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ABSTRACT
This work aims to examine the possibility of internal reso-

nances (modal interactions) among the vibration modes of a lev-
itation force Micro-electro-mechanical Systems (MEMS) based
resonator. The actuating levitation force is generated through a
special arrangement consisting of two stationary side electrodes
(both electrically charged) and a middle grounded unit consisting
of the stationary electrode located beneath a moving electrode
(micro-beam). Both “cantilever” (CL) and “clamped-clamped”
(CC) microbeams are analysed as the moving element of this es-
pecial design in which the applied voltage pushes away the micro
beam from the underneath substrate. All possible commensu-
rable relations between the frequencies are inspected. We use
the numerical bifurcation toolbox MatCont to capture the com-
puted frequency response branches and examine their stability.
A period-doubling bifurcation for the possible onset of chaotic
attractors is inspected as well. A preliminary eigenvalue prob-
lem analysis suggests the internal resonance may exist in both
(CC and CL) cases. However, an extended dynamical analy-
sis shows that just a 3-to-1 modal interaction (between the first
and third modes) in the CC arrangement is possible. The effects
of dominant force-related terms are plotted through associated
plots. These diagrams demonstrated that this design exhibits a
rich internal resonance behavior that can be controlled with dif-
ferent geometrical and actuating parameters. Overall, this effort
provides a systematic methodology and simple guidelines for in-
depth exploration of internal resonances in levitation force-based
microbeams. The outcomes of this work could also assist in the
development of MEMS sensors based on the internal resonance
phenomenon.

1. INTRODUCTION
Levitation force Micro-electro-mechanical Systems

(MEMS) configuration is a kind of device in which the applied
voltage pushes away the moving part from the stationary

∗Corresponding author: houakad@squ.edu.om

electrode underneath. The upward electric force in this pull-in
free structure is generated via a special arrangement by adding
two lateral substrates and applying the same voltage to these
side units while the middle unit is grounded [1, 2]. This
innovative design owns numerous advantages as compared to
the classical parallel-plates counterpart, such as the possibility
of bouncing back [3] rather than experiencing a pull-in in-
stability (micro-stiction, short circuit) [4–7], the double-side
tunability [8] against mere mono-side tunability with increasing
frequency shift, pairability with parallel plate [9] for releasing
the latched micro-beam, a higher resolution and broader range
for pressure/mass detection [10] and better durability with more
reliable performance for switch application [11]. In almost all
of the literature concerning levitation force MEMS layout, one
mode assumption has been used to simplify the derivation of
the governing equation of motion. This simplification comes at
the expense of missing some system characteristics limiting the
proper prediction of the dynamical behavior.

Internal resonance emerges from the energy transfer between
the vibration modes, which have promising applications for func-
tional improvement in MEMS [12, 13]. The prerequisites for
such a modal interaction in MEMS with parallel plate structure
have been defined by Younis et al. [14] based on classical theory.
Adopting modified coupled stress theory, Ghayesh et al. [15]
studied the modal interaction considering the effect of size, the
length-scale parameter, and curvature nonlinearities on the over-
all dynamical response. Recently, Kumar et al. [16] characterized
all possible internal resonances within a clamped-clamped micro
resonator and how to tolerate the internal resonance by adjusting
the external force, and geometrical and material properties. In
almost all the investigations on internal resonance, the standard
indirect and time-consuming semi-analytical techniques (such as
perturbation analysis) require re-writing the governing equation
of motion based on the magnitude of the standing terms. This
approach is followed by balancing the terms and leading to con-
ditionally valid and invalid responses based on the prejudgment
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(a) cantilever (CL)

(b) clamped-clamped (CC)

FIGURE 1: 3D view of the levitation force MEMS actuator in two
cases.

of the magnitude for the dominant terms.
Another MEMS structure exhibiting strong energy exchange

is an arch-shapedMEMS device with initial rising or divulging in
the moving segment. Ouakad et al. [17] conducted an exhaustive
investigation of internal resonance with the method of multiple
scales. They proved the effect of the initial rise and mid-plane
stretching on triggering the modal energy exchange, which might
be intrinsic at first glance. Other phenomena like jumping and
bifurcations arising from the modal interaction of three to one
internal resonance were explored by Wang et al. [18]. Typical
analyses involved Poincaré sections, and the Fast Fourier Trans-
formation (FFT) further indicated the necessity of taking higher
modes into account for a comprehensive study of the MEMS
structure and detection of modal interaction. From the litera-
ture review, we realized that higher modes for levitation force
MEMS structure and modal interactions to-date ignored to-date,
although their effect has been studied extensively for other kinds
of MEMS systems. Here, we study their effect employing a more
straightforward approach using the numerical bifurcation toolbox
MatCont. As the modes are weakly stable, this approach is much

(a) 2D schematic front view of the arrangement displaying the elec-
trical and geometrical characteristics in which the side electrodes
are charged and the middle ones are grounded.

(b) 2D finite element simulation for electric force distribution around
the boundaries of moving electrode. The upward and downward
arrows represents the repulsive and attractive force respectively.

FIGURE 2: Schematic view for the geometrical and electrical char-
acteristics of the levitation force MEMS segments.

faster than the simulation approach, and we capture the complex
response branches of the system accurately. The continuation ap-
proach allows us to determine stability, detect bifurcations, and
perform branch switching for our exhaustive survey.
In section 2, we describe the geometry of our MEMS device

and the governing equation of motion. Section 3 provides details
of our analysis using MatCont followed by the results in section
4. The highlights are summarized and discussed in section 5.

2. MODEL DESCRIPTION AND SYSTEM FORMULATION
The proposed repulsive force actuator’s design consists of

a suspended clamped-clamped (CC) or/cantilever (CL) moving
electrode, a fixed middle electrode placed directly underneath the
moving one, and two side electrodes, as shown in Fig. 1. The
levitation force is generated by applying the same voltage to the
side electrodes while the middle unit is grounded as displayed in
Fig. 2a or by grounding the side electrodes and applying the same
voltage to the subcomponents of the middle unit. Subsequently,
the finite element (FE) analysis of the distributed net force on
the borders of the moving part (see Fig. 2b) implies the result-
ing upward force that lifts the moving electrode away from the
substrate.

2 Copyright © 2021 by ASME



TABLE 1: Geometrical and Material Properties of the Repulsive
Force Actuator

Parameter Symbol value
Middle beam length (Clamped-Clamped) (𝜇𝑚) 𝐿 1000
Middle beam length (Cantilever) (𝜇𝑚) 𝐿 503

Middle beam width (𝜇𝑚) 𝑏 17.5
Grounded middle electrode width (𝜇𝑚) 𝑏1 30
Grounded side electrode width (𝜇𝑚) 𝑏2 288
Upper electrodes thickness (𝜇𝑚) ℎ 2
Lowwer electrodes thickness (𝜇𝑚) ℎ1 0.5
Middle beam electrode gap (𝜇𝑚) 𝑔0 2
Side electrodes gap (𝜇𝑚) 𝑔1 2
Lateral distance (𝜇𝑚) w 20.5
Elastic modulus (𝐺𝑝𝑎) 𝐸 150
Density (𝑘𝑔/𝑚3) 𝜌 2320
Poisson’s ratio 𝜈 0.22

Air permitivity (𝑝𝐹/𝑚) 𝜀0 8.854
Characteristic height (𝜇𝑚) 𝑧̄ 2

TABLE 2: Normalizing Parameters [19]

Parameter Substitution
Nondimentonal length position 𝑥 = 𝑥̂/𝐿
Non-dimentional deflection 𝑤 = 𝑤̂/𝑧̄
Non-dimentional time 𝑡 = 𝑡/𝑇
Non-dimentional damping C∗ = 𝛼2/Q
Area cross section(𝑚2) 𝐴 = 𝑏ℎ

Moment of inertia(𝑚4) 𝐼 = 𝑏ℎ3/12
Time constant(𝑠) 𝑇 =

√︁
𝜌𝐴𝐿4/𝐸𝐼

Mid-plane stretching constant 𝑟1 = 6
(︃
𝑔0
ℎ

)︃2
Force constant(𝑚/𝑁 ) 𝑟2 = 𝐿4/𝐸𝐼 𝑧̄

1𝑠𝑡mode natural frequency 𝛼

Quality factor Q

Adopting the framework of Euler-Bernoulli beam theory for
an electro-mechanically coupled beam with out-of-plane (z) di-
rection movement, neglecting the in-plane (y) deflection, because
of the high width to thickness ratio, and including the stretch-
ing effect, the corresponding normalised governing equation for
the out-of-plane motion of the repulsive force actuator, in non-
dimensional form, can be written as [19]:

𝜕2𝑤

𝜕𝑡2
+ C∗ 𝜕𝑤

𝜕𝑡
+ 𝜕4𝑤

𝜕𝑥4
− 𝑟1

[︃ ∫ 1
0

(︃
𝜕𝑤

𝜕𝑥

)︃2
𝑑𝑥

]︃
𝜕2𝑤

𝜕𝑥2
+ 𝑟2𝑉

2 𝑓𝑒 (𝑤) = 0,
(1)

where all the geometrical and normalizing parameters used in the
above equation are listed in Tables 1 and 2. For the cantilever
beam the stretching effect is negligible, i.e. we set 𝑟1 = 0, while
for the clamped-clamped beam, it is activated by setting 𝑟1 = 6.
We perform a Galerkin-based reduced-order modelling (ROM)
[4, 20, 21] on Equation (1) to approximate the moving electrode’s
resultant static/dynamic deflection (response) as follows:

𝑤(𝑥, 𝑡) =
𝑁∑︂
𝑖=1

𝑈𝑖 (𝑡)𝜑𝑖 (𝑥), (2)

The ROM process results in a system of coupled nonlinear ordi-
nary differential equations in which𝑈𝑖 represents the generalized
coordinates depending on time. The basis functions, 𝜑𝑖 (𝑥), have

TABLE 3: Mode shape natural frequencies and constants [19].

Mode 𝛽2𝑛(CL) 𝜎𝑛(CL) 𝛽2𝑛(CC) 𝜎𝑛(CC)
1 3.516 0.7341 22.3733 0.9825
2 22.035 1.01185 61.6728 1.00078
3 61.697 0.9992 120.903 0.9999

TABLE 4: Force constant defining for electrostatic force profile [3].

Symbol Unit value
A0 𝑁 /𝑚 −1.1703 × 10−7
A1 𝑁 /𝑚2 −3.8677 × 10−4
A2 𝑁 /𝑚3 3.5574 × 102
A3 𝑁 /𝑚4 −1.2595 × 107
A4 𝑁 /𝑚5 1.7347 × 1011
A5 𝑁 /𝑚5 −8.5695 × 1014

the following form:

𝜑𝑖 (𝑥) = 𝑠𝑖𝑛(𝛽𝑛𝑥) − 𝑠𝑖𝑛ℎ(𝛽𝑛𝑥) − 𝜎𝑛

[︁
𝑐𝑜𝑠(𝛽𝑛𝑥) − 𝑐𝑜𝑠ℎ(𝛽𝑛𝑥)

]︁
(3)

𝛽𝑛 denotes the square roots of the non-dimensionalized natural
frequencies, and 𝜎𝑛 are constants determined from the boundary
conditions and mode to be considered (see Table3). The most
challenging step for the mathematical analysis of the system’s be-
havior is to determine the equivalent value for the distributed elec-
trostatic force and the generated levitation force per unit length
( 𝑓𝑒 (𝑤)). For this, we adopt 2D finite element simulations, and
we fit a polynomial function to the obtained electrostatic profile.
This method has been experimentally validated [19]. A fit with
a fifth-order polynomial accurately captured the profile, and the
equivalent coefficients are listed in Table 4. The resulting system
of ODEs can be written as [8]:
𝑁∑︂
𝑖=1

M𝑖 𝑗𝑈̈𝑖 (𝑡)+
𝑁∑︂
𝑖=1

C𝑖 𝑗𝑈̇𝑖 (𝑡)+
𝑁∑︂
𝑖=1

K𝑖 𝑗𝑈𝑖 (𝑡)−
𝑁∑︂
𝑖=1

S𝑖 𝑗𝑈
3
𝑖 (𝑡)+𝐹𝑗 = 0

(4)
where M, C, K and S are mass, damping, mechanical stiffness
and stretching matrices, respectively, and 𝐹 stands for the forcing
vector. They are defined by:

M𝑖 𝑗 =

∫ 1
0
𝜑𝑖𝜑𝑗𝑑𝑥 K𝑖 𝑗 =

∫ 1
0

𝑑2𝜑𝑖

𝑑𝑥2
𝑑2𝜑𝑗

𝑑𝑥2
𝑑𝑥

C𝑖 𝑗 = C∗M𝑖 𝑗 S𝑖 𝑗 = 𝑟1

[︃ ∫ 1
0

(︃
𝑑𝜑𝑖

𝑑𝑥

)︃2
𝑑𝑥

]︃ ∫ 1
0
𝜑𝑗

𝑑2𝜑𝑖

𝑑𝑥2
𝑑𝑥

𝐹𝑗 = 𝑟2𝑉
2
∫ 1
0

5∑︂
𝑘=0

A𝑘 𝑥̄
𝑘

(︄
𝑁∑︂
𝑖=1

𝑈𝑖𝜑𝑖

)︄ 𝑘
𝜑𝑗𝑑𝑥 (5)

Modal interaction within a system requires that the ratio of
the natural frequencies is close to rational. The natural frequen-
cies are computed from the eigenvalues of the Jacobian matrix
based on Equation (4) after excluding the damping term and
evaluated at the fixed points (static equilibrium one) [22]. The
experimental data for the first natural frequency of our system
has been reported in [19]. To validate the numerical approach,
we compare the corresponding results for the first natural fre-
quency versus the applied DC voltage in Figure 3. We find that

3 Copyright © 2021 by ASME
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FIGURE 3: Comparison of the first natural frequency obtained from
numerical (solid line) and experimental (dots) results [19].

we can reasonably predict the natural frequencies, although the
slight difference comes from the effect of bottom dimples that
are neglected in the numerical approach [19] . Furthermore,
the numerical approach is capable of proper prediction for the
falling-rising trend of the natural frequency which comes mainly
from the hidden nature of the generated repulsive force in terms
of applied DC voltage.

3. DYNAMIC RESPONSE EVALUATION USING MATCONT
In this section, we survey the numerical approaches for cap-

turing the dynamic response of the repulsive electric micro-
actuator. The objective is to obtain the frequency response as
the beam is deflected by a DC load and vibrates by an AC har-
monic load near its respective fundamental frequency. Typically,
in any dynamical analysis, long-time integration for the ROM
equations of motion can be used. However, this method suffers
convergence problems near bifurcation points and, in general, is
not considered a robust method for studying nonlinear vibrations.
Other numerical approaches like the shootingmethod [23, 24] are
highly sensitive to the initial conditions to find the periodic re-
sponse. This problem exacerbates near bifurcations rendering the
method ineffective. Because of the periodic forcing, the system
exhibits a periodic response. This motivates to use the numer-
ical continuation toolbox MatCont [25, 26]. It computes one-
parameter families (branches) of periodic orbits of autonomous
systems and obtain the Floquet multipliers to determine their sta-
bility as a function of the parameter, e.g., the forcing frequency.
When the stability changes, we can easily find the corresponding
bifurcation points. Freeing one more parameter, we can compute
bifurcation curves in the parameter plane. MatCont works mainly
using for autonomous first-order system [27]. So we reformulate
the system of second-order ODEs (Eq.(5)) as a first-order system,
and we use the Hopf normal form for the forcing, i.e., we augment
the system with two ODEs{︄

𝑋 ′ = −Ω𝑌 + 𝑋 (1 − 𝑋2 − 𝑌2, )
𝑌 ′ = Ω𝑋 + 𝑌 (1 − 𝑋2 − 𝑌2).

(6)
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FIGURE 4: visual feasibility study chart in case of CL micro-beam
with L = 503 micron for commensurate relation between first and
second vibration modes.

The variables 𝑋 and 𝑌 evolve on the unit circle, and the term
𝑐𝑜𝑠(Ω𝑡) can be replaced with 𝑋 . Next, we initialize the system
with 𝑋 = 0 and 𝑌 = 1 and 𝑈𝑖 = 𝑈 ′

𝑖
= 0 and perform time

integration for a sufficiently long time such transients have faded,
and the state converged to the steady-state response. We then pick
up the final point of this simulation and perform one more time
integration for one forcing period. Through the “Select Cycle”
feature, this last simulation is used as initial data for the numerical
continuation, where we select the forcing frequency Ω and the
period as free parameters. The continuation produces a sequence
of points with an approximation of the periodic response for each
parameter value. We plot the maximal amplitude of the variable
𝑈1 as a function of the forcing frequency Ω. For terminology
about bifurcations, we refer to [28].

4. RESULTS AND DISCUSSION
4.1 Exploration of internal resonance in case of CL
we assume that the numerical approach elaborated in the

previous section is extendable for predicting the higher-order nat-
ural frequencies with similar accuracy. However, regarding the
geometry of the moving element and the minimal effect of the
asymmetric vibration m ode (third mode), governing equation of
motion in this case is extended considering up to second vibra-
tion mode. Accordingly, Fig. 4 represents the prospect crossing
of natural frequencies for micro cantilever beam with 𝐿 = 503
microns, which might be considered the initial sign of six-to-one
internal resonance between first and second frequencies. Gener-
ally, the figures indicate that for the applied DC voltage between
100 to 115 𝑉𝑜𝑙𝑡, the system is susceptible to exhibit energy ex-
change but the previously detailed study in other MEMS system
with the same moving unit [15], rules out the possibility of inter-
nal resonance due to the much lower amplitude of second mode
compering to the corresponding one for the first mode. Conse-
quently this case is deleted from our case studies as the possible
internal resonance for cantilever micro-beam case as it demands
a lower integer for the proportionality between first and second

4 Copyright © 2021 by ASME



vibration modes.
One useful and practical tool to confirm the previously re-

ported results is Fast Fourier Transformation (FFT)whichweights
the modal contribution as presented in Figure 5 for each mode.
Comparing the maximum of each mode, the contribution of the
second mode is negligible to the first mode showing that en-
ergy exchange between the first and second mode is not feasible.
Hence, in this case, it is justified to assume just one mode to
predict the dynamic behavior of the system, which simplifies the
governing equation of motion.

4.2 Exploration of internal resonance in case of CC
Following the similar approach as above (i.e. excluding the

second mode considering the geometry of the system and modal
interaction), we constructed the Jacobian matrix to calculate the
natural frequencies up to third order, as shown in Fig. 6. Eval-
uating the results, we observe the potential case of 3:1 internal
resonance between the first and third natural frequencies.
Fig. 6, visually stipulates that emerging the internal reso-

nance in our system requires a range higher than the crossing
threshold of 180𝑉 for applied DC voltage. We then vary the
excitation frequency Ω to explore the frequency response of the
system and possible energy exchange. Taking three vibrational
modes and inserting the equation of motion into MatCont, Fig. 7
depicts the frequency response under applied DC voltage of 185
V.
To investigate the effect of increasing the applied DC and

AC voltages on the nature and strength of internal resonance,
we determined the frequency response for the first three modes
(see Figure 9). Comparing the results depicted in Fig. 7 implies
the expanding and intensifying effect of combined AC and DC
voltage and upper starting point as the static equilibrium due to
the applied DC voltage. Also, the sub-figures 9b, 9c , 9d show the
detail of the response with the solid and dashed lines representing
stable and unstable branches, respectively andmarking the crucial
points. Here LPC stands as saddle-node of periodic orbits while
NS represents Neimark-Sacker of periodic orbits leading to a
torus.
As the applied AC voltage can alter the result, the force

response can be an instrumental diagram to explore the effect of
increasing the applied AC voltage in a fixed applied DC voltage
higher than the threshold coming from Fig. 6 and a fixed detuning
frequency near emerging the internal resonance coming from
9. Figure 10 shows the effect on the response of the first and
third mode of sweeping the applied AC voltage in four detuning
excitation frequencies. The solid thick lines denote the Neimar-
Sacker bifurcation (“Hopf for maps”), while solid and dotted lines
depict the stable and unstable solution, respectively. The zoom-
in Fig. 8 shows how an internal resonance develops near this
voltage, and the third mode activates the energy exchange though
with lower amplitude compared to the first vibration mode.
As principal parametric resonance was already reported ex-

perimentally [3] and validated mathematically [8], extending the
frequency sweep in the vicinity of twice the primary resonance
can be helpful. An important feature of MatCont is the detection
of period-doubling (PD) bifurcation, where chaotic responses
may arise. Continuing the forward sweep of the excitation fre-

quency, we detected a PD point nearΩ = 137.8. The normal form
coefficient computed by MatCont indicates this is a supercritical
PD bifurcation, and this is shown in Figure 11. Here, the simu-
lation near the detected PD point of the stable doubled response
shows two dots in the Poincaré section. This diagram highlights
the parametric internal resonance in our system, demanding more
exhaustive and separated evaluation in this region.

5. CONCLUSION
This study evaluated the possibility of modal interaction in

levitation force MEMS actuators. The overall outcomes of this
investigation are summarized as follows: In the case of CL, the
eigenvalue problem results predicts the occurrence of internal
resonance between first and second vibration modes. Neverthe-
less, the commensurate relationship of this twomodeswas further
examined using few dynamic simulations and FFT diagrams, and
they both showed almost no possible modal interaction can occur
among these two modes.
In the case of CC, the analysis implies that the first mode is

proportional to the third mode with a factor of 3. This possibility
of internal resonance was examined again using frequency re-
sponses curves which all showed the two modes interaction with
softening-hardening trends very useful for sensing applications.
The effect of increasing the AC voltage increasing the a fixed

DC voltage was assessed with excitation frequencies varying in
the neighborhood of the internal resonance area. The generated
frequency responses showed few the cyclic fold and Hopf bifur-
cations via constructed Jacobian matrix. Finally, examining the
frequency response in the vicinity of twice the primary resonance
led to the detection of a period-doubling point supporting the po-
tential of parametric internal resonance for the examined system.
Phase plots and Poincaré section diagrams were also generated
for further evaluation in the vicinity of the internal resonance
occurrence area. Such diagrams were also useful in detecting
some hidden characteristics and new features of the structure and
provided further evidences of the occurrence of possible chaotic
behavior of the system within this internal resonance region. The
general assessment of this work stipulates that the geometry and
dimension of the moving part (the microbeam) are dominant fac-
tors in creating modal interaction that can be further studied to
design smart mass sensors based on modal-interaction.
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