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Abstract— Transfers between public transport modes hinder
the traveling by public transport due to the unreliability and
long waiting times. Nonetheless, public transport operators
are mainly interested in maintaining the regularity of different
lines without accounting for the transfer waiting times. This
work focuses on the application of bus holding to reduce
the transfer waiting times, in-vehicle waiting times, and the
deviation from the target headways. The determination of
optimal holding times is performed in time horizons (e.g.,
hourly time periods) where past events are fixed, while future
events are considered in the optimization process. This study
models the bus holding problem which considers transfer
synchronization as a nonlinear convex program (NLP) that
can be solved by off-the-shelf solvers. Our approach is tested
against state-of-the-art bus holding methods in a case study
on the bus network of Almere (Netherlands) demonstrating a
significant reduction in the transferring waiting times.

Keywords: scheduling holding times; transfer synchronization;
bus regularity; nonlinear programming.

I. INTRODUCTION

Congestion and air pollution are major problems that can
be reduced by an increased use of public transport. However,
to increase the public transport ridership public transport
services have to be attractive. Frequency, unreliability and
long waiting times at transfers between lines are seen as
barriers to using public transport [1], [2]. Several studies
have shown that people desire short waiting times and easy
transfers [3], [4]. Therefore, many public transport timetables
include planned transfers to reduce the waiting times at
the transfer stop(s) [5], [6]. Even if timetables consider the
planned transfers to reduce the waiting times, operational
delays might result in passengers missing their connection
and, consequently, wait for a long time period. Because
unreliability is one of the most important aspects in bus
operations [7], [8], we consider the impact of operational
delays to planned transfers, in-vehicle passenger waiting
times, and waiting times of regular passengers at non-transfer
stops.

Existing literature mostly focuses on optimization of trans-
fers in the timetable development phase [9]. Fleurent et al.
[10] use the concept of a “trip meet” to describe a good
connection. A “trip meet” occurs if the waiting time is not too
long or too short. They suggest a minimum of 3 minutes and
a maximum of 10 minutes for these boundaries. Furthermore,
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they weight these “trip meets” based on importance. Their
optimization algorithm uses a “trip meet” quality index as
objective, which is defined as the difference between the
ideal waiting time and the actual waiting time as long as
the waiting time is still within the admissible range. This
objective was integrated in a global optimization algorithm
which also considers the fleet size and deviation from the
target headway. Ibarra-Rojas and Rios-Solis [11] also use
trip meets, but their model just maximizes the number of
successful synchronizations. In their work, headways are
taken into account as a constraint, but fleet size is not taken
into account.

Wu et al. [12] describe a model which optimizes the
waiting time of transfer passengers in the Beijing subway
and tries to distribute the waiting time over multiple transfer
stations using a min-max function. This formulation treats
the regularity of the lines as a constraint and vehicle schedul-
ing is not taken into account. Parbo et al. [13] apply a similar
technique. Their objective function only consists out of the
waiting times at transfer stops multiplied by the number
of passengers transferring and their value of time split into
different passenger groups. Only the offset at the first stop
of an existing timetable can be changed, and their model
considers changes to the passenger numbers as a result of
the new timetable.

A planning model which includes transfers, regularity and
fleet size is [14]. Their bi-objective, bi-level optimizes the
total operation costs based on the fleet size, the total pas-
senger initial waiting time, total passenger transfer waiting
time and the overcrowding hours. The last three aspects are
combined into one in the objective function, alongside the
fleet size.

Other works created models which re-optimize the
timetable during the actual operations. In this research area,
most works focus on maintaining the regularity or headways,
e.g. [15], [16], [17]. The aforementioned works solve the
bus holding and rescheduling problem with heuristic algo-
rithms based on real-time vehicle location information to
increase the regularity of the lines. In Nesheli and Ceder
[18], passenger transfers are taken into consideration as
a potential reason for holding vehicles. The regularity is
not included directly, but is maintained by minimizing the
waiting time of passengers at stops further downstream.
Furthermore, besides holding, skip-stopping is also included
as a potential measure. Their model can decide which control
action is most suitable in a specific situation, although it is
a deterministic model which, for instance, assumes that the
future passenger demand is not varying. Their objective aims



to minimize the total additional waiting time for passengers
during their transfer, when they are already in the bus, or
waiting at a stop downstream. Nesheli and Ceder [19] is an
extension to [18] considering the reliability of the network
and the sensitivity of certain variables to control measures.
Nesheli et al. [20] extend the two previous works further
by including a short-turning strategy via using a variable
indicating if a direct transfer is possible.

Gkiotsalitis and Maskelar [21] reschedule trips and opti-
mize the expected waiting time and transfer waiting time
using a sequential hill-climbing algorithm. The expected
waiting time is an alternative way to include the headway
deviation in the optimization model. Their model does not
take the vehicle allocation into account, which can lead
to the need of more vehicles to be able to operate the
re-optimised timetable. The model of [22] is specifically
created for rail systems and minimizes the waiting time of
transferring passengers. The regularity is not included as
objective, but headways are constrained. Dwell times are
treated as a decision variable and are constrained as well.

In the literature, there are multiple works that minimize the
waiting time of transferring passengers – but mainly during
the timetable planning phase (see [10], [13], [14], [18], [20],
[21], [22]). Most of them also consider the regularity by min-
imising the expected waiting time of passengers. However,
some studies that re-optimise the timetable during operation
(also known as rescheduling) only include a maximum or
minimum headway as problem constraint. Additionally, most
models do not take the vehicle scheduling, and thus the vehi-
cle availability, into account. Furthermore, in past literature
rescheduling typically changes the dispatching times of trips
without devising bus holding strategies.

This paper considers periodic re-optimization of a public
transport network by scheduling new bus holding measures.
Besides minimizing the waiting times of transferring pas-
sengers, the regularity of individual bus lines is also part of
the objective function. In this study, the regularity is defined
as the deviation between the actual and the target headway.
Furthermore, extra waiting times at stops downstream of the
holding stop are included. These three aspects are combined
with different weights, which makes it possible to change
the optimization focus depending on priorities in the specific
area. Existing research using real-time or rolling horizon
models does not take vehicle availability constraints into
account, while this work considers their impact on the
bus holding options. Furthermore, we consider both the
transferring waiting times and the in-vehicle travel times,
which, in most studies, is not taken into account.

II. PROBLEM FORMULATION

Travel time variations during the actual operations are
the main factor of irregular services and missed passenger
transfers [23], [24], [25]. To rectify this, we propose bus
holding schedules which can be updated in time horizons
(e.g., every hour).

This work makes a number of reasonable assumptions,
such as: (i) the number of bus trips per line is decided during

the frequency settings phase and all of the assigned trips are
expected to be performed during the day [26]; and (ii) bus
trips from the same line are not expected to overtake one
another (an assumption used in several operational planning
works, such as [15], [27]).

The notation of our multi-line synchronization problem in
time horizons is presented in Table I.

TABLE I
NOMENCLATURE

Sets
L L = {1, ..., l, ...} are the different bus lines in the study area
N(l) N(l) = {1, ...,n, ...} is the set of trips of each bus line l ∈ L that

are planned to be dispatched during the time horizon where we
schedule the holding times

S(l) S(l) = {1, ...,s, ...} is the set of bus stops of each bus line l ∈ L
ordered from the first to the last

Bl j all transfer stops between lines l and j where the arrival times
of trips that belong to line l need to be synchronized with the
arrival times of trips that belong to line j

Parameters
fl is the number of trips for each line l ∈ L which are needed to

fulfill the demand (note: the number of trips is already determined
at the frequency settings stage)

T the planning period (note: the suggested planning period is at
most one day of operations)

h∗l h∗l = T
fl

is the ideal headway of bus line l ∈ L that should be
maintained at all bus stops for attaining a perfectly regular service
(sec)

tl,n,s denotes the expected travel time of bus trip n of line l between
stops s−1 and s (sec)

δ min
l is the dispatching time of the first trip of the planning period

(sec)
δ max

l is the latest possible time where all trips of line l ∈ L must have
completed their service for preventing schedule sliding (sec)

kl,n,s is the expected dwell time of bus trip n of bus line l at stop s
(sec)

ψl is the required layover time for line l after completing each bus
trip (sec)

dl,n the scheduled dispatching time of trip n that belongs to line l
a1 weight of waiting time of transferring passengers
a2 weight of the extra travel time due to bus holdings
a3 weight of the service regularity, measured as the deviation of the

inter-arrival headways from their scheduled values
πbnm

l j transfer demand weight based on the number of expected pas-
sengers willing to transfer from trip n of line l to trip j of line
m at transfer stop b

πl,n,s in-vehicle demand weight based on the number of in-vehicle
passengers of trip n of line l at stop s

ψl required layover time for bus line l
Φl

n,n′ Φl
n,n′ = 1 if trip n′ ∈ N(l) is the following trip of trip n that is

operated by the same bus, and zero otherwise
Y bnm

l j Y bnm
l j = 1 is trip n ∈ N(l) needs to synchronize its arrival time

with trip m ∈ N( j) at transfer stop b ∈ Bl j , and zero otherwise
Hmin

l minimum allowed headway of successive vehicles of line l
Hmax

l maximum allowed headway of successive vehicles of line l

Variables

xl,n,s is the bus holding time of the nth trip that belongs to line l at
stop s (sec). Note that this is the decision variable of our problem

al,n,s the arrival time of trip n that belongs to line l at stop s
hl,n,s the inter-arrival headway between trips n,n−1 that belong to line

l at stop s

Following the notation in Table I, the arrival time of any
trip n that belongs to a bus line l ∈ L at stop s ∈ S(l)\{1}
is:



al,n,s = dl,n +
s

∑
z=2

tl,n,z +
s−1

∑
z=1

(kl,n,z + xl,n,z) (1)

In Eq.1 the arrival time of a trip n at stop s is set equal
to the departure time of the trip, dl,n, plus the sum of
the expected travel times between consecutive stops until
reaching stop s, ∑

s
z=2 tl,n,z, plus the expected dwell time

at each bus stop until reaching stop s, ∑
s−1
z=1 kl,n,z, plus the

scheduled holding times at each bus stop until reaching stop
s, ∑

s−1
z=1 xl,n,z.

A. Objective Function

To increase the regularity of bus services, the actual inter-
arrival time headways at bus stops should be as close as
possible to their scheduled values, h∗l =

T
fl

, for each line l ∈
L. The inter-arrival time headway between two consecutive
services n−1,n of line l at stop s is:

hl,n,s = al,n,s−al,n−1,s where n ∈ N(l)\{1} (2)

The difference between the actual headways and the ideal
headways at stops is the sole key performance indicator of
regularity-based services and has been in use in London,
Singapore, Barcelona and many other densely populated
areas where the bus services operate in high frequencies
[28]. To reduce the difference between the actual inter-arrival
headways and the ideal ones for a bus line l ∈ L, one should
minimize the sum of the squared difference between the
actual and the ideal headways (see [29]):

∑
s∈S(l)

∑
l∈L

∑
n∈N(l)\{1}

(
hl,n,s−h∗l

)2 (3)

Apart from the service regularity, we also consider the
additional travel time because of the imposed holding times.
This can be expressed as:

∑
l∈L

∑
s∈S(l)\{1}

∑
n∈N(l)

πl,n,sxl,n,s (4)

By minimizing Eq.4, we strive to reduce the time period of
the imposed headways because they increase the trip travel
times of in-vehicle passengers. Note that xl,n,s is multiplied
by the in-vehicle demand weight πl,n,s because holding a
vehicle with more passengers onboard results in increased
inconvenience [30].

Last, we also consider the waiting times of passengers
that miss their transfer connection. Let Y bnm

l j be a binary
parameter where Y bnm

l j = 1 if trip n ∈ N(l) needs to synchro-
nize its arrival time with trip m ∈ N( j) at the transfer stop
b ∈ Bl j and Y bnm

l j = 0 otherwise. Ceder et al. [6] considers
a perfect synchronization when trip n arrives at the transfer
stop b ∈ Bl j exactly at the same time as trip m ∈ N( j). In
this way, the waiting times of passengers that want to transfer
from bus trip n∈N(l) to bus trip m∈N( j) at bus stop b∈Bl j
are minimized when al,n,b−a j,m,b = 0.

In our study, we follow the definition of [6] and we
consider a synchronization of passengers of trip n ∈ N(l)
who transfer to trip n ∈ N( j) when

Y bnm
l j

(
al,n,b−a j,m,b

)
= 0

∀l, j ∈ L,∀n ∈ N(l),∀m ∈ N( j)\{1},∀b ∈ Bl j (5)

Note that when Y bnm
l j = 0 the inequalities of Eq.5 hold

for any value of the arrival times al,n,b and a j,m,b because
in such case there is no requirement for synchronization. To
penalize the increase of transfer waiting times in case of a
missed synchronization, we need to minimize the transfer
waiting times of all passengers in our time horizon:

∑
l∈L

∑
j∈L\{l}

∑
n∈N(l)

∑
m∈N( j)\{1}

∑
b∈Bl j

π
bnm
l j Y bnm

l j (al,n,b−a j,m,b) (6)

where the transfer demand weight πbnm
l j is used to place

more importance on synchronized transfers with increased
passenger demand.

Combining Eq.3,4 and 6 yields our objective function:

f (x,h,a) :=

a1 ∑
l∈L

∑
j∈L\{l}

∑
n∈N(l)

∑
m∈N( j)\{1}

∑
b∈Bl j

π
bnm
l j Y bnm

l j (al,n,b−a j,m,b)+

a2 ∑
l∈L

∑
s∈S(l)\{1}

∑
n∈N(l)

πl,n,sxl,n,s+

a3 ∑
s∈S(l)

∑
l∈L

∑
n∈N(l)\{1}

(
hl,n,s−h∗l

)2 (7)

where a1 is a weight factor indicating the importance
of transfer waiting times, a2 a weight factor indicating
the importance of extra in-vehicle travel times due to bus
holdings, and a3 a weight factor indicating the importance
of irregularities in the service.

B. Vehicle circulation and schedule sliding constraints
Reckon that Φl

n,n′ = 1 if bus trip n′ ∈ N(l) is operated
after the completion of bus trip n ∈ N(l) by the same bus
and Φl

n,n′ = 0 otherwise. Then, if the required layover time
for bus line l ∈ L is ψl , the holding times, xl,n′,s, of trip n′

should satisfy the inequality:

Φ
l
n,n′

(
dl,n′−

(
dl,n+ ∑

s∈S(l)\{1}
tl,n,z+ ∑

s∈S(l)
(kl,n,z+xl,n,z)

))
≥

Φ
l
n,n′ψl , ∀n,n′ ∈ N(l),∀l ∈ L (8)

Note that the inequality of Eq.8 is always satisfied when
bus trip n′ is not operated by the same bus as trip n because
then Φl

n,n′ = 0 and the inequality holds.
Finally, to prevent schedule sliding and maintain the

duration of the rolling horizon, all trips of any bus line
l ∈ L must have been completed before time δ max

l . Avoiding
schedule sliding yields the following inequality constraints:

dl,n + ∑
s∈S(l)\{1}

tl,n,z + ∑
s∈S(l)

(kl,n,z + xl,n,z)≤ δ
max
l

∀n ∈ N(l), l ∈ L (9)



which ensures that each trip n of line l has arrived at the
last stop and has completed all passenger alightings before
time δ max

l .

III. MATHEMATICAL PROGRAM OF THE NETWORK-WIDE
SYNCHRONIZATION PROBLEM

Our bus holding synchronization model explicitly con-
siders the regularity of the bus lines, the transfer synchro-
nizations, and the in-vehicle travel time increase due to bus
holdings:

(Q) : min
x,h,a

f (x,h,a)

s.t.: Hmin
l ≤ hl,n,s ≤ Hmax

l , ∀l ∈ L,n ∈ N(l),s ∈ S(l)

(x,a,h) ∈F = {(x,a,h) satisfy Eq. 1-2, 8-9}
xl,n,s ∈ R≥0 , ∀l ∈ L,∀n ∈ N(l),∀s ∈ S(l)

(10)
where constraints Hmin

l ≤ hl,n,s ≤ Hmax
l , ∀l ∈ L,n ∈

N(l), s ∈ S(l) ensure that the minimum and maximum
allowed headways of successive vehicles of any line l ∈ L
are met.

Program (Q) is a convex nonlinear optimization problem
and can be solved to global optimality with a solution method
for nonlinear programming (e.g., the interior point method
[31] available in many off-the-shelf solvers). The formal
proof is provided in Theorem 3.1.

Theorem 3.1: Program (Q) is a convex optimization prob-
lem.

Proof: The constraints of our optimization problem
are linear (in)equalities. Ergo, the feasible region F is a
polyhedron; and thus, a convex set. That is, it is sufficient
to prove that the objective function f (x,h,a) is convex.

f (x,h,a) is the sum of two linear convex functions and a
quadratic convex function. Thus, f (x,h,a) is also convex as
the sum of convex functions (see [32]) and this completes
our proof.

IV. CASE STUDY

A. Case description

Our case study is the city of Almere in the Netherlands.
The network exists of 7 frequent lines which are marketed as
high frequency routes (M1 to M7), 5 regional bus routes from
suburbs to Amsterdam (322, 323, 326, 327 and 328), a local
bus route to a neighborhood under development (25/525),
and a bus on demand to an industrial estate (22) operated
under the name AllGo. Besides these, there are 2 regional bus
routes from the centre of Almere to the towns of Zeewolde
and Harderwijk with a low frequency.

In our case study, we simplify the public transport system
to form a self-contained network. The regional routes with
low frequency are removed as travelling within Almere is
not allowed on these routes. Two regional routes between
the Parkwijk neighborhood of Almere and Amsterdam (322
and 323) connect many neighborhoods within Almere and
are in some cases the only routes that serve a neighborhood.

Therefore, these are included in the simplified model, but
are modeled to start and end at the first stop outside Almere,
in Muiden. Furthermore, these are modeled as one route
as the route within Almere is fully shared and route 323
does not operate outside peak hours. Routes 326 to 328 are
excluded from the model as these connect Almere Haven
neighborhood directly to Amsterdam and a local route runs
parallel to it, so local journeys will be made with the
local route. Route 22 serves different bus stops depending
on demand which makes it unsuitable for this model. The
simplified bus network is shown in Fig.1.

Station 
Buiten

Almere Haven

Sallandsekant

Nobelhorst

Stripheldenbuurt 
oost

Station 
Oostvaarders

Componistenpad
Station 
Parkwijk

Station Centrum

Noorderplassen noord

Station Muziekwijk

Muiden

Station Poort

Busstation ’t Oor

M1

M2

M3

M4

M5

M6

M7

25/525

322/323

Fig. 1. Simplified bus network of Almere with stop names of end points
and most important stops.

In this case study, we consider an hourly time horizon
from 10:15 to 11:15 to plan our bus holding schedule. This
time horizon is selected because it is at the morning peak.
The routes were split into separate routes for both directions.
Their frequencies in this time horizon are presented in Table
II. The capacity of the buses is 89 passengers, including
standees. The capacity of route 25/525 is 8 passengers
because it is operated by small buses.

Expected travel times and planned departure times at the
first stops were obtained from the original timetable (see
[33]). Minimum headways, Hmin

l , were 2 minutes for the
most frequent routes, 4 minutes for M6, 5 minutes for 25/525
and 10 minutes for route 322/323. The maximum headways,
Hmax

l , are 20, 25, 35 and 65 minutes for the aforementioned
categories, respectively. The boarding time is approximately
3 seconds per passenger and the alighting time 2 seconds,
as most passengers are using a smart card. The maximum
allowed slack time of each trip is based on the difference
between the arrival of the trip and departure of the next trip
in the opposite direction. Vehicles operating on routes M1
and M2 start a trip on the other route upon arrival at Station
Centrum, which was also taken into account. Transfer times
between routes at a stop are found by digitally measuring
the walking distance based on an average walking speed of
4 km/h.

At the original timetables, there is no planned holding.
All planned arrivals are obtained from the timetable [33].



TABLE II
OVERVIEW OF ROUTES AND FREQUENCIES [33]

Route nr Origin Destination Frequency

M1 Station Centrum Almere Haven 8 trips/h
M2 Station Centrum Stripheldenbuurt Oost 8 trips/h
M3 Station Centrum Componistenpad 8 trips/h
M4 Station Centrum Station Poort 8 trips/h
M5 Station Centrum Sallandsekant 8 trips/h
M6 Station Centrum Noorderplassen Noord 6 trips/h
M7 Station Centrum Station Oostvaarders 8 trips/h

25/525 Sallandsekant Nobelhorst 4 trips/h
322/323 stad Parkwijk Bijlmer Arena 2 trips/h

The average maximum number of passengers in a vehicle
during a trip is approximately 30 to 40.

B. Sensitivity analysis and performance comparison against
state-of-the-art methods

The weights a1,a2,a3 provide the possibility to change
the importance of the three parts that form our objective
function. This makes it possible to change the importance of
different factors (e.g., transfer waiting times, in-vehicle travel
times) based on the specific situation of the application area.
Besides, it can be used for comparison with past works which
use similar models. Table III shows the results of applying
our bus holding schedule and other bus holding schedules
derived by past studies. As a reference, the results per part
of the objective function are provided in case of no holding,
i.e., the initial solution of the scheduled timetable.

TABLE III
RESULTS USING DIFFERENT WEIGHTS IN THE OBJECTIVE FUNCTION

AND COMPARISON AGAINST STATE-OF-THE-ART MODELS

a1 a2 a3 Objective function value

transfer extra in-veh. service overall
waiting travel time regularity

No holding 0 0 0 5755.7 0 6794.3 n/a

Wong et al. [22] 1 0 0 5675.8 181.78 6858.3 5675.8

Chen et al. [15]
0 0.2 0.8 5781.9 47.724 6658.9 5336.7
0 1 0.28 5757.7 11.132 6690.4 1884.4
0 0 1 5749.6 97.465 6566 6566

Our approach

0.3 0.2 0.5 5744.9 54.532 6548.4 5008.6
0.4 0.2 0.4 5724.8 60.241 6680.1 4974
0.5 0.2 0.3 5732.8 36.461 6694.7 4882.1
0.6 0.2 0.2 5729 30.507 6677.6 4779
0.7 0.2 0.1 5727.3 35.246 6750.2 4691.2
0.8 0.2 0 5701.2 36.707 6818.2 4568.3
0.2 0.2 0.6 5739.9 54.583 6673.5 5163
0.1 0.2 0.7 5747.3 62.486 6587.7 5198.6
0.3 0 0.7 5717.9 104.56 6632.3 6358
0.5 0 0.5 5712.3 104.66 6646.1 6179.2
0.4 0 0.6 5747.4 98.142 6645 6286

In Table III, we present the results after comparing our
model against against:
• the do-nothing case of no holding (scheduled timetable)
• the model of Wong et al. [22] that optimizes only the

waiting times of transferring passengers (that is, a2,a3 =
0).

• the model of Chen et al. [15] that optimizes the in-
vehicle travel times of passengers and the service reg-
ularity, while ignoring the travel times of transferring
passengers (that is, a1 = 0).

In our performance evaluation, we investigate the perfor-
mance of our model for different values of the weight factors
a1,a2,a3, as it is detailed in Table III. The first mentioned
configuration is used as a base case, having a weight of
0.3 for transfer waiting time, 0.2 for vehicle waiting and
0.5 for regularity. It becomes clear that a higher weight for
one of the objective function components generally leads
to a reduction of the objective value associated with that
component. The transfer waiting time objective value does
not differ much between configurations, the lowest being
5701 and the highest being 5747.

The base case of a1 = 0.3,a2 = 0.2,a3 = 0.5 performs
better on both the transfer waiting time and regularity ob-
jective values compared to a situation without any holding,
although the difference for the transfer waiting time is
limited. No “overall objective value” is provided for the
case of no holding because weights are required to evaluate
the objective function. As expected, our model performs
worse than the model of [22] in terms of transferring waiting
times, as their model only regards the transfer waiting time.
Nonetheless, our model performs better in terms of the in-
vehicle waiting time (reduces from 182 to 54 in the base case
or 31 in the best configuration). Additionally, the regularity
improves in every case when using our model (especially in
the base case).

Comparing the results with possible configurations based
on Chen et al. [15], the most interesting observation is
that the regularity in our base case performs better on the
regularity than the situation with a full focus on regularity.
The transfer waiting time also improves, but to a limited
extent. The in-vehicle waiting time is better when focusing
only on the regularity, but not comparable with the case
where the in-vehicle waiting time is the only objective of
the model.

Fig.2 graphically shows the influence of the weight of the
transfer waiting time component of the objective function
on its value and the value of the regularity component. Our
base configuration has the best value for the regularity and
one of the best for the transfer waiting time component.
The removal of the in-vehicle waiting time weight results
in a reduction of transfer waiting time of about 30 passenger
minutes, but regularity becomes worse than before.

V. CONCLUSIONS

The presented model optimizes a combination of the
waiting time of transferring passengers, extra traveling times
of passengers in a vehicle, and the regularity of a route in
one objective function, capable of changing priorities based
on local circumstances. The application on the network of
Almere (Netherlands) shows that our model decreases the
deviation between headways and target headways and, at the
same time, improves the transfer waiting times of passengers.
This comes at the cost of extra traveling times for the
passengers already in the vehicle.

Our model has a better performance on both the transfer
waiting times and service regularity than the model of Chen
et al. [15] that only considered regularity and in-vehicle
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Fig. 2. Average objective function value with different transfer waiting
time and regularity weights and a constant in-vehicle waiting time weight
a2 = 0.2.

waiting times. Compared to only considering transfer waiting
time, e.g., Wong et al. [22], the transfer waiting time is
higher, but the regularity is better. This shows that the model
with the default weights does provide a balance between the
different components of the objective function.

Main limitations of our approach are that the passenger
arrival rates are assumed constant, despite that in reality
this may not be always the case. However, the use of
short time horizons when rescheduling the holding times
can mitigate the effects of this problem. Considering future
research, our model can be expanded with probabilistic travel
times and passenger numbers to take into consideration
the stochastic nature of these parameters. Another possible
expansion is enabling different boarding and alighting doors
in the algorithm.
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