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A B S T R A C T

The microstructure of granular materials has a significant influence on their macroscopic quasi-static strength
and deformational behaviour. This microstructure is often quantified by a second-order fabric tensor that
describes the primary orientational statistics of interparticle contacts. Here, it is investigated how the fabric
tensor changes when samples are subjected to small (strain) loadings with different ‘directions’, i.e. probes. This
is accomplished by the analysis of extensive sets of Discrete Element Method (DEM) simulations for various
anisotropic, pre-peak two-dimensional samples, where both in-plane (i.e. coaxial with the current stress and
fabric tensor) and out-of-plane, noncoaxial probes are considered. The results of DEM simulations show that
the in-plane and out-of-plane fabric responses are effectively decoupled, i.e. they are only dependent on the
in-plane and out-of-plane strain increment, respectively. The out-of-plane fabric increment is proportional to
the out-of-plane strain increment whereas the in-plane fabric increment is linearly dependent on the in-plane
strain increment. An accurate theoretical description (with a modest number of model parameters) has been
developed that describes the fabric response to the imposed, in-plane as well out-of-plane, strain increments
for the considered systems.
1. Introduction

Granular materials consist of particles and voids at the micro-scale.
Their arrangement, or microstructure, is important to their quasi-static
behaviour at the continuum, macro-scale in terms of shear strength
and dilatancy (Reynolds, 1885; Rowe, 1962; Rothenburg and Bathurst,
1989; Kruyt and Rothenburg, 2016, 2019), as has been shown both
experimentally (Oda, 1972; Yoshimine et al., 1998) and by Discrete
Element Method (DEM for short) (Cundall and Strack, 1979) simula-
tions (Thornton and Barnes, 1986; Kruyt, 2012; Wang et al., 2017;
Shi and Guo, 2018a,b; Wang et al., 2020). This microstructure is often
quantified by a second-order fabric tensor (Oda, 1972; Satake, 1978)
that represents an average of the dyadic product of a micro-scale vector.
Anisotropy of the fabric tensor may originate from depositional or
stress-induced processes.

Various types of fabric tensors that differ in the involved micro-scale
vectors have been developed in the literature. Examples of widely-used
fabric tensors are: the contact normal-based tensor (Satake, 1978; Oda,
1982; Hu et al., 2021), the branch vector-based tensor (Christoffersen
et al., 1981), the void vector-based tensor (Tsuchikura and Satake,
2001; Li and Li, 2009; Theocharis et al., 2017a), and the particle
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orientation vector-based tensor (Oda, 1972; Yang et al., 2008). In this
study, the contact normal-based fabric tensor is adopted, which is
attractive since force transmission occurs at contacts.

Fabric and its evolution have been studied experimentally (pri-
marily by x-ray tomography measurements, see for example Imseeh
et al. (2018), Viggiani and Tengattini (2019), Wiebicke et al. (2020)
and Zhao et al. (2021)) and by DEM simulations (see for example Kruyt
(2012), Fu and Dafalias (2011), Zhao and Guo (2013) and Yang and Wu
(2016)). Such DEM simulations are very convenient for studies on fab-
ric, since very detailed information on particle positions and contacts is
readily available that can be used to accurately quantify fabric tensors.
Mechanisms of fabric evolution have been studied by Kuhn (2010)
and Kruyt (2012). The three mechanisms that have been quantified
in Kruyt (2012) are contact disruption, contact creation and contact
reorientation.

The importance of fabric to the behaviour of granular materials sug-
gests that it should be appropriately included in (advanced) continuum
constitutive relations (Pietruszczak and Pande, 2001; Gao et al., 2014;
Yang et al., 2018; Petalas et al., 2019) that describe the behaviour
at the macro-scale. Since the fabric tensor generally is not constant,
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an evolution ‘law’ is required. Such fabric evolution laws have been
fairly extensively studied in the literature, mainly for predicting the
evolution of fabric anisotropy for specific loading paths, such as triaxial
or isobaric paths, see for instance Li and Dafalias (2012), Zhao and
Kruyt (2020), Wang et al. (2020) and Zhao et al. (2021). An overview
of different classes of such relations is presented in Zhao and Kruyt
(2020).

A framework for conditions at the critical state that must be satisfied
by such evolution laws is provided by the Anisotropic Critical State The-
ory (ACST for short) proposed by Li and Dafalias (2012), which forms
an extension of classical Critical State Theory (Schofield and Wroth,
1968). Theoretical aspects of ACST have been studied by Theocharis
et al. (2017b, 2019), while experimental evidence for ACST from x-
ray tomography measurements has been recently reported by Zhao
et al. (2021). Furthermore, Hu et al. (2021) have recently explored
implications of ACST for model parameters in a class of fabric evolution
laws.

The stress–strain response of granular materials generally depends
on loading direction, in particular for geomaterials subjected to com-
plex loadings with changing direction, such as offshore geo-structures
that are subjected to cyclic loads from wind and water waves. Such
loads are then transferred to the supporting foundations, and hence
the adjacent soils are sheared due to loadings with evolving directions.
Therefore, the investigation of the fabric response to different loading
directions is important for developing (advanced) constitutive models
to simulate the behaviour of granular materials.

The importance of loading direction to the fabric response has
been shown in previous studies (Yang et al., 2008; Karapiperis et al.,
2020) on samples with initial, inherent anisotropy (due to the depo-
sition process). Additionally, it has been shown that the fabric also
changes when a granular material is subjected to purely elastic load-
ings (O’Sullivan and Cui, 2009; Agnolin and Roux, 2007; Pouragha
et al., 2019; Karapiperis et al., 2020).

To systematically investigate the fabric response of granular ma-
terials for various loading directions, the probing technique proposed
by Gudehus (1979) is employed here. This technique originally has
been used to systematically explore the stress–strain response to various
loading directions by studying the strain (or stress) response of the
material to small imposed stress (or strain) increments along different
loading paths. The stress probing technique, conveniently executed via
two-dimensional DEM simulations, has been used in Pouragha et al.
(2019, 2021) and Pouragha (2022) to study specific aspects of the
fabric and strain response.

Pouragha et al. (2019) investigated the fabric response to strain
probes where the initial samples are two-dimensional, isotropic sam-
ples. The fabric response to the strain probes has been determined
via extensive sets of DEM simulations of the probes on samples of
various initial void ratios. Although the stress response was ‘pseudo-
elastic’ (with negligible plastic strains), the appreciable fabric response
was shown to depend strongly on the strain probe direction (i.e. incre-
mentally nonlinear behaviour is observed). Separate relationships have
been formulated for the contributions due to the three mechanisms
(i.e. contact disruption, creation and reorientation) of fabric evolution,
that account for the difference in behaviour between compressive and
tensile probes.

Moreover, a DEM simulation study of plastic flow of two-
dimensional anisotropic samples has been performed by Pouragha
et al. (2021). The considered samples have been obtained from a DEM
simulation of monotonic biaxial isobaric compression, where periodic
boundaries have been employed to suppress the formation of persistent,
large-scale shear bands. For samples selected from the pre-peak loading
part of the biaxial deformation simulation, extensive sets of DEM
simulations of stress probes have been performed. Coaxial, ‘in-plane’
(inside the ‘plane’ in tensorial space that is spanned by the identity
tensor and the current anisotropic stress/fabric tensor) as well as non-
2

coaxial, ‘out-of-plane’ probes have been considered. Note that for the
considered samples, the stress and fabric tensors are coaxial at the
onset of probing. The in-plane plastic flow response corresponds to
a classical flow rule, but the observed plastic flow in general is non-
coaxial in the presence of out-of-plane stress components. It has been
shown that the essential characteristics of the plastic flow are captured
by a multi-mechanism plasticity theory.

Using the DEM data of probes of Pouragha et al. (2021), Pouragha
(2022) has investigated the most important variables that drive fabric
evolution by a systematic correlation analysis between increments of
the fabric, stress, plastic and total strain tensors. Interestingly, it is
found that the total strain rate is the best descriptor of the fabric rate,
rather than the plastic strain rate that is used in many fabric evolution
laws in literature. It should be mentioned that in this study the contact
normal-based fabric tensor is considered.

The two-dimensional case has been considered in Pouragha et al.
(2019, 2021) and Pouragha (2022). For three-dimensional cases, both
the in-plane and the out-of-plane spaces occupy higher dimensions, and
hence a more complex decomposition is required to generalise the non-
coaxial formulation. This increases the complexity in the interpretation
of results of DEM simulations. Although the numerical simulations
here have been limited to two-dimensional cases, the basics of the
formulation are developed in a general form that can serve as a starting
point for further extensions to three-dimensional cases.

Here the fabric response to various loading directions is investigated
in detail for a number of two-dimensional, anisotropic samples, using
the results of DEM simulations from Pouragha et al. (2021). The current
study extends that of Pouragha et al. (2019) on isotropic samples. The
specific objectives are to:

• Analyse in detail (for the first time, to the best of the authors’
knowledge) the fabric response of anisotropic samples to various
loading directions through extensive sets of stress probes that
include coaxial, in-plane probes as well as non-coaxial, out-of-
plane probes (outside of the ‘plane’ corresponding to the current
stress and fabric tensors).

• Develop a fabric evolution law (with a modest number of model
parameters) that is adequate in describing, for all probes, the
fabric response observed from the DEM simulations, for a number
of anisotropic pre-peak samples with different values of stress
ratio (and void ratio and fabric anisotropy). Note that the focus
here is on investigating and describing the fabric response to
all loading directions (for a number of samples), rather than
on formulating a fabric evolution law that is valid throughout
specific (monotonic) loading conditions.

Some notations used throughout this study are listed below. The rate
of change with time of a second-order tensor 𝑨 is denoted by

⋅
𝑨. The

deviatoric part of a tensor 𝑨 is denoted by 𝑨dev. The (unit) ‘direction’
tensor corresponding to 𝑨 is denoted by 𝑨̂. These are defined by

𝑨dev = 𝑨 − 1
2

tr(𝑨)𝑰 𝑨̂ = 𝑨
‖𝑨‖

, (1)

where 𝑰 is the second-order identity tensor, the trace of 𝑨 is given by
tr(𝑨) = 𝑨 ∶ 𝑰 and ‖𝑨‖ =

√

𝑨 ∶ 𝑨 is the Euclidean norm of 𝑨.
The employed sign convention for stress 𝝈 and strain 𝝐 is that

ompressive stresses and strains are considered to be positive. In the
wo-dimensional case considered here, the mean pressure 𝑝, the devi-
toric stress tensor 𝝉 and the (scalar) stress deviator 𝑞 are defined by

= 1
2

tr(𝝈) 𝝉 = 𝝈 − 𝑝𝑰 𝑞 =
√

1
2
𝝉 ∶ 𝝉 . (2)

The unit direction tensors, defined by Eq. (1), corresponding to 𝑰 and
𝝉 are 𝑰 and 𝝉̂, respectively.

The overview of this study is as follows. In Section 2 the fabric
tensor is defined. The DEM simulations of the probes from Pouragha
et al. (2021), whose results are analysed here, are briefly described in
Section 3. The main results for the fabric response to the probes are
presented in Section 4. A theoretical description of these results is given
in Section 5. Finally, findings of this study are discussed in Section 6.
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2. Fabric tensor

In the absence of long-range forces, the particles in a granular
sample only interact at interparticle contact points. For two particles
𝑝 and 𝑞 in contact, the branch vector 𝒍𝑝𝑞 is the vector connecting the
entres of the two particles involved, i.e. 𝒍𝑝𝑞 = 𝑿𝑞 −𝑿𝑝 where 𝑿𝑝 and
𝑞 are the global position vectors of the centres of particles 𝑝 and 𝑞,

espectively. The corresponding unit normal vector is denoted by 𝒏𝑝𝑞 .
oordination number 𝑍 is the average number of contacts per particle,
efined by

= 2𝑁𝑐∕𝑁𝑝 , (3)

here 𝑁𝑝 and 𝑁𝑐 are, respectively, the number of particles and the
umber of contacts in the granular sample. In the determination of
he coordination number, ‘‘rattlers’’ (i.e. particles that do not directly
ontribute to the mechanical stability of the system) have been disre-
arded, using the expression in Thornton (2000). Coordination number

and void ratio 𝑒 both describe the packing density of a sample.
The contact normal-based fabric tensor (Oda, 1972; Satake, 1978;

da, 1982) that is studied here represents a statistical average of
he orientation of the contact unit normal vectors 𝒏𝑐 . The symmetric,
econd-order fabric tensor 𝑭 is defined by

𝑖𝑗 =
2
𝑁𝑝

∑

𝑐∈𝐶
𝑛𝑐𝑖 𝑛

𝑐
𝑗 , (4)

here the summation is over contacts 𝑐 in the set of contacts 𝐶 in the
egion under consideration, and 𝒏𝑐 is the unit contact normal associated
ith contact 𝑐; thus 𝑛𝑐𝑖 𝑛

𝑐
𝑖 = 1. This definition for the fabric tensor,

hrough the choice of scaling factor being 𝑁𝑝 rather than 𝑁𝑐 , also
rovides information on coordination number 𝑍, since tr(𝑭 ) = 𝑍 (as

follows from Eqs. (3) and (4); note that 𝒏𝑐 is a unit vector).
The full fabric tensor 𝑭 , rather than only the deviatoric part 𝑭 dev,

is considered here, since it contains additional relevant information on
coordination number 𝑍 and in the two-dimensional case the deviatoric
components of the fabric tensor in the (𝐹11, 𝐹22) plane lie on a line with
a slope of tan(−45◦) through the origin (since tr(𝑭 dev) = 0 and hence
tr(

⋅
𝑭 dev) = 0), and are therefore rather restricted, for in-plane probes.
In terms of the principal values 𝐹1 and 𝐹2 of the fabric tensor 𝑭 ,

coordination number 𝑍 and fabric anisotropy 𝐴 are expressed by

= 𝐹1 + 𝐹2 𝐴 = 𝐹1 − 𝐹2 . (5)

For two-dimensional anisotropic samples, the stress tensor (coaxial
ith the fabric tensor for the samples considered here) lies in a ‘plane’

hat is spanned by the tensors 𝑰 and 𝝉. A symmetric, second-order ten-
or 𝑨 is decomposed into ‘in-plane’ and ‘out-of-plane’ parts (Pouragha
t al., 2021), 𝑨𝜋 and 𝑨𝜌 respectively, by
𝜋 = tr(𝑨 ⋅ 𝑰)𝑰 + tr(𝑨 ⋅ 𝝉̂)𝝉̂ 𝑨𝜌 = 𝑨 −𝑨𝜋 . (6)

he in-plane part 𝑨𝜋 is coaxial with the current stress/fabric tensor,
hile the out-of-plane part 𝑨𝜌 is non-coaxial. This decomposition will
e primarily used here for the fabric rate

⋅
𝑭 and the strain rate ⋅𝝐

ensors. A similar decomposition has been adopted in the framework
f tangential plasticity (Rudnicki and Rice, 1975). For the considered
wo-dimensional samples, the (deviatoric) stress and fabric tensors are
oaxial, and hence 𝝉̂ = 𝑭 dev.

Note that the set consisting of identity tensor 𝑰 , deviatoric stress
ensor 𝝉 and out-of-plane strain rate ⋅𝝐𝜌,

{

𝑰 , 𝝉 , ⋅𝝐𝜌
}

, forms an orthogonal
asis for the space of symmetric second-order tensors in the two-
imensional case with anisotropic stress/fabric. For three-dimensional
ases, a more complex decomposition is required to generalise the non-
oaxial formulation, since both the in-plane and the out-of-plane spaces
ccupy higher dimensions.

A simple model for fabric evolution that is based on the uniform-
train assumption is given in Appendix A, showing that the variable

⋅

3

⋅ 𝝐 is important for fabric evolution.
Table 1
Properties of the samples subjected to stress probes: coordination number 𝑍, fabric
anisotropy 𝐴 and void ratio 𝑒, for various stress ratios 𝑞∕𝑝. The mean pressure 𝑝 is the
same for all samples, with 𝑝∕(𝐸𝑟̄) = 5 × 10−3.
𝑞∕𝑝 𝑍 𝐴 𝑒

0.15 4.302 0.049 0.1974
0.30 4.159 0.135 0.1976
0.40 3.997 0.233 0.1982
0.44 3.846 0.320 0.1984

Fig. 1. Components of the increment of the stress tensor, 𝛥𝝈, for a stress probe that
is characterised by the polar angles 𝜙 and 𝜃.

3. DEM simulations of stress probes

The study in Pouragha et al. (2019) explored the fabric response
of two-dimensional isotropic granular samples, through strain probes
without shear strains. In the current study, the samples were loaded
deviatorically to desired stress states, and hence the state of the mate-
rial at the onset of probing is anisotropic. The stress probes that have
been applied to these anisotropic samples involve shear components.
Hence, non-coaxial probes have also been considered that lie outside
of the stress/fabric plane.

The details of DEM simulations that are analysed here have been
described in Pouragha et al. (2021). The main points of the numerical
simulations are briefly described here for completeness.

The numerical simulations were performed using the open-source
code YADE (Smilauer et al., 2015). Samples with 50,000 circular
particles, with radii uniformly distributed between 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 where
𝑟𝑚𝑎𝑥∕𝑟𝑚𝑖𝑛 = 2, were initially generated.

The elastic part of the interparticle contact model involves linear
springs in the directions normal and tangential to the contact, with
equal stiffnesses 𝑘𝑐 . The contact stiffnesses have been determined from
𝑘𝑐 = 𝐸

2𝑟𝑐1𝑟
𝑐
2

𝑟𝑐1+𝑟
𝑐
2
, where 𝐸 is an elastic modulus and 𝑟𝑐1 and 𝑟𝑐2 are the radii of

the particles involved in contact 𝑐. For the frictional part, a cohesionless
Coulomb model with interparticle friction angle of 30◦ has been used.

The initial sample was isotropically compressed to the desired con-
fining mean pressure 𝑝0, with periodic boundaries being employed to
reduce spatial heterogeneities induced by physical walls. Parameters 𝐸
and 𝑝0 have been selected such that the contact deformation is small
relative to the average particle radius; 𝑝0∕(𝐸𝑟̄) = 5 × 10−3 where 𝑟̄ is
the average particle radius. The (two-dimensional) void ratio of the
resulting dense sample equals 0.1958.

The initial sample was subsequently sheared, while keeping the
mean pressure 𝑝 constant (i.e. 𝑝 = 𝑝 ), to the stress ratio 𝑞∕𝑝 of 0.15,
0
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Fig. 2. Response to strain probes: (left) stress response 𝛥𝝈, scaled with contact stiffness 𝑘 and magnitude of the strain increment, ‖𝛥𝝐‖; (right) fabric response 𝛥𝑭 , scaled with
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.30, 0.40 and 0.44 (the peak stress ratio is 0.48). The evolution of
tress ratio and of volumetric strain with respect to deviatoric strain
re shown in Fig. 1 of Pouragha et al. (2021) and Pouragha (2022).
nformation on the samples (coordination number 𝑍, fabric anisotropy

and void ratio 𝑒) for these stress ratios is given in Table 1. A Cartesian
oordinate system (𝑥, 𝑦) is employed in the following such that the 𝑥 and
directions correspond to the minor and major principal stress/fabric
irections, respectively.

Starting from these stored samples, stress probes were performed
sing servo-control techniques. For each probe, the norm of the stress
ncrement ‖𝛥𝝈‖ was the same. For a given probe, the components of
he stress increment tensor 𝛥𝝈 are given by (see also Fig. 1):
[

𝛥𝜎𝑥𝑥 𝛥𝜎𝑥𝑦
𝛥𝜎𝑦𝑥 𝛥𝜎𝑦𝑦

]

= ‖𝛥𝝈‖
⎡

⎢

⎢

⎣

sin 𝜃 ⋅ cos𝜙 1
√

2
cos 𝜃

1
√

2
cos 𝜃 sin 𝜃 ⋅ sin𝜙

⎤

⎥

⎥

⎦

, (7)

here 𝜃 varies from 0◦ to 90◦ with an increment of 15◦ (7 values); 𝜙
aries from 0◦ to 360◦ with an increment of 15◦ (25 values, but it should
e noted that 𝜙 = 0◦ is equivalent to 𝜙 = 360◦). These stress probes can
e categorised into two types (Pouragha et al., 2019):

• in-plane probes: 𝜃 = 90◦; hence 𝛥𝜎𝑥𝑦 = 0
• out-of-plane probes: 𝜃 ∈ [0, 90◦); hence 𝛥𝜎𝑥𝑦 ≠ 0
The size of the stress probes, ‖𝛥𝝈‖, is dictated by the requirement

hat the response variables remain homogeneous of degree one with
espect to the probe size (Froiio and Roux, 2010; Pouragha et al., 2019).
his leads to an upper bound for the probe size, which decreases as the
lastic mechanisms become more prevalent closer to the stress peak.
oreover, for the study of fabric evolution, a practical lower bound also

xists for the probe size to ensure statistically representative changes
n fabric. Using trial-and-error approach, a probe size of ‖𝛥𝝈‖ = 0.01 𝑝0
as been adopted in this study. Upon detailed examination (data not
hown), the strain and fabric responses are found to be linear with an
dequate level of accuracy.

. Fabric response to probes

Since the DEM probes in Pouragha et al. (2021) are based on
tress probes with identical magnitude ‖𝛥𝝈‖ of the stress increment
ensor 𝛥𝝈 and the analyses by Pouragha (2022) have shown that the
ain variable driving fabric evolution is the strain rate tensor ⋅𝝐 (also

onfirmed theoretically by the uniform-strain theory in Appendix A and
he graphical representation of the DEM results in Appendix B), the
robe responses, in terms of stress increment 𝛥𝝈 and fabric increment
𝑭 , have been ‘converted’ to strain probes by scaling (for each probe
4

eparately) with the magnitude of the strain increment ‖𝛥𝝐‖. Therefore,
he (thus converted) strain increments of the probes lie on a unit sphere
n strain-increment space.

The corresponding responses, in terms of the scaled stress incre-
ents 𝛥𝝈∕ ‖𝛥𝝐‖ and the scaled fabric increments 𝛥𝑭∕ ‖𝛥𝝐‖, are shown

n Fig. 2. The relation between (plastic) strain increments and stress
ncrements has been analysed in detail in Pouragha et al. (2021); the
ocus here is on the fabric response. Qualitatively, the shape of the
abric response resembles an ellipsoid (with large aspect ratios). This
ndicates a linear mapping between the strain rate ⋅𝝐 and the fabric rate
⋅
, as is shown in more detail in Section 5. The fabric rate

⋅
𝑭 is non-

linear in the stress rate ⋅𝝈 due to the non-linear (elasto-plastic) relation
(bilinear in character) between stress rate and strain rate (Pouragha
et al., 2021).

Here a brief analysis of correlation between in-plane and out-of-
plane components of fabric increments and (total) strain increments
has been performed. The analysis of the correlation coefficient between
the in-plane part of the fabric increment 𝛥𝑭 𝜋 and the out-of-plane
strain increment 𝛥𝝐𝜌 and between the out-of-plane part of the fabric
increment 𝛥𝑭 𝜌 and the in-plane strain increment 𝛥𝝐𝜋 showed that these
cross-couplings are fairly small. The correlation coefficient between the
scaled in-plane fabric increment 𝛥𝑭 𝜋∕ ‖𝛥𝝐‖ and the scaled out-of-plane
strain increment 𝛥𝝐𝜌∕ ‖𝛥𝝐‖ is found to be about 0.11; the correlation
coefficient between the scaled out-of-plane fabric increment 𝛥𝑭 𝜌∕ ‖𝛥𝝐‖
and the scaled in-plane strain increment 𝛥𝝐𝜋∕ ‖𝛥𝝐‖ is about 0.17. These
values have been averaged over the considered samples.

Considering these weak correlations, the in-plane fabric increment
is considered to be independent of the out-of-plane strain increment
and the out-of-plane fabric increment is considered to be independent
of the in-plane strain increment. Hence it is assumed here that the two
parts of the fabric increment only depend on the corresponding strain
increment: 𝛥𝑭 𝜋 = 𝑮𝜋 (𝛥𝝐𝜋 ) and 𝛥𝑭 𝜌 = 𝑮𝜌(𝛥𝝐𝜌). This suggests that the
in-plane and out-of-plane fabric responses are decoupled. In contrast,
the results in Pouragha et al. (2021) show that such a decoupling
assumption does not apply to the stress–strain response where in-plane
plastic strains are observed as a result of out-of-plane stress increments.

Firstly the results for 𝑞∕𝑝 = 0.40 of the in-plane probes are shown
in Fig. 3; for other samples corresponding to different values of stress
ratio 𝑞∕𝑝 qualitatively similar results are obtained. These results for the
fabric response for the in-plane probes resemble an elliptical shape. A
detailed description is given in Section 5.

The relation between the out-of-plane fabric increment 𝛥𝑭 𝜌 and the
out-of-plane strain increment 𝛥𝝐𝜌 is shown in Fig. 4, which shows that
𝛥𝑭 𝜌 is proportional to 𝛥𝝐𝜌, with acceptable accuracy. Minor out-of-
plane increments of fabric are also observed for the in-plane probes.
However, these increments are of the same order of magnitude as the
scatter in the rest of the data, and are therefore not considered to be of

mechanical importance.



Computers and Geotechnics 146 (2022) 104695C. Zhao et al.
Fig. 3. Results of the in-plane stress probes for 𝑞∕𝑝 = 0.40. Left: Imposed stress increment, scaled with the magnitude of the corresponding (total) strain increment, average
contact stiffness 𝑘̄ and particle radius 𝑟̄. Middle: Scaled strain increment (and hence corresponding to the unit circle). Right: Fabric increment, scaled with the magnitude of the
corresponding (total) strain increment. To aid in the interpretation, some characteristic probes (with ‘directions’ 𝜙 = −135◦ (in green), 𝜙 = −45◦ in (blue) 𝜙 = +45◦ (in magenta)
and 𝜙 = +135◦ (in red); 𝜙 is defined in Fig. 1) are indicated by dotted lines in all subfigures. The subfigures on the left and in the middle have equal horizontal and vertical
scales. The 𝑥 and 𝑦 directions correspond to the minor and major principal stress/fabric directions, respectively.
Fig. 4. Dependence of the scaled out-of-plane fabric increment 𝛥𝑭 𝜌 (component 𝛥𝐹𝑥𝑦)
on the scaled out-of-plane strain increment 𝛥𝝐𝜌 (component 𝛥𝜖𝑥𝑦, with the employed
coordinate system).

5. Theoretical description

Inspired by the observations of the results of the DEM simulations
shown in Section 4, the objective of this Section is to develop an
expression for the fabric rate

⋅
𝑭 in terms of the strain rate ⋅𝝐 that is

reasonably accurate for all, in-plane as well as out-of-plane, probes. The
fabric rate may depend on various characteristics, such as the stress rate
⋅𝝈, the (total) strain rate ⋅𝝐 and/or the plastic strain rate

⋅
𝝐𝑝. An overview
5

of different classes of fabric evolution models has been given by Zhao
and Kruyt (2020).

The analyses by Pouragha (2022) have shown that the fabric rate
⋅
𝑭 is predominantly driven by the total strain rate ⋅𝝐, and hence the
following general expression for the fabric rate is investigated
⋅
𝑭 = 𝑮( ⋅𝝐;𝑺) . (8)

Here, 𝑺 is some ‘state’ vector set, which consists of current stress tensor
𝝈, current fabric tensor 𝑭 and/or void ratio (or a combination of these,
such as the stress ratio 𝑞∕𝑝 and the state parameter 𝜓 = 𝑒− 𝑒𝑐 (𝑝) (Been
and Jefferies, 1985) used in the fabric evolution law in Zhao and Kruyt
(2020), where 𝑒𝑐 is the void ratio at the critical state). Since quasi-static,
rate-independent behaviour of granular materials is considered, Eq. (8)
must be positively homogeneous of degree one in ⋅𝝐.

When analysing a set of probes from a specific sample at a given
stress condition, the state vector set 𝑺 is the same for all probes.
Therefore, for convenience in notation, the dependence on 𝑺 in Eq. (8)
is dropped in the following, and hence it will be expressed as

⋅
𝑭 = 𝑮( ⋅𝝐),

with the understanding that all model parameters may depend on 𝑺 (as
well as on DEM material properties, such as friction angles).

Since the in-plane fabric response is independent of the out-of-plane
strain increment and the out-of-plane fabric response is independent
of the in-plane strain increment (see Section 4),

⋅
𝑭 𝜋 = 𝑮( ⋅𝝐𝜋 ) and

⋅
𝑭 𝜌 = 𝑮( ⋅𝝐𝜌). For the out-of-plane part of the fabric increment, the
results shown in Fig. 4 indicate that the out-of-plane fabric increment
is proportional to the out-of-plane strain increment
⋅
𝑭 𝜌 = 𝑑𝜌

⋅𝝐𝜌 , (9)

where 𝑑𝜌 is the proportionality factor. Compared to the out-of-plane
fabric response, the in-plane fabric response

⋅
𝑭 𝜋 is more complicated.

This response is analysed in the following subsection.
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Fig. 5. Scaled increment in coordination number 𝛥𝑍 and fabric anisotropy 𝛥𝐴 for the
in-plane probes. Shown are DEM results for the probes (markers) for the sample with
𝑞∕𝑝 = 0.40, and fits (dashed curves) according to Eq. (12). The vertical lines indicate
some characteristic probes, with ‘directions’ 𝜙 = −135◦ (in green), 𝜙 = −45◦ in (blue),
𝜙 = +45◦ (in magenta) and 𝜙 = +135◦ (in red); 𝜙 and 𝜒 are defined through Eq. (11).

5.1. In-plane fabric response

The correlation analysis in Section 4 showed that the in-plane
fabric increment is effectively only dependent on the in-plane strain
increment. The results in Fig. 3 for the fabric response for the in-plane
probes resemble an elliptical shape (with a large aspect ratio). This can
be described by a linear relationship
⋅
𝑭 𝜋 = 𝑯𝜋𝜋 ∶ ⋅𝝐𝜋 , (10)

since such a linear mapping transforms a circle in the in-plane strain
increment space (corresponding to probes with identical ‖𝛥𝝐‖) to an el-
lipse in the in-plane fabric increment space; here 𝑯𝜋𝜋 is a fourth-order
tensor.

For in-plane probes, the normalised stress rate tensor ⋅̂𝝈 and the
normalised strain rate tensor ⋅̂𝝐 can be written as

⋅̂𝝈 =
(

cos𝜙 0
0 sin𝜙

)

⋅̂𝝐 =
(

cos𝜒 0
0 sin𝜒

)

. (11)

The former follows from Eq. (7) (see also Fig. 1, with 𝜃 = 90◦);
the normalisation is defined in Eq. (1). In general, with the stress
increment 𝛥𝝈 (with corresponding 𝜙) prescribed in the current stress
probes, the strain increment 𝛥𝝐 (with corresponding 𝜒 measured rel-
ative to the 𝛥𝜖𝑥𝑥 direction) is a response; hence 𝜒 = 𝜒(𝜙). In the
following some characteristic in-plane probe ‘directions’ are indicated,
with 𝜙 = −135◦,−45◦,+45◦,+135◦. The direction of continued loading
in the isobaric test from which the initial samples for the probes (with
different values of the stress ratio 𝑞∕𝑝) have been obtained corresponds
to 𝜙 = +135◦, while reversed loading corresponds to 𝜙 = −45◦.

The results for the in-plane fabric response, 𝐹̇𝑥𝑥 and 𝐹̇𝑦𝑦 for the
mployed coordinate system, are equivalently but more conveniently
nalysed in terms of the rate of coordination number 𝑍̇ and the rate

of fabric anisotropy 𝐴̇. These are analysed for the in-plane probes as
function of ‘direction’ 𝜒 (defined in Eq. (11)). The scaled increments
of the coordination number and the fabric anisotropy, 𝛥𝑍∕ ‖𝛥𝝐‖ and
𝐴∕ ‖𝛥𝝐‖ respectively, are shown in Fig. 5 (for 𝑞∕𝑝 = 0.40). The results

show that 𝑍̇ and 𝐴̇ from the DEM simulations of the in-plane probes
can well be described by

𝑍̇ = 𝑎𝑍 cos𝜒 + 𝑏𝑍 sin𝜒 𝐴̇ = 𝑎𝐴 cos𝜒 + 𝑏𝐴 sin𝜒 , (12)
6

where 𝑎𝑍 , 𝑏𝑍 , 𝑎𝐴 and 𝑏𝐴 are model parameters.
The maximum in the rate of coordination number 𝑍̇ for the in-plane
probes is attained at a direction 𝜒max. Fig. 5 indicates that this direction
is different from 𝜙 = 45◦ (that corresponds to an isotropic compressive
stress increment in the probe) and from 𝜒 = 45◦ (that corresponds to an
isotropic compressive strain increment in the probe); 𝜒max varies from
13◦ for 𝑞∕𝑝 = 0.15 to 35◦ for 𝑞∕𝑝 = 0.44.

The results in Fig. 5 show that 𝐴̇ is nearly symmetrical around 𝜒 = 0,
which implies that 𝑏𝐴 in Eq. (12) is fairly small, 𝑏𝐴 ≈ 0 (𝑏𝐴∕𝑎𝐴 = 0.004
for 𝑞∕𝑝 = 0.15; 𝑏𝐴∕𝑎𝐴 = 0.28 for 𝑞∕𝑝 = 0.44).

The expressions in Eq. (12) (involving four parameters) for the
rates of coordination number 𝑍̇ and fabric anisotropy 𝐴̇ determine the
fourth-order tensor 𝑯𝜋𝜋 (also involving four parameters) in Eq. (10)
that relates the in-plane strain rate ⋅𝝐𝜋 to the in-plane fabric rate

⋅
𝑭 𝜋 . A

relationship of the type Eq. (10), and involving four model parameters
𝑑1, 𝑑2, 𝑑3, 𝑑4, is retrieved in tensorial form by
⋅
𝑭 𝜋 =

[

𝑑1tr(
⋅𝝐) + 𝑑2tr(

⋅𝝐𝜋dev ⋅ 𝝉̂)
]

𝑰 +
[

𝑑3tr(
⋅𝝐) + 𝑑4tr(

⋅𝝐𝜋dev ⋅ 𝝉̂)
]

𝝉̂ . (13)

his expression is based on: (i) the in-plane space of symmetric second-
rder tensors being spanned by {𝑰 , 𝝉} and (ii) that for objectivity and
inearity in the in-plane strain rate ⋅𝝐𝜋 , the in-plane fabric rate

⋅
𝑭 𝜋 must

epend linearly on the strain rate invariant tr( ⋅𝝐) and the joint invariant
r( ⋅𝝐𝜋dev ⋅ 𝝉̂) of the deviatoric strain rate and the (scaled) stress tensor.
ote that tr( ⋅𝝐) = tr( ⋅𝝐𝜋 ) and that the term tr( ⋅𝝐𝜋dev ⋅ 𝝉̂) can be expressed as
1
√

2

(

𝜖̇𝜋1 − 𝜖̇𝜋2
)

, where 𝜖̇𝜋1 and 𝜖̇𝜋2 are the principal values of the in-plane

strain rate tensor ⋅𝝐𝜋 .
Using Eqs. (5) and (11), it follows from Eq. (13) that for in-plane

probes the rate of coordination number 𝑍̇ and of fabric anisotropy 𝐴̇
are given by

𝑍̇ = (+
√

2𝑑1 − 𝑑2) cos𝜒 + (
√

2𝑑1 + 𝑑2) sin𝜒

̇ = (−
√

2𝑑3 + 𝑑4) cos𝜒 − (
√

2𝑑3 + 𝑑4) sin𝜒 .
(14)

onsequently, it follows from Eqs. (12) and (14) that the relation 𝑏𝐴 ≈ 0
s equivalent to 𝑑4 ≈ −

√

2𝑑3.

5.2. Full fabric evolution law and model parameters

The results in Section 4 have shown that the in-plane and out-
of-plane responses are effectively decoupled. Therefore, the complete
fabric evolution law is obtained by combining Eqs. (9) and (13) for the
out-of-plane and the in-plane fabric response, respectively
⋅
𝑭 =

[

𝑑1tr(
⋅𝝐) + 𝑑2tr(

⋅𝝐𝜋dev ⋅ 𝝉̂)
]

𝑰 +
[

𝑑3tr(
⋅𝝐) + 𝑑4tr(

⋅𝝐𝜋dev ⋅ 𝝉̂)
]

𝝉̂ + 𝑑𝜌
⋅𝝐𝜌 . (15)

odel parameters 𝑑1 and 𝑑2 determine the rate of coordination number
̇ . Parameter 𝑑1 is the proportionality factor between the rate of coor-
ination number 𝑍̇ and the volumetric strain rate tr( ⋅𝝐). Compression
eads to an increase of coordination number, so 𝑑1 > 0. Parameters 𝑑3
nd 𝑑4 determine the rate of fabric anisotropy 𝐴̇. Parameter 𝑑𝜌 is the
roportionality factor between the out-of-plane fabric rate

⋅
𝑭 𝜌 and the

ut-of-plane strain rate ⋅𝝐𝜌.
The accuracy of the model description Eq. (15) is assessed in Fig. 6

y comparing the fabric increments from the DEM simulations of
he probes with the corresponding fabric increments according to the
odel (Eq. (15)). Fig. 6 shows the good agreement between the results

f the DEM simulations of the (large number of) probes and the
heoretical description Eq. (15), with model parameters determined by
least-squares method.

The model parameters 𝑑1, 𝑑2, 𝑑3, 𝑑4 and 𝑑𝜌 in Eq. (15) for the fabric
ate may depend on the state vector set 𝑺 (involving current stress,
abric, void ratio). The model parameters have been determined for the
amples corresponding to 𝑞∕𝑝 = 0.15, 𝑞∕𝑝 = 0.30, 𝑞∕𝑝 = 0.40 and 𝑞∕𝑝 =
0.44. The resulting parameters are shown in Fig. 7 as function of fabric
anisotropy 𝐴 (rather than 𝑞∕𝑝), since it shows a linear relationship for
the parameters 𝑑2 and 𝑑4. These values with corresponding stress ratios

are also reported in Table 2 in Appendix C. Parameters 𝑑1, 𝑑2, 𝑑3, 𝑑4
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Fig. 6. Comparison between the components of the scaled fabric increments 𝛥𝑭∕ ‖𝛥𝝐‖ from the DEM simulations of the probes and those according to Eq. (15), with fitted model
parameters; 1 −𝑅2 = 0.0056; results for the sample with 𝑞∕𝑝 = 0.40. The red dashed line at 45◦ through the origin has been added to facilitate the comparison; a perfect fit of the
data corresponds to this line. The 𝑥 and 𝑦 directions correspond to the minor and major principal stress/fabric directions, respectively.
Fig. 7. Variation of model parameters 𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑𝜌 in Eq. (15) with fabric anisotropy 𝐴. Values for these parameters are given in Table 2 in Appendix C.
involved in the in-plane fabric response decrease (in absolute values)
with increasing fabric anisotropy 𝐴; the variations of 𝑑1, 𝑑3 and 𝑑𝜌 with
𝐴 are fairly modest. The approximate relation for 𝑑4, 𝑑4 ≈ −

√

2𝑑3, fairly
accurately corresponds to the fitted results, especially for the system
with small values of 𝑞∕𝑝 (as can be verified with the values given in
Table 2).

The values for the model parameters 𝑑1, 𝑑2, 𝑑3, 𝑑4 and 𝑑𝜌 reported
in Table 2 have been determined for a number of samples with dif-
ferent values of the stress ratio 𝑞∕𝑝 and identical mean pressure 𝑝.
To generalise the developed evolution law so that it can be used in
(advanced) constitutive modelling of granular soils, these parameters
should be given as functions of the state vector set 𝑺 (see Eq. (8),
involving in particular stress ratio 𝑞∕𝑝, void ratio 𝑒, mean pressure 𝑝
(or combined via the state function 𝜓 = 𝑒 − 𝑒𝑐 (𝑝) (Been and Jefferies,
1985) as in Zhao and Kruyt, 2020)). In particular, parameters 𝑑1 and
𝑑2 that affect the rate of coordination number are expected to depend
on the mean pressure 𝑝. However, the current data (based on four
samples with the same mean pressure 𝑝) is not sufficient to formulate
closed-form expressions for these parameters.
7

5.3. Consistency with ACST and potential simplifications

In this subsection some aspects of the fabric evolution law, Eq. (15),
are discussed: (i) consistency with ACST and (ii) possibilities for further
simplification.

According to ACST, at large strains, continued deformation occurs
with constant volume, tr( ⋅𝝐) = 0, as well as constant fabric,

⋅
𝑭 = 𝟎. The

ACST condition
⋅
𝑭 = 𝟎 is met when 𝑑2 = 0 and 𝑑4 = 0 at the critical

state. There are no requirements for model parameters 𝑑1 and 𝑑3, since
tr( ⋅𝝐) = 0 at the critical state. Note that 𝑑𝜌 does not need to be equal
to zero at the critical state, since a change of loading direction that is
out-of-plane may still lead to changes in the fabric tensor. The results
for 𝑑2 and 𝑑4 shown in Fig. 7 show a decrease of these parameters with
increasing 𝑞∕𝑝, consistent with the ACST requirement as the critical
state is approached. However, the current data (limited to samples
with pre-peak values for 𝑞∕𝑝) is not sufficient to confirm that these
conditions indeed hold at the critical state.

The analysis in Section 5.1 showed that approximately 𝑏𝐴 = 0,
which is equivalent to 𝑑 = −

√

2𝑑 . When this relation is employed, the
4 3
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number of model parameters is reduced to four (𝑑1, 𝑑2, 𝑑3 and 𝑑𝜌). The
in-plane fabric response is elliptical in shape, see Fig. 3, with a large
aspect ratio. A response that lies on a line (corresponding to an aspect
ratio of infinity) is obtained from Eq. (13) when 𝑑4∕𝑑2 = 𝑑3∕𝑑1. The
slope of this line is given by (𝑑1 +𝑑3)∕(𝑑1 −𝑑3). This approximation can
give a further reduction of the number of model parameters (to three,
𝑑1, 𝑑2 and 𝑑𝜌), at the expense of some loss of accuracy. With only three
model parameters the evolution law can be expressed as
⋅
𝑭 =

(

tr( ⋅𝝐) −
√

2tr( ⋅𝝐𝜋dev ⋅ 𝝉̂)
) [

𝑑1𝑰 + 𝑑3𝝉̂
]

+ 𝑑𝜌
⋅𝝐𝜌 . (16)

6. Concluding remarks

In this study, the (contact-normal) fabric response of two-
dimensional, anisotropic granular samples has been investigated by
analysing the extensive set of results of DEM simulations of stress
probes (Pouragha et al., 2021), considering both coaxial, in-plane
as well as non-coaxial, out-of plane probes. Such an investigation is
crucial to understanding the behaviour of granular materials under
various loading directions. Based on the analysis of the results of DEM
simulations, a fabric evolution law (as function of the total strain rate)
has been formulated that describes the fabric response of a sample to
various loading directions.

It is found that the in-plane and out-of-plane responses are ef-
fectively decoupled: the in-plane fabric increment depends only on
the in-plane strain increment, while the out-of-plane fabric increment
depends only on the out-of-plane strain increment. The out-of-plane
fabric increment is proportional to the out-of-plane strain increment,
with acceptable accuracy. The in-plane fabric response is found to be
linearly dependent on the in-plane strain increment.

A fabric evolution law, Eq. (15), that incorporates these findings
has been developed, which accurately describes the fabric response as
obtained from the DEM simulations of all probes. The evolution law
involves a modest number (five) of parameters. Approximate relations
have been formulated that reduce the number of parameters to three
or four (at the expense of some accuracy). The model parameters have
been determined for a number of samples that correspond to various
values of the stress ratio.

The DEM data for the probes and their description by the proposed
fabric evolution law Eq. (15) show that when the strain rate is re-
versed (opposite direction, same magnitude), then the fabric rate is
also reversed, i.e. ⋅𝝐 → − ⋅𝝐 implies

⋅
𝑭 → −

⋅
𝑭 . However, due to the

strongly nonlinear elasto-plastic stress–strain relation (see Fig. 2 (left)),
the analogous relation for the stress rate does not hold: ⋅𝝈 → − ⋅𝝈 does
ot imply

⋅
𝑭 → −

⋅
𝑭 .

Results of the current study that may be valuable in the further
evelopment of (three-dimensional) fabric evolution laws that are ap-
ropriate for a range of monotonic loading conditions are: (i) the fabric
ate is dependent on the total strain rate, (ii) an out-of-plane strain
ncrement results in an out-of-plane fabric response, (iii) the fabric rate
s linear in the strain rate and (iv) the term sym(𝑭 ⋅ ⋅𝝐) is important, as

follows from the uniform-strain theory in Appendix A.
For the current anisotropic systems, the stress–strain response is

incrementally nonlinear (Pouragha et al., 2021) and the fabric-strain
response is incrementally linear. This is opposite to the behaviour
observed for isotropic systems by Pouragha et al. (2019), where the
stress–strain response was incrementally linear (‘pseudo-elastic’) and
the fabric-strain response was incrementally nonlinear (dependent on
loading direction). The main factors that may form the origin of this
difference in behaviour are considered to be: (i) isotropy vs. anisotropy
of the samples, (ii) elastic vs. elasto-plastic stress–strain behaviour, (iii)
hydrostatic vs. deviatoric stress state and (iv) employed loading path
for creating samples (isotropic compression with varying interparticle
friction coefficient for isotropic samples; frictional loading simulation
for anisotropic samples). It has been checked that loading rate, probe
magnitude, void ratio and linearity of the response during each of the
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probes are comparable in the studies (Pouragha et al., 2019, 2021).
Further analyses are required to exactly pinpoint the most important
factor leading to this observed difference in behaviour.

The focus of the current study is on anisotropic, pre-peak samples.
For future studies, the behaviour of post-peak samples (especially near
the critical state) is very interesting. For such DEM probe studies, it may
be more expedient to employ strain probes rather than stress probes,
to avoid issues with inaccessibility of some stress states. In addition,
the presence of stress fluctuations, caused by the meta-stable stick–
slip response (Combe and Roux, 2000) beyond the peak, renders the
incremental probing at these states non-trivial. Additionally, the case
where the fabric tensor and the stress tensor are not coaxial should be
considered, to extend the current study where these tensors are coaxial.

Although the presented fabric evolution law accurately describes
the fabric response for the considered samples, it cannot (yet) be used
in (advanced) constitutive modelling of granular soils for general (or
monotonic) loading conditions, since the model parameters (as listed in
Table 2) are specific to the samples. Therefore, closed form expressions
for the model parameters, as functions of the state vector set 𝑺 (or
combined via the stress ratio 𝑞∕𝑝 and other state variables such as
𝜓 = 𝑒 − 𝑒𝑐 (𝑝)), must be formulated. The current data is, however,
not sufficient to formulate such closed-form expressions. To accomplish
this, additional samples need to be considered, with different void
ratios 𝑒, mean pressures 𝑝, and fabric anisotropy 𝐴.

Although the current study focused on two-dimensional systems,
the current results provide a sound starting point for studies of evo-
lution laws that account for the influence of loading direction for
the deviatoric fabric tensor of physically-realistic three-dimensional
systems.
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Appendix A. Uniform-strain theory for fabric evolution

The fabric tensor in Eq. (4) represents an average of the dyadic
product of the normal vectors 𝒏𝑐 at contacts. These in turn are deter-
mined by the particle positions 𝑿𝑝. A basic theory for fabric evolution
is obtained from uniform-strain (or affine-deformation) theory, which
is employed in many micromechanical theories (for example Bathurst
and Rothenburg (1988) and Chang et al. (1995)). In this theory it
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is assumed that the displacement 𝑼 𝑝 of each particle 𝑝 conforms to
the imposed macroscopic strain increment, i.e. 𝑑𝑼 𝑝 = 𝒅𝜶 ⋅ 𝑿𝑝 where
𝑑𝜶 is the increment of the average macroscopic displacement-gradient
tensor. For a vector 𝒗𝐴𝐵 connecting two points 𝐴 and 𝐵, the uniform-
strain assumption for the change 𝛥𝒗𝐴𝐵 in vector 𝒗𝐴𝐵 implies that

𝛥𝒗𝐴𝐵 = 𝛥𝜶 ⋅ 𝒗𝐴𝐵 (17)

Furthermore, it is assumed here that the contact topology is con-
stant, i.e. contacts are neither created nor disrupted. Hence, contact
reorientation is the only mechanism of fabric change (Kruyt, 2012) that
is accounted for, and hence coordination number 𝑍 does not change
according to this uniform-strain theory. Employing index notation, it
follows from Eq. (4) that

𝐹̇𝑖𝑗 =
2
𝑁𝑝

∑

𝑐∈𝐶

(

𝑛̇𝑐𝑖 𝑛
𝑐
𝑗 + 𝑛

𝑐
𝑖 𝑛̇
𝑐
𝑗

)

(18)

According to the uniform-strain assumption Eq. (17) (with 𝒗𝑐 = 𝒍𝑐),
𝑙̇𝑐𝑖 = 𝜖̇𝑖𝑗 𝑙𝑐𝑗 . Considering a granular system consisting of equal-sized
spherical (or disc-shaped) particles and using the definition of the fabric
tensor in Eq. (4), it follows that

𝐹̇𝑖𝑗 = 𝜖̇𝑖𝑘𝐹𝑘𝑗 + 𝜖̇𝑗𝑘𝐹𝑘𝑖 ≡ 2sym(𝑭 ⋅ ⋅𝝐)𝑖𝑗 (19)

where sym(𝑨) is the symmetric part of a tensor 𝑨. Despite all its as-
sumptions (see for example Rothenburg and Kruyt, 2001), the uniform-
strain theory is important since it allows to identify an important
variable (sym(𝑭 ⋅ ⋅𝝐)) for fabric evolution. This theoretical result (that
does not require model parameters) in Eq. (19) confirms the finding
from DEM simulations in Pouragha (2022) that the total strain rate 𝜖̇𝑖𝑗 ,
rather than the elastic or the plastic strain rate, is important for the
fabric rate.

It should be noted that Eq. (19) does not satisfy tr(
⋅
𝑭 ) = 𝑍̇ =

0, even though only contact reorientation is accounted for in the
current uniform-strain theory, and hence coordination number should
not change. This issue can be resolved in different manners (via some
projection operator), but this does not affect the main conclusion of this
Appendix that the term sym(𝑭 ⋅ ⋅𝝐) is important for the description of
the fabric rate

⋅
𝑭 .

It is possible to relax some of the restricting assumptions leading
to Eq. (19) in order to obtain a relation between strain and fabric
that also addresses possible changes in the coordination number (for
monotonic loading cases), see Rothenburg and Kruyt (2004), Kruyt
(2012) and Pouragha and Wan (2016) for instance.

Appendix B. Dependence of fabric rate on total and plastic strain
rates

Here the dependence of the fabric rate on the total strain rate and
on the plastic strain rate is shown for the in-plane probes, to graphically
show that the total strain rate is the best descriptor of the fabric rate.
This was concluded by Pouragha (2022) based on a correlation analysis.

The dependence on the in-plane probe angle 𝜙 of the norm of fabric
increment ‖𝛥𝑭‖ (determined by Eq. (4)), as well as the norm of the
total and the plastic strain increment (‖𝛥𝝐‖ and ‖𝛥𝝐𝑝‖ respectively) are
shown in Fig. 8 for the case 𝑞∕𝑝 = 0.40. Pouragha et al. (2021) describe
how the plastic strains have been determined.

Insignificant plastic deformation is observed for the probes with
0◦ ≤ 𝜙 ≤ 60◦ and 255◦ ≤ 𝜙 ≤ 360◦, whereas the increment of fabric
is significant. Therefore, the plastic strain rate tensor is not the main
parameter driving fabric evolution. However, the strain rate tensor is a
good descriptor.

Appendix C. Model parameters

The fitted values of the dimensionless model parameters 𝑑1, 𝑑2, 𝑑3,
𝑑4 and 𝑑𝜌 in the fabric evolution law Eq. (15) are given in Table 2 for
the granular samples with various stress ratios 𝑞∕𝑝. Properties of the
samples are given in Table 1.
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Fig. 8. Norm of fabric increment ‖𝛥𝑭‖, total strain increment ‖𝛥𝝐‖ and plastic strain
increment ‖𝛥𝝐𝑝‖ as function of the in-plane probe angle 𝜙 shown in Fig. 1. Results for
in-plane probes for the case of stress ratio 𝑞∕𝑝 = 0.40.

Table 2
Variation of the model parameters 𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑𝜌 in Eq. (15) with stress ratio 𝑞∕𝑝.

𝑞∕𝑝 𝑑1 𝑑2 𝑑3 𝑑4 𝑑𝜌
0.15 51.55 −46.98 −20.05 25.95 24.29
0.30 52.45 −34.97 −20.18 18.30 24.94
0.40 47.20 −22.31 −15.43 15.67 32.20
0.44 42.42 −9.80 −13.12 9.75 28.51
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