value is more abstract
and generic than ArchiMate. The difference in scope in the two languages is
not always well understood. We refined H4 (table 9.1)) into G5 (table 9.2).

H5. e3value activities map to ArchiMate business services. Value activities
from e?value without a consumer need associated to it where mostly modeled
as a business service in ArchiMate. The explanation for this is that the defini-
tions of a value activity and business service are very similar, the textbook for
e3value also refers to value activities as services [49]. Naming was not always
consistent and some services were forgotten. The naming errors are the result
of not providing clear enough guidelines. We refined H5 (Table 9.1)) into G6
(table 9.2) and G10 table 9.3.

H6. e3value interfaces map to ArchiMate business interfaces A single prac-
titioner modeled a sequence of value interfaces on a dependency path as a
business interface. However, he did so incorrectly (not adhering to ArchiMate
modeling guidelines). Modeling business interfaces is not mandatory in Archi-
Mate, so many practitioners did not bother to model them. Also, our initial
analysis outcome is incomplete. In e*value, value activities have value inter-
faces too, but this cannot be modeled in ArchiMate. We changed H6 (9.1) to
G7 and G8 (table 9.2).

H7. An e3value dependency path may map to a business collaboration in
ArchiMate. Not a single practitioner modeled a business collaboration based
on a dependency path. However, a single practitioner did model a sequence of
business services that was a sequence of value activities in a dependency path.

160

Apparently it was not clear for practitioners how e?value dependencies and
collaborations align with ArchiMate constructs. Perhaps, that the difference
in scope between the languages, e*value models a value network instead of a
single organization, was something the practitioners found hard to identify.
Our initial analysis outcome was incomplete and needs refinement in adding
the sequence of business services. H7 from table 9.1 is refined into G11 and
G12 in table 9.2.

9.5.2 Design of guidelines and building blocks

Building block 1 Based on these guidelines we identified a number of build-
ing blocks. Figure 9.3 illustrates the first building block. We have used the
first four guidelines to construct this block. The first four guidelines are all
related into aligning the consumer need part of an e3value model to the rele-
vant stakeholder models. Guideline G1 and G2 are used to identify the base
concepts of stakeholder and goal. Guideline G3 is applied to construct a goal
model using the association relation between the actor and the goal. The
fourth guideline is there to correct an incorrect e3value model. We use these
four guidelines to identify building block 1.

b otor b I Stakeholder D ‘

Figure 9.3: Building Block 1, derived from guidelines 1-4

Building block 2 Figure 9.4 illustrates the second building block. We have
applied guideline G5, for the identification of the business actor, guideline G6
is applied for the identification of the business service. Guideline G7 combines
these two, and guideline G8 identifies the serves relation from ArchiMate be-
tween the end user and the business service. It is important to note that we
decided to follow the guideline associated with guide G7 and model the busi-
ness interface. The business interface is part of the actor and assigned to the

161

Table 9.2: Overview of guidelines derived from the experiment

No| H Guideline Additional advice

G1| H1| An evalue actor or a market segment | Additional detail can be added to the
can be included as a stakeholder in the | stakeholder using the composition or
ArchiMate motivation layer with the same | the aggregation relation in ArchiMate.
name.

G2| H3 | A consumer need can be modeled as a goal | Construct a complete and correct goal
from the ArchiMate motivation layer with | model if needed.
the same name as the value activity from
eSvalue.

G3| H1 | When the e3value actor has a nested value | This is a combination of G1 and G2.

H3 | activity and contains a consumer need
symbol, this combination can be modeled
using stakeholder, goal and association re-
lationship from the motivation layer of
ArchiMate.

G4| H1 | When a e3value actor has a need directly | Complete the goal model from the
associated with it, the actual need is un- | stakeholder to create a correct goal
known, therefore we only model the stake- | model.
holder with the same name.

G5| H4 | An e3value actor can be at least an Archi- | ArchiMate business actors can be in-
Mate business actor with the same name. ternal or external to the organization

itself. In ArchiMate we can identify
additional business actors that are part
of the same organization. Decompose
the business actors when needed.

G6| H5 | A value activity, without containing a con- | Services can be internal or external to
sumer need, can be modeled as a busi- | the organization itself. Focus on the
ness service in ArchiMate from the busi- | organization that is being modeled.
ness layer with the same name.

G7| H6 | When a value activity is nested in an | As an alternative to business actors,
e3value actor, this may be modeled in | business roles can be used instead of
ArchiMate by a business actor, business | the business actor, if the role is respon-
service and business interface. ArchiMate | sible for delivering the business service.
guidelines can be followed for the relations | See G10.
between them.

G8 If an e3value actor contains a consumer
need and is linked to a value activity as
described in G7, this can be an end user
of the business service in ArchiMate and
then a serving relation is used between the
business actor and the business service.

G9| H7 | When there is a trace through the depen- | There are different relations in Archi-

dency path, including and/or dependen-
cies, this trace must be represented as well
in ArchiMate through the business services
if the trace contains value activities.

Mate a) triggering, b) information
flow, ¢) serves relation, d) a combi-
nation. Use ArchiMate guidelines to
identify the correct one.

Table 9.3:

162

Overview of guidelines derived from additional conceptual analysis

No

H

Guidelines

Additional advice

G1Q

H6

If there are different types of a single actor
in e3value which are responsible for per-
forming different kinds of behavior, then
consider a business role in ArchiMate.
Value activities in an e3value actor can
lead to different roles of an ArchiMate
business actor.

Actors in evalue often are roles.

G1]|

H7

If two e3wvalue actors address a single
value interface to address a consumer
need, then use a business collaboration.

Investigate the dependency path to de-
termine if we have a collaboration of
multiple companies. Name the ac-
tors accordingly to the e3wvalue model.
Name the business collaboration using

the ArchiMate standards.

G12 H7 | If two actors bundle their interfaces in a
partnership, then a business collaboration
and a specialized business service com-
bined with a business collaboration can
|

] =)

*i}'
® [

L)

be used.

business service. Guideline G8 in this case is not broken, because the derived
relation is still an assignment relation. If the business interface is not used,
then the actor is directly assigned to the service. Guideline G11 can applied
to adapt this building block. Two actors address a single value interface, and
corresponding consumer need, with services of their own. The building block
can be extended with these additional services and actors.

Building block 3 The third building block is illustrated in figure 9.5. We
have used guideline G9 the design of this block. The focus on this block is the
relations that are possible between the value activities and business services.
For this reason we have omitted all irrelevant constructs in the ArchiMate
model to make this clear. Guideline G9 aligns a sequence of value activities in

163

[] ™|
E;’

Actor A %

|

Business Actor % [Business (|
B Service VB
Business —{)
Interface

Figure 9.4: Building Block 2, derived from guidelines 5-8

a chain of business services in ArchiMate.

Building block 4 Building block 4 is illustrated in figure 9.6. For clarity
reasons we have omitted the actual relations and variations of the business
service, but the label of the business service mentions that it should be a
specialized or composed service. Two actors and the partnership from e3value
work together in a business collaboration. This business collaboration delivers
a specialized service. Instead of two companies delivering two services to a
single customer, they combine their services. Guideline G12 is used for this.
If there are more actors involved in this partnership, the building block has to
be extended with this.

Guideline G10 is used to map an actor into roles in ArchiMate. This is
an alternative for guideline G1. We will not include a building block for this,

164

A otor & ActorB

Walue A ctivity A
Walue A ctivity B

o>,
]I I]I I:il:|

i

Business () Business ()
Service A — Service B

Figure 9.5: Building Block 3, derived from guidelines 9

since this is not an aggregate guideline set.

9.5.3 Answers to research questions

Q1: Which type of mistakes did the practitioners make in aligning e3value
models with ArchiMate? Why? The practitioners made in general two types of
mistakes, which were probably caused by the different scope of both languages
and the complexity of a value network. For example, practitioners forgot
to model a high level actor as a stakeholder, but did model elements that
could be part of a stakeholder decomposition, without the top stakeholder.
Second, aligning a value network (e.g. a chain of services) was also hard for
the practitioners.

Q2: Which alignment guidelines can we identify based on these mistakes?
We were able to identify 12 guidelines based on the experiment and the fol-
lowing additional conceptual analysis. Table 9.2 and table 9.3 answer this
research question.

Q3: Which ArchiMate building blocks can we identify based on these guide-
lines? We were able to identify four building blocks, illustrated in figure 9.3
through figure 9.6. These figures answer our third research question.

9.6 Application

We illustrate our guidelines by applying them on our example case of Cirque
du Soleil. Figure 9.7 illustrates our e?value model and figure 9.8 our resulting

165

Business Actor % Business Actor %
B [
Business Collaboration @) Business Actor %
A

and B

Business Interface —0 Specialised A O
RS

Figure 9.6: Building Block 4, derived from guidelines 11 and 12

ArchiMate model. The central actor here is Cirque Du Soleil, their value
activity is to perform a live show. Visitors have a consumer need to enjoy a live
artistic show and the consumer satisfies this need by paying Cirque du Soleil
for performing. Cirque du Soleil hires a ticket office to sell tickets. Samsung
enters into a possible collaboration with Cirque Du Soleil to distribute the VR
media of the circus performance to customers. An external ticket office is used
to offer a ticketing service.

In our example we modeled a single customer with two value activities.

166

Figure 9.7: e*value model Cirque Du Soleil

The customer and the value activities map to the stakeholder customer with
a goal enjoying the live show. This follows guidelines G1, G2 and G3. The
customer is also mapped to a business actor, therefore applying guideline G5.
Guidelines G6, G7, G8 and G9 are also used in the example. Cirque Du Soleil
has a value activity to perform a show. We can therefore identify a similarly
named business service in ArchiMate. Since the value activity is nested, we also
need to show this in ArchiMate. This is done by modeling the actor Cirque
Du Soleil and (indirectly) assigning this to the service. We have chosen to
include a business interface. We applied guidelines G6, G7, G8, G9. The
value activity of Cirque Du Soleil is linked to the visitor. Which is an external
stakeholder with a consumer need. Therefore in ArchiMate we model this as
a serves relation between the business service and the external actor. If we
investigate the value activities in the actor visitor, we can also apply guideline
G10.

The two value activities denote two possible roles the actor can perform
(visiting or watching from home). This is illustrated by G10. Guideline 11 is
not applicable here, because the Ticket Office and Samsung deliver to Cirque
Du Soleil and not directly the consumer need. These services are support-
ing for the main service. We have illustrated three building blocks in figure
9.8. Building Block 1 is the, simplified, goal model. Building Blocks 2 and 3
illustrate the modeling patterns we identified by applying the rules.

167

Visitor 0

BB1 ‘ Customer @ |
i O
Enjoy Live @ Enjoy digital @
‘ show ‘ show from
home
g, :
BB2 Samsmg Cirque Du %
Solei
Inicinct -G} Business —O
Interface
’ !
v v
Digital @ i Digital & L5 Petform D_
Customer Distribution show
 __BR3
= 3
Ticketing & Customer %
Ticket ¥ Ticket -O Digital P Visitor
Office > Counter Customer

Figure 9.8: Resulting ArchiMate model

()

168

Traceability is realized through the mapping of the business service in
ArchiMate to the value activity of e3value. This way we can trace the relations
of the infrastructure, application and business layers into the business model.
This enables reasoning about the contribution of IT to the BM of Cirque Du
Soleil and shows what I'T architecture is needed to realize the BM. This would
require finishing the EA model into the application and infrastructure layers,
which we have chosen to omit in this chapter.

9.7 Discussion

9.7.1 Validity

Internal validity is the support for our hypothetical explanations of the phe-
nomena. Could subjects have misunderstood some concepts for other reasons
than the ones we hypothesize? Because our previous work is published, we can
not guarantee they did not use our previous alignment guidelines. However,
the first author of the original article did ask during the last lecture if any
practitioners used our previous results and the answer was negative.

Ezternal validity is the support for generalization from our quasi-experiment.
Generalization to other languages is not our goal. Their homework was an ex-
ercise based on an actual problem in their organization. These were real design
problems in the organization and therefore a fair representation of the diffi-
culty level. However, this does not mean that we can generalize to all realistic
problems. We created a first refinement of our guidelines, future applications
might introduce additional refinements (i.e. other problems from practice can
introduce different models with different guidelines).

The participants of the group self-selected into the course and so they may
be more motivated or more talented than the ‘average’ business analyst. They
were also highly motivated to pass this course, since this was the last course
before they could start their bachelor thesis assignment and their company
paid for this course. Not passing would reflect badly on the practitioners and
would weaken their position in their organization. Based on this generalization
to other practitioners is not possible.

However, using this experiment we could identify points of improvement
for our hypotheses. We motivated every resulting guideline in terms of the
semantics of evalue and ArchiMate, and this motivation ensures applicability
to other cases in which these two languages are applied.

A second issue might be that the students constructed an EA based on
their knowledge of the actual problem instead of the e*value business model.

169

We do not believe that this is the case, since the e?value and ArchiMate models
were quite similar.

9.7.2 Applicability

We envision a number of different applications for this EA designing approach.
First, we can relate, through the business service to value activity mapping,
the IT systems of an organization to the earnings of an organization. This
would allow us to provide qualitative reasoning about the contribution of IT
to the financials of an organization. Quantitative reasoning is still beyond
the scope of the current guidelines. It is possible to follow the relations from
IT to the value offerings, but there are different kinds of relations. We first
would need to determine how to treat these different kind of relations in an
ArchiMate model.

Second, a good BM has to be practically feasible and economically viable.
Traceability to an EA will help assess both feasibility and viability. In addition,
organizations need to start thinking of aligning their EA with a shared EA
based on the entire value network. Our technique would allow us to design the
shared aspects of this collaboration.

Third, we can operationalize a BM of an organization into ArchiMate busi-
ness layer diagrams. If we apply this often enough we can derive organizational
patterns that operationalize business models. This would be an addition to
the work of reference architectures, but instead from a bottom up perspective
we can derive them from a top down manner.

9.7.3 Limitations

There are a few clear limitations of this work. Although we have derived
our alignment guidelines from a set of different business models, we still need
to apply them in practice. No practitioners have used our guidelines. The
aspect of business value to the realized traceability is not yet evaluated either.
However, from a conceptual analysis point of view, this is now technically
possibly due to the mapping between value activities and business services.
There is also no methodological support to align both phases of business
model design and EA design. It is important that both disciplines are aligned
together, similarly as TOGAF does in their ADM for EA design, EA gover-
nance and project management [115]. We also plan to organize small research
projects where students will apply these rules on existing e?value models and
derive business service architectures from this. We wish to investigate these to

170

identify refinements to our building blocks. We wish to investigate the varia-
tions that are possible to determine a more robust set of guidelines and building
blocks. We also plan to extend this work with designing a governance organi-
zation that steers the value network into achieving its shared goals [126]. We
need to incorporate some peer to peer governance techniques for this [62]. And
finally we wish to develop a tool where both e?value models and ArchiMate
models can be linked together and maintained. This tool would also enable us
to implement the different forms of analysis we envision by combining evalue
and ArchiMate.

171

10

Evaluation of Alignment
Guidelines!

1This chapter is based on an article in the proceedings of the Exploring Modeling Methods
for Systems Analysis and Development Conference [31]

172

10.1 Introduction

Commercial services and physical products rely heavily on ICT. For exam-
ple, Netflix and Spotify would not have been possible without the large scale
deployment of content servers and networks. Physical products often have
digital twins, which complement the product with additional features, allow-
ing for simulation, training, etc. Since ICT is an intrinsic part of the value
proposition of an organization, it can not be considered as a cost-only factor.
ICT should be part of value proposition design.

Additionally, many products and services are offered as bundles in complex
business ecosystems, where each enterprise focuses on its core competence and
jointly they satisfy a complex customer need. Following Moore [89], we de-
fine an ecosystem as a “collection of companies that work cooperatively and
competitively to satisfy customer needs.”

In order to be financially sustainable, an ecosystem requires a business
value model (henceforth called “business model”), which we define as a con-
ceptual model that represents the creation, distribution, and consumption of
economic valuable objects in a network of participants, namely the ecosys-
tem [44]. Valuable objects are the outcome of services and physical products
that satisfy customer needs, as well as payment for these; also called the re-
ciprocal value transfers.

With ICT-intensive services and products, the design of the provisioning
Enterprise Architecture (EA) is part of business design. An EA is a high-level
conceptual model of an enterprise designed to put the business strategy of an
organization into operation [131]. Ideally, in case of ICT intensive products and
services the EA puts the business model into operation and hence contributes
directly to the profit of enterprise. For this, we need an approach to design the
EA of ICT-intensive products and service in concert with the business model
of the ecosystem. Currently, there is no such approach.

As we take a network view of business models, we use e*value as the busi-
ness model notation [49, 44]. In accordance with our networked view, EAs too
should be extended to an ecosystem of enterprises [126]. We use ArchiMate
[114] as the EA language, where we focus on its capability to model business
services and collaborations.

An e3value model focuses on actors in a value network and the economic
feasibility of the value adding activities in an organization. An ArchiMate
model operationalizes this in terms of business services and collaborations,
business processes and applications needed to realize this. The models con-
tain different, but also partly overlapping information. An alignment from an
e3value model to an ArchiMate model can therefore not be automatic and the

173

guidelines defined in this chapter must be complemented with design choices.
The contribution of this chapter is that we provide a real-world validation
of the guidelines we developed earlier, and present further improvements to
the guidelines to make them more precise. We also elicit an evaluation from
practitioners of how to use the conjunction of e3value design and EA design
for investment analysis. This chapter is structured as follows. In section 10.2
we describe our research methodology and research questions. Section 10.3
lists our redesigned guidelines and section 10.4 describes our case study. We
discuss our results in section 10.5.

10.2 Methodology and research questions

We have developed guidelines for business-model-driven EA design in three
iterations of the design cycle [127].

o Conceptual design: We analyzed the meta-models of evalue and
ArchiMate to define an initial version of the guidelines (version 1). We
tested it on a small real-world example: an EA for the Cirque du Soleil
[27], discussed in Chapter 8.

e Lab validation and redesign: We refined the guidelines in an ex-
periment where we compared the EAs designed by practicing architects
from a business model in a laboratory assignment, with the EA that re-
sults from our application of the guidelines [28], discussed in chapter 9.
Although the assignment took place in the lab, the cases for which the ar-
chitects designed an e?value model and an EA were from the real world:
the companies where they were employed. Analysis of the experiment
led to a redesign of the guidelines (version 2).

e Real-world validation and redesign: We applied the guidelines to
a real-world case to redesign the business layer of the enterprise archi-
tecture of an enterprise. This is the case study reported in this chapter.
This experience led to a further improvement of the guidelines (version
3).

Although version 3 of the guidelines are the result of applying version 2 on the
case study, for readability we present version 3 in section 10.3 before presenting
the case study in section 10.4.

The case study is technical action research, as it has two goals: to learn
more about the guidelines and refine them, and if we can construct a correct
business layer architecture from a evalue business model diagram [127]. We

174

validated the resulting enterprise architecture, and the e?value model that we
designed, with management and the enterprise architect of the company. This
allowed us to answer the following research questions:

Q1 Do the guidelines produce a correct enterprise architecture of the busi-
ness model?

Q2 Is the resulting traceability relation useful to make investment and di-
vestment decisions?

To preserve confidentiality, we refer to this company as company X and we
changed some details in the models that we will present.

10.3 Redesigned guidelines

Figure 10.1 provides the legends of evalue and ArchiMate that we use in this
chapter 2. Tables 10.1, 10.2, 10.3 present some of our revised guidelines. Ta-
ble 10.1 gives one of the guidelines to align an e3value model with an ArchiMate
motivational model 3. Basically, the idea is that:

o An e3value actor is mapped to an ArchiMate stakeholder. The reason is
that an evalue actor is an actor who has something to gain or lose.

o A need of an e3value actor is mapped to an ArchiMate stakeholder goal.
The reason is that a need in e*value is a lack of something valuable that
the actors wants to acquire. In other words, it is a goal.

Tables 10.2 and 10.3 list the guidelines for designing an ArchiMate business
layer model from an e*value value model. Compared to version 2 [28], we
improved the mapping of ports and collaborations, merged a few rules and
added rules for and- and or-gates. The tables show the guidelines for designing
an EA of a focal company, which is embedded in a network of companies. To
design the EA of more than one company, the guidelines have to be applied
to each company.

o An wvalue actor is mapped to an ArchiMate business actor.

2See the e3value user guide at https://e3value-user-manual.thevalueengineers.
nl/ and the ArchiMate documentation at https://pubs.opengroup.org/architecture/
archimate3-doc/.

3A version of the chapter with the complete table is available at https://www.
thevalueengineers.nl/pdf/EMMSAD-2021-1ong.pdf.

https://e3value-user-manual.thevalueengineers/
https://pubs.opengroup.org/architecture/
https://thevalueengineers.nl/pdf/EMMSAD-2021-long.pdf

175

Actor Business Actor % " Stakeholder @) [Application
‘ Component
Customer Need =
—
. Comp%sition f=detting Realization
Value port 4 Godl © N7
i Business -0 l ‘ Application O
Value /_FVEIIUE Interface Service
interface™ (e : |
Assignment Flow Serves
|
L J
Boundary Business (O Business b
element Service Q- ------- Realization -------—1 Process
(a) Legend for evalue. (b) Legend for ArchiMate.

Figure 10.1: Legends for e3value and ArchiMate

A evalue actor is an entity that is responsible for its survival and
well-being, e.g. a profit-and-loss responsible company or a con-
sumer [44]. An ArchiMate business actor is a business entity that is
capable of performing behavior [114]. This implies that all e3value
actors are ArchiMate actors but not the other way around. By
definition an ArchiMate actor is always a stakeholder, as he has
something to gain or lose. e¢3value actors can therefore be depicted
on both the stakeholder and business actor concepts.

e An e3wvalue value activity of an actor becomes an ArchiMate business
service of that actor.

An e3value activity is a task performed by an actor that potentially
results in a benefit for the actor [44]. An ArchiMate business service
is explicitly defined behavior that a business role, business actor, or
business collaboration exposes to its environment [114]. We view
every evalue activity as a potential business service exposed by
the focal company. A value activity is connected to its environment
through a value port, similarly as a business service is connected
to its environment. This way, a value activity cannot be mapped
to a business process, since a business process is internal to the
organization.

o An value value port of an actor becomes an ArchiMate business inter-

176

Table 10.1: e3value mapping to the motivation layer of ArchiMate.

No | Guideline Additional advice
G1 | An évalue actor or a market segment | Additional detail can be added
can always be modeled as a stakeholder | to the stakeholder wusing the
in the ArchiMate motivation layer with | composition, aggregation or spe-
the same name. By definition an ac- | cialization relation in ArchiMate.
tor is always a stakeholder. This is | [t is not always necessary to
not true for the other way around. | model every actor as a stake-
holder. This is a choice the
Actor:A enterprise architect has to make.
Stakeholder: D
=
G2 | A customer need must be modeled as | Construct a complete and cor-
a goal from the ArchiMate motivation | rect goal model if needed.
layer with the same name as from e*value
Goal: A @‘
Customer Need: A
G3 | When the e%value actor contains a | This is a combination of G1 and G2.
customer need, this combination must
be modeled wusing stakeholder, goal stakeholder; @
and association relationship from A ‘
the motivation layer of ArchiMate. E—
Actor: A
Customer Need: B Goal: B @‘
G4 | When the €’value actor contains a value | This is a combination of G1 and

activity and a customer need, this com-
bination must be modeled using stake-
holder, goal and association relationship
from the motivation layer of ArchiMate.

Actor:A

Value Activity: B
Customer Need: C

G2. The value activity is not
mapped into the motivation layer.

Stakeholder: @ ‘

177

Table 10.2: e3value mapping to the Business layer.

No Guideline Additional advice
GbH An e3value actor or market segment is | In ArchiMate we can identify addi-
mapped to an ArchiMate business actor | tional business actors. For example,
with the same name, or to an ArchiMate | we may identify actors internal to an
actor that assumes a role with that name. | organization and we may decompose
an actor.
Actor: A
Business % BusmessAdur%
Actor: A
Role:a D
G6 An eSvalue value activity is | Services can be internal or ex-
mapped to an ArchiMate busi- | ternal to the organization itself.
ness service with the same name. | Additional detail and service
composition might be required.
Value Activity: A
Business O
Service: A
G7 eSvalue value ports are mapped | One or more value ports from one
to ArchiMate business interfaces | or more value interfaces of a same
) value activity can be mapped to the
same ArchiMate business interface.
Business —O
Interface: P
G8 | An éSwvalue value exchange is mapped | If B contains a boundary element in-
to ArchiMate flows. In addition, the | stead of a need, the direction of the
exchange can be mapped to an Archi- serving relation would be reversed.
Mate serving relation in the direction
of supplier to customer. Ports of the AcorA - R Acor:B R
focal company will be mapped to one |
or more ArchiMate business interfaces. ? lT
[
[Aeor A Actor: B : b
Business —O g
Interface:p C______________
G9 An e3value activity connected through a value | If B contains a boundary element in-

exchange to a need of an actor is mapped to an
ArchiMate business service serving the actor.

Actor: B

Actor: A

stead of a need, the direction of the
serving relation would be reversed.

Busines Actor: % Business %
A Actor: B
M A
L
Business —O Business O
Interface — Service C

178

Table 10.3: e3value mapping to the Business layer

No Guideline Additional advice
G10 [An AND/OR gate in e3value maps | For the or junction the connec-
to an and/or junction in ArchiMate. | tor in ArchiMate is a hollow cir-
cle. Flows can be added as needed
as in G8. A junction in ArchiMate
connects relations of the same type.
Business Actor %
A
. Actor: C Business —O Business —O
Actor: B Interface Interface
Business Actor % Business Actor %
B C
G11 | Two e’wvalue actors connect to a sin-
gle value interface to address a customer E“""efm“r%
need are mapped to an and-junction in
ArchiMate in the same way as in Gl11. /;\
Actor: B Business —O Business —O
: Interface Interface
Actor: A *
l— Business Actor % Business Actor %
...................... B c
Actor: C
I
G12 | An e3value value exchange between two | The flow relation denotes the trans-
value activities inside an actor maps | fer of money, information or goods.
to mutual flows between two Archi- | If the direction of the dependency
Mate business services of that actor. | path is known, this can be represented
by a serving relation in ArchiMate.
Actor: A
Value Activity: B Value Activity: C Business %
Actor: A
;J ;J Business O . Business
Service: B | n—— | Service: C
G13 | A composite actor in e3value is mapped | The business collaboration will
to a business collaboration in ArchiMate. | offer services from both actors
Partnership: P as a bundle.. Use a composition
] or aggregation relation between
e ; the arent and child services.
Actor: A Actor: B p
\— Business —O Business %
""""""" ,7 Interface Il Actor: A
Actor: C ‘
| Business @
Collaboration:
P
Business ;% Business ;%
Actor: B Actar: C

179

face of a that actor. This is a change of version 2.

An e3value value port is a willingness to provide or request some-
thing of value (a value object) [44]. ArchiMate business interfaces
are channels through which a business service is made available. An
value port has no direct counterpart in ArchiMate. However a value
port can be composed into an ArchiMate business interface. This
adds a channel. Value ports from multiple value interfaces from an
OR dependency graph can be mapped to a single business interface.
One or more value ports of a single business interface or an AND
dependency graph can also be represented as a single business in-
terface. When there are different channels to a value port, multiple
business interfaces are mapped to value ports from a single value
interface.

o An e3value value interface is a collection of two or more ports that defines
a commercial transaction. This is not modeled in an ArchiMate model,
because transactionality of commercial transactions is not represented in
ArchiMate.

o An e value value transfer can be mapped to an ArchiMate flow relation
and to an ArchiMate serving relation with a direction that depends on
the direction of the e3value dependency path.

An value transfer is a willingness to transfer a value object from
provider to requester [44]. A flow relationship is a transfer of in-
formation, goods or money between elements [114]. In addition,
value transfers are part of a dependency path that starts from one
or more needs. This determines which elements delivers a service
to which other element (the serving relation) [114].

o A value transfer is associated with a value object in e3value.

A value object is an object that is of economic value for at least one
other actor.

We will not to represent the value object in ArchiMate. There
is no way to accurately map a value object to a single concept
in ArchiMate. A value object can be money, can be a physical
object, the outcome of a service or even an experience [44]. The
first concept to try to map the value object to is the value concept.
It is defined as ‘something of relative worth, utility or importance

180

of a concept’, but it is not a physical good or money. A value
object can be mapped, in case of a physical good, to a product. A
product is defined as a coherent collection of services and/or passive
structure elements, accompanied by a contract/set of agreements,
which is offered as a whole to (internal or external) customers [114].
In the explanation of the ArchiMate specification the authors also
illustrate that physical goods can be represented with a product.
Services are used to expose the product to the environment. In the
case of money, the object money cannot be represented with a value
concept or a product from ArchiMate, but the economic value of
money can be represented with the value concept. These are two
separate things.

Summarizing,when we combine all these arguments together, we
opt not to map a value object from e3value to ArchiMate. There is
no way to accurately represent a value object in ArchiMate in all
instances.

10.4 Case study

10.4.1 The company

Company X is responsible for building startups based on an acquisition of in-
tellectual property. The main goal of organization is to increase the share value
of the startup and finally sell the startup to other investors. Company X has
three major value-adding activities: Scouting new technology, supporting star-
tups during their growth, and selling matured startups. Support provided by
X ranges from HRM, legal, financial administration, providing management,
etc. We cannot provide exact details and the business model below differs
somewhat from the actual business model. The company had an existing EA
in place.

181

10.4.2 Application of the guidelines

CustomersD[Money] ‘ Startup companies It [Shares] |Technology providers
J[Pmduct] ; A | ®

et ManeyI ¢ : Capitalize

1P] : technolo
] ! G

Amortization[Money] Amortization[Money]

[Shares] Loan[Money] [Shares] Loan[Money] [Startup [Access to

i technolo
[Resources Resources] ideal &l

Investors H Company X
[Money]

[Shares] :
. Scouting and
tartup selling Supporting startup growth selection

Figure 10.2: e3value model of company X.

Figure 10.2 shows the business model of X. An e3value model represents com-
mercial transactions in a time period called the contract period.

In the model of figure 10.2, company X performs three value-adding activ-
ities, Scouting and selection, Supporting startup growth, and Startup selling.
Technology providers have the need to capitalize technology. To satisfy this
need, they exchange access to technology for a startup idea with company X
and they transfer IP in the technology to a startup. IP can be transferred in
exchange for shares or in exchange for money. In both cases, X lends money
to the startup, makes resources available, receives startup shares and receives
the amortization of the loan. However, only a fraction of the shares will be
transferred if the technology provider receives part of the shares. This will be
represented in the quantified model, discussed later.

Since this model contains no time ordering, it provides no information
about when the loan is given, when the amortization takes place, or when
the startup is sold. The model in figure 10.2 shows all of the commercial
transactions and value activities that X is involved in during the contract
period. These are the activities to be supported by an EA.

Figure 10.3 shows a high level layered EA model of X. The top part is
constructed by our guidelines. We have also included a simple goal model.
The diagrams have been annotated with the names of the guidelines applied.

182

Company% Startup % Technology @
X(G5) customers ‘ Providers ‘
G|9—" (GS) (G3)
Investors % Business —O Startup £ Technology % :I:@
(s --Ge-# Interface Companies G——= Providers C'aplw:ahz‘e Gl
@7 (G5) & . (G5) el oy,
T 15T ' (e
16 3 [T o T T
N REN- poesl e oo
P R 1 xy 1 Ly
! :GQ Startup O ! G‘E 7l" Supporting D:_,JI Scouting and ©
(=" Selling(G :\ Startup selection
- - 7 ™ Growth (G6) (G6)
Main Procesg =
Formation =» Building '::>__._ Transfer =
process | Process
Financing & Suppart & Legal © Task Service &
service Service service
o Fas LS s
! CRM System | Legal System Tasks app
2 Financing app | Support
il Application

Figure 10.3: Layered EA model of X.

The part of the EA below the line had already been designed by the enterprise
architect of X. Our guidelines produced the part of the enterprise architecture
above the line. This part differs from the enterprise architect’s model; most of
it was absent. In particular, the business services were not complete and the
external actors were absent.

For clarification reasons we will elaborate the ArchiMate figure. The top
left part of the model is based on the left bottom part of the e3wvalue model.
The startup selling value activity is mapped with rule G6 into a business
service. The market segment investors is mapped with guideline G5 into a
business actor. The flow relations are mapped from the value transfers using
guidelines G8 and guideline G9 is used to identify a serves relation. We also
mapped the value ports into a business interface using guideline G7. On the
right side of the model, we mapped the technology provides with their needs
into a small goal model using guideline G3.

183

03* avg-initial-share-valug

15 000
Customers D [Ill?r?ey] ‘ 15 Startup companies I [Shares] [Technology providers
1. (e)-~4"1 I—— g R 1p] 50% 1
j{Product} 1 S000KE) siog ol
Ivalue:floooooo : : ‘ [IP] technology
Amortization[f10.2M] Amortization[f10.2M]
‘ _— avg—initial—share—valu’i[ShamS‘] Loan(f 10M] [Shares] | Loan[f10M] [Startup [Access to
idea] technology]
[Resources Resources]
[10*avg-
15 initial-
iosEtars initial Company X
share- e
value]

1 [Shares] . : Scouting and
St . selection
700K expenses 15 Supporting startup growth 100K expenses

fSmexpense

Figure 10.4: A market scenario for company X. “f”is a generic currency symbol.

10.4.3 Quantification

A quantification of an e*value model is called a market scenario [44]. For
example, figure 10.4 shows a quantified version of the model in figure 10.2. It
quantifies the size of market segments, the average number of needs per actor
in a market segment, expenses of value activities, the value of money flows, the
distribution of choices, and the value of any other variable that we introduced.
Here, we introduce the initial share value of a startup as a variable. We use
“f” as a generic currency symbol (read: “Florin”). The numbers in figure 10.4
are arbitrary and do not reflect company X.

Each actor has revenues and expenses, and adding these up, the e3value
tool computes that the company has a net revenue of f 747 M in this scenario.
By making many different scenarios, we can assess how sensitive the business
model is to differences in market assumptions.

In order to calculate the profitability of the focal company of the value
network a time series can be used. A time series puts a number of market
scenarios in chronological order and then calculates the profitability using a
Net Prevent Value (NPV) calculation. Figure 10.5 shows what a time series
looks like.* In the first period, X makes an investment in startups. In the

4Included to give a rough impression only. A version of the chapter with a readable time
series is available at https://www.thevalueengineers.nl/pdf/EMMSAD-2021-1long.pdf.

https://www.thevalueengineers.nl/pdf/EMMSAD-2021-long.pdf

184

(a) Period 0: investment (b) Period 1: growth (c) Period 2: sale

Figure 10.5: Sketch of a time series for company X. A time series is a sequence
of market scenarios for consecutive contract periods. Each market scenario
quantifies an e3value model. In an investment analysis, the models in a time
series usually are the same and the only thing that is different is the quantifica-
tion in the consecutive market scenarios. However, for the computations that
follow that is not important and we may create a time series where consecutive
models are different. The three models are extracted from the market scenario
in figure 10.4.

second period, these startups do business and in the third period, they are
all sold to investors. Using the quantifications of figure 11.3 and a fictional
interest rate of 2%, our tool computes an NPV in period 0 of f 571 M. By
varying the quantifications, an investment risk analysis can be done.

10.4.4 Expert evaluations

In order to validate and elaborate on the correctness and utility of the realized
traceability we organized a validation and requirements elicitation session with
management and the enterprise architect of X.

To answer Q1, we made some mistakes in our initial business model, which
we corrected. The mistakes were not in the value activities or the actors in the
value network, but how actual value was created. For example, in our initial
business model it is possible that not all shares are sold to X. In reality all
shares are owned by X from startup creation. Also,the actual costs structure
is completely different from our quantification. However, these mistakes have
no impact on the resulting EA model.

The EA of figure 10.3 correctly represents the I'T environment and business
services of X and the upper part, designed by us, maps properly to the lower
part, designed by the enterprise architect. This was also validated with the
enterprise architect.

Our upper-part extension of the EA embodies an improved traceability
from the EA to the e3value business model, and the discussion revolved around

185

answering Q2: Is this traceability useful for investment and divestment deci-
sions?

This discussion turned into a requirements engineering session for tool sup-
port. Management of X wish to determine what the effect of changes in the
business model on the EA is. Their strategic goal is to scale up to more
start-ups than they have now (a quantitative goal) and they need to decide on
the best investment in IT to support this goal. The value activities of X will
not change but the number of technology providers and startups they inter-
act with will change. Traceability between an e3value model and an EA is a
nice-to-have; the traceability will be considerably more useful to X if different
quantified time series can be related to IT investments. X was particularly
interested in being able to use NPV to evaluate different IT architectures from
the business model in a top down manner and to be able to perform scenario
generation and evaluation.

10.5 Discussion

10.5.1 Traceability

Our application of the guidelines showed that we can produce the upper part
of an ArchiMate EA model that is a sound basis for designing a complete EA
aligned to an e3value model. Such an alignment is needed in order to relate IT
expenses to value-adding business activities. All value-adding business services
are included in the EA model, and they are related to interfaces with other
companies. However, expert feedback told us that to be of use in investment
decisions, this traceability relation should allow quantification.

10.5.2 A business model-driven method for EA design

Designing a business model and an EA requires many decisions and we found
it expedient to use the following steps:

1. Construct an e3value model for the value network of the focal organiza-
tion.

2. Construct an ArchiMate motivation model.

e Create a goal model for the organization using the guidelines of
table 10.1.

o Elaborate this goal model using ArchiMate guidelines and relations
(composition, aggregation, specialization).

186

3. Construct an initial ArchiMate business layer model.

o Construct a high level business service architecture (tables 10.2
and 10.3).

o Identify sub-services where needed using standard ArchiMate mod-
eling guidelines and operations (composition and aggregation).

4. Design the business processes and application architecture and link them
to the service architecture.

We consider this as a lesson learned from this project and we will use this
method for our next case study and to teach to students.

10.5.3 Validity

Internal validity is the extent to which the outcome of an experiment has been
produced by the treatment. In this action experiment, the outcome is an EA
and the treatment is our set of guidelines. Our description in this chapter
shows that the outcome is indeed produced by this treatment.

The wtility of this outcome is still an open question. The traceability that
we established is a nice-to-have, but to be useful in investment and divestment
decisions, we need to provide tool support to relate I'T expenses to revenue in
different investment scenarios.

Another open issue is the external validity of this treatment. Can other
people use these guidelines and come up with similar results? Are these guide-
lines sufficient for all companies? Are the resulting EAs useful for other com-
panies too? To answer these questions we need to do more case studies and
experiments, in which we ask other people to use these guidelines for other
companies.

A higher-level external validity question is whether guidelines like these can
be used with other business modeling and EA languages. Achieving that level
of generality is not our goal. Since our guidelines are derived from an analysis
of the meta-models of e*value and ArchiMate and refined in experiments and
case studies using these languages, we do not expect generalizability beyond
these languages.

10.6 Conclusion

We conclude that establishing traceability between an EA and an e3value busi-
ness model is possible in practice and is potentially useful if we can quantify

187

this traceability relationship. In chapter 11, we will define a relationship be-
tween IT investments and company revenue and test this in a new case study.
There is some previous research that we can build on [25, 83].

188

189

11

Quantitative Alignment of
ArchiMate with e’value’

1This chapter is based on an article in the proceedings of the International Conference
on Conceptual Modeling[32]

190

11.1 Introduction

In chapters 8, 9 and 10 we defined and evaluated guidelines between evalue
and ArchiMate to create traceability between e3value and ArchiMate. For
this traceability to be useful we need to be able to assess the financial and
technological sustainability of an enterprise architecture.

To assess financial sustainability of an ecosystem, we need a business value
model of the ecosystem (henceforth called “business model”), which we define
as a conceptual model that represents the creation, distribution, and capture
of value in a network of participants [44]. Valuable objects are the outcome
of services and products that satisfy customer needs, as well as payment for
these.

A quantified business model of an ecosystem contains estimations of rev-
enues and expenses of the ecosystem members. Revenues result from sales.
Expenses are made to obtain e.g. raw materials, services or goods from oth-
ers.

In ICT-intensive value propositions, expenses often relate to ICT compo-
nents, both hard- and software. Therefore, in case of ICT-intensive services
and products, the design of the provisioning FEnterprise Architecture (EA)
should be coordinated with business model design.

In this chapter we extend this with (1) guidelines to quantify workload
requirements in an EA based on quantification of an e3value model, (2) a
technique by which to specify investments in and expenses on ICT in Archi-
Mate, and (3) a mechanism to import the specification of investments and
expenses in evalue models.

This chapter is structured as follows. Section 11.2 introduces our research
methodology. In section 11.3 we introduce the design of our approach. In
section 11.4 we apply our approach on a realistic example. We discuss our
findings in section 11.5.

11.2 Design goals, research questions and method-
ology

Our design goal is to design techniques by which to determine if a business
model is feasible in terms of financial sustainability and technological feasibil-
ity.

e3value models contain a transaction table that identifies and counts all
commercial transactions among ecosystem actors. The transaction table con-
tains crucial information to assess long-term financial sustainability of the

191

ecosystem because it determines revenues and expenses of each actor. Our
first sub-goal is now to include information from the transaction table in an
ArchiMate model. Our second sub-goal is to find a way to use this informa-
tion to identify workload requirements on the components of an EA. Our third
sub-goal is to find a way to specify investments and expenses on ICT in Archi-
Mate that will meet these workload requirements, and export these to the
corresponding e?value model. This gives us the following research questions.

e QI1: How can ArchiMate represent the economic transactions of e3value?

e Q2: How can performance requirements in ArchiMate be identified from
the transaction table?

e Q3: How can ArchiMate be quantified with investments and expenses?

e Q4: How can expenses and investments in an ArchiMate model be fed
back into an e3value model?

e Q5: Do these quantitative alignment techniques provide sufficient infor-
mation for investment decisions?

Q1-Q4 are design questions, Q5 is a knowledge question. The aspect of use-
fulness that we want to consider in Q5 is scalability. In other words, are these
techniques useful to make decisions about scaling up a given EA? We present
our answers to Q1-Q4 in section 11.3 by means of a toy example and provide a
preliminary answer to Q5 by means of a real-world case study in section 11.4.
This means that we follow a design science methodology [127]. In our previous
work we created guidelines for designing an ArchiMate business layer model
from an e3wvalue model, based on a conceptual analysis of the two languages
[27]. These guidelines where then tested and refined in a lab test and subse-
quently in a field test [28]. The current chapter is a further extension of the
guidelines with quantification alignment between e?value and ArchiMate and
a preliminary field test of this extension.

11.3 Design of Quantitative Alignment
Figurell.l contains the value network and transaction table of an e?value

model on the left and bottom, and an ArchiMate model on the right. We will
explain all parts of the figure in what follows.

192

Bl N . Contract Period: 28 days
Azz?ess Train Company % Value Transaction: Tx1, 500000, VT1,VT2
Travelers (50.000) Website -0 % Response Time Tx1: 1.5 seconds
Market _L G (Tx1) Tra(TVe‘:)ers Concurrent Workload: 1000 transactions
usiness X
Seginent Interface per second
Customer ~———— 10 Assignment =]~ -VT1------* & — Flow
Need _ e T2 Value Transfer: VT1, 500000, [Payment] 1
Bionees y Ticketing i Value Transfer: VT2, 500000, [Ticket] 1
Payment O Ticket O)]
Value Object — Processing Issueing xa:ue 8EJ_EC:1 {;'Ckeﬂ .
4 m
[Ticket] | [Money] AHEIERIEGS Fraymen
N
Value lnterface% M R & Realizatio_A
Value Port ppizceton l .
Component Payment System || Ticket System Investment Payment System: f25000
” Application | PaymentO Ticket O Investment Ticket System: f30000
alue Service ? i
Activity Service Service
Boundary — __ Serves
Element Node\ A u
i Ticketing Server X Server X: Investment f5000
Actor Train Company
(a) (b)
Actor VA Tx # vT # VO VOo
Travelers Ticketing Tx1 500000 VT1 500000 Ticket 1
VT2 500000 Money 1

Figure 11.1: e3value model and ArchiMate model of a toy example.

193

Table 11.2: Guideline G9.

No Guideline Additional advice
G9 An e3value activity connected through a value | If B contains a boundary element in-
exchange to a need of an actor is mapped to an | stead of a need, the direction of the
ArchiMate business service serving the actor. | serving relation would be reversed.
Actor: A Busines Actor: % Business %
Actor: B A Actor: B
Y i
............ ¥
Business —O Business O
Interface i Service C

Table 11.1: Definitions of e*value and ArchiMate concepts. The first parts
lists corresponding concepts. Using a business interface to represent a port is
optional. Using a Serves relation to represent a value transfer is optional too.

e’value

Definition

ArchiMate

Definition

Actor

Value Activity

Value Port

Value Transfer

An entity that is econom-
ically independent.
Profitable task performed
by an actor.

Business Actor

Business Service

Business entity capable of
performing behavior.

Defined behavior that is
exposed to the environ-

ment.
Willingness to provide or Business Interface Channel that exposes be-
request value objects. havior.
Willingness to transfer Flow Transfer from one element
value objects between to another.
actors.
Serves Provide functionality to

other element.

Other e’value concepts

Value Interface
Value Object
Market Segment
Customer Need
Boundary Element

Grouping of value ports

An object that has economic value.
A set of actors.

Need to acquire something valuable.
Limit of value model.

Other ArchiMate concepts

Application component

Flow

Assignment
Application Service
Realization

Node

Encapsulation of application functionality

Transfer from one element to another

Allocation of responsibility, performance of behavior.
Explicitly defined exposed application behavior.
Realization of a more abstract entity.

A computational or physical resource.

194

11.3.1 é*value

Relevant definitions of e3value and ArchiMate concepts are given in table 11.1.
The e3value model of figure 11.1 shows an actor train company exchanging
value objects (tickets and money) with a market segment travelers. This is
done through a wvalue activity Ticketing.

To quantify an e?value model, we use a so-called contract period, which is
the period in which actors perform the transactions represented in the e>value
value network. A quantification says how large a market segment is, how
often consumer needs occur, what the monetary value of money flows is, etc.
In figure 11.1, there are 50 0000 travelers with each on the average 10 ticket
needs in the contract period.

The transaction table at the bottom of figure 11.1 contains a quantification
of the single transaction present in the value network. It says that transaction
Tx1 occurs 500 000 times and consists of two value transfers, VT1 and VT2,
through which tickets and money pass hands. These numbers are computed
by the e3value tool based on cardinality information provided by the tool user.

11.3.2 ArchiMate

The right part of figure 11.1 contains an ArchiMate model. The business
layer of this model has been designed following the guidelines of our previous
work. The crucial guideline G9 is shown in table 11.2. Figure 11.1 shows
two ArchiMate actors, Train Company and Travelers, and a Ticketing service
decomposed into two sub-services, Payment Processing and Ticket Issuing. In
general, we define one (sub)service for each value transfer entering or leaving a
business actor. In this EA, these services are implemented in two applications
that run on the same server. We explain the remaining parts of figure 11.1 in
the section that follows.

11.3.3 Representing the contract period in ArchiMate

To quantify an ArchiMate model, we need a contract period in ArchiMate too.
Workloads, investments and expenses will refer to this contract period. We
add the contract period to an ArchiMate model simply as a comment. Just as
in e3value, we can define a sequence of consecutive contract periods, called a
time series. In figure 11.1 the duration of the contract period is 28 days.

195

11.3.4 Representing economic transactions in ArchiMate

In e3value an economic transaction is created using value ports, value interfaces
and value transfers. Except for value transfers, ArchiMate does not contain
equivalent concepts. Therefore it is impossible to represent economic transac-
tions in ArchiMate without extensions. To solve this, we add the information
in an e*value transaction table to ArchiMate models. In ArchiMate one can
define attributes for model components. The collection of attributes defined
for a component is called a profile.

e For each wvalue object, we define an attribute of the ArchiMate model.
The name of the attribute is the name of the value object. The EA in
figure 11.1 has two value objects, Ticket and Payment.

o Each e?value transfer corresponds to a flow in the ArchiMate model. For
this flow we define a profile consisting of the attributes name, number of
occurrences, and a reference to the value object. The two flows in the
EA of figure 11.1 have value transfer profiles with attributes VT1, 500
000 occurrences, and value objects Payment and Tickets.

o Each transaction in e3value consists of two or more value transfers, where
each value transfer is part of a value interface of the two e3value actors
connected by the transfer. The connection points are ports in e3value. In
the corresponding EA, ports may be explicitly represented by business
interfaces or implicitly by the incidence of a flow relation on an actor.
This is a design choice of the ArchiMate model designer.

We define a transaction profile for these business interfaces and actors,
consisting of the transaction name, the number of occurrences, and ref-
erences to the participating transfers. In figure 11.1. transaction Tx1
is defined for the business interface Web Site and for the business actor
Travelers.

Figure 11.2 illustrates how value objects, value transfers and value trans-
actions are mapped to the ArchiMate model.

11.3.5 Identification of additional performance require-
ments

In our approach we identify performance requirements derived from the trans-
action profiles assigned to the business layer elements of the ArchiMate model

196

1 -
e3value Flow Relation Sut?
Service
2.%*
1 i
1 1. "
Value Value 2.% 1.4 Value Business
Object Transfer Transaction Service
N e vl O
Business Rk
. Business Actor
interface

Figure 11.2: Relations among e®value concepts (grey) and ArchiMate concepts
(white).

and the duration of the contract period. The transaction profiles imply work-
load requirements.

The number of transactions in e3value indicate the number of transactions
that happen in a stated contract period, say one year. However, an e>value
model has no notion of time (except the contract period), so it does not model
the distribution of transactions over the contract period. However, for techni-
cal scalability it is important to know this distribution, and more specifically
the maximum number of transactions per second that can happen in the con-
tract period. Therefore we define peak economic transactions requirements
to represent this. These are additional to the requirements derived from the
transaction table. Figure 11.1 contains a Concurrent Workload requirement
as illustration.

In certain cases economic transactions needs to be completed within a
time frame where the exchange of value objects is useful for the customer.
Therefore, we also define response time requirements. This is based on work
from IT performance metrics. Service performance is measured with the time
it takes to execute a single instance of the service [116]. These are additional
too. In figure 11.1 we see that Tx1 has a Response Time requirement.

The workload requirements are propagated from the business layer of Archi-
Mate over the actors that are needed to realize the business services. The
response time requirements are propagated down to the business processes,
application services and technology services.

197

11.3.6 Introducing Investments and Expenses in Archi-
Mate

evalue has three types of quantifications for investment analysis [44]. First,
investments. Investments are often needed when a new business idea is imple-
mented. They are done in the first contract period of a time series and are
subtracted from the revenue generate in that period.

Second, fized expenses. These are the expenses that do not change from
period to period, for example maintenance costs of I'T systems. Fixed expenses
can be specified for value activities, market segments and actors.

Finally variable expenses. These are the expenses associated with the ex-
ecution of a single economic transaction, for example power consumption of
IT systems, license fees, or acquisition of new hardware. The more economic
transactions there are, the higher the total variable expenses are. Variable ex-
penses are associated with value transfers, through the value ports in e3value.

Our main strategy is to collect investments and expenses from an Archi-
Mate model and insert these into the e>value model. ArchiMate [114] has so-
called internal active structure elements, which are actors that can be hired,
bought or built. For these, we define a profile consisting of the attributes
investment and fized expenses.

For behavioral elements (e.g. business processes and application services),
we define the attribute variable expenses. The amount of these expenses de-
pends on the number of executions of the behavior.

Finally, we define a profile consisting of the attributes aggregated invest-
ments, aggregated fixed expenses, and aggregated variable expenses for the
ArchiMate business actors and services that correspond to e3value actors and
value activities. The investments in and expenses of the application and tech-
nology layers can be aggregated in these profiles and then transferred to the
e3value model. The aggregation can be done using the scripting languages
of the ArchiMate modeling tools. Transfer to the e?value model requires an
update of the e*value tool with an import function.

11.4 Case Study: Company X

11.4.1 The case company and its value model

Company X is responsible for building startups based on an acquisition of
intellectual property, it has a portfolio of about 50 startups. The main goal of
the organization is to increase the share value of the startup and finally sell
the startup to other investors.

198

Figure 11.3 illustrates the e*>value model of company X. We will at the right
side of the model. Company X (the focal company) has two value activities,
automated spotting, and manual spotting. These value activities address a
need at the technology providers. The market segment size is 3000, which
means that there are 3000 possible technology providers. Company X main
business model is to provide maturation services, like legal services, HRM
services and even IT services (not in this model). Providing these kind of
services increases the value of the startup companies they create. As soon
as a startup company has reached a certain threshold it is sold to investors.
Shares are exchanged for money. Startup companies also have a consumer
need, they wish to acquire intellectual property and exchange this for money.
Each startup company develops products based on this intellectual property
and customers are willing to pay for this.

To validate the potential usefulness of our approach, we applied it to a
company that is planning to upscale its business. We call the company X.
Its business is to scout new technology, acquire the IP of that technology,
create a startup for it, grow the startup and then sell it. Every year Company
X identifies 3000 possible innovations based on pre-determined criteria per
year. It uses a combination of automated technology spotting and manual
technology spotting (figure 11.3).

For automated technology spotting they have developed bespoke technol-
ogy. It accounts for 90 percent of all spotting activities. The split in spotting
activities leads to two transactions. Automated spotting leads to transaction
Tx1 and is executed 2700 times. Manual spotting leads to transaction Tx2,
which is executed 300 times. These transactions are listed in figure 11.3.

11.4.2 Quantified Enterprise Architecture

Figure 11.4 illustrates the part of the EA for spotting innovations, based on the
e3value model from figure 11.3.The top annotations contain the results from
importing the transaction table from e®value. These now serve as workload
requirements.

The architecture of Company X needs to support 2700x automated spotting
and 300x manual spotting per 365 days. The transactions are broken up into
the value transfers and via the sub-services they are propagated through the
EA. For example, the internal search engine needs to find at least 2700 new
innovations per 365 days and perform 2700 outreaches. The application service
needs to support 2700 automated patent identifications and 300 manual patent
identifications.

199

Customers|h (Money] ‘ Startup companies fij Moneyl [Technology providers

i (3000)
I[Product} ‘ H P

[Legal services] 5
[Increased value] [Innovation] [Opportunity]
[HRM services]

Investors ‘ Company X
[Money]

Startup maturation Lutomated spottg ﬁanual spotting

[Shares]

Actor VA Tx # VT # VO VOo
Technology Automated Tx1 2700 VT1 2700 Innovation 1
Providers Spotting

VT2 2700 Opportunity 1
Technology Manual Spot- Tx2 300 VT3 300 Innovation 1
Providers ting

VT4 300 Opportunity 1

Figure 11.3: A market scenario for company X. “f”is a generic currency symbol.
Pronounce “florin”.

We have constructed the top part of the ArchiMate model with our guide-
lines, we refer to chapter 10 for the application of these guidelines. We have
modeled Company X as a business actor, with two business interfaces (a nested
composition). We have linked the business interfaces with the corresponding
services, automated spotting, and manual spotting.

The market segment technology provides has also been translated into a
business actor. Between the business services and the technology providers we
see a flow relation from ArchiMate. We have annotated this flow relation with
the corresponding value transfer from e3value. To get a direct link between the
value transfers and the rest of the enterprise architecture we need to decompose
the main service into sub-services and link the value transfers with these sub-
services. These sub-services can then be directly realized by other elements
from the architecture. This way we realize traceability in such a way, that we
can propagate the economic transactions as workload requirements over the
architecture and collect investments and expenses in a bottom-up fashion to
insert these into an e?value model. A concrete implementation is out of scope
for now, but we have annotated the model with illustrative investments and

200

Sy W1, vT2) Buteretes] =0 PN Account Management -O
300 x Transaction Tx2 (VT3, VT4) channel (Tx1) channel (Tx2)

VT1, 2700, [Innovation] 1

VT2, 2700, [Business Opportunity] 1 W2 = > Technology %
VT3, 300, [Innovation]1 : Providers (Tx1,Tx2) ¢ ——————— VT3
VT4, 300, [Business Opportunity] 1 | !
! VT2 |
i 1 i
Total: automated scouting ! VTt 1 o
Investments: 27500 : Automated spotting * O ; Manual spotting [
hixed expensesaie Outreach O Innovation O Outreach OO Innovation O
i i service searchin
Total Variable Expenses SIS E=iciing J
Outreach Service: f0.51 7S 7S 7S A
Innovation Searching f0.52 : :
H H Outreach > Account =>
process Managing
Variable Costs: ; ; T
Outreach Service: f0.01 Outre_achC) Patent O
Patent Scanner Service: f0.02 senice Scanner entie % Account O
Application Hosting Service: f0.5 service Developer Management
VAN VAN Service
i : [
Internal Search Engine: Internal Search Application O Account
Investments: {25000 5 Engine Hosting Management
Fixed Expenses: {6000 [Service App

Application Server o
Investments: {5000 Application Server

Fixed Expenses: 11800

Figure 11.4: Architecture for innovation spotting

expenses for the automated spotting service. These are illustrated in the left
part of the figure. The investments and fixed expenses are aggregated to the
automated spotting service and from this inserted in the e3value model through
the automated spotting value activity. The variable expenses are aggregated
to the services and this way linked to the value transfers associated with the
flow relations. From this they are inserted into the e?value model at the value
transfer level.

11.4.3 Initial expert evaluation

We presented the quantified EA model to the enterprise architect of Company
X and asked his opinion about the usefulness for their investment decisions.
In his opinion, the quantitative alignment techniques are useful. He explained

201

that Company X desires an approach where they can simulate the effects of
different increases in economic transactions in the business model on the IT
architecture. Using workload requirements based on economic transactions is
a suitable way to reason about what the IT must support in that scenario
according to the enterprise architect. It will help them identify the possible
bottlenecks and provides a good overview of how far the economic transactions
propagate down into the architecture. It will help them design the EA better.

The relation of investments and expenses with different scaling scenarios
is particularly useful. It will help them get a breakdown of the investments
and expenses for different scaling scenarios and improve decision making in
investments decisions. The approach answers the questions where to invest
and how expensive scaling would be related to the possible added benefits.

The enterprise architect also mentioned that he saw the most benefit in
purely digital business models where the business model is completely realized
in ICT. However, also in cases where people and business processes are used to
implement a business model he saw an added benefit. The workload require-
ments could be propagated to the business process designers. Since Company
X has a business model where parts are directly realized by IT and some by
humans he was also interested to see the difference between the two variants
in terms of expenses and scaling capabilities. Using operational data in the
future is a nice to have. But using workload requirements is sufficient.

11.5 Discussion

11.5.1 Answers to research questions

ArchiMate can represent the economic transactions of e3value (Q1) by export-
ing the transaction table into ArchiMate. The transactions are stored in cus-
tom profiles and assigned to ArchiMate elements. Performance requirements
are identified (Q2) from the economic transactions and propagated down the
ArchiMate model. Additionally peak concurrent transactions and response
time requirements are identified as well. ArchiMate model elements can be
extended (Q3) with a custom profile for investments and expenses and fed
back into e3value(Q4) because we have a custom profile aggregated expenses
at the business services. These are mapped to the value activities and value
transfers. Our initial evaluation suggested that these quantitative alignment
techniques (Q5) provide sufficient information for investment decisions. It
provided a breakdown of the investments and expenses needed per scaling sce-
nario. It answers the question how expensive scaling is related to the possible

202
additional benefits.

11.5.2 Validity

Internal validity is the extent to which the outcome of an experiment has been
produced by the treatment. We followed the design guidelines that are our
answers to Q1 - Q4 in our case study, so that at least we can say that this
application of the guidelines produced the required outcome. The validation
of the result by the enterprise architect (Q5) is encouraging but might also
have been affected by the experimenter effect: Because the enterprise architect
knew we had produced the models, he evaluated the models positively. We
tried to reduce this threat to validity by asking specific questions about how
the enterprise architect would use the results. Also, because we offered X to
be a beta user of our tool implementation of these techniques, the enterprise
architect has an interest in making this tool as useful as possible for them.
This reduces the risk of an experimenter effect.

Another open issue is the external validity of this treatment. Can other
people use these our method and come up with similar results? Does our
method work for all companies? Are the resulting EAs useful for other com-
panies too? To answer these questions we need to do more case studies and
experiments, in which we ask other people to use these guidelines for other
companies.

A higher-level external validity question is whether guidelines like these can
be used with other business modeling and EA languages. Achieving that level
of generality is not our goal. Since our results are derived from an analysis
of the meta-models of e3value and ArchiMate and refined in experiments and
case studies using these languages, we do not expect generalizability beyond
these languages.

11.5.3 Lessons learned

Realizing complete equivalence between ArchiMate and e3value is not possible.
Nor is it desirable. Combining all this information in one model would result
in unmanageable models that are hard to understand. Separating commercial
business models from EA models allows us to communicate with manage-
ment and technical personnel separately. Keeping these models quantitatively
aligned improves decision-making about ICT investments.

ArchiMate lacks constructs for generating economic transactions. However,
using the profiling mechanism of ArchiMate the calculated transaction can be

203

imported into ArchiMate and mapped to similar concepts. This way we do
realize the required traceability between e?value and ArchiMate.

204

205

Part IV

Conclusion

207

12

Conclusion

208

12.1 Evaluation of Design Goals

In chapter 1 we have stated our main design goals. The subsections of this
chapter will discuss the realization in detail. The main goals of this research
are:

1. To design and evaluate a traceability relation between enterprise archi-
tecture and the business goals

o To be able to design and evaluate an enterprise architecture based
on the goals of the stakeholders of the organization.

o To be able to perform an impact of change analysis from the busi-
ness goals to the enterprise architecture and back

e To be able to perform a completeness analysis of the enterprise
architecture based on business goal realization.

o To evaluate the traceability relation in terms of understandability
of the defined concepts.

2. To design a traceability relation between the business model and the
enterprise architecture.

e To evaluate the contribution of enterprise architecture to the busi-
ness model.

e To determine if a business model is feasible in terms of financial
sustainability and technological feasibility.

12.1.1 Traceability between Enterprise Architecture and
Business Goals

Our first design goal is that we wish to realize traceability between the enter-
prise architecture of an organization and its business goals. We have achieved
this goal and its sub-goals. The first sub-goal is that we wish to have the
ability to evaluate alternative EA designs based on the business goals. We
have achieved this goal. By modeling alternative architectural solutions these
alternatives can be illustrated and evaluated. Alternative solutions directions
can be illustrated by having multiple realization relations. For example, we
can have a design goal 'reduce number of support requests’. This goal can be
satisfied in multiple ways, for example an online system, or better manuals.
ARMOR introduces the ability in ArchiMate to link the problem domain with
the solution domain.

209

The second sub-goal, that we wish to perform an impact of change analysis
is also realized. We can both model the stakeholders, their goals and the
realization of these goals by enterprise architecture elements. Therefore, a
bi-directional impact of change analysis can be performed. We can select a
stakeholder or business goal and use the traceability relations to identify all
the elements in the enterprise architecture that are needed to satisfy this goal.
A bottom-up analysis is also possible, where the traceability links are followed
from the enterprise architecture into the goal models. This has also been
implemented in the tool BiZZdesign Architect [35].

The third sub-goal is to have the ability to perform a completeness analysis
of the enterprise architecture. If there are business goals not satisfied by the
enterprise architecture, then either the enterprise architecture is incomplete,
or the business goal is irrelevant. This helps the enterprise architect in deter-
mining how complete his designs are. We have constructed tool support for
this in the tool BiZZdesign Architect in 2010 [35].

We have also evaluated the goal modeling part of ArchiMate in terms
of understandability. We found that in order to increase understandability
the number of concepts needs to be reduced. The concepts are conceptually
very closely related and therefore introduce understandability issues when the
language is used. We propose to simplify the language even further, and in
case that is not possible, to introduce better guidelines for the practitioners.

12.1.2 Traceability between the Business Model and the
Enterprise Architecture

Our second design goal is to realize traceability between the business model
(modeled with e3value) and the Enterprise Architecture (modeled with Archi-
Mate). We have achieved both sub-goals. The first goal, to evaluate the con-
tribution of enterprise architecture to the business model, is realized through
mapping business layer concepts to equivalent e*value concepts. This intro-
duces a qualitative traceability relation. This allows for reasoning why certain
elements in the enterprise architecture are needed. This qualitative goal has
been extended with a quantitative sub-goal, to determine if a business model
is feasible in terms of financial sustainability and technological feasibility.

We import the economic transactions from an e3value model into an Archi-
Mate model and propagate these as workload requirements. Based on these
requirements an EA can be designed and evaluated. Second, investments and
expenses can be identified and recorded in an ArchiMate model, collected and
re-inserted into the evalue model. e3value can then use the financial quantifi-
cations to evaluate the feasibility of the proposed business model and resulting

210
enterprise architecture.

12.2 Answering Main Research Questions

12.2.1 Research Questions

The individual chapters answered the research questions in detail. However,
we will summarize the main research questions first and provide an answer to
them.

¢ Q1: How can we extend ArchiMate with business goals to realize trace-
ability?

e Q2: How well can practitioners use this extension? Which constructs do
they use correctly, which incorrectly and why?

e 3: How can we link an e3value model with an ArchiMate model and
how can we incorporate the quantifications of e3value into ArchiMate?

12.2.2 Definition and initial validation of ARMOR

Research question Q1: how can we extend ArchiMate with business goals to
realize traceability? is answered in chapter 3.

We have performed a conceptual analysis of existing literature like i*,
KAOS and the business motivation model (BMM). We took essential concepts
like stakeholder, hard goal, soft goal, requirement, goal decomposition, goal
contribution and goal conflict from the literature. These were re-assembled
into a new language, and we provided links with ArchiMate to realize the
traceability. We also provide a first validation by applying ARMOR on an
actual case study to demonstrate that we have achieved our design goals.

12.2.3 Understandability of ARMOR

Research Question Q2: how well can practitioners use this extension in prac-
tice? is answered in chapters 4,5 and 7. We organized multiple case studies in
practice, where we validated the language with enterprise architects in chapter
4. Furthermore, we performed an understandability analysis of ARMOR, in
chapters 5 and 7. We found out that only the concepts of stakeholder and
goal were very well understood. Practitioners made modeling errors in the
concepts of concern, and assessments. They also had a difficult time differen-
tiating between goal and requirement. The full version of ARMOR was not

211

very well understood. We concluded that this is because of the conceptual
distance between the concepts. We provided a redesign of ARMOR with a
reduced set of concepts.

12.2.4 Linking e’*value with ArchiMate

Research Question Q3: how can we link an e3value model with an ArchiMate
and how can we incorporate the quantifications of evalue into ArchiMate.
Chapters 8,9,10 and 11 answer this research question. We performed a con-
ceptual analysis of both meta-models and structured an initial mapping. Value
activities translate to business services, actors and market segments to busi-
ness actors and stakeholders, value exchanges to flow relations and consumer
needs to goals.

The economic transactions of e*value are exported using the transaction
table, we add attributes to the ArchiMate model and link the economic trans-
actions to the business interfaces, flow relations and business services. We
translate these economic transactions to workload requirements and then prop-
agate these workload requirements over the enterprise architecture model. All
elements capable of performing behavior have to realize this workload.

We also extend ArchiMate with attributes for investment, fixed expenses
and variable expenses. Investments and fixed expenses are associated to the
actors in the model. Variable expenses are associated with behavioral elements.
This way variable expenses can be related to the value transfers and inserted
into e3value. Fixed expenses and variable expenses can be brought to the
business services and inserted into e3value at the value activity level.

12.3 Lessons Learned

Less can be more. During this execution of the first half of this thesis
we evaluated a goal-oriented-requirements-engineering (GORE) extension of
ArchiMate, called ARMOR. We evaluated this language through a few itera-
tions in its development, but in essence it was a similar language with similar
constructs. During this evaluation we found out that the language had un-
derstandability issues. We argued that the language contained many concepts
that were semantically close, thus leading to understandability issues. One of
the design goals of ARMOR is that it had to be a relatively simple language.
During the execution of the validations the language was already simplified.
The distinction between soft- and hard goal disappeared, and the conflict re-
lation was removed. Still, this simplification was not sufficient to achieve a

212

high level of understanding of the concepts. We therefore proposed an ex-
treme simplification to ensure that the concepts were used correctly. Even
during the initial design of ARMOR, we were already concerned with limiting
the number of concepts, for example not modeling assumptions directly but
as a property of a goal or finding a way to record the resolution of conflicts
using existing constructs. This to limit the number of the concepts to increase
concept understandability.

It is often easy to forget that an expressive language also requires a sig-
nificant cognitive effort to correctly distinguish between all the elements. A
formal definition of concepts would ensure that the concepts are at least well
defined, but this still can lead to concepts that are semantically very close.
For example, the difference between soft goal and hard goal or goal and re-
quirement can be clearly defined, but can still lead to incorrect usage due to
the fact that it takes cognitive effort to distinguish between closely related
concepts.

We do need to remember that languages like ArchiMate, UML and the
BPMN end up in hands of end-users who are often less capable, or not inter-
ested, in distinguishing al the subtle differences between the concepts. In the
case of ARMOR and the motivation extension of ArchiMate 2.0 the difference
between driver, assessment, goal and requirement was hard for practitioners
to understand. The same conclusion can be drawn for i* [53], where concepts
like soft-goal, hard-goal and task are also hard to understand for practitioners.

What is even more interesting to observe is that languages never seem
to get less complex (and expressive), but always more complex. In the case
of ArchiMate new concepts have been added to the motivation layer (e.g.,
outcome), and new layers have been added (e.g., strategy layer). The result
is that it contains new additional concepts that are very closely related to
already existing concepts.

During personal discussions with the author of i* and the current re-
searchers during the i* workshop at Conceptual Modeling 2019 the same could
be observed. Instead of making the language simpler and more elegant, the
main strategy was to make the language more expressive, without improving
understandability. But the problem with these languages is that they are often
already very expressive.

During the evaluations we did point out a few strategies that could be used
to improve understandability. Our extreme simplification of ARMOR. should
be interpreted as a set of guidelines of a minimally usable sub-set of concepts
that can be used to model most situations. If a limitation of concepts is not
possible, we should provide guidelines instructing end-users which a sub-set
of the language can be used in most instances similar to how BPMN level 1

213

and 2 are defined. The first level contains few concepts, but it is possible to
model most processes of an organization. Understandability studies can also be
used to improve the training material, they point out where the weak spots of
the language are for the end-users. Training material can be adapted to better
illustrate the differences between the concepts and teachers instructed to focus
on those parts. The solution to this problem should lie somewhere between
well defined concepts with sufficient distance between each other, restraint in
designing the language regarding expressiveness, guidelines for usage, a more
layered architecture like BPMN and good training material. But it should
not be forgotten who the intended end-users are of the language. If the tool
becomes too complex to use, the effectiveness of the tool can diminish.

12.3.1 Guidelines for business-model-driven EA design

In this thesis we have provided the basic building blocks to have the ability
to evaluate alternative architectures implementing an e*value model, but we
have not provided guidelines to do so. Figure 12.1 illustrates the resulting
guidelines for business-model driven EA design. The first step is to create
an e3value model of the value network. The second step is to quantify the
e3value model with market segment size, number of consumer needs and the
expected valuations. Step three is to construct a transaction table, using the
e3value tool, and export this into an ArchiMate model. Multiple quantifica-
tions can be created to design multiple scenarios for evaluation. The fourth
step is to identify/use the economic transactions as workload requirements
for the enterprise architecture and identify (additional) stakeholders and elicit
their goals and requirements (step 5). We recommend to use the light version
of ARMOR for goal and requirements modeling. Afterwards the enterprise
architecture needs to be designed based on these requirements, step 6. After
the EA design quantify the EA model with investments and expenses (step 7)
and export this model back into the evalue editor (step 8). e3value can then
be used to evaluate the designed architecture in terms of financial feasibility.

12.4 Future Work

We have identified topics for future research based on the approach defined
in this thesis. Summarizing, we need to validate and refine our approach in
new iterations of the design cycle and develop tool support. Second, since our
approach adds design decisions to a business model we would to investigate
which design decisions belong to certain types of business models and finally,

214

1. Develop e3value
model

2. Quantify e3value
model

3. Export e3value
model

4. |dentify workload
requirements

5. Identify
stakeholder and goals

6. Design the EA

7. Quantify
ArchiMate

8. Export ArchiMate
model to e3value

I‘I‘I.I‘I.I.I.I

Figure 12.1: Guidelines for business-model driven enterprise architecture de-
sign. These guidelines provide a holistic link between different design phases.
It is not meant as a concrete manual.

since we are in a transition to a circular economy, we need to investigate if our
approach can be used in this context.

215

12.4.1 Validation and elaboration of the approach

Parts of our approach need more validation in practice. We would like to use a
similar approach as our evaluation of the motivation extension of ArchiMate.
We have created guidelines to align e3value models with ArchiMate business
layer and motivation layer diagrams. We wish to validate these guidelines in
terms of understandability and utility. We want to know in more detail how
useful our approach is for practitioners and if our guidelines are simple enough
for them to use. We need to determine how well we can design an architecture
based on workload requirements derived from the business model and if iden-
tifying investments and expenses in ArchiMate to elaborate and evaluate the
business model is feasible. For example, we need to investigate how our ap-
proach works for IT systems directly realizing the economic transactions (i.e.
when there is a direct relation between system usage and economic transac-
tions) and for scenarios where there is an indirect relation between IT systems
and the economic transactions.

A future step in this research is to integrate our approach in existing en-
terprise architecture design methods, like TOGAF [115].

Our proposed methodology is to keep using technical action research and
start more iterations of the design cycle to further complete the validation.

12.4.2 Tool prototyping

Tool prototyping can be developed for our approach. Tool support for the
integration of business goals in ArchiMate has already been developed. The
first step is to adapt the e3value web-editor!. We need to export an e3value
to an ArchiMate editor. This exported file should at least contain the trans-
action table of e3value using the profiling mechanism of ArchiMate. Some of
the concepts in evalue may translate directly to ArchiMate equivalents, like
business actors and business services.

Our recommendation is to use the free tool Archi?. Archi is an open source
editor for ArchiMate models. It contains all the functionality we require. Archi
supports the profiling language of ArchiMate. We will use this profiling lan-
guage to import the e3value transaction table and to propagate the economic
transactions over the enterprise architecture as workload requirements.

Second, we need to use Archi to construct profiles for investments, fixed
expenses and variable expenses. We can use the scripting language to develop

Thttps://e3web.thevalueengineers.nl/login
2hhttps://www.archimatetool.com/

https://e3web.thevalueengineers.nl/login
hhttps://www.archimatetool.com/

216

algorithms for a bottom-up collection of these quantifications and automati-
cally assign the aggregated results to the business services, business actors and
value transfers in ArchiMate. The e3value tool can then be extended/used to
import this ArchiMate model and import the quantifications. These quan-
tifications can be used to evaluate the financial feasibility of the enterprise
architecture realizing the business model.

12.4.3 Operationalization of Business Models

In our approach a business model contains little to no design decisions re-
garding the operationalization of the business model, these design decisions
are made in the design steps after business model design. In our approach
we operationalize a business model with an enterprise architecture. We could
investigate which kind of design decisions belong to a certain type of business
model. This way a reference architecture could be identified based on the
type of business model. This can supplement the field of reference architec-
tures. In the field of enterprise architecture design a reference architecture is
an accumulation of best practice architectures.

For example, for an insurance company there is a reference architecture
containing the descriptions of how insurance companies look like. If we can
refine this to types (or parts) of business models we can construct reference
models for this. This would supplement the field of enterprise architecture and
allow for fasting switching/adapting (parts) of the business model.

12.4.4 Circular Business Models

We view business model design from a value network perspective and this
value network perspective will become more relevant during the transition to
a circular economy. In a circular business model a value network contains a
closing loop. After filling the loop with raw materials from traditional mining
operations the majority of the raw material must be collected through recycling
of old products. Organizations need to take back the old products, these
products need to be transferred to a recycling plant, deconstructed into its
raw materials, and then fed into the supply chain again. The goal is also to
not only focus on creating value to the customers, while minimizing social and
ecological costs 3.

This is supported by the literature [97]. Pieroni et al. reviewed the liter-
ature and found that business models should move away from the consumer

Shttps://sustainabilityguide.eu/methods/circular-business-models/

https://sustainabilityguide.eu/methods/circular-business-models/

217

interface (i.e. only delivering value to the customer). The focus should be on
the value network in a bi-directional manner with a holistic view. Business
models should move away from the single organization view and abolish or-
ganizational boundaries. Business models should also contain quantifications
other than costs and revenue structures. Finally, there should also be a shift
from ownership to servitization. Consumers no longer own products but buy
services around a certain tangible product. We believe that e3value can play
a role in designing circular business models.

We believe that our combination of a value network approach for business
models and using enterprise architecture to design the organization around this
value model can be used in this context. e3value takes the networked holistic
approach. This can be used to evaluate the economic sustainability of a circular
business model for each actor in the model. e3value can also be extended with
other quantifications than just costs and revenues, like environmental impact.
These quantifications must be propagated down or collected upwards from an
enterprise architecture model similarly like we have done with the economic
transactions, investments, expenses and variable expenses. For example, co2
emissions can be used, electricity usage, resource usage, etc in order to evaluate
the feasibility of a business model.

We also believe that modeling the extended enterprise of a circular business
model can assist in moving away from traditional organizational boundaries.
The concept of an extended enterprise is that a company does not function
in isolation, but in a value network. The extended enterprise can be used to
focus on the collaboration required to deliver a product to a consumer, but
also in a reverse direction. A circular business model contains more complex
logistics than a linear business model and there are more interfaces between
the different organizations. We also believe I'T can assist in this.

In circular world, society will also impose design goals on organizations.
These design goals are captured in the sustainability goals of the EU 4. These
goals can then be used to design a circular business model and the enterprise
architecture. We wish to investigate what these effect of these design goals is
on the design of the BM and the enterprise architecture.

12.5 Limitations

The limitations of this research are discussed in each individual chapter. We
will summarize the main limitations in this section, and we will refer to the

4https://ec.europa.eu/international-partnerships/sustainable-development-goals_
en

https://ec.europa.eu/international-partnerships/sustainable-development-goals_

218

individual chapters.

The main limitation of our initial validation of ARMOR is that we per-
formed single case studies. We generalized by analogy and we hypothesize that
our results are also valid in similar organizations. This is discussed in section
4.4.4 and section 4.6.4. We also performed repeat studies, which confirmed our
initial results. An interesting observation is that when the level of education
and expertise in GORE notations increased, the same errors were made (but
less often), see section 7.5.1. Based on these repeat studies, which included
enterprise architects from different organizations, we are confident that our
results regarding the understandability of ARMOR are valid.

This is supported by the research of Azevedo et al. [9]. They performed
an ontological analysis and concluded that the concepts of the motivation
extension of ArchiMate (which is a derivative of ARMOR) were conceptually
too closely related. This confirms our results as well.

Because the goal-oriented concepts that we used have been taken from
other existing goal-oriented languages, we hypothesize that our conclusions
may be generalized to those languages too, section 5.7.1 discusses this in more
detail.

The major limitation for realizing traceability between e?value models and
ArchiMate EA models is that we cannot claim generalizability to other lan-
guages, see section 8.5, section 9.7.1, and section 10.5.3. Generalizability to
other languages was not our goal. Our guidelines have yet to be used by
practitioners, as described in section 9.7.3.

The utility of traceability between e*value and ArchiMate EA models also
remains an open issue. We hypothesize that we can evaluate the technological
and financial feasibility of a business model, but this needs more refinement
and case studies, as discussed in section 10.5.3 and section 11.5.2.

219

Bibliography

1]

S. Abrahao, E. Insfran, J. A. Carsié, M. Genero, and M. Piattini. “Eval-
uating the ability of novice analysts to understand requirements mod-
els”. In: Quality Software, 2009. QSIC’09. 9th International Conference
on. IEEE. 2009, pp. 290-295.

S. Abrahao, E. Insfran, J. A. Carsié, and M. Genero. “Evaluating re-
quirements modeling methods based on user perceptions: A family of
experiments”. In: Information Sciences 181.16 (2011), pp. 3356-3378.

A. Aldea, M. E. Tacob, J. van Hillegersberg, D. Quartel, and H. Franken.
“Modelling value with archimate”. In: Advanced Information Systems
Engineering Workshops. Springer. 2015, pp. 375-388.

A. Aldea, M.-E. Tacob, and D. Quartel. “From Business Strategy to
Enterprise Architecture and Back”. In: 2018 IEEE 22nd International
Enterprise Distributed Object Computing Workshop (EDOCW). IEEE.
2018, pp. 145-152.

R. Alt and H.-D. Zimmermann. “Preface: introduction to special section—
business models”. In: Electronic markets 11.1 (2001), pp. 3-9.

B. Andersson, M. Bergholtz, A. Edirisuriya, T. Ilayperuma, P. Jayaweera,
P. Johannesson, and J. Zdravkovic. “Enterprise sustainability through

the alignment of goal models and business models”. In: Proceedings of

3rd International Workshop on Business/IT-Alignment and Interoper-

ability (BUSITAL’08) CEUR Workshop Proceedings. 2008.

A. 1. Anton. “Goal-based requirements analysis”. In: Requirements En-
gineering, 1996., Proceedings of the Second International Conference
on. IEEE. 1996, pp. 136-144.

[10]

[11]

220

C. L. Azevedo, J. P. A. Almeida, M. van Sinderen, D. Quartel, and G.
Guizzardi. “An ontology-based semantics for the motivation extension
to archimate”. In: 2011 IEEFE 15th International Enterprise Distributed
Object Computing Conference. IEEE. 2011, pp. 25-34.

C. L. Azevedo, J. P. A. Almeida, M. van Sinderen, D. Quartel, and G.
Guizzardi. “An ontology-based semantics for the motivation extension
to archimate”. In: 2011 IEEFE 15th International Enterprise Distributed
Object Computing Conference. IEEE. 2011, pp. 25-34.

V. A. Batista, D. C. Peixoto, W. Padua, and C. I. P. Pddua. “Using
UML stereotypes to support the requirement engineering: a case study”.
In: Computational Science and Its Applications—ICCSA 2012. Springer,
2012, pp. 51-66.

P. v. Bommel, P. Buitenhuis, S. Hoppenbrouwers, and E. Proper. “Ar-
chitecture principles—A regulative perspective on enterprise architec-
ture”. In: Enterprise modelling and information systems architectures—
concepts and applications (2007).

C. Braun and R. Winter. “A comprehensive enterprise architecture
metamodel and its implementation using a metamodeling platform”.

In: (2005).

P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos.
“Tropos: An agent-oriented software development methodology”. In:
Autonomous Agents and Multi-Agent Systems 8.3 (2004), pp. 203-236.

C. Britton, M. Kutar, S. Anthony, and T. Barker. “An empirical study
of user preference and performance with UML diagrams”. In: Human

Centric Computing Languages and Environments, 2002. Proceedings.
IEEFE 2002 Symposia on. IEEE. 2002, pp. 31-33.

F. P. Brooks and N. S. Bullet. “Essence and accidents of software en-
gineering”. In: IEEE computer 20.4 (1987), pp. 10-19.

Business Motivation Model. “Business Motivation Model Version 1.0”.
In: Standard document URL: http://www. omg. org/spec/BMM/1.0/PDF
(22.09. 2009) (2007).

R. van Buuren, J. Gordijn, and W. Janssen. “Business case modelling
for E-services”. In: BLED 2005 Proceedings (2005), p. 8.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

221

A. Caetano, G. Antunes, J. Pombinho, M. Bakhshandeh, J. Granjo, J.
Borbinha, and M. M. Da Silva. “Representation and analysis of enter-
prise models with semantic techniques: an application to ArchiMate,

e3value and business model canvas”. In: Knowledge and Information
Systems 50.1 (2017), pp. 315-346.

P. Caire, N. Genon, D. Moody, et al. “Visual Notation Design 2.0:
Towards User-Comprehensible RE Notations”. In: Proceedings of the
21st IEEE International Requirements Engineering Conference. 2013.

J. P. Carvallo and X. Franch. “On the use of i* for Architecting Hybrid
Systems: A Method and an Evaluation Report”. In: The Practice of
Enterprise Modeling. Springer, 2009, pp. 38-53.

P. Clements and L. Bass. “Using Business Goals to Inform a Software
Architecture”. In: 18th IEEFE International Requirements Engineering
Conference. IEEE Computer Society Press. 2010, pp. 69-78.

J. A. Cruz-Lemus, M. Genero, M. E. Manso, S. Morasca, and M. Piat-
tini. “Assessing the understandability of UML statechart diagrams with
composite states: A family of empirical studies”. In: Empirical Software
Engineering 14.6 (2009), pp. 685-719.

A. Dardenne, A. v. Lamsweerde, and S. Fickas. “Goal-directed re-
quirements acquisition”. In: Science of Computer Programming 20.1-2
(1993), pp. 3-50.

A. De Lucia, C. Gravino, R. Oliveto, and G. Tortora. “An experimental
comparison of ER and UML class diagrams for data modelling”. In:
Empirical Software Engineering 15.5 (2010), pp. 455-492.

Z. Derzsi, J. Gordijn, K. Kok, H. Akkermans, and Y.-H. Tan. “Assessing
feasibility of IT-enabled networked value constellations: A case study
in the electricity sector”. In: International Conference on Advanced In-
formation Systems Engineering. Springer. 2007, pp. 66-80.

J. L. Dietz. “Understanding and modelling business processes with
DEMO?”. In: International Conference on Conceptual Modeling. Springer.
1999, pp. 188-202.

W. Engelsman, R. J. Wieringa, M. van Sinderen, J. Gordijn, and T.
Haaker. “Realizing Traceability from the Business Model to Enterprise
Architecture”. In: Advances in Conceptual Modeling. Springer. 2019,
pp. 37-46.

222

[28] W. Engelsman, R. J. Wieringa, M. van Sinderen, J. Gordijn, and T.
Haaker. “Transforming e3value models in ArchiMate diagrams”. In:
2020 IEEFE 24th International Enterprise Distributed Object Computing
Conference. Springer. 2020, pp. 11-20.

[29] W. Engelsman, D. A. C. Quartel, H. Jonkers, and M. J. van Sinderen.
“Extending enterprise architecture modelling with business goals and
requirements”. In: Enterprise information systems 5.1 (2011), pp. 9-36.
ISSN: 1751-7575.

[30] W. Engelsman and R. J. Wieringa. “Understandability of goal-oriented
requirements engineering concepts for enterprise architects”. In: Ad-
vanced Information Systems Engineering (CAiSE), 26th international
conference. Springer, 2014.

[31] W. Engelsman, J. Gordijn, T. Haaker, M. van Sinderen, and R. Wieringa.
“Traceability from the Business Value Model to the Enterprise Architec-
ture: A Case Study”. In: Enterprise, Business-Process and Information
Systems Modeling. Springer, 2021, pp. 212-227.

[32] W. Engelsman, J. Gordijn, T. Haaker, M. v. Sinderen, and R. Wieringa.
“Quantitative Alignment of Enterprise Architectures with the Busi-
ness Model”. In: International Conference on Conceptual Modeling.
Springer. 2021, pp. 189-198.

[33] W. Engelsman, M. E. Tacob, and H. M. Franken. “Architecture-driven
requirements engineering”. In: Proceedings of the 2009 ACM symposium
on Applied Computing. 2009, pp. 285—286.

[34] W.Engelsman, H. Jonkers, H. M. Franken, and M.-E. Tacob. “Architecture-
driven requirements engineering”. In: Working Conference on Practice-
Driven Research on Enterprise Transformation. Springer. 2009, pp. 134—
154.

[35] W. Engelsman, H. Jonkers, and D. Quartel. “ArchiMate® extension
for modeling and managing motivation, principles, and requirements in
TOGAF®”. In: White paper, The Open Group (2011).

[36] W. Engelsman and R. Wieringa. “Goal-Oriented requirements engi-
neering and enterprise architecture: two case studies and some lessons
learned”. In: Requirements Engineering: Foundation for Software Qual-
ity. Springer, 2012, pp. 306-320.

[37] W. Engelsman and R. Wieringa. “Understandability of goal concepts
by requirements engineering experts”. In: Advances in Conceptual Mod-
eling. Springer. 2014, pp. 97-106.

[38]

[39]

[40]

[41]

[42]

[43]

[47]

[48]
[49]

[50]

223

A. Finkelstein, J. Kramer, and M. Goedicke. Viewpoint oriented soft-
ware development. University of London, Imperial College of Science
and Technology, Department ..., 1991.

J. Forrester. “If p, then what? Thinking in cases”. In: History of the
human sciences 9.3 (1996), pp. 1-25.

B. Fritscher and Y. Pigneur. “Business IT alignment between business
model and enterprise architecture with a strategic perspective”. In: In-
ternational Journal of Information System Modeling and Design 6.1
(2015), pp. 1-23.

B. Fritscher and Y. Pigneur. “Business IT alignment from business
model to enterprise architecture”. In: International Conference on Ad-
vanced Information Systems Engineering. Springer. 2011, pp. 4-15.

I. Galvao and A. Goknil. “Survey of traceability approaches in model-
driven engineering”. In: 11th IEEFE International Enterprise Distributed
Object Computing Conference (EDOC 2007). IEEE. 2007, pp. 313-313.

S. Ghaisas, P. Rose, M. Daneva, and K. Sikkel. “Generalizing by simi-
larity: Lessons learnt from industrial case studies”. In: 1st International
Workshop on Conducting Empirical Studies in Industry (CESI). IEEE
Computer Science Press, 2013, pp. 37-42.

J. Gordijn and R. Wieringa. e3value User guide. https://e3value-
user-manual.thevalueengineers.nl/. The Value Engineers, 2021.

J. Gordijn. “E-business value modelling using the e3-value ontology”.
In: Value creation from e-business models. Elsevier, 2004, pp. 98-127.

J. Gordijn and J. Akkermans. “Value-based requirements engineering:
exploring innovative e-commerce ideas”. In: Requirements engineering
8.2 (2003), pp. 114-134.

J. Gordijn, P. Van Eck, and R. Wieringa. “Requirements engineering
techniques for e-services”. In: Service-Oriented Computing: Cooperative
Information Systems Series (2009), pp. 331-352.

J. Gordijn, E. Yu, and B. Van Der Raadt. “E-service design using i*
and e/sup 3/value modeling”. In: IEEE software 23.3 (2006), pp. 26-33.

J. Gordijn and J. M. Akkermans. Value Webs: Understanding E-business
Innovation. www.thevalueengineers.nl. The Value Engineers, 2018.

I. Hadar, I. Reinhartz-Berger, T. Kuflik, A. Perini, F. Ricca, and A.
Susi. “Comparing the Comprehensibility of Requirement Models Ex-
pressed in Use Case and Tropos: Results from a Family of Experiments”.
In: Information and Software Technology (2013).

https://user-manual.thevalueengineers.nl/
https://www.thevalueengineers.nl/

[51]

[52]

[53]

224

C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. “Automated con-
sistency checking of requirements specifications”. In: ACM Transac-
tions on Software Engineering and Methodology (TOSEM) 5.3 (1996),
pp- 231-261.

J. Horkoff and E. Yu. “Evaluating Goal Achievement in Enterprise
Modeling—An Interactive Procedure and Experiences”. In: The Prac-
tice of Enterprise Modeling. Springer, 2009, pp. 145-160.

C. Houy, P. Fettke, and P. Loos. Understanding understandability of
conceptual models - what are we actually talking about? - Supplement.
eng. Tech. rep. Postfach 151141, 66041 Saarbrucken: Universitat und
Landesbibliothek, 2013. URL: http://scidok.sulb.uni-saarland.
de/volltexte/2013/5441.

M.-E. Tacob and H. Jonkers. “Quantitative analysis of enterprise archi-
tectures”. In: Interoperability of Enterprise Software and Applications.
Springer, 2006, pp. 239-252.

M.-E. Iacob, L. O. Meertens, H. Jonkers, D. A. Quartel, L. J. Nieuwen-
huis, and M. J. Van Sinderen. “From enterprise architecture to busi-
ness models and back”. In: Software & Systems Modeling 13.3 (2014),
pp- 1059-1083.

M.-E. Tacob, D. Quartel, and H. Jonkers. “Capturing business strategy
and value in enterprise architecture to support portfolio valuation”. In:
2012 IEEE 16th International Enterprise Distributed Object Computing
Conference. IEEE. 2012, pp. 11-20.

“ISO/IEC/IEEE Systems and software engineering — Architecture de-
scription”. In: ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC
42010:2007 and IEEE Std 1471-2000) (2011), pp. 1-46. por: 10.1109/
IEEESTD.2011.6129467.

I. Jacobson, G. Booch, and J. Rumbaugh. “The Unified Modeling Lan-
guage”. In: University Video Communications (1996).

H. Jonkers, M. Lankhorst, R. Van Buuren, S. Hoppenbrouwers, M. Bon-
sangue, and L. Van Der Torre. “Concepts for modeling enterprise archi-
tectures”. In: International Journal of Cooperative Information Systems
13.3 (2004), pp. 257—-287. 1ssN: 0218-8430.

I. Jureta and S. Faulkner. “An agent-oriented meta-model for enterprise
modelling”. In: Perspectives in Conceptual Modeling. Springer, 2005,
pp. 151-161.

http://scidok.sulb.uni/

[61]

[62]

[65]

[66]

[67]

[68]

[69]

[70]

225

E. Kamsties, A. von Knethen, and R. Reussner. “A controlled experi-
ment to evaluate how styles affect the understandability of requirements
specifications”. In: Information and Software Technology 45.14 (2003),
pp- 955-965.

F. Kaya, J. Gordijn, R. Wieringa, and M. Makkes. “Governance in peer-
to-peer networks is a design problem”. In: 14th International Workshop
on Value Modelling and Business Ontologies, VMBO 2020. CEUR-WS.
2020, pp. 125-132.

W. C. Kim and R. A. Mauborgne. Blue ocean strategy, expanded edi-
tion: How to create uncontested market space and make the competition
irrelevant. Harvard business review Press, 2014.

S. de Kinderen, K. Gaaloul, and H. E. Proper. “Integrating value mod-
elling into ArchiMate”. In: International Conference on Exploring Ser-
vices Science. Springer. 2012, pp. 125-139.

S. de Kinderen, K. Gaaloul, and H. A. Proper. “Bridging value mod-
elling to ArchiMate via transaction modelling”. In: Software & Systems
Modeling 13.3 (2014), pp. 1043-1057.

B. Kitchenham. “Procedures for performing systematic reviews”. In:
Keele, UK, Keele University 33 (2004), p. 2004.

S. Kurpjuweit and R. Winter. “Concern-oriented business architecture
engineering”. In: Proceedings of the 2009 ACM symposium on Applied
Computing. 2009, pp. 265-272.

M. Kutar, C. Britton, and T. Barker. “A comparison of empirical study
and cognitive dimensions analysis in the evaluation of UML diagrams”.
In: Procs of the 14th Workshop of the Psychology of Programming In-
terest Group (PPIG 14). 2002.

L. Kuzniarz, M. Staron, and C. Wohlin. “An empirical study on using
stereotypes to improve understanding of UML models”. In: Program
Comprehension, 2004. Proceedings. 12th IEEE International Workshop
on. IEEE. 2004, pp. 14-23.

R. Lagerstrom, J. Saat, U. Franke, S. Aier, and M. Ekstedt. “Enter-
prise meta modeling methods—combining a stakeholder-oriented and a
causality-based approach”. In: Enterprise, business-process and infor-
mation systems modeling. Springer, 2009, pp. 381-393.

[71]

[77]

[78]

226

C. F. Lange and M. R. Chaudron. “Interactive views to improve the
comprehension of UML models-an experimental validation”. In: Pro-
gram Comprehension, 2007. ICPC’07. 15th IEEE International Con-
ference on. IEEE. 2007, pp. 221-230.

M. Lankhorst. Enterprise architecture at work: Modelling, communica-
tion and analysis. Springer-Verlag New York Inc, 2009. 1SBN: 3642013090.

M. M. Lankhorst, H. A. Proper, and H. Jonkers. “The architecture of
the archimate language”. In: Enterprise, business-process and informa-
tion systems modeling. Springer, 2009, pp. 367-380.

S. Lauesen. User interface design: a software engineering perspective.
Pearson Education, 2005.

D. Leslie and N. M. Rantisi. “Creativity and place in the evolution of a
cultural industry: the case of Cirque du Soleil”. In: Urban Studies 48.9
(2011), pp. 1771-1787.

A. Lindstrom. “On the syntax and semantics of architectural princi-
ples”. In: Proceedings of the 39th Annual Hawaii International Confer-
ence on System Sciences (HICSS’06). Vol. 8. IEEE. 2006, 178b-178b.

1. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang. “What
industry needs from architectural languages: A survey”. In: IEEE Trans-
actions on Software Engineering 39.6 (2012), pp. 869-891.

A. Maté, J. Trujillo, and X. Franch. “A modularization proposal for
goal-oriented analysis of data warehouses using I-star”. In: Conceptual
Modeling-ER 2011. Springer, 2011, pp. 421-428.

R. Matulevicius and P. Heymans. “Comparing goal modelling languages:
An experiment”. In: Requirements Engineering: Foundation for Soft-
ware Quality. Springer, 2007, pp. 18-32.

V. Mayer-Schénberger and T. Ramge. Reinventing capitalism in the age
of big data. Basic Books, 2018.

L. O. Meertens, M.-E. Tacob, L. J. Nieuwenhuis, M. J. van Sinderen,
H. Jonkers, and D. Quartel. “Mapping the business model canvas to
ArchiMate”. In: Proceedings of the 27th annual ACM symposium on
applied computing. ACM. 2012, pp. 1694-1701.

T. Mens and P. Van Gorp. “A taxonomy of model transformation”. In:
Electronic notes in theoretical computer science 152 (2006), pp. 125—
142.

[83]

[84]

[85]

[36]

[87]

[88]

[89]

[90]

227

J. Miguens, M. M. da Silva, and S. Guerreiro. “A Viewpoint for Inte-
grating Costs in Enterprise Architecture”. In: OTM Confederated Inter-
national Conferences" On the Move to Meaningful Internet Systems’.
Springer. 2018, pp. 481-497.

G. A. Miller. “The magical number seven, plus or minus two: some
limits on our capacity for processing information.” In: Psychological
review 63.2 (1956), p. 81.

D. Moody. “The Physics of Notations: Improving the Usability and
Communicability of Visual Notations in Requirements Engineering”.
In: Requirements Engineering Visualization (REV), 2009 Fourth Inter-
national Workshop on. 2009, pp. 56-57. DO1: 10.1109/REV.2009.6.

D. Moody, P. Heymans, and R. Matulevicius. “Improving the Effec-
tiveness of Visual Representations in Requirements Engineering: An
Evaluation of i* Visual Syntax”. In: Requirements Engineering Confer-
ence, 2009. RE’09. 17th IEEFE International. IEEE Computer Society
Press, 2009, pp. 171-180.

D. Moody. “The "Physics" of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering”. In: Software
Engineering, IEEE Transactions on 35.6 (2009), pp. 756-779. ISSN:
0098-5589. DOI: 10.1109/tse.2009.67.

D. L. Moody, P. Heymans, and R. Matulevi¢ius. “Visual syntax does
matter: improving the cognitive effectiveness of the i* visual notation”.
In: Requirements Engineering 15.2 (2010), pp. 141-175.

J. F. Moore. The Death of Competition: Leadership and Strategy in the
Age of Business Ecosystems. Harper, 1996.

M. Morandini, A. Marchetto, and A. Perini. “Requirements compre-
hension: A controlled experiment on conceptual modeling methods”.
In: Empirical Requirements Engineering (EmpiRE), 2011 First Inter-
national Workshop on. IEEE. 2011, pp. 53-60.

A. Nugroho. “Level of detail in UML models and its impact on model
comprehension: A controlled experiment”. In: Information and Software
Technology 51.12 (2009), pp. 1670-1685.

M. Op’t Land and H. Proper. “Impact of principles on enterprise engi-
neering”. In: (2007).

A. Osterwalder and Y. Pigneur. Business model generation: a handbook
for wvisionaries, game changers, and challengers. John Wiley & Sons,
2010.

[100]

[101]

[102]

228

K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee. “A
design science research methodology for information systems research”.
In: Journal of management information systems 24.3 (2007), pp. 45-77.

R. M. Pessoa, M. van Sinderen, and D. A. Quartel. “Towards Require-
ments Elicitation in Service-oriented Business Networks using Value
and Goal Modelling.” In: ICSOFT (2). 2009, pp. 392-399.

J. Petrikina, P. Drews, I. Schirmer, and K. Zimmermann. “Integrating
business models and enterprise architecture”. In: 2014 IEEE 18th In-
ternational Enterprise Distributed Object Computing Conference Work-
shops and Demonstrations. IEEE. 2014, pp. 47-56.

M. P. Pieroni, T. C. McAloone, and D. C. Pigosso. “Business model
innovation for circular economy and sustainability: A review of ap-
proaches”. In: Journal of cleaner production 215 (2019), pp. 198-216.

M. E. Porter. “Competitive advantage, agglomeration economies, and
regional policy”. In: International regional science review 19.1-2 (1996),
pp- 85-90.

H. C. Purchase, L. Colpoys, M. McGill, D. Carrington, and C. Brit-
ton. “UML class diagram syntax: an empirical study of comprehen-
sion”. In: Proceedings of the 2001 Asia-Pacific symposium on Informa-
tion wvisualisation-Volume 9. Australian Computer Society, Inc. 2001,
pp- 113-120.

H. C. Purchase, R. Welland, M. McGill, and L. Colpoys. “Compre-
hension of diagram syntax: an empirical study of entity relationship
notations”. In: International Journal of Human-Computer Studies 61.2
(2004), pp. 187-203. 1SsN: 1071-5819. DOI: http://dx.doi.org/10.
1016/j.1jhcs.2004.01.003. URL: http://www.sciencedirect.com/
science/article/pii/S1071581904000072.

D. A. C. Quartel, W. Engelsman, H. Jonkers, and M. J. van Sinderen.
“A goal-oriented requirements modelling language for enterprise archi-
tecture”. In: Proceedings of the Thirteenth IEEE International EDOC
Enterprise Computing Conference, EDOC 2009, Auckland, New Zealand.
Auckland, New Zealand: IEEE Computer Society Press, 2009, pp. 3-13.

B. Ramesh and M. Jarke. “Toward reference models for requirements
traceability”. In: IEEFE transactions on software engineering 27.1 (2001),
pp- 58-93.

http://dx.doi.org/10.
http://www.sciencedirect.com/

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]
[112]

[113]

[114]

229

G. Reggio, F. Ricca, G. Scanniello, F. Di Cerbo, and G. Dodero. “A
precise style for business process modelling: Results from two controlled
experiments”. In: Model Driven Engineering Languages and Systems.
Springer, 2011, pp. 138-152.

D. T. Ross and K. E. Schoman. “Structured analysis for requirements
definition”. In: IEEE transactions on Software Engineering 1 (1977),
pp. 6-15.

K. Siau and P.-P. Loo. “Identifying difficulties in learning UML”. In:
Information Systems Management 23.3 (2006), pp. 43-51.

R. G. Slot. “A method for valuing architecture-based business transfor-
mation and measuring the value of solutions architecture”. PhD thesis.
Universiteit van Amsterdam [Host], 2010.

Z. Soh, Z. Sharafi, B. Van den Plas, G. C. Porras, Y.-G. Guéhéneuc,
and G. Antoniol. “Professional status and expertise for UML class dia-
gram comprehension: An empirical study”. In: Program Comprehension
(ICPC), 2012 IEEE 20th International Conference on. IEEE. 2012,
pp. 163-172.

D. Stelzer. “Enterprise architecture principles: literature review and re-
search directions”. In: Service-oriented computing. ICSOC/Service Wave
2009 workshops. Springer. 2009, pp. 12-21.

J. Stirna, A. Persson, and K. Sandkuhl. “Participative enterprise model-
ing: experiences and recommendations”. In: Advanced Information Sys-
tems Engineering. Springer. 2007, pp. 546-560.

H. Storrle. “On the impact of layout quality to understanding UML dia-
grams”. In: Visual Languages and Human-Centric Computing (VL/HCC),
2011 IEEE Symposium on. IEEE. 2011, pp. 135-142.

C. R. Sunstein. “On analogical reasoning”. In: Harvard Law Review
106.3 (1993), pp. 741-791.

D. J. Teece. “Business models, business strategy and innovation”. In:
Long range planning 43.2-3 (2010), pp. 172-194.

M. A. Teruel, E. Navarro, V. Lopez-Jaquero, F. Montero, J. Jaen, and
P. Gonzélez. “Analyzing the understandability of Requirements Engi-
neering languages for CSCW systems: A family of experiments”. In:
Information and Software Technology 54.11 (2012), pp. 1215-1228.

The Open Group. ArchiMate 3.1 Specification. Van Haren Publishing,
2019.

[115]
[116]

[117]

[118]
[119]

[120]

[121]

[122]
[123]

[124]
[125]

[126]

[127]

[128]

230

The Open Group. TOGAF Version 9. Van Haren Publishing, 2009.

I. Traore, I. Woungang, A. A. E. S. Ahmed, and M. S. Obaidat. “Soft-
ware Performance Modeling using the UML: a Case Study”. In: Journal
of Networks 7.1 (2012), p. 4.

J. E. Van Aken. “Management research as a design science: Articulating
the research products of mode 2 knowledge production in management”.
In: British journal of management 16.1 (2005), pp. 19-36.

A. Van Lamsweerde. “From system goals to software architecture”. In:
Formal Methods for Software Architectures (2003), pp. 25-43.

A. Van Lamsweerde. “From system goals to software architecture”. In:
Formal Methods for Software Architectures. Springer, 2003, pp. 25-43.

J. Van’t Wout, M. Waage, H. Hartman, M. Stahlecker, and A. Hof-
man. The integrated architecture framework explained: why, what, how.
Springer Science & Business Media, 2010.

S. L. Vargo, P. P. Maglio, and M. A. Akaka. “On value and value co-
creation: A service systems and service logic perspective”. In: European
management journal 26.3 (2008), pp. 145-152.

N. Venkatraman. “Beyond outsourcing: managing IT resources as a
value center”. In: MIT Sloan Management Review 38.3 (1997), p. 51.

E. Walters. Modeling the Business Model Canvas with the ArchiMate
specification. https://publications.opengroup.org/wi95. 2020.

C. Weekly. Case studies; The sytems behind the shows. Internet. 2006.

R. J. Wieringa. “Design Science as Nested Problem Solving”. In: Pro-
ceedings of the 4th International Conference on Design Science Re-
search in Information Systems and Technology, Philadelphia. Philadel-
phia: ACM, 2009, pp. 1-12.

R. Wieringa, W. Engelsman, J. Gordijn, and D. Ionita. “A business
ecosystem architecture modeling framework”. In: 2019 IEEE 21st Con-
ference on Business Informatics (CBI). Vol. 1. IEEE. 2019, pp. 147—
156.

R. J. Wieringa. Design science methodology for information systems
and software engineering. Springer, 2014.

E. Yu, M. Strohmaier, and X. Deng. “Exploring intentional modeling
and analysis for enterprise architecture”. In: Enterprise Distributed Ob-
ject Computing Conference Workshops, 2006. EDOCW?06. 10th IEEE
International. IEEE. 2006, p. 32. 1SBN: 0769527434.

https://publications.opengroup.org/w195

[129]

[130]

[131]

231

E. Yu. “Towards modelling and reasoning support for early-phase re-
quirements engineering”. In: Requirements Engineering, 1997., Proceed-
ings of the Third IEEE International Symposium on. IEEE Computer
Society Press, 2002, pp. 226-235. 1SBN: 0818677406.

E. Yu and J. Mylopoulos. “Towards modeling strategic actor relation-
ships for information systems development — with examples from busi-
ness process reengineering”. In: Proceedings of the 4th Workshop on
Information Technolgies and Systems (WITS’94). 1994.

J. A. Zachman. The concise definition of the Zachman framework.
https://www.zachman.com/about-the-zachman-framework. 2017.

https://www.zachman.com/about-the-zachman-framework

An enterprise architecture (EA) is a high-level
representation of the enterprise. An EA is designed
to realize the business value of an organization. In
the first part of this thesis a traceability relation
between the EA, modeled with ArchiMate, and the
business goals is defined and empirically evaluated.
Afterwards the language is validated with
practitioners and academics in terms of
understandability. The conclusion is that the
concepts of this modeling language are difficult to
understand because the concepts are too closely
related. We end this part with a simplification of the
goal-modeling language.

In the second part a traceability relation between
two conceptual modeling languages, e3value and
ArchiMate, is designed. This traceability relation is
refined in an experiment with practitioners and
evaluated in a case study. A key finding from this
case study is that for the traceability to be useful,
the quantifications of an e3value model have to be
aligned with those in an ArchiMate model. The thesis
ends with a quantitative alignment of an ArchiMate
model with the quantifications of an e3value model.

ISBN: 978-90-365-5320-9

	Lege pagina
	Lege pagina

