
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

  www.elsevier.com/locate/procedia 

2212-8271 © 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of 
existing products for an assembly oriented product family identification 

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat 
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France 

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Product variety is a growing trend of offering highly configurable products, but increases complexity costs throughout the entire product lifecycle. 
Modularization makes managing variety-induced complexity and ensuring profitable production possible. Unfortunately, the interfaces between 
modules represent joining domains and lack modularization and commonalization solutions. Meanwhile, joining element design finds 
increasingly more support from automation resulting in optimized solutions for individual product variants. Besides, continuous product 
development implies sequentially designed product variants that cause ambiguous and unnecessary design iterations for joining element design. 
This paper presents a five-step methodology to modularize joining elements in early product development, while balancing variety-induced 
complexity and production costs. It reduces complexity by commonalizing joining elements over product variants. The methodology unifies 
joining technologies, clusters joining locations and proposes an approach to increase modularity by balanced addition of joining elements. 
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1. Introduction

Product variety enables offering highly configurable
products [1] and market competitiveness of companies. 
However, product variety induces complexity in the entire 
product life cycle and is likely to cause higher costs, lower 
quality, and delays [1]. Complexity costs are a monetary 
reflection of overhead functions and scale with increased 
variety, quantity, information content of system elements and 
the significance of their interrelations and dependencies [2]. 
Various studies present complexity measurements for products 
[3, 4], processes [2] and assemblies [5, 6]. Modular product 
design is the general approach used to manage product variety 
and reduce complexity costs [7, 8]. Hence, Ulrich et al. [9] 
define modularity as “the standardization of components and 
processes in an organization that can be configured into a wide 
range of end products to meet specific customer demands”.  

Joining is a key process in manufacturing increasing the 
manufacturability of products by assembling smaller and 

simpler components. Joining elements (JE) are individual 
instances of procedures within joints and represent joining 
technologies as spot-welds, adhesive bonding lines or rivets. 
Products may contain thousands of JEs often with various 
aspects and properties [10]. JEs are the assembly operations 
that join parts and modules and are located on their interfaces. 
This makes JE design prone to high variety, as their joined-
parts with their properties may be change for each product. The 
state of the art shows that designers and algorithms create JEs 
for individual variants. However, optimal designs for 
individual product variants may conflict with profitability of 
overall product design [10]. No found methodology in 
literature describes JE modularization.  

Previous works stress the necessity [11], process [12] and 
implementation [13] of automated JE design. This work 
proposes a methodology to modularize JEs and introduces a 
tradeoff to reduce the total cost by increasing the number of JEs 
for increased modularization capacity.  
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2. Literature review

Managing product complexity includes design, control and
development of product variety throughout the entire company 
[1]. The number of processes and products creates roughly the 
overall system complexity [5]. Various strategies can reduce 
variety-driven complexity on both product and process level, 
of which modularization and commonality are most applicable 
for JE design due to their large dependency on part design [14]. 
The overall tendency in literature is to reduce complexity [15], 
but Kuhn et al. [15] state, after reviewing literature, that 
complexity analyses can create chances and companies might 
benefit from complexity increases due to increased insight, 
adaptability and communication. 

Quantification of complexity enables benchmarking and 
decision making between product and process alternatives [5]. 
Alkan et al. [16] pair complexity assessment methods to types 
and symptoms and examine methodologies using the taxonomy 
non-linear behavior, physical situation, operational 
uncertainties and human perception.  Later, Alkan et al. [2] 
present a method to assess assembly complexity using product 
entities and their topological links, while considering 
complexity of handling operations using Design for Assembly 
principles. Bednar et al. [5] integrate the number of product and 
process variants to assess complexity at an assembly station. 
They model interactions between components and using 
Axiomatic design. Hasan et al. [17] propose an approach to 
classify products for assembly systems by considering 
assembly and part complexities of which the latter also 
considers assembly sequences. Hierarchical clustering enables 
to express similarity between products for classification. 

Many, such as the aforementioned [2, 5, 17], methodologies 
quantify complexity, but neglect calculating their costs due to 
its difficulty [18]. Ripperda and Krause [19] performed a co-
citation analysis on modularization methodologies and found 
seven clusters for managing complexity costs. Weiser et al. 
[20] propose to calculate complexity costs using initial and
recurring costs per affected department over a product’s
lifecycle. It enables decisions on new modules and variants
while considering commonality. Eilmus et al. [3] propose a
methodology to estimate variety-induced complexity cost
effects based on module sizes and variety, primarily through
usage of code numbers and lifecycles.

Modular product design (MPD) makes it possible to offer 
affordable products for customers [7] and to manufacture with 
mass production efficiency [21]. It positively affects 
modularity in production [22] and can decrease assembly costs 
[6]. MPD must be sustainable as uncontrolled module 
generation still increases complexity [20]. Gauss et al. [23] 
performed a systematic literature review on module-based 
product family design and synthesized these into a meta-
process. They describe four classes of modular design 
problems: planning, market-driven design, modeling and 
configuration selection. Meanwhile, Han et al. [24] performed 
a systematic literature review on product platform design and 
argue that traditional product platforms lack the ability to adapt 
to dynamic market changes, which causes risks, costs and 
propagations of module changes. Specific methodologies 
considering assembly and joining are for example presented by 

AlGeddawy et al. [6]. They modularize product architectures 
using hierarchical classification, a design structure matrix and 
an assembly complexity metric that balances assembly time 
and module interchangeability. Stocker et al. [25] studied 
efficient modularization of chassis-mounted components. 
Module variant evaluation regards strategic and technical 
development requirements, but focusses on standardization. 
Final module selection considers geometrical feasibilities in 
products. Ma et al. [26] propose an heuristic approach to select 
the most costly components as individual modules and adds 
other components with respect to assembly cost.  

The mentioned complexity metrics consider intra-module 
relationships as measurements for complexity. These metrics 
are often interchangeable with modularity indices i.e. as seen 
in Jung and Simpson [4] who consider connection strengths, 
densities and bus components in product architectures [4]. 
MPD methodologies that modularize by clustering of 
components fail to acknowledge the modularization necessity 
of JEs on interfaces between modules. For example, Design 
Structure Matrices (in e.g. [4, 6, 25]) enable to visualize 
relationships between parts, but are incapable to represent 
assembly specifics due to geometrical dependencies [25].  

3. Method

The methodology’s objective is to reduce the product
complexity experienced in joint and assembly design by 
implementing modularization. Typical part design should 
already consider JE design [14]. JEs are individually 
configured objects in products and this methodology regards 
JEs on the same hierarchical level as parts, as product data 
management studies propose (e.g. [27]). This perspective 
enables to take control in the handling of JE modules in various 
product variants. A five-step process (see Fig. 1) modularizes 
any set of designed JEs: 1) Preprocessing, 2) technology 
unification, 3) spatial aggregation, 4) element densification and 
5) module creation. Firstly, the preprocessing step determines
the geometrical boundary conditions for modularization
through the overlapping contact regions, which are created by
virtual stacking of product variants. Then, technology
unification reduces the number of different processes applied
on the overlapping contact regions (CR) to join the involved
parts. Spatial aggregation considers joining locations from
overlapping CRs of multiple variants and clusters these into
unique and reusable locations. Element densification aims to
commonalize entire joints by applying JEs of one variant onto
others within their geometrical boundaries. Lastly, module
grouping collects the shared joining elements between product
variants and stores these in JE modules.

The modularization method is indifferent of the JE design 
method, i.e. rule-based CAD design, topology optimization 
methods [10], or machine learning [13]. Every step has variety-
based parameters to influence modularization results.  

3.1. Preprocessing 

JEs spread throughout the entire product and require a 
method to identify modularizable ones. A joining scenario (JS) 
is the input state containing geometries, product manufacturing 
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information (PMI), product architecture and assembly 
information [12]. Parts in JSs create contact regions (CRs), 
partial part surfaces or edges touching each another 
geometrically thereby defining joining areas. Geometries of 
CRs differ with regard to applicable joining technologies. 
Discrete technologies such as spot-welding require a minimum 
surface area [28], while continuous technologies, such as laser 
welding, join edges of parts. The union of contact regions 
(UoCR, see Fig. 1) enables finding JSs from which to 
modularize JEs. The UoCR is the merger of multiple CRs of 
JSs by considering all product variants at once. Hence, CRs in 
the UoCR are positioned approximately on the same surface.  

Transforming certain JSs, of which their CRs do not yet 
belong to the same UoCRs, into arbitrarily defined origins can 
increase the number of CRs in UoCRs. This leads to increased 
modularization potential and the definition of three scopes: 
global, domain and local. A global scope would create the 
lowest number of modules, but also affect the most variants by 
transforming most JSs into fewest origins. Local 
modularization considers the UoCRs in product space. Here, JE 
parameters remain specific to those locations, but at the cost of 
additional modules. Domain-based modularization takes a 
subset of JEs defined by an arbitrary criterion such as function, 
space, or assembly station. For example, discriminating 
between structural and aesthetic purposes causing JE modules 
to have individual properties and complexity. 

3.2. Technology unification 

Process variety is one of the main complexity and 
production cost factors [5]. Fig. 1 presents technology 
unification using the UoCR on parts 1&2 with parts 1&3. Here, 

a joining technology describe the specific implementation of a 
production process, such as type of adhesive or specific stud 
weld. Predict, optimized or selected joining technology 
algorithms often output sets of potential technologies. This 
enables implementing majoritarian voting systems to 
determine the variety-based optimal joining technology. A 
consistent second best solution might be overall the optimal 
technology considering variety. Technology unification 
utilizes an overall ranking for each technology over summing 
weighted JSs (see Eq. 1):  
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Where 𝑡𝑡� represents unified technology that is the result for 
technology 𝑡𝑡  with the largest sum. 𝐽𝐽𝐽𝐽  includes all joining 
scenarios in the union of contact regions.  𝑡𝑡�  is the joining 
technology of scenario 𝑠𝑠. 𝑤𝑤�

� weights every joining scenario 𝑠𝑠 
based on its properties for technology unification 𝑢𝑢 (see Eq. 2). 
The unified technology requires validation against standards 
and guidelines to ensure manufacturability with respect to 
different properties as geometry, material and function.  

Modularization purposefully treats technologies unequally 
to reduce randomness in outcome and control biases of the 
algorithm. Weights w�

�  consider various product variety-
relevant parameters to tune unification. These parameters 
regard aspects as confidence, sales prospect, contact region 
size, and implementation factor. Algorithms that predict or 
select joining technology (e.g. [14]) output values to select a 
solution. This confidence or fitness factor 𝑐𝑐�

�  expresses 
certainty in prediction and reduces importance of improbable 
outcomes. Secondly, higher sales prospects 𝑅𝑅� require higher 
cost optimality and thus changes induced up by modularization. 
JEs built in almost every product variant require more optimal 
technologies and should settle difficultly for joining aspects of 
exotic variants. The number of predicted configurations highly 
determines its necessity to be cost-optimal. Next, a top-down 
view enables to derive smaller scenarios from default variants 
indicated by JS’s relative contact region sizes 𝐴𝐴� compared to 
the UoCR. A bottom-up approach would aggregate smaller 
scenarios to construct large scenarios and require taking the 
inverse of 𝐴𝐴� . Fourthly, product development may create 
continuously new variants and thus JEs. This leads to 
implemented and manufactured JEs that need to modularize 
with newly designed JEs. JEs in production have high rework 
costs due to design changes and require a high attribution in 
tuning weights. The implementation factor 𝐼𝐼� can either scale 
with the number of implemented variants or product maturity. 
Normalized engineer’s preferences 𝐸𝐸� enables strategic tuning 
to consider holistic requirements or company strategies. Also, 
parameters used in state of the art technology selection 
methodologies (e.g. listed in [11]) enable further tuning. Eq. 2 
shows a simple proposal of a generic linear function 𝑤𝑤�

�  to 
weigh technologies with a normalized vector 𝑎𝑎�  to balance, 
scale and tune every dimensionless parameter.  
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Fig. 1. Visualization of methodology with input and output dependencies. (JS) 
Joining scenario, (CR) Contact region, (UoCR) Union of contact regions, 
(IoCR) Intersection of contact regions, (JT) Joining technology, (JL) Joining 
location, (JC) Joining cluster, (JE) Joining element.  
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Transforming certain JSs, of which their CRs do not yet 
belong to the same UoCRs, into arbitrarily defined origins can 
increase the number of CRs in UoCRs. This leads to increased 
modularization potential and the definition of three scopes: 
global, domain and local. A global scope would create the 
lowest number of modules, but also affect the most variants by 
transforming most JSs into fewest origins. Local 
modularization considers the UoCRs in product space. Here, JE 
parameters remain specific to those locations, but at the cost of 
additional modules. Domain-based modularization takes a 
subset of JEs defined by an arbitrary criterion such as function, 
space, or assembly station. For example, discriminating 
between structural and aesthetic purposes causing JE modules 
to have individual properties and complexity. 

3.2. Technology unification 

Process variety is one of the main complexity and 
production cost factors [5]. Fig. 1 presents technology 
unification using the UoCR on parts 1&2 with parts 1&3. Here, 

a joining technology describe the specific implementation of a 
production process, such as type of adhesive or specific stud 
weld. Predict, optimized or selected joining technology 
algorithms often output sets of potential technologies. This 
enables implementing majoritarian voting systems to 
determine the variety-based optimal joining technology. A 
consistent second best solution might be overall the optimal 
technology considering variety. Technology unification 
utilizes an overall ranking for each technology over summing 
weighted JSs (see Eq. 1):  

𝑡𝑡� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑡𝑡

� � 𝑡𝑡�

��∈����

�

𝑤𝑤�
�� (1) 

Where 𝑡𝑡� represents unified technology that is the result for 
technology 𝑡𝑡  with the largest sum. 𝐽𝐽𝐽𝐽  includes all joining 
scenarios in the union of contact regions.  𝑡𝑡�  is the joining 
technology of scenario 𝑠𝑠. 𝑤𝑤�

� weights every joining scenario 𝑠𝑠 
based on its properties for technology unification 𝑢𝑢 (see Eq. 2). 
The unified technology requires validation against standards 
and guidelines to ensure manufacturability with respect to 
different properties as geometry, material and function.  

Modularization purposefully treats technologies unequally 
to reduce randomness in outcome and control biases of the 
algorithm. Weights w�

�  consider various product variety-
relevant parameters to tune unification. These parameters 
regard aspects as confidence, sales prospect, contact region 
size, and implementation factor. Algorithms that predict or 
select joining technology (e.g. [14]) output values to select a 
solution. This confidence or fitness factor 𝑐𝑐�

�  expresses 
certainty in prediction and reduces importance of improbable 
outcomes. Secondly, higher sales prospects 𝑅𝑅� require higher 
cost optimality and thus changes induced up by modularization. 
JEs built in almost every product variant require more optimal 
technologies and should settle difficultly for joining aspects of 
exotic variants. The number of predicted configurations highly 
determines its necessity to be cost-optimal. Next, a top-down 
view enables to derive smaller scenarios from default variants 
indicated by JS’s relative contact region sizes 𝐴𝐴� compared to 
the UoCR. A bottom-up approach would aggregate smaller 
scenarios to construct large scenarios and require taking the 
inverse of 𝐴𝐴� . Fourthly, product development may create 
continuously new variants and thus JEs. This leads to 
implemented and manufactured JEs that need to modularize 
with newly designed JEs. JEs in production have high rework 
costs due to design changes and require a high attribution in 
tuning weights. The implementation factor 𝐼𝐼� can either scale 
with the number of implemented variants or product maturity. 
Normalized engineer’s preferences 𝐸𝐸� enables strategic tuning 
to consider holistic requirements or company strategies. Also, 
parameters used in state of the art technology selection 
methodologies (e.g. listed in [11]) enable further tuning. Eq. 2 
shows a simple proposal of a generic linear function 𝑤𝑤�

�  to 
weigh technologies with a normalized vector 𝑎𝑎�  to balance, 
scale and tune every dimensionless parameter.  

𝑤𝑤�
� = 𝑎𝑎�

�𝑐𝑐�
� + 𝑎𝑎�

�𝐴𝐴� + 𝑎𝑎�
�𝐼𝐼� + 𝑎𝑎�

�𝑅𝑅� + 𝑎𝑎�
�𝐸𝐸�  (2) 

Fig. 1. Visualization of methodology with input and output dependencies. (JS) 
Joining scenario, (CR) Contact region, (UoCR) Union of contact regions, 
(IoCR) Intersection of contact regions, (JT) Joining technology, (JL) Joining 
location, (JC) Joining cluster, (JE) Joining element.  
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3.3. Spatial aggregation 

Due to numerical, optimization and prediction approaches, 
JEs do not necessarily align with one another considering 
product variety. Fig. 1 visualizes spatial aggregation creating 
clusters I and II from joining locations 1 with 4 and 2 with 5. 
Spatial aggregation applies a clustering algorithm to find 
common centroids for groups of joining locations. It reduces 
locational variability and enables reuse of joining locations. 

The algorithm has K-Means clustering [29] at its core (Table 
1). K-Means has a number of properties that fit this particular 
purpose. Firstly, it creates ‘circular’ clusters that solve the 
accuracy variability of joining locations. Secondly, results are 
density-invariant and respect outliers as individual clusters. 
Lastly, a K-Means algorithm can consider constraints (e.g. 
[29]) to prevent clustering joining locations of the same JS. The 
maximum cluster size 𝑟𝑟���  ensures minimum mutual and edge 
distances described in standards (e.g. [28]) and controls 
aggregation effectiveness. Every joining location requires a 
unique cluster ensuring transparency and simplicity and JSs 
must have equal number of JEs after spatial aggregation. 
Hence, the number of final clusters is unknown requiring an 
incremental iterative search. The starting number is the 
maximum number of joining locations a JS has in UoCR, 
smaller clustering results are not permissible. The algorithm 
can stop once finding the first solution complying with 
requirements. Additional optimization iterations might create 
better outcomes, but require an evaluation approach for the 
optimal number of clusters, such as the elbow, average 
silhouette or gap statistic method [29]. Spatial aggregation also 
works for joining technologies having curved geometry, i.e. 
adhesive bonding or laser welding. Discretizing curves into 
equidistant points enables spatial aggregation as is with only 
small changes to parameters as 𝑟𝑟���. Modeling straight line-
based curves with point-line intersections, i.e. where one 
curved-JE ends and another continues. Spatial aggregation then 
clusters the start and end-points of curves. 

Various parameters enable to better control clustering 
results and expand weight 𝑤𝑤�

� from technology unification. A 
weighted average scales coordinates of joining locations to new 
cluster centroids (JC). Firstly, distance-to-center 𝑑𝑑�,� focuses 
on small dense groups and can fortify the cluster centroids by 
reducing impact of outliers. 𝑑𝑑�→�  is the Euclidean distance 
between the joining location 𝑝𝑝 and nearest cluster centroid 𝑐𝑐. 
Dividing this by the minimum joining distance 𝑑𝑑���

�  creates a 
dimensionless parameter. The negation enables the parameter 
weight to go to zero in case once a joining location moves 
towards 𝑑𝑑���

� . Confidence 𝑐𝑐�
�  considers probabilities of 

prediction or fitting methods for individual locations. Less 
confident locations should have less influence in moving 
cluster centroids. Proposing a linear spatial aggregation weight 
𝑤𝑤�

�  for joining location 𝑝𝑝 (Eq. 3) with normalized vector 𝑥𝑥� to 
balance, scale and tune every parameter: 

𝑤𝑤�
� = 𝑤𝑤�

� �𝑥𝑥�
� 𝑐𝑐�

� + 𝑥𝑥�
� �1 − ��→�

����
� �� (3) 

3.4. Element densification 

After the spatial aggregation step, joining scenarios might 
have different numbers of JEs on the same IoCR. This implies 
that the same piece of geometry with similar boundary 
conditions has different JEs on it depending on the product 
variant. Increasing JEs in some joining scenarios from the same 
IoCR enables to create and utilize JE modules in multiple 
variants. However, this may lead to increased manufacturing 
costs, as modularization will induce unnecessary joining 
processes. Element densification balances JE modules with a 
complexity and production cost perspective. The algorithm 
considers joining performances by preventing removal of JEs. 
Fig. 1 visualizes element densification and illustrates that the 
blue JS adopts all three JEs of the red JS. All JEs must lay on 
the intersection of contact regions (IoCR) and must have the 
same technology. Element densification considers standards 
and guidelines e.g. edge and mutual JE distances (see [28]). A 
tradeoff balances product variety-induced complexity costs 
against production costs of additionally manufactured JEs. The 
size and variety in product documentation mainly contribute to 
complexity costs 𝑐𝑐�  [3, 20] and are a function of the total 
number of modules 𝑛𝑛�  and JEs 𝑛𝑛�� . Production costs 𝑐𝑐� are a 
function of the number of JEs 𝑛𝑛��  and the (prospected) number 
of produced products 𝑛𝑛� . Assuming a linear relationship 
between complexity and production costs to find the total costs 
𝑐𝑐� [20] results in Eq. 4.  

Imagine a situation to densify two joining scenarios 𝐽𝐽𝐽𝐽� and 
𝐽𝐽𝐽𝐽�. To apply element densification and for 𝐽𝐽𝐽𝐽� to obtain the 
joining elements of 𝐽𝐽𝐽𝐽�, the total costs 𝑐𝑐�

� of 𝐽𝐽𝐽𝐽�  with joining 
elements of 𝐴𝐴  must be less than the costs 𝑐𝑐�

� of 𝐽𝐽𝐽𝐽�  with 
joining elements of 𝐵𝐵 itself.  

Table 1. Spatial aggregation clustering algorithm for one set of joining 
scenarios based on content of one union of contact regions. 

Input Superset with joining scenarios 𝑗𝑗 ∈ 𝐽𝐽𝐽𝐽  
Sets of joining locations for each set 𝑝𝑝 ∈ 𝑗𝑗 
Minimum number of clusters 𝑘𝑘��� 

Output Set of joining clusters 𝐶𝐶 containing aggregated joining 
locations 𝑝𝑝 

1: 
2: 

3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 

15: 

For 𝑘𝑘 ∈ {𝑘𝑘���, … , |𝐽𝐽𝐽𝐽|} 
  Let 𝐶𝐶 have 𝑘𝑘 clusters with first 𝑘𝑘��� clusters from 𝑝𝑝 of 
  max

�
|𝑗𝑗| ∈ 𝐽𝐽𝐽𝐽 and random selected 𝑝𝑝 for all other clusters 𝑐𝑐 

  Calculate Euclidian distances 𝑑𝑑�,�  for all 𝑝𝑝 ∈ 𝐽𝐽𝐽𝐽 to all 𝑐𝑐 ∈ 𝐶𝐶 
  For each location 𝑝𝑝 ∈ 𝐽𝐽𝐽𝐽 

  Sort  𝐶𝐶 in ascending order on distances 𝑑𝑑� from 𝑝𝑝 to 𝑐𝑐 
  For every cluster 𝑐𝑐 ∈ 𝐶𝐶 

  If point 𝑝𝑝 within maximum cluster size, 𝑑𝑑�,� ≤ 𝑟𝑟��� 
  If no locations of same JS, c ∩ {𝑝𝑝 ⊃ 𝑗𝑗} = ∅ 
      Assign 𝑝𝑝 to cluster 𝑐𝑐   

  If all locations assigned, 𝐶𝐶 ⊇ 𝐽𝐽𝐽𝐽 
  For each cluster 𝑐𝑐 ∈ 𝐶𝐶 

  Update centroid 𝑐𝑐 ≔ ∑�𝑤𝑤�
� 𝑝𝑝 ∈ 𝑐𝑐� ∑�𝑤𝑤�

� ∈ 𝑐𝑐��  
  Iterate between line 3 and line 12 until convergence     
  If all locations of joining scenario 𝑝𝑝 ∈ 𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽𝐽𝐽 are  
  okay with standards  

  Return clusters 𝐶𝐶 
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𝑐𝑐� = 𝑐𝑐��𝑛𝑛�, 𝑛𝑛�� � + 𝑐𝑐��𝑛𝑛��, 𝑛𝑛�� 
(4) 

𝑐𝑐��𝑛𝑛�
��� + 1, 𝑛𝑛��

��� + 𝑛𝑛��
� � − 𝑐𝑐��𝑛𝑛�

��� , 𝑛𝑛��
��� �

> 𝑐𝑐��𝑛𝑛��
� − 𝑛𝑛��

� , 𝑛𝑛�
�� (5) 

Table 2. Joining element densification algorithm for one set of joining 
scenarios based on unions of contact regions. 

Input Set of joining scenarios 𝐽𝐽𝐽𝐽  
Sets of joining clusters 𝐽𝐽𝐽𝐽 ∈  𝐽𝐽𝐽𝐽  
Sets of joining locations 𝐽𝐽𝐽𝐽 ∈  𝐽𝐽𝐽𝐽 

Output Set of joining clusters for each joining scenario 𝐽𝐽𝐽𝐽 ∈  𝐽𝐽𝐽𝐽  

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10:  

Sort 𝐽𝐽𝐽𝐽 on number of 𝐽𝐽𝐽𝐽 in descending order 
Sort 𝐽𝐽𝐽𝐽 by containing 𝐽𝐽𝐽𝐽 with most 𝐽𝐽𝐽𝐽; then most 𝐽𝐽𝐽𝐽 on 𝐽𝐽𝐽𝐽 
For each intersection of contact regions 𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 ∈ 𝐼𝐼𝑖𝑖𝐽𝐽𝐼𝐼𝐼𝐼 
  For all equal joining technologies 𝑡𝑡� grouped in 𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 

  For each joining scenario 𝐼𝐼 ∈ 𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 
     Get JCs laying on 𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 of joining scenario 𝐼𝐼 
  Number of JCs 𝑛𝑛�� in 𝐼𝐼 ∈ 𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 is highest max

�
𝑛𝑛��

�  
  For JCs on 𝐼𝐼 (𝑗𝑗𝑐𝑐) are manufacturable on other JS 𝑢𝑢 

  If densifying tradeoff (Eq. 5) is profitable 
  Append 𝑗𝑗𝑐𝑐 to joining scenario 𝑢𝑢 

Defining sales prospects as 𝑛𝑛�
�  and 𝑛𝑛�

�  for 𝐽𝐽𝐽𝐽�  and 𝐽𝐽𝐽𝐽�  
respectively, the tradeoff balances differences between an 
added module and the total produced number of JEs. 𝑛𝑛�

��� and 
𝑛𝑛��

���  represent all modules and joining elements of the entire 
product family. 

If Eq. 5 holds then it is beneficial to densify JEs of 𝐽𝐽𝐽𝐽� to 
𝐽𝐽𝐽𝐽�. The additional complexity costs of using original JEs from 
𝐽𝐽𝐽𝐽�  as an individual module are higher than the production 
costs created by the additional manufactured JEs considering 
the sales prospect 𝑛𝑛�

�  of the modularized 𝐽𝐽𝐽𝐽�. Especially few 
sold exotic modules, when 𝑛𝑛�

�  is low, are profitable to 
modularize as additional production costs are relatively small. 
Vice versa, densifying JEs that occur in virtually all products 
are expensive due to rapidly scaling production costs.  

The joining element densification algorithm (Table 2) starts 
with sorting joining clusters (JC) in descending order by the 
number of spatially aggregated joining locations. Then, it sorts 
JSs on the number of joining locations in their JCs in 
descending order and on the number of JEs in the JS itself.  

Next, the algorithm iterates through all IoCRs and iterates 
through all similar joining technologies per IoCR. The next 
nested iteration creates retrieval of JCs. Densification is 
possible for JCs of both JSs that lay on the same IoCR. The 
algorithm does not consider individual JEs to densify, as these 
might require unavailable space and reintroduce additional 
variety. Testing for standards and guidelines ensures that JCs 
that create new joining locations on other JSs are 
manufacturable considering edge distances, sheet thicknesses 
or materials. Lastly, the algorithm applies the complexity 
versus production cost tradeoff.   

3.5. Module creation 

Joining clusters created by spatial aggregation and 
redistributed by densification provide the basis to create JE 

modules. Module creation collects those JEs occurring in the 
same variants, because their underlying clusters assign joining 
locations to JSs. Then, each module becomes the largest subset 
of all JEs reoccurring for the same set of variants. Hence, JSs 
have sets of JE modules. Algorithmically, module creation 
consists of two group-by operations. Fig. 1 shows the 
visualization of module grouping illustrating creation of two JE 
modules: one using JEs I and II, and one with JE III. Starting 
with a dictionary of JSs and the JEs they contain, the first 
group-by function creates a dictionary of JSs for each JE. Then, 
a group-by function determines unique sets of JSs collecting 
those JEs that occur in the same variants. The methodology 
automatically regards local, global and domain-scopes as they 
derive from joining clusters that origin from transforming of 
CRs of joining scenarios into UoCRs. 

4. Discussion

The proposed methodology reduces variety in JE design by 
modularizing and commonalizing joining aspects. It aims to 
reduce complexity costs induced by product variety and makes 
it possible to automate the entire JE design [12]. This work is 
premiering JE modularization and contrary to the state of the 
art, it considers Design for Assembly principles in early 
product development phases. Balancing complexity and 
production costs lead to moderate modularization and prevent 
over-commonalization. The methodology does not alter 
already created modules and specifically focusses on the 
joining interfaces between modules. The method considers 
production information solely on part design level by reducing 
the variety in JEs, between them and between component 
modules. This work considers JE design to be subordinate to 
part design, hence suboptimal designs or variety considerations 
may result in a low degree of (JE) modularization. However, 
results of individual steps enable further analysis and insight 
into the complexity induced by JE designs [15]. Weights can 
consider already modularized and produced JEs and their 
modules aiding modular sustainability.  

CR-bounded modules risk future changes as new product 
variants might induce module splitting due to changing IoCRs. 
The methodology does not actively consider modules where 
JEs occurring in the same product but in different JSs such as 
subassemblies. Here, the scope (local, global, or domain) 
enables to control module creation and sustainability. 

Technology unification functions independently in the 
methodology. This optimizes results of joining technology 
selection methodologies with respect to product variety 
reasons. Automated JE design processes can use unified 
technologies to predict joining locations. Besides, location 
clustering and technology unification are interchangeable 
enabling to modularize with multiple joining technologies on 
each CR. This reduces the overall modularization granularity 
and requires more complex process documentation, i.e. [27]. 
Technology unification might create less optimal solutions for 
individual JSs and potentially violate performance-containing 
requirements. Standards and guidelines only validate 
manufacturability of JSs, but not their performance. Besides, 
the approach might leave multiple technologies open due to 
manufacturability limitations and requires multiple 
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3.3. Spatial aggregation 

Due to numerical, optimization and prediction approaches, 
JEs do not necessarily align with one another considering 
product variety. Fig. 1 visualizes spatial aggregation creating 
clusters I and II from joining locations 1 with 4 and 2 with 5. 
Spatial aggregation applies a clustering algorithm to find 
common centroids for groups of joining locations. It reduces 
locational variability and enables reuse of joining locations. 

The algorithm has K-Means clustering [29] at its core (Table 
1). K-Means has a number of properties that fit this particular 
purpose. Firstly, it creates ‘circular’ clusters that solve the 
accuracy variability of joining locations. Secondly, results are 
density-invariant and respect outliers as individual clusters. 
Lastly, a K-Means algorithm can consider constraints (e.g. 
[29]) to prevent clustering joining locations of the same JS. The 
maximum cluster size 𝑟𝑟���  ensures minimum mutual and edge 
distances described in standards (e.g. [28]) and controls 
aggregation effectiveness. Every joining location requires a 
unique cluster ensuring transparency and simplicity and JSs 
must have equal number of JEs after spatial aggregation. 
Hence, the number of final clusters is unknown requiring an 
incremental iterative search. The starting number is the 
maximum number of joining locations a JS has in UoCR, 
smaller clustering results are not permissible. The algorithm 
can stop once finding the first solution complying with 
requirements. Additional optimization iterations might create 
better outcomes, but require an evaluation approach for the 
optimal number of clusters, such as the elbow, average 
silhouette or gap statistic method [29]. Spatial aggregation also 
works for joining technologies having curved geometry, i.e. 
adhesive bonding or laser welding. Discretizing curves into 
equidistant points enables spatial aggregation as is with only 
small changes to parameters as 𝑟𝑟���. Modeling straight line-
based curves with point-line intersections, i.e. where one 
curved-JE ends and another continues. Spatial aggregation then 
clusters the start and end-points of curves. 

Various parameters enable to better control clustering 
results and expand weight 𝑤𝑤�

� from technology unification. A 
weighted average scales coordinates of joining locations to new 
cluster centroids (JC). Firstly, distance-to-center 𝑑𝑑�,� focuses 
on small dense groups and can fortify the cluster centroids by 
reducing impact of outliers. 𝑑𝑑�→�  is the Euclidean distance 
between the joining location 𝑝𝑝 and nearest cluster centroid 𝑐𝑐. 
Dividing this by the minimum joining distance 𝑑𝑑���

�  creates a 
dimensionless parameter. The negation enables the parameter 
weight to go to zero in case once a joining location moves 
towards 𝑑𝑑���

� . Confidence 𝑐𝑐�
�  considers probabilities of 

prediction or fitting methods for individual locations. Less 
confident locations should have less influence in moving 
cluster centroids. Proposing a linear spatial aggregation weight 
𝑤𝑤�

�  for joining location 𝑝𝑝 (Eq. 3) with normalized vector 𝑥𝑥� to 
balance, scale and tune every parameter: 

𝑤𝑤�
� = 𝑤𝑤�

� �𝑥𝑥�
� 𝑐𝑐�

� + 𝑥𝑥�
� �1 − ��→�

����
� �� (3) 

3.4. Element densification 

After the spatial aggregation step, joining scenarios might 
have different numbers of JEs on the same IoCR. This implies 
that the same piece of geometry with similar boundary 
conditions has different JEs on it depending on the product 
variant. Increasing JEs in some joining scenarios from the same 
IoCR enables to create and utilize JE modules in multiple 
variants. However, this may lead to increased manufacturing 
costs, as modularization will induce unnecessary joining 
processes. Element densification balances JE modules with a 
complexity and production cost perspective. The algorithm 
considers joining performances by preventing removal of JEs. 
Fig. 1 visualizes element densification and illustrates that the 
blue JS adopts all three JEs of the red JS. All JEs must lay on 
the intersection of contact regions (IoCR) and must have the 
same technology. Element densification considers standards 
and guidelines e.g. edge and mutual JE distances (see [28]). A 
tradeoff balances product variety-induced complexity costs 
against production costs of additionally manufactured JEs. The 
size and variety in product documentation mainly contribute to 
complexity costs 𝑐𝑐�  [3, 20] and are a function of the total 
number of modules 𝑛𝑛�  and JEs 𝑛𝑛�� . Production costs 𝑐𝑐� are a 
function of the number of JEs 𝑛𝑛��  and the (prospected) number 
of produced products 𝑛𝑛� . Assuming a linear relationship 
between complexity and production costs to find the total costs 
𝑐𝑐� [20] results in Eq. 4.  

Imagine a situation to densify two joining scenarios 𝐽𝐽𝐽𝐽� and 
𝐽𝐽𝐽𝐽�. To apply element densification and for 𝐽𝐽𝐽𝐽� to obtain the 
joining elements of 𝐽𝐽𝐽𝐽�, the total costs 𝑐𝑐�

� of 𝐽𝐽𝐽𝐽�  with joining 
elements of 𝐴𝐴  must be less than the costs 𝑐𝑐�

� of 𝐽𝐽𝐽𝐽�  with 
joining elements of 𝐵𝐵 itself.  

Table 1. Spatial aggregation clustering algorithm for one set of joining 
scenarios based on content of one union of contact regions. 

Input Superset with joining scenarios 𝑗𝑗 ∈ 𝐽𝐽𝐽𝐽  
Sets of joining locations for each set 𝑝𝑝 ∈ 𝑗𝑗 
Minimum number of clusters 𝑘𝑘��� 

Output Set of joining clusters 𝐶𝐶 containing aggregated joining 
locations 𝑝𝑝 

1: 
2: 

3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 

15: 

For 𝑘𝑘 ∈ {𝑘𝑘���, … , |𝐽𝐽𝐽𝐽|} 
  Let 𝐶𝐶 have 𝑘𝑘 clusters with first 𝑘𝑘��� clusters from 𝑝𝑝 of 
  max

�
|𝑗𝑗| ∈ 𝐽𝐽𝐽𝐽 and random selected 𝑝𝑝 for all other clusters 𝑐𝑐 

  Calculate Euclidian distances 𝑑𝑑�,�  for all 𝑝𝑝 ∈ 𝐽𝐽𝐽𝐽 to all 𝑐𝑐 ∈ 𝐶𝐶 
  For each location 𝑝𝑝 ∈ 𝐽𝐽𝐽𝐽 

  Sort  𝐶𝐶 in ascending order on distances 𝑑𝑑� from 𝑝𝑝 to 𝑐𝑐 
  For every cluster 𝑐𝑐 ∈ 𝐶𝐶 

  If point 𝑝𝑝 within maximum cluster size, 𝑑𝑑�,� ≤ 𝑟𝑟��� 
  If no locations of same JS, c ∩ {𝑝𝑝 ⊃ 𝑗𝑗} = ∅ 
      Assign 𝑝𝑝 to cluster 𝑐𝑐   

  If all locations assigned, 𝐶𝐶 ⊇ 𝐽𝐽𝐽𝐽 
  For each cluster 𝑐𝑐 ∈ 𝐶𝐶 

  Update centroid 𝑐𝑐 ≔ ∑�𝑤𝑤�
� 𝑝𝑝 ∈ 𝑐𝑐� ∑�𝑤𝑤�

� ∈ 𝑐𝑐��  
  Iterate between line 3 and line 12 until convergence     
  If all locations of joining scenario 𝑝𝑝 ∈ 𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽𝐽𝐽 are  
  okay with standards  

  Return clusters 𝐶𝐶 
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𝑐𝑐� = 𝑐𝑐��𝑛𝑛�, 𝑛𝑛�� � + 𝑐𝑐��𝑛𝑛��, 𝑛𝑛�� 
(4) 

𝑐𝑐��𝑛𝑛�
��� + 1, 𝑛𝑛��

��� + 𝑛𝑛��
� � − 𝑐𝑐��𝑛𝑛�

��� , 𝑛𝑛��
��� �

> 𝑐𝑐��𝑛𝑛��
� − 𝑛𝑛��

� , 𝑛𝑛�
�� (5) 

Table 2. Joining element densification algorithm for one set of joining 
scenarios based on unions of contact regions. 

Input Set of joining scenarios 𝐽𝐽𝐽𝐽  
Sets of joining clusters 𝐽𝐽𝐽𝐽 ∈  𝐽𝐽𝐽𝐽  
Sets of joining locations 𝐽𝐽𝐽𝐽 ∈  𝐽𝐽𝐽𝐽 

Output Set of joining clusters for each joining scenario 𝐽𝐽𝐽𝐽 ∈  𝐽𝐽𝐽𝐽  

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10:  

Sort 𝐽𝐽𝐽𝐽 on number of 𝐽𝐽𝐽𝐽 in descending order 
Sort 𝐽𝐽𝐽𝐽 by containing 𝐽𝐽𝐽𝐽 with most 𝐽𝐽𝐽𝐽; then most 𝐽𝐽𝐽𝐽 on 𝐽𝐽𝐽𝐽 
For each intersection of contact regions 𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 ∈ 𝐼𝐼𝑖𝑖𝐽𝐽𝐼𝐼𝐼𝐼 
  For all equal joining technologies 𝑡𝑡� grouped in 𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 

  For each joining scenario 𝐼𝐼 ∈ 𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 
     Get JCs laying on 𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 of joining scenario 𝐼𝐼 
  Number of JCs 𝑛𝑛�� in 𝐼𝐼 ∈ 𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 is highest max

�
𝑛𝑛��

�  
  For JCs on 𝐼𝐼 (𝑗𝑗𝑐𝑐) are manufacturable on other JS 𝑢𝑢 

  If densifying tradeoff (Eq. 5) is profitable 
  Append 𝑗𝑗𝑐𝑐 to joining scenario 𝑢𝑢 

Defining sales prospects as 𝑛𝑛�
�  and 𝑛𝑛�

�  for 𝐽𝐽𝐽𝐽�  and 𝐽𝐽𝐽𝐽�  
respectively, the tradeoff balances differences between an 
added module and the total produced number of JEs. 𝑛𝑛�

��� and 
𝑛𝑛��

���  represent all modules and joining elements of the entire 
product family. 

If Eq. 5 holds then it is beneficial to densify JEs of 𝐽𝐽𝐽𝐽� to 
𝐽𝐽𝐽𝐽�. The additional complexity costs of using original JEs from 
𝐽𝐽𝐽𝐽�  as an individual module are higher than the production 
costs created by the additional manufactured JEs considering 
the sales prospect 𝑛𝑛�

�  of the modularized 𝐽𝐽𝐽𝐽�. Especially few 
sold exotic modules, when 𝑛𝑛�

�  is low, are profitable to 
modularize as additional production costs are relatively small. 
Vice versa, densifying JEs that occur in virtually all products 
are expensive due to rapidly scaling production costs.  

The joining element densification algorithm (Table 2) starts 
with sorting joining clusters (JC) in descending order by the 
number of spatially aggregated joining locations. Then, it sorts 
JSs on the number of joining locations in their JCs in 
descending order and on the number of JEs in the JS itself.  

Next, the algorithm iterates through all IoCRs and iterates 
through all similar joining technologies per IoCR. The next 
nested iteration creates retrieval of JCs. Densification is 
possible for JCs of both JSs that lay on the same IoCR. The 
algorithm does not consider individual JEs to densify, as these 
might require unavailable space and reintroduce additional 
variety. Testing for standards and guidelines ensures that JCs 
that create new joining locations on other JSs are 
manufacturable considering edge distances, sheet thicknesses 
or materials. Lastly, the algorithm applies the complexity 
versus production cost tradeoff.   

3.5. Module creation 

Joining clusters created by spatial aggregation and 
redistributed by densification provide the basis to create JE 

modules. Module creation collects those JEs occurring in the 
same variants, because their underlying clusters assign joining 
locations to JSs. Then, each module becomes the largest subset 
of all JEs reoccurring for the same set of variants. Hence, JSs 
have sets of JE modules. Algorithmically, module creation 
consists of two group-by operations. Fig. 1 shows the 
visualization of module grouping illustrating creation of two JE 
modules: one using JEs I and II, and one with JE III. Starting 
with a dictionary of JSs and the JEs they contain, the first 
group-by function creates a dictionary of JSs for each JE. Then, 
a group-by function determines unique sets of JSs collecting 
those JEs that occur in the same variants. The methodology 
automatically regards local, global and domain-scopes as they 
derive from joining clusters that origin from transforming of 
CRs of joining scenarios into UoCRs. 

4. Discussion

The proposed methodology reduces variety in JE design by 
modularizing and commonalizing joining aspects. It aims to 
reduce complexity costs induced by product variety and makes 
it possible to automate the entire JE design [12]. This work is 
premiering JE modularization and contrary to the state of the 
art, it considers Design for Assembly principles in early 
product development phases. Balancing complexity and 
production costs lead to moderate modularization and prevent 
over-commonalization. The methodology does not alter 
already created modules and specifically focusses on the 
joining interfaces between modules. The method considers 
production information solely on part design level by reducing 
the variety in JEs, between them and between component 
modules. This work considers JE design to be subordinate to 
part design, hence suboptimal designs or variety considerations 
may result in a low degree of (JE) modularization. However, 
results of individual steps enable further analysis and insight 
into the complexity induced by JE designs [15]. Weights can 
consider already modularized and produced JEs and their 
modules aiding modular sustainability.  

CR-bounded modules risk future changes as new product 
variants might induce module splitting due to changing IoCRs. 
The methodology does not actively consider modules where 
JEs occurring in the same product but in different JSs such as 
subassemblies. Here, the scope (local, global, or domain) 
enables to control module creation and sustainability. 

Technology unification functions independently in the 
methodology. This optimizes results of joining technology 
selection methodologies with respect to product variety 
reasons. Automated JE design processes can use unified 
technologies to predict joining locations. Besides, location 
clustering and technology unification are interchangeable 
enabling to modularize with multiple joining technologies on 
each CR. This reduces the overall modularization granularity 
and requires more complex process documentation, i.e. [27]. 
Technology unification might create less optimal solutions for 
individual JSs and potentially violate performance-containing 
requirements. Standards and guidelines only validate 
manufacturability of JSs, but not their performance. Besides, 
the approach might leave multiple technologies open due to 
manufacturability limitations and requires multiple 
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technologies to further modularize in parallel or 
implementation of optimization algorithm.  

As described in [12], modularization enables to create a set 
of ‘Lego’-based JE modules to pick and place onto contact 
regions. For example, defining three modules that each have 
four spot-welds only with different mutual distances. 
Authoring such JE modules into JSs standardizes product 
documentation. However, this requires further research.  

The proposed process does not actively incorporate 
performance validation (e.g. using Finite-Element-Methods). 
Proper distribution of JEs is crucial in high performance 
structures such as the crash-worthiness of automotive Body-in-
White [10]. Therefore, uncontrolled or arbitrary removal and 
addition of JEs might induce reduction in performance [10].  

5. Conclusion

Nowadays, modularization is one of the main approaches to
manage product variety while containing complexity costs. 
However, current methodologies do not consider joining 
elements that experience a permutation of variety. This leads to 
increased complexity and thus to increased rework and costs. 

This work presents a methodology to modularize joining 
elements in high variety manufacturing industries. It describes 
a five-step process that reduces process variety through 
technology unification, geometrical variety through spatial 
aggregation, joining features through element densification and 
determines the final JE modules. Modularization must warrant 
the joining performance increasing the number of joining 
elements resulting in higher production costs. Hence, the study 
presents a cost tradeoff that enables balancing of complexity 
and production costs. 

Future research includes experimental evaluation of the 
methodology. It determines the benefits of combining JE 
prediction methodologies (e.g. see [13]) with modularization. 
Besides, further work will be done into evaluating the 
weighting functions and quantifying their parameters.  
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