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ABSTRACT 

This paper is concerned with a reservoir which receives and 
releases fluid flows st variable rates such that the net input rate 
of fluid is uniquely determined by the state of a birth-death 
process. We derive some structural properties which generalize and 
justify earlier findings for special cases of the model, and obtain 
explicit results for the equilibriw distribution of the content of 
the reservoir. 

We consider a reservoir with infinite capacity which receives and 

releases fluid flows at variable rates in such a way that the net 

input rate of fluid into the reservoir (which is negative when 

fluid is flowing out of the reservoir) is uniquely determined by 

the state of a birth-death process. That is, the net input rate is 

constant during an interval of time which corresponds to the 

sojourn time of the associated birth-death process in a state, with 
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458 VAN DOORN, JAGERS, AND DE WIT 

the evident restriction that the content of the reservoir cannot 

decrease whenever the reservoir is empty. 

Several recent papers ([I], [4], [ a ] ,  [ 9 ] )  deal with models 

which fit into the general setting described above. By way of 

illustration we shall briefly describe two examples. First, Gaver 

and Lehoczky [4] study an integrated circuit- and packet-switched 

multiplexer through which voice and data traffic can be transmitted 

on the same link in a communications network. They propose a fluid 

flow approximation for data traffic which is stored in a buffer 

until capacity is available on the link to transmit the data. The 

input rate of data into the buffer is assumed constant, but the 

output rate varies with the number of voice conversations carried 

on the link. The number of conversations is modelled as a 

birth-death process where the birth rate is constant and the death 

rate depends linearly on the state of the process. 

Secondly, Anick et al. [l] describe a fluid flow model for a 

buffer which receives messages from a finite number of identical 

information sources that asynchronously alternate between 

exponentially distributed periods in the "on" and "off" states. 

While on, a source transmits at a uniform rate. The buffer depletes 

through an output channel with a fixed rate of transmission. So 

here the output rate is constant while the input rate varies with 

the number of information sources in the "on" state. The latter is 

a birth-death process where birth rates as well as death rates 

depend linearly on the state of the process. 

Both of these papers are concerned with determining the 

distribution of the buffer content in equilibrium. A crucial step 

in obtaining this distribution is the observation that the system's 

eigenvalues (to be defined later) are real and that there are as 

many strictly negative eigenvalues as there are states of the 

birth-death process for which the net input rate is positive. Anick 

et al. [I] proved this result by exploiting the specific structure 

of the birth and death rates in their model; in [4] the result is 

mentioned without proof. The main purpose of this paper is to show 
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REGULATED FLUID RESERVOIR 459 

that this key-result is valid for any set of birth and death rates, 

see Section 3. This enables us in Section 4 to obtain a scheme for 

calculating the continuous-time equilibrium distribution of the 

content of the reservoir in our more general setting. Exploiting a 

conditional variant of PASTA (Poisson Arrivals See Time Averages), 

we relate the equilibrium distribution at epochs where the 

birth-death process changes states to the continuous-time 

distribution in Section 5. Section 2 is devoted to preliminary 

results, and Section 6 to numerical aspects. Finally, Section 7 

contains some concluding remarks, in particular with regard to 

generalizations of our model. 

2. PRELIMINARIES 

Let us denote by (X(t), trO) the birth-death process which 

regulates the content of the reservoir and let S = {0,1,. . . ,N) be 
its state space. The generator of the process will be denoted by Q, 

that is 

where X i  > 0 is the birth rate in state i E S\(N) and pi > 0 the 

death rate in state i E S\(O). It will be convenient to define 

A_,  = A N  = p, = pN+, = 0. We let 
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460 VAN DOORN, JAGERS,  AND DE WIT 

where the empty product is interpreted as unity. The vector 
T 

p = (po, pl, . . . , pN) of stationary state probabilities of the 
T T 

birth-death process satisfies Q p  - 0 and l p  = 1, whence 

Here 0 and 1 denote the column vectors with all components equal to 

0 and 1, respectively, and a superscript T denotes transpose. 

Whenever X(t) = i, i E S, the net input rate of fluid 

into the reservoir is r,. We assume that a state k E S\(N) exists 

such that ri < 0 if i E S = ( 0 1 , .  . k )  and ri > 0 if 

i E S+ = (k+l,k+2, . . . ,N) . The content of the reservoir at time t is 
denoted by C(t) . 

In order that a limit distribution for C(t) exists as t + a, 

the stationary net input rate should be negative, that is, 

1 piri < 0, or, equivalently, 

We shall assume throughout that this stability condition is 

satisfied. 

With F,(t,u), i E S, t 1 0, u 2 0, denoting the probability 

that at time t the birth-death process is in state i and the 

content of the reservoir does not exceed u, it can easily be shown 

that for i E S, t 2 0, u >  0 and h > 0 

where Fi(t,u) = 0 if i S. Passing to the limit h -+ 0 we obtain 

the forward Kolmogorov equations 
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REGULATED FLUID RESERVOIR 

Since we are interested in time-independent equilibrium 

probabilities, we set aFi(t,u)/at - 0 in (3) and obtain 

where Fi (u) denotes the equilibrium probability that the birth- 

death process is in state i and the content of the reservoir does 

not exceed u, again with the convention F,(u) - 0 if i B S. In 

matrix notation (4) may be written as 

where R - diag(ro , r,, . . . , r,) and F(u) - (FO(u) , F~(U) , . . . , FN(u) ) T. 
-1 T With to, tl, . . . , tN denoting the eigenvalues of the matrix R Q 

and y(O), y(l), . . . , y(N) the corresponding right eigenvectors , the 

solution of (5) is readily seen to be given by 

provided the eigenvalues are distinct (which they are indeed as we 

will show). Here cj, j E S, are constants which are to be 

determined from boundary conditions. 

In the next section we will address the problem of obtaining 

the eigenvalues and right eigenvectors of R - ~ Q ~ .  

-1 T 
3. THE EIGENVALUES AND RIGHT EIGENVECTORS OF R Q 

Our first task in this section will be to establish the following 

result. 
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462 VAN DOORN,  J A G E R S ,  AND D E  WIT 

Theorem 1. The eigenvalues fi, i E S, of the matrix R-'Q~ are real 

and simple. Ordering them in decreasing order of magnitude, one 

also has EN < EN-' < . . .  < <k+l < Ek = 0 < Ek-l < . . .  < to, provided 
the stability condition (2) is satisfied. 

Before we can prove this theorem we must introduce some 

notation and derive some preparatory results. For any square matrix 

M we number rows and columns 0,1,2,. . . and we denote by M i : j ,  

j 2 i, the principal submatrix of M determined by the rows and 

columns numbered i,i+l,. . . , j. Now let A = R-'Q~ and define 

where In is the nxn identity matrix. It will be convenient to let 
-1 T 

D,,i-l(x) = 1. Clearly, the eigenvalues of R Q are the zeros of 

DO:N(X) . 
We shall have use for the recurrence relation 

which is obtained by expanding det(~I,+~ - A,:,) by its last row. 

From (8) one easily derives by induction that 

Analogously, by expanding det(~I~-,+~ - %:N) by its first row 

one gets a recurrence relation for D,,,(x), n E S, from which one 

obtains 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

],
 [

E
ri

k 
va

n 
D

oo
rn

] 
at

 0
6:

24
 2

5 
O

ct
ob

er
 2

01
3 



REGULATED FLUID RESERVOIR 

Lemma 1. DO : (x) has the following properties: 

Proof. Assertion (i) follows immediately from (9) or (10) (recall 

that po = AN = 0). Next observe that 

N 
D; : (0) = 1 (nth principal minor of -A) 

n= 0 

which upon substitution of (9) and (10) yields the second 

property. R 

Lemma 2. (i) The zeros of DO : (x) and DO : k - l  (x) are real, simple 

and strictly positive; the zeros of Do,,_,(x) strictly separate 

those of DO : (x) . 
(ii) The zeros of Dk+l:N(~) and Dk+2:N(~) are real, simple and 

strictly negative; the zeros of Dk+2 : (x) strictly separate those 

of Dk+l:N(x). 

Proof. Assertion (i), with the exception of the positivity of the 

zeros, follows from the fact that AOZk is a sign-symmetric tri- 

diagonal matrix ([6, p.1661 or [ 3 ] ) .  To prove positivity we let 

where E j  - diag(eo ,el,. . . ,ej), e,, = 1 and ei+l = ei]pi+lri+l'/G, 

i = O,l, . . . , j -  1. It is easily seen that is symmetric, while 
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464 VAN DOORN, J A G E R S ,  AND DE WIT 

by (9) (recall that ri < 0 for i E S - )  . We conclude that Lo,, is 
positive definite [6, p. 701. Since AO : and AO: are similar, it 

follows that the eigenvalues of A o , , ,  and hence the zeros of 

DO :k (x) , are positive. 
Assertion (ii) is proven similarly with the help of (10). Cl 

We shall denote the zeros of Do, (x) by aj , j = 0,l,. . . ,k, 
those of DL+ : (x) by aj , j = k+l,k+2, . . . ,N, those of DO , k -  (x) by 
pj , j = 0 , .  . - 1  and those of D,+2: (x) by Pj , j - 
k+2,k+3, . . . ,  N, each time in decreasing order of magnitude. Lemma 2 

then tells us that 

We are now ready to prove Theorem 1. By Laplace's expansion 

theorem [6, p.141 we have 

Recalling that rkrk+l < 0, we see from (12) that 

sgn(~, , , (ai ) )  = -sgn(~, , (Pi 1) , i E S \  

that is, DO,N(~) has a negative zero in each 

(k,k+l), (13) 

of the N-k-1 intervals 

(ai ,Pi ) , i = k+2, k+3, . . . ,N, and a positive zero in each of the k 
intervals (Pi ,ai), i = O,l, . . . ,k-1. By Lemma 1 (i) , Do,, (0) = 0 as 

well, so Do,,(x) has at least N real zeros, and therefore all of 

its N+1 zeros are real. It remains to determine the sign of the 

unlocated zero. Recalling the stability condition ( 2 ) ,  we see from 
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REGULATED FLUID RESERVOIR 465 

Lemma 1 (ii) that sgn(~i:~(O)) - But (12) tells us that 

~~n(~~:~(a~+,)) - (-1)' as well. It follows that the unlocated zero 

must be in the interval (aktl,O) which concludes the proof of 

Theorem 1. 

To obtain the right eigenvectors of the matrix R-'QT we argue 

as follows. Writing 

where, as usual, the empty product is interpreted as unity, we get 

from (8) 

Since YN+'(fj) = 0 ,  j E S, it follows that the vectors 
T 

Y(Ej) = (Y,,((~) ,Y1(Ej), . . . ,YN(Ej)) satisfy the relation 

that is, Y(Ej) is a right eigenvector of R - ~ Q ~  corresponding to the 

eigenvalue E j .  It will be convenient to normalize the right 
- 1 

eigenvectors such that the first component equals po - ( 1 ~ ~ )  . 
Thus we have the following result. 

Theorem 2. Let ycJ) = 
(j) (3) ( y o  , y1 , . . . , yF))T denote the right 

eigenvector of R-~Q' corresponding to the eigenvalue fj, j E S ,  
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VAN DOORN, J A G E R S ,  AND DE WIT 

( j )  
normalized such that yo = PO, then 

where Do,,(x), n E S, are the polynomials satisfying the recurrence 

relation (8). 

In passing we note that (16) is very similar to the 

corresponding result for a symmetric tri-diagonal matrix [lo, 

(7-10-I)]. We finally observe that tk = 0 together with (9) imply 

so that y'k)  = p ,  as it should be, for QTp = 0 and hence 

R - I Q ~ ~  = 0 . This explains why we have chosen the particular 

normalization in (16). 

4. THE CONTENT OF THE RESERVOIR IN CONTINUOUS TIME 

We recall that Fn(u) , the continuous-time equilibrium probability 

that the birth-death process is in state n and the content of the 

reservoir does not exceed u, satisfies 

while EN < . . . < <k+l < fk - 0 < fk-l < . . . < to. Evidently, 
yhJ' = po > 0 and 0 5 Fo(u) 5 1 for all u, so that necessarily 

Furthermore, when u goes to infinity, F,(u) must tend to p,, the 

equilibrium probability that the birth-death process is in state n. 
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REGULATED FLUID RESERVOIR 

With (17), (18) and (19) it follows that ck = 1, so that 

The remaining constants c ~ + ~ ,  . . . ,cN are determined by the fact that 
Fn(0) must be equal to zero if n is one of the states where the net 

input of fluid into the reservoir is positive, that is, if 

n E S+ = (k+l,k+2,. . . ,N). So these constants must be solved from 

Now (15) and (16) imply that, for j E S, 

Specifically, by taking j = k in (22) and using (17) we regain 

where pi 0 if i B S. With the help of (22) and (23) we can 

transform the set of equations (21) as follows, where by equation 

no. i we mean the equation corresponding to n = i. First, for each 

n E s+, n > k+l we replace equation no. n-1 in (21) by A,-, times 

equation no. n-1, minus An+pn times equation no. n, plus (if n < N) 
pn+l times equation no. n+l. With (22) and (23) it then follows 

that (21) is equivalent to the system 
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468 VAN DOORN, J A G E R S ,  AND D E  WIT 

Secondly, for each n E s+, n > k+2 we replace equation no. n-1 in 
(24) by a linear combination of equations nos. n-1, n and n+l 

similar to the one in the first step, etc. After N-k-1 such steps 

it follows that (21) is equivalent to the system 

which admits the explicit solution (see [I]) 

As an aside we remark that the argument used in [l] to obtain (25) 

can be used in our more general context as well. 

5. THE CONTENT OF THE RESERVOIR IN DISCRETE TIME 

It may be of interest to know the equilibrium distribution of the 

content of the reservoir at epochs where the underlying birth-death 

process makes transitions of a particular type; for instance at 

epochs where the net input rate of fluid changes from positive to 

negative, since these epochs mark the end of a build-up period. A 

direct derivation of results of this type is possible but rather 

elaborate. We shall see, however, that such equilibrium results in 

discrete time can readily be obtained from the results of the 

preceding section with the help of a conditional variant of PASTA 

(Poisson Arrivals See Time Averages), see [12]. First we need some 

notation. 

Let T,, n - 1,2 ,  . . . ,  denote the epochs at which the birth- 
death process (~(t), t > 0) makes transitions and let Y, = X(T,-0), 

T n - 1,2,. . . . With q = (q , ,q , ,  . . . ,qN) denoting the vector of 

stationary state probabilities of the Markov chain 
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REGULATED FLUID RESERVOIR 

(Y,, n = 1,2,. . . )  , it is well known that 

Next let D, = C(T,-01, n = 1 2  . . . , and Gi(n,u) = Pr(D,-cu, Yn-i) . 
As in the continuous-time case we take for granted the intuitively 

obvious fact that under the stability condition (2) the limit 

Gi(u) = lim Gi(n,u) exists and equals the equilibrium probability 
n- 

that, just before a transition epoch, the birth-death process is in 

state i and the content of the reservoir does not exceed u. 

Corollary 1 in [12] then tells us that 

which is the result we were referring to. 

Returning to the example mentioned in the beginning of this 

section, we see that the distribution of the content of the 

reservoir at epochs where the birth-death process makes a 

transition from state k+l to state k (which, of course, equals the 

distribution q;:l~k+l(u) of the content of the reservoir at epochs 

where the birth death process leaves state k) can be expressed as 
-1 
~k+lFk+l (u) . 

6 .  NUMERICAL ASPECTS 

To compute the equilibrium probabilities Fn(u) one can of course 

ignore the fact that the underlying Markov process is a birth-death 

process and use standard routines from software packages to 

determine the eigenvalues and eigenvectors of R - ~ Q ~  and solve the 

system of equations (21). Results of this approach with values of N 

ranging up to 100 have been reported in the literature [9]. The 

question is whether something can be gained by exploiting the 

structural properties of the model at hand. As for the eigenvalues 
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47 0 VAN DOORN,  J A G E R S ,  AND D E  WIT 

of R-~Q*, it is not difficult to see that for x 5 0 the sequence 

D(x) = (D~:~(x) ,DO:k+l(~) , . . . , DOZN(x)) resembles a Sturm sequence 

in that the number of zeros of Do,,(x) (i e .  , the number of 

eigenvalues of R-~Q*) which is smaller than x equals N-k minus the 

number of sign changes in the sequence D(x). This observation 

enables us to exploit, in slightly adapted form, the very stable 

and efficient bisection algorithm [2] to obtain the eigenvalues 

t j ,  j E s+. We wrote a program in BASIC and employed a simple 

personal computer to execute it with values of N ranging up to 100. 

Once the system's eigenvalues have been calculated, one can 

further exploit the structure of the model at hand, and obtain the 

remaining quantities via a very simple scheme based on (22) and 

(26). Unfortunately, for larger values of N the recursion based on 

(22) becomes numerically unstable. (A similar phenomenon has been 

observed for symmetric tri-diagonal matrices [lo, p. 1311.) We 

found the procedure effective for N 5 10 and sometimes, depending 

on the values of the other parameters of the model, for N up to 20. 

In this way we verified the numerical results of Regterschot 

[ll, p.1561. 

7. CONCLUDING REMARKS 

The main features of the models studied in [I], [4] and 191 are the 

reality of the system's eigenvalues and the fact that precisely N-k 

of them are negative. We have shown that these features are 

maintained in our more general setting. Obviously, one loses some 

explicitness by our generalization. Thus Anick et al. [I] derive a 

simple expression for the important eigenvalue Ek+l and the 

associated eigenvector, an accomplishment which does not seem 

possible for our model. 

Further generalizations of the model in which the background 

Markov process remains irreducible but is no longer a birth-death 

process, will generally involve complex eigenvalues. It has been 

shown, however, that then the real parts of precisely N - k  of the 
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REGULATED FLUID RESERVOIR 471 

eigenvalues are negative (Regterschot [ll], Sonneveld [13]), so 

that it is still possible to obtain the formal solution (20), 

although the explicit evaluation will be more cumbersome (cf. 

Kosten [5]). Regterschot [ll, Ch.41 chooses an entirely different 

approach to analyse this generalization of our model by formulating 

it as a matrix factorization problem. 

While completing the revised version of this manuscript we 

became aware of Mitra's paper 171. He shows that the eigenvalues of 

the matrix R - ~ Q ~  are all real when the background Markov process is 

reversible; explicit results like (22) and (26), however, seem out 

of reach in this more general case. 
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