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Estimation of a function of low local
dimensionality by deep neural networks
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Abstract—Deep neural networks (DNNs) achieve impressive results for complicated tasks like object detection on images and speech
recognition. Motivated by this practical success, there is now a strong interest in showing good theoretical properties of DNNs. To
describe for which tasks DNNs perform well and when they fail, it is a key challenge to understand their performance. The aim of this
paper is to contribute to the current statistical theory of DNNs.
We apply DNNs on high dimensional data and we show that the least squares regression estimates using DNNs are able to achieve
dimensionality reduction in case that the regression function has locally low dimensionality. Consequently, the rate of convergence of
the estimate does not depend on its input dimension d, but on its local dimension d∗ and the DNNs are able to circumvent the curse of
dimensionality in case that d∗ is much smaller than d. In our simulation study we provide numerical experiments to support our
theoretical result and we compare our estimate with other conventional nonparametric regression estimates. The performance of our
estimates is also validated in experiments with real data.

Index Terms—curse of dimensionality, deep neural networks, nonparametric regression, piecewise partitioning, rate of convergence.

F

1 INTRODUCTION

1.1 Nonparametric regression

Motivated by the huge success of deep neural networks in
applications (cf., e.g., [1] and the literature cited therein)
there is now keen interest in investigating theoretical prop-
erties of deep neural networks. In statistical research this is
usually done in context of nonparametric regression (cf., [2],
[3], [4], [5], [6] and [7]). Here, (X,Y ) is an Rd × R–valued
random vector satisfying E{Y 2} < ∞, and given a sample
of (X,Y ) of size n, i.e., given a data set

Dn = {(X1, Y1), . . . , (Xn, Yn)} , (1)

where (X,Y ), (X1, Y1), . . . , (Xn, Yn) are i.i.d. random vari-
ables, the aim is to construct an estimate

mn(·) = mn(·,Dn) : Rd → R

of the regression function

m : Rd → R, m(x) = E{Y |X = x},
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such that the L2 error∫
|mn(x)−m(x)|2PX(dx)

is “small” (see, e.g., [8] for a comprehensive study to non-
parametric regression and motivation for the L2 error).

1.2 Rate of convergence
It is well–known that one needs smoothness assumptions on
the regression function in order to derive non–trivial rates
of convergence (cf., e.g., Theorem 7.2 and Problem 7.2 in
[9] and Section 3 in [10]). Thus we introduce the following
definition.

Definition 1. Let p = q + s for some q ∈ N0 and 0 < s ≤ 1,
where N0 is the set of nonnegative integers. A function f : Rd →
R is called (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ Nd0
with

∑d
j=1 αj = q the partial derivative ∂qf/(∂xα1

1 . . . ∂xαdd )
exists and satisfies∣∣∣∣ ∂qf

∂xα1
1 . . . ∂xαdd

(x)− ∂qf

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖s
for all x, z ∈ Rd, where ‖ · ‖ denotes the Euclidean norm.

[11] showed that the optimal minimax rate of conver-
gence in nonparametric regression for (p, C)-smooth func-
tions is n−2p/(2p+d).

1.3 Curse of dimensionality
In case that d is large compared to p the above rate of
convergence is rather slow which is a symptom of so-
called curse of dimensionality. One way to circumvent it
is to impose additional constraints on the structure of the
regression function. Recently it was shown, that deep neural
networks are able to circumvent the curse of dimensionality
whenever suitable hierarchical composition assumptions on
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the regression function hold. Here the regression function is
contained in the following function class:

Definition 2. Let d ∈ N and m : Rd → R and let P be a subset
of (0,∞)× N
a) We say that m satisfies a hierarchical composition model of
level 0 with order and smoothness constraint P , if there exists a
K ∈ {1, . . . , d} such that

m(x) = x(K) for all x = (x(1), . . . , x(d))> ∈ Rd.

b) We say that m satisfies a hierarchical composition model of
level `+ 1 with order and smoothness constraint P , if there exist
(p,K) ∈ P , C > 0, g : RK → R and f1, . . . , fK : Rd → R,
such that g is (p, C)–smooth, f1, . . . , fK satisfy a hierarchical
composition model of level ` with order and smoothness constraint
P and

m(x) = g(f1(x), . . . , fK(x)) for all x ∈ Rd.

In case that the order and smoothness constraint of g
alternates between (p, d∗) and (∞,K) and g is a sum in
every second level, this definition equals the definition of
the so–called (p, C)-smooth generalized hierarchical interaction
models of order d∗, which were introduced by [2]. They
showed that for such models suitably defined multilayer
neural networks (in which the number of hidden layers
depends on the level of the generalized interaction model)
achieve the rate of convergence n−2p/(2p+d

∗) (up to some
logarithmic factor) in case p ≤ 1. [3] generalized this result
for p > 1 provided the squashing function is suitably
chosen. For the hierarchical composition model of Definition
2, where the smoothness and dimension is fixed within one
level, [4] showed (up to some logarithmic factor) a rate of
convergence

max
(p,K)∈P

n−2p/(2p+K)

for sparse neural networks with ReLU activation function.
[5] showed that this rate holds even for simple fully con-
nected neural networks and arbitrary hierarchical composi-
tion model of Definition 2. All the above mentioned results
are optimal up to some logarithmic factor. [12] showed that
some of these results hold even without the logarithmic
factor. For regression functions with a form of common sta-
tistical models, i.e. multivariate adaptive regression splines
(MARS), [13] showed that convergence rate by DNNs can
also be improved. In case that the regression function is
defined on a manifold, [14] showed, that the convergence
rate by DNNs depends on the dimension of the manifold.
[7] analyzed the performance of DNNs in case that the high-
dimensional data have an intrinsic low dimensionality and
showed that the convergence rate by DNNs depends only
on the intrinsic dimension and not on the input dimension.

1.4 Low local dimensionality
1.4.1 Empirical Motivation
In this article we consider regression functions with low
local dimensionality. There exist several examples in the
literature, where high dimensional problems can be treated
locally in much lower dimension. [15] showed that the prob-
ability distribution of a natural scene is highly structured,
since, for instance, the neighboring pixel of a natural scene

have redundant informations. [16] and [17] analyzed in their
research on human motor control some regularities in full-
body movement of humans within and across individuals.
These regularities also lead to locally low-dimensional data
distributions. For instance, they showed that for estimating
the inverse dynamics of an arm, a globally 21- dimensional
space reduces, on average to 4-6 dimensions locally. And
also in our own research it can be reasonably assumed,
that the analyzed data set is of a locally low dimensional
structure. The data set under study (which is part of the
Machine Learning Repository: https://archive.ics.uci.edu/
ml/machine-learning-databases/00275/) is related to 2–
year usage log of a bike sharing system namely Captial Bike
Sharing (CBS) at Washington, D.C., USA ( [18]). The data
show the hourly aggregated count of rental bikes and 12
attributes, namely the season (1: spring, 2: summer, 3: fall,
4: winter), the year (0: 2011, 1:2012), the month (1 to 12),
the hour (0 to 23), holiday (whether the day is holiday (1)
or not (0)), the day of the week (1 to 7), workingday (if
day is neither weekend nor holiday is 1, otherwise is 0),
the weather situation (1: Clear, Few clouds, Partly cloudy,
2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds,
Mist, 3: Light Snow, Light Rain + Thunderstorm + Scattered
clouds, Light Rain + Scattered clouds, 4: Heavy Rain + Ice
Pallets + Thunderstorm + Mist, Snow + Fog), the normalized
temperature in Celsius, the normalized feeling temperature
in Celsius, the normalized humidity and the normalized
windspeed. For this data set we conjecture that depending
on the season, the hour and the attribute working day the
count of rental bikes depends on different subsets of the
other attributes. E.g., in spring and fall during the rush hour
on working days the weather is not important at all. But
on days which are not working days, it depends mainly
on the hour and the weather, where for different seasons
different weather attributes are important (like temperature
and humidity in summer or weather situation in the spring
and in the fall). We evaluate this conjecture by analyzing
the intrinsic dimensionality of different subsets of the data
set. As a dimension estimator we apply the maximum likeli-
hood estimator (MLE) (see [19]). We consider four different
subsets of the data set: (I) Working day and rush hour time
(7am - 10am and 4pm - 7pm), (II) holiday, (III) winter season
(October - March) and humidity > 0.5 and (IV) summer
season (April-September).

TABLE 1: Estimated intrinsic dimension of different subsets
of the bike sharing data set.

d Intrinsic dimensionality
(I) (II) (III) (IV)

12 3.1475 2.4289 2.7003 2.1258

The results in Table 1 indicate that the estimated intrinsic
dimensionality are significantly less than the real dimension
of the data set and that depending on the subset the intrinsic
dimensionality is different. In summary, that means that one
can reduce dimension locally without losing much informa-
tion for many high dimensional problems thus avoiding the
curse of dimensionality. This finding motivates us to analyze
regression functions with low local dimensionality.
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1.4.2 Notion of low local dimensionality
We say a function f : Rd → R has a low local dimensional-
ity, if it depends locally only on very few of its components,
where in different areas these subsets of variables can be
different. The simplest way to define this formally is to
assume that there exist d∗ ∈ {1, . . . , d}, K ∈ N, disjoint
sets A1, . . . , AK ⊂ Rd, functions f1, . . . , fK : Rd

∗ → R and
subsets of indices J1, . . . , JK ⊂ {1, . . . , d} of cardinality at
most d∗ such that

f(x) =
K∑
k=1

fk(xJk) · 1Ak(x) (2)

holds for all x ∈ Rd, where

x{jk,1,...,jk,d∗} = (x(jk,1), . . . , x(jk,d∗ ))

for 1 ≤ jk,1 < · · · < jk,d∗ ≤ d. As a consequence of
using the indicator function, assumption (2) implies that
f in general is not globally smooth, in particular it is not
even continuous. In view of many applications where it is
intuitively expected that the dependent variable depends
smoothly on the independent variables, this does not seem
to be realistic.

To avoid this problem, we will allow in the sequel
smooth transitions between the different areas A1, . . . ,
AK in (2). To achieve this, we assume that the function
f is squeezed between two functions of the form (2). In
order to simplify the presentation, we use in the sequel d-
dimensional polytopes for the sets A1, . . . , AK . Since poly-
topes can be described as the intersection of a finite number
of half spaces, we define the local dimensionality as follows:

Definition 3. A function f : Rd → R has local dimensionality
d∗ ∈ {1, . . . , d} on [−A,A]d for A > 0 with order (K1,K2),
PX -border ε > 0 and borders δi,k > 0 for i = 1, . . . ,K1,
k = 1, . . . ,K2 if there exists ai,k ∈ Rd with ‖ai,k‖ ≤ 1, bi,k ∈
R, Jk ⊆ {1, . . . , d} with |Jk| ≤ d∗ for i = 1, . . . ,K1, k =
1, . . . ,K2 and

fk : Rd
∗
→ R

such that for

(Pk)δk = {x ∈ Rd : aTi,kx ≤ bi,k − δi,k for i = 1, . . . ,K1}

and

(Pk)δk = {x ∈ Rd : aTi,kx ≤ bi,k + δi,k for i = 1, . . . ,K1}

with δk = (δ1,k, . . . , δK1,k) we have

K2∑
k=1

fk(xJk) · 1(Pk)δk (x) ≤ f(x) ≤
K2∑
k=1

fk(xJk) · 1(Pk)δk (x)

for x ∈ [−A,A]d and

PX

((
K2⋃
k=1

(Pk)δk\(Pk)δk

)
∩ [−A,A]d

)
≤ ε.

Fig. 1 shows a function f(x) with K2 = 4, polytopes
P1 = [−2, 0]×[−2, 0], P2 = [−2, 0]×[0, 2], P3 = [0, 2]×[0, 2]
and P4 = [0, 2]× [−2, 0] and functions f1(x1) = sin(4 · x1),
f2(x2) = exp(x2), f3(x2) = cos(4·x2) and f4(x2) = exp(x2)
with smooth transitions between the polytopes.

Fig. 1: An example of a function with low local dimension-
ality with a 2-dimensional support. The support is divided
into four pieces, the function depends locally only on one
variable of the input and is globally smooth.

1.5 Main results
In this paper we show that sparse neural network regression
estimates are able to achieve a dimension reduction in case
that the regression function has a low local dimensionality.
We derive the rate of convergence which depends only on
the local dimension d∗ and not on the input dimension
d (cf., Theorem 1). Thus our neural network regression
estimates are able to circumvent the curse of dimensionality
in case that d∗ is much smaller than d. Finally, we verify the
theoretical results using simulation studies and experiments
on real data.

We point out another advantage of DNNs, namely
that that neural networks are able to detect a locally low
dimensional structure and therefore achieve a faster rate of
convergence. As a technical contribution of this paper, we
present a result concerning the connection between neural
networks and so-called multivariate adapative regression
splines (MARS). For instance, we show that the sparse
neural network regression estimates, where the weights
are chosen by the least squares, satisfy the expected error
bound of MARS in case that this procedure works in an
optimal way (cf., Theorem 2 in the Supplement).
Our results are based on a set of sparse neural networks
instead of fully connected neural networks. On the one
hand this network architecture leads to a better bound
of the covering number, which is essential to show the
convergence result. On the other hand they perform better
with regard to the simulated and real data as shown in
our simulation studies. In applying our estimates to a
real-world data experiment we emphasize the practical
relevance of our assumption on the regression function and
show that our sparse neural network estimates outperform
other nonparametric regression estimates, especially MARS,
on this data set.

1.6 Discussion of related results
It is frequently observed by various researchers, that the true
intrinsic dimensionality of high dimensional data is often
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very low (e.g. [20], [21], [17], [7]). Several estimators like
the kernel methods and the Gaussian process regression are
able to exploit the intrinsic low dimensionality of covariates
and achieve a fast rate of convergence depending only
on the intrinsic dimensionality of the data set (e.g. [22],
[23], [24], [25]). Recently, [7] also derived convergence rates
by DNNs, which only depend on the intrinsic dimension
and are free from the nominal dimension. [14] achieved
approximation rates of DNNs that only depend on d∗, in
case that the input lies on on a d∗-dimension manifold. To
describe the intrinsic dimensionality, both articles used the
notion of Minkowski dimension.
All the above mentioned results use the observation, that
many high dimensional problems are contained in a low
dimensional space. At this point we would like to highlight
the difference with our assumption. While these studies
focus on the behavior of the measure PX of covariates, we
analyze regression functions with some specific structure,
i.e. regression functions with low local dimensionality.
In our case the dimension of the regression function is
locally of size d∗ ≤ d and the regression function performs
differently on different subsets. This does not imply, that
there is some intrinsic low dimensionality in the measure
PX of covariates. This is also clearly visible from the
example presented in Fig. 1: The function has a low local
dimensionality independently from the choice of the design
distribution. I.e., even when the design distribution is not
concentrated on a d∗-dimensional manifold (as required
e.g. in [4]) the corresponding distribution with this function
as regression function has a low local dimensionality in the
sense of our paper.

A similar structure of regression functions has been
studied by [6]. They analyzed the performance of DNNs
for a certain class of piecewise smooth functions. Here
piecewise smooth regression functions where the partitions
have smooth borders were considered. For instance, their
partition consists of a finite number of pieces, where each
piece is an intersection of so-called basis pieces. Each basis
piece is defined with the help of a horizon function and
is regarded as one side of surfaces by a Hölder-smooth
function. Thus the pieces of the partition in this paper have
smooth borders, which is a more flexible way to define
piecewise smooth functions, but which does not contain
the case of globally smooth functions. Since we also want
to take into consideration smooth functions with low local
dimensionality, i.e. functions which perform differently
on different pieces (depending only on a few components
of the input on each piece), but are nevertheless globally
smooth, we define our pieces as d–dimensional polytopes
and allow smooth transition between them.

As mentioned earlier, the proof of our main result is
based on a result that analyzes the connection between
DNNs and MARS. [13] already showed a similar result for
the ReLU activation function. In particular, they showed
that every function expressed as a function in MARS can
also be approximated by a multilayer neural network (up
to a sup-norm error ε). Using this result they derived
a risk comparison inequality, that bounds the statistical
risk of fitting a neural network by the statistical risk

of spline-based methods. Due to the fact that the ReLU
activation function and consequently the corresponding
neural network are piecewise linear functions it is not that
suprisingly to find connection to spline methods. This paper
extends this result by showing connection between neural
networks with smooth activation functions and MARS,
which was not covered by the results in [13]. Additionally,
we show our result for a more general basis of smooth
piecewiese polynomials, i.e. a product of a truncated power
basis of degree 1 and a B-spline basis. This leads to better
approximation properties in case of very smooth regression
function.

The approximation of B-Splines by DNNs has also
been studied by [12]. They showed that a DNN with
const ·m hidden layers and a fixed number of neurons per
layer achieves an approximation rate of size 4−2m for a
tensor product B-spline basis. In the Supplement we derive
a related result for DNN with squashing activation function.

In all the abovementioned generalization results, it
is assumed that the training algorithm finds a global
minimum, which is not necessarily the case in practical
applications and which, in general, cannot be guaranteed.
Training a neural network requires minimizing a high-
dimensional non-convex loss function. A series of
theoretical studies have considered how trainable the
parameter spaces of neural networks are. For instance, [26]
analyzed the difference between local and global minima
and [27] showed that in case of linear activation function
every local minima is also a global minimum, but still
some saddle points can exist. In our approach we assume
that the optimization algorithm indeed finds the global
minimum and therefore minimizes the empirical risks.
While this simplified setting does not quite correspond to
the practical applications, it is a starting point to explain
the good performance of the networks from a theoretical
point of view. A combination of our results with the
literature analyzing the optimization algorithm should at
some point enable us to analyze the networks with all three
of its aspects, namely approximation, generalization and
optimization.

1.7 Notation

Throughout the paper, the following notation is used: The
sets of natural numbers, natural numbers including 0, in-
tegers, non-negative real numbers and real numbers are
denoted by N, N0, Z, R+ and R, respectively. For z ∈ R, we
denote the smallest integer greater than or equal to z by dze,
and bzc denotes the largest integer that is less than or equal
to z. Furthermore we set z+ = max{z, 0}. The Euclidean
and the supremum norms of x ∈ Rd are denoted by ‖x‖2
and ‖x‖∞, respectively. For f : Rd → R

‖f‖∞ = sup
x∈Rd

|f(x)|

is its supremum norm, and the supremum norm of f on a
set A ⊆ Rd is denoted by

‖f‖∞,A = sup
x∈A
|f(x)|.
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A finite collection f1, . . . , fN : Rd → R is called an
ε–‖ · ‖∞,A– cover of F if for any f ∈ F there exists
i ∈ {1, . . . , N} such that

‖f − fi‖∞,A = sup
x∈A
|f(x)− fi(x)| < ε.

The ε–‖ · ‖∞,A- covering number of F is the size N of the
smallest ε–‖·‖∞,A– cover of F and is denoted byN (ε,F , ‖·
‖∞,A). We write x = arg minz∈D f(z) if minz∈D f(z) exists
and if x satisfies

x ∈ D and f(x) = min
z∈D

f(z).

If not otherwise stated, any ci with i ∈ N symbolizes a real
nonnegative constant, which is independent of the sample
size n.

1.8 Outline
The outline of this paper is as follows: In Section 2 the sparse
neural network regression estimates analyzed in this paper
are introduced. The main result is presented in Section 3.
The finite sample size behavior of our estimate is analyzed
by applying it to simulated and real data in Section 4.

2 SPARSE NEURAL NETWORK REGRESSION ESTI-
MATES

The starting point in defining a neural network is the choice
of an activation function σ : R → R. We use in the sequel
so–called squashing functions, which are nondecreasing and
satisfy limx→−∞ σ(x) = 0 and limx→∞ σ(x) = 1. An
example of a squashing function is the so-called sigmoidal
or logistic squasher

σ(x) =
1

1 + exp(−x)
(x ∈ R). (3)

A multilayer feedforward neural network with L hidden
layers and k1, k2, . . . , kL number of neurons in the first,
second, . . . , L-th hidden layer and sigmoidal function σ is
a real-valued function defined on Rd of the form

f(x) =
kL∑
i=1

c
(L)
1,i · f

(L)
i (x) + c

(L)
1,0 , (4)

for some c
(L)
1,0 , . . . , c

(L)
1,kL

∈ R and for f
(L)
i ’s recursively

defined by

f
(r)
i (x) = σ

kr−1∑
j=1

c
(r−1)
i,j · f (r−1)j (x) + c

(r−1)
i,0

 (5)

for some c(r−1)i,0 , . . . , c
(r−1)
i,kr−1

∈ R (r = 2, . . . , L) and

f
(1)
i (x) = σ

 d∑
j=1

c
(0)
i,j · x

(j) + c
(0)
i,0

 (6)

for some c(0)i,0 , . . . , c
(0)
i,d ∈ R. We denote by F(L, r, α) the set

of all fully connected neural networks with L hidden layers,
r neurons in each hidden layer and weights bounded in
absolute value by α.
In the sequel we propose sparse neural networks architec-
tures, where the consecutive layers of neurons are not fully

connected. The structure of our sparse neural networks de-
pends on smaller neural networks that are fully connected.
For M∗ ∈ N, L ∈ N, r ∈ N and α > 0, we denote the set of
all functions f : Rd → R that satisfy

f(x) =
M∗∑
i=1

µi · fi(x) (x ∈ Rd)

for some fi ∈ F(L, r, α) and for some µi ∈ R, where |µi| ≤
α, by F (sparse)

M∗,L,r,α. An example of a network in class F (sparse)
3,L,r,α

is shown in Figure 2 which gives a good idea of how the
network structure looks like. In the sequel we want to use

x(2)

x(1)

Output

Fig. 2: A neural network with M∗ = 3 boxes of fully
connected neural networks

data (1) in order to choose a function from F (sparse)
M∗,L,r,α such

that this function is a good regression estimate. In order to
do this, we use the principle of least squares and define our
regression estimate m̃n as a function

m̃n(·) = m̃n(·,Dn) ∈ F (sparse)
M∗,L,r,αn

(7)

from F (sparse)
M∗,L,r,αn

, which minimizes the so–called empirical

L2 risk over F (sparse)
M∗,L,r,αn

, i.e., which satisfies

1

n

n∑
i=1

|Yi − m̃n(Xi)|2 = min
f∈F(sparse)

M∗,L,r,αn

1

n

n∑
i=1

|Yi − f(Xi)|2.

(8)
Here we assume for notational simplicity that the minimum
above does indeed exist. In case that it does not exist our
results also hold for any function chosen from F (sparse)

M∗,L,r,αn
which minimizes the empirical L2 risk in (8) up to some
small additive term, e.g., up to 1/n. For technical reasons in
the analysis of our estimate we need to truncate it at some
data–independent level βn satisfying βn → ∞ for n → ∞,
i.e., we set

mn(x) = Tβnm̃n(x) (x ∈ Rd), (9)

where Tβnz = max{min{z, βn},−βn} for z ∈ R.
The number L of layers and the number r of parameters

of each fully connected neural network fi will be chosen as
a large enough constant. For the bound αn on the absolute
value of the weights we will use a data–independent bound
of the form αn = c1 · nc2 for some c1, c2 > 0. The main
parameter left which controls the flexibility of the networks
is then the number M∗ of fully connected neural networks
fi ∈ F(L, r, αn) (i = 1, . . . ,M∗). To choose it, we will use
the principle of splitting of the sample (cf., e.g., Chapter
7 in Györfi et al. (2002)). Here we split the sample into a
learning sample of size nl and a testing sample of size nt,
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where nl, nt ≥ 1 satisfy n = nl + nt, e.g., nl = dn/2e and
nt = n− nl. We use the learning sample

Dnl = {(X1, Y1), . . . , (Xnl , Ynl)}

to define for each M∗ in Pn = {2l : l = 1, . . . , dlog ne} an
estimate m̃nl,M∗ by

m̃nl,M∗(·) = m̃nl,M∗(·,Dnl) ∈ F
(sparse)
M∗,L,r,αn

(10)

and

1

nl

nl∑
i=1

|Yi−m̃nl,M∗(Xi)|2 = min
f∈F(sparse)

M∗,L,k,αn

1

nl

nl∑
i=1

|Yi−f(Xi)|2,

(11)
and set

mnl,M∗(x) = Tβnm̃nl,M∗(x) (x ∈ Rd). (12)

Then we choose M∗ ∈ Pn such that the empirical L2 error
of the estimate on the testing data is minimal, i.e., we define

mn(x,Dn) = mnl,M̂∗(x,Dnl), (13)

where M̂∗ ∈ Pn and

1

nt

n∑
i=nl+1

|Yi −mnl,M̂∗(Xi)|2

= min
M∗∈Pn

1

nt

n∑
i=nl+1

|Yi −mnl,M∗(Xi)|2. (14)

3 MAIN RESULT

Our theoretical result will be valid for sigmoidal functions
which are 2–admissible according to the following defini-
tion.

Definition 4. Let N ∈ N0. A function σ : R → [0, 1] is called
N-admissible, if it is nondecreasing and Lipschitz continuous
and if, in addition, the following three conditions are satisfied:

(i) The function σ is N + 1 times continuously differentiable
with bounded derivatives.

(ii) A point tσ ∈ R exists, where all derivatives up to order
N of σ are nonzero.

(iii) If y > 0, the relation |σ(y)− 1| ≤ 1
y holds. If y < 0, the

relation |σ(y)| ≤ 1
|y| holds.

It is easy to see that the logistic squasher (3) is N–admissible
for any N ∈ N (cf., e.g. [3]).

Our main result shows, that the sparse neural networks
can achieve the d∗–dimensional rate of convergence in case
that the regression function has local dimensionality d∗.

Theorem 1. Let βn = c3 · log(n) for some constant c3 > 0.
Assume that the distribution of (X,Y ) satisfies

E
(
exp(c4 · |Y |2)

)
<∞ (15)

for some constant c4 > 0 and that the distribution of X has
bounded support supp(X) ⊆ [−A,A]d for some A ≥ 1. Let
M,K1,K2 ∈ N. Assume furthermore that m has local dimen-
sionality d∗ on supp(X) with order (K1,K2), PX -border c5/n
and borders δi,k, where δi,k ≥ c6/n

c7 holds for some constants
c5, c6, c7 > 0 (i = 1, . . . ,K1, k = 1, . . . ,K2) and where all
functions fk in Definition 3 are bounded and (p, C)–smooth for
some p = q+s with 0 < s ≤ 1 and q ≤M . Let the least squares

neural network regression estimate mn be defined as in Section 2
with parameters

(i) L = 3K1 + d · (M + 2)− 1
(ii) r = 2M−1 · 16 +

∑M
k=2 2M−k+1 + d+ 5

(iii) αn = c1 · nc2
(iv) nl = dn/2e.
Assume that the sigmoidal function σ is 2–admissible, and that
c1, c2 > 0 are suitably large. Then we have for any n > 7:

E

∫
|mn(x)−m(x)|2PX(dx)

≤ c8 · (log n)3 · 2K1 ·K2 · n−
2p

2p+d∗ .

The proof is available in the Supplement.

Remark 1. The deep neural network estimate in the above
theorem achieves a rate of convergence which is independent of
the dimension d of X , hence it is able to circumvent the curse of
dimensionality in case that the regression function has low local
dimensionality.

Remark 2. Theorem 1 states a bound in dependence on K1 and
K2. The proofs, however, are non-asymptotic although we did not
make any attempt to minimize the constants depending on K1

and K2. While these large constants might spoil our bound for
small sample sizes, we see this as an acceptable drawback, as deep
learning methods especially outperform other methods for high
sample sizes, where our result indicates a fast rate of convergence.

Remark 3. Theorem 1 holds for an estimator that minimizes the
empirical risk. In practical applications, it is not clear that we
will find this minimum or that the network trained by (stochastic)
gradient descent lies even close to this minimum. At the present
time optimization and generalization results of deep learning tend
to be considered separately from each other. We hope that we can
combine these findings in future work.

Next we show a lower bound for the minimax estimation
risk over the class of all regression functions with low local
dimensionality d∗ satisfying the assumptions of Theorem 1.
This shows that the rate of Theorem 1 is optimal.

Theorem 2. LetD be the class of all distributions of (X,Y ) such
that:

(i) supp(X) ⊆ [−A,A]d for some A ≥ 1
(ii) E

(
exp(c4 · |Y |2)

)
<∞

(iii) m has low local dimensionality d∗ as in Theorem 1.
Then we have

inf
m̂n

sup
(X,Y )∈D

E

∫
|m̂n(x)−m(x)|2PX(dx)

≥ const · n−
2p

2p+d∗ .

Proof. First we define a subclass of distributions of (X,Y )
contained in D. In this subclass

m(x) = f1(xJ1) · 1P1
(x)

with J1 ∈ {1, . . . , d}, |J1| = d∗,

P1 = {x ∈ Rd : aTx ≤
√
d ·A+ 1}

with a ∈ Rd and ‖a‖ ≤ 1 and f1 being (p, C)-smooth. Now
it is easy to see that all x ∈ [−A,A]d are contained in P1.

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on February 23,2022 at 08:17:48 UTC from IEEE Xplore.  Restrictions apply. 



0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3146620, IEEE
Transactions on Information Theory

IEEE TRANSACTION ON INFORMATION THEORY, VOL. , NO. , 7

In this case m(x) = f1(xJ1) and therefore equals a (p, C)-
smooth function with d∗-dimensional input. Arguing as in
the proof of Theorem 3.2 in [8] we get

inf
m̂n

sup
(X,Y )∈D

E

∫
|m̂n(x)− f1(xJ1)|2PX(dx)

≥ const · n−
2p

2p+d∗

which implies the assertion.

Outline of the proof of Theorem 1. In the proof of Theorem 1
the following bound on the expected L2 error of our sparse
neural network regression estimate is essential:

E

∫
|mn(x)−m(x)|2PX(dx)

≤ (log n)3 · inf
I∈N, B1,...,BI∈B∗

(
c9 ·

I

n

+ min
(ai)i=1,...,I∈[−c10·n,c10·n]I

∫
|
I∑
i=1

ai ·Bi(x)

−m(x)|2PX(dx)

)
. (16)

Here B∗ is a basis consisting of functions representable as
a product of a truncated power basis of degress 1, i.e. the
MARS function class, and a tensor product B-spline basis.
In particular B∗ consists of functions of the form

B(x) =
∏
v∈J1

Bjv,M,tv (x(iv))

·
∏
k∈J2

 d∑
j=1

αk,j · (x(ij) − γk,j)


+

(17)

where Bjv,M,tv represents an univariate B-Splines of degree
M with tv = {tv,k}k=−M,...,K+M and jv ∈ {−M,−M +
1, . . . ,K − 1} (see Definition 5 in the supplement) and
J1 ⊆ {1, . . . , d}, J2 ⊆ {1, . . . ,K1}, K ∈ N, iv, ij ∈
{1, . . . , d}, tv,k, αk,j , γk,j ∈ [−c11 · nc12 , c11 · nc12 ] and
tv,k+1 − tv,k ≥ 1

n . The proof of (16) is given in the supple-
ment. The idea is to first build networks that approximate
the square function. Using polarization identity one can
then approximate the product xy given (x, y). Using that
max{x, 0} = x · 1[0,∞)(x) one can then build networks
approximating the ReLU function, which finally enables
us to approximate

(∑d
j=1 αk,j · (x(ij) − γk,j)

)
+

and the

univariate B-splines Bjv,M,tv (x(iv)) in (17). A combination
with a result approximating the product of functions by
neural networks finally states networks approximating the
basis functions B(x). By computing I of these networks
in parallel, we are finally able to approximate the linear
combination of these basis functions, i.e.

B(x) =
I∑
i=1

ai ·Bi(x), Bi ∈ B∗

by sparse neural networks.
Since every function with low local dimensionality d∗ (ac-
cording to Definition 3) can be expressed as a linear combi-
nation of functions of B∗ in case that x is not contained in((⋃K2

k=1(Pk)δk\(Pk)δk

)
∩ [−A,A]d

)
, we can use the bound

(16) to show our main result. Here we proceed as follows:
First we show that an indicator function of a polytope can
be approximated by a linear truncated power basis. In the
second step we prove that every (p, C)-smooth function can
be approximated by a linear combination of a tensor product
B-Spline basis. In the last step we show that every function
of the form

K2∑
k=1

fk(xJk) · 1(Pk)
δk (x)

with notations according to Definition 3 can be expressed as
a linear combination of functions of B∗. Together with the
assumption

PX

((
K2⋃
k=1

(Pk)δk\(Pk)δk

)
∩ [−A,A]d

)
≤ c5

n

we conclude the assertion of the Theorem.

4 SIMULATION STUDY

To illustrate how the introduced nonparametric regression
estimate based on our sparsely connected neural networks
behaves in case of finite sample sizes, we apply it to
simulated data using the MATLAB software. Due to the
fact that our estimate contains some parameters that may
influence their behavior, we will choose these parameters
in a data-dependent way by splitting of the sample. Here
we use ntrain = d 45 · ne realizations to train the estimate
several times with different choices for the parameters
and ntest = n − ntrain realizations to test the estimate
by comparing the empirical L2 risk of different parameter
settings and choosing the best estimate according to this
criterion. The parameters L, r and M∗ of the estimates in
Section 2 are chosen in a data-dependent way. Here we
choose L = {1, 3, 6}, r ∈ {3, 6, 10} and M∗ ∈ {1, 2, . . . , 10}.
To solve the least squares problem in (8), we use the quasi-
Newton method of the function fminunc in MATLAB to
approximate the solution. All initial weights are chosen
independent and uniformly distributed on [0, 1].
The results of our estimate are compared to other
conventional estimates. In particular we compare the
sparsely connected neural network estimate (abbr. neural-sc)
to a fully connected neural network (abbr. neural-fc) with
adaptively chosen number of hidden layers and number
of neurons per layer. The selected values of these two
parameters to be tested were {1, 2, 4, 6, 8, 10, 12} for L and
{1, 2, . . . , 6, 8, 10} for r. Beside this, we compare our neural
network estimate to another sparsely connected neural
network estimate, namely the network neural-x defined in
[3]. The parameters l,K, d∗,M∗ of this estimate are chosen
in a data-dependent way as described in [3]. For instance,
we select these parameters out of the set {0, 1, 2} for l, out
of {1, . . . , 5} for K, out of {1, . . . , d∗} for d∗, and out of
{1, . . . , 5, 6, 11, 16, 21, . . . , 46} for M∗.
Furthermore, we consider a nearest neighbor estimate (abbr.
neighbor). This means that the function value at a given point
x is approximated by the average of the values Y1, . . . , Ykn
observed for the data points X1, . . . , Xkn , which are closest
to x with respect to the Euclidean norm (breaking the
ties by indices). Here the parameter kn ∈ N denoting

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on February 23,2022 at 08:17:48 UTC from IEEE Xplore.  Restrictions apply. 



0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3146620, IEEE
Transactions on Information Theory

IEEE TRANSACTION ON INFORMATION THEORY, VOL. , NO. , 8

the involved neighbors is chosen adaptively from the set
{1, 2, 3}∪{4, 8, 12, 16, . . . , 4·dntrain4 e}. Another competitive
approach is the interpolation with radial basis function
(abbr. RBF). Here we use Wendland’s compactly supported
radial basis function φ(r) = (1 − r)6+ · (35r2 + 18r + 3),
which can be found in [28]. The radius r that scales
the basis functions is also selected adaptively from the
set {0.1, 0.5, 1, 5, 30, 60, 100}. Additionally, we consider
of course MARS. Here we used the ARESLab MATLAB
toolbox provided by [29]. As a last competitive approach, we
consider a regression tree (abbr. tree), which is implemented
by MATLAB’s function fitrtree. Here we choose the
hyperparameters that minimize five-fold cross-validation
loss by using automatic hyperparameter optimization.
The n observations (for n ∈ {100, 200})
(X,Y ), (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are chosen as
independent and identically distributed random vectors
with X uniformly distributed on [0, 1]10 (in particular, the
dimension of X is d = 10) and Y generated by

Y = mi(X) + σj · λi · ε (i ∈ {1, 2, 3}, j ∈ {1, 2})

for σj ≥ 0, λi ≥ 0 and ε standard normally distributed and
independent of X . The λi is chosen in way that respects
the range covered by mi on the distribution of X . Since
our regression functions perform differently on different
polytopes we determine the interquartile range of 105

realizations of mi(X) (additionally stabilized by taking the
median of hundred repetitions of this procedure) not for the
whole regression function, but on each set seperately and
use the average of those values. For the regression functions
below we got λ1 = 2.72, λ2 = 6.28, λ3 = 12.2, λ4 = 13.97
and λ5 = 0.04. The parameters scaling the noise are chosen
as σ1 = 5% and σ2 = 20%.

The regression functions which were used to compare
the different approaches are listed below.

m1(x) =

(
10

1 + x21
+ 5 · sin(x3 · x4) + 2 · x5

)
· 1H1

(x)

+
(
exp(x1) + x22 + sin(x3 · x4)− 3

)
· 1R10\H1

(x),

m2(x) =

(
cot

(
π

1 + exp(x21 + 2 · x2 + sin(6 · x34)− 3)

))
· 1H1

(x)

+

(
cot

(
π

1 + exp(x21 + 2 · x2 + sin(6 · x34)− 3)

)
+ exp (3 · x3 + 2 · x4 − 5 · x1

+
√
x3 + 0.9 · x4 + 0.1

))
· 1R10\H1

(x),

m3(x) = (2 · log(x1 · x2 + 4 · x3 + | tan(x4)|) · 1H2∪H3(x)

+
(
x43 · x25 · x6 − x4 · x7

)
· 1HC2 ∪H3

(x),

+
(
3 · x28 + x9 + 2

)0.1+4·x2
10 · 1HC3 (x),

m4(x) =2 · log(x1 · x2 + 4 · x3 + | tan(x4)|+ 0.1)

+ x43 · x25 · x6 − x4 · x7
+ (3 · x28 + x9 + 2)0.1+4·x2

10

m5(x) = tanh (0.2x1 + 0.9x2 + x3 + x4 + 0.2x5 + 0.6x6)

with

H1 ={x ∈ R10 : 0.1 · x1 + 0.4 · x2 + 0.3 · x3
+ 0.1 · x4 + 0.2 · x5 + 0.3 · x6 + 0.6 · x7
+ 0.02 · x8 + 0.7 · x9 + 0.6 · x10 ≤ 1.63}

H2 ={x ∈ R10 : 0.1 · x1 + 0.4 · x2 + 0.3 · x3
+ 0.1 · x4 + 0.2 · x5 + 0.3 · x6 + 0.6 · x7
+ 0.02 · x8 + 0.7 · x9 + 0.6 · x10 ≤ 1.6}

H3 ={x ∈ R10 : 4 · x1 + 2 · x2 + x3

+ 4 · x4 + x5 + x6 ≤ 7.5}.

The quality of each of the estimates is determined by the
empirical L2-error, i.e. we calculate

εL2,N (mn,i) =
1

N

N∑
k=1

(
mn,i(Xn+k)−mi(Xn+k))2

)
,

where mn,i (i = 1, . . . , 4) is one of our estimates based on
the n observations and mi is our regression function. The
input vectors Xn+1, Xn+2, . . . , Xn+N are newly generated
independent realizations of the random variable X , i.e.
different from the n input vectors for the estimate. We
choose N = 105. We normalize our error by the error of
the simplest estimate of mi, i.e. the error of a constant
function, calculated by the average of the observed data.
Thus the errors given in our tables below are normalized
error measures of the form εL2,N (mn,i)/ε̄L2,N (avg). Here
ε̄L2,N (avg) is the median of 50 independent realizations
you obtain if you plug the average of n observations into
εL2,N (·). Since our simulation results depend on randomly
chosen data points we repeat our estimation 50 times by
using differently generated random realizations ofX in each
run. In Table 2, 3, 4, 5, 6 and 7 we listed the median (plus
interquartile range IQR) of εL2,N (mn,i)/ε̄L2,N (avg).

TABLE 2: Median of the normalized empirical L2-error for
each estimate and regression function m1

m1

noise 5%
sample size n = 100 n = 200
ε̄L2,N̄

(avg) 29.5445 29.4330

neural-sc 0.3809(0.1902) 0.1926(0.1568)
neural-x 0.4412(0.2653) 0.2035(0.2178)
neural-fc 0.5040(0.3988) 0.2220(0.1568)

RBF 0.6856(0.1205) 0.6064(0.0670)
neighbor 0.6387(0.0785) 0.5610(0.0489)
MARS 0.6747(0.1433) 0.5091(0.0567)

tree 0.8469(0.1237) 0.8533(0.1248)

m1

noise 20%
sample size n = 100 n = 200
ε̄L2,N̄

(avg) 29.4970 29.4375

neural-sc 0.5113(0.3604) 0.2971(0.2546)
neural-x 0.4674(0.4427) 0.2218(0.3167)
neural-fc 0.4958(0.4742) 0.3016(0.1928)

RBF 0.7044(0.1150) 0.6173(0.0754)
neighbor 0.6411(0.0776) 0.5589(0.0500)
MARS 0.6949(0.1787) 0.5149(0.0519)

tree 0.7481(0.0940) 0.7653(0.1021)
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TABLE 3: Median of the normalized empirical L2-error for
each estimate and regression function m2

m2

noise 5%
sample size n = 100 n = 200
ε̄L2,N̄

(avg) 671.83 670.77

neural-sc 0.8108(0.6736) 0.5468(0.6812)
neural-x 0.8296(0.3139) 0.5543(0.3884)
neural-fc 1.0668(0.6779) 0.7792(0.4642)

RBF 1.0172(0.2613) 0.6896(0.3906)
neighbor 0.8640(0.1086) 0.7990(0.1476)
MARS 1.6299(1.5082) 3.4815(16.9055)

tree 0.9467(0.0950) 0.9016(0.1661)

m2

noise 20%
sample size n = 100 n = 200
ε̄L2,N̄

(avg) 669.82 672.04

neural-sc 0.7453(0.5348) 0.5146(0.4298)
neural-x 0.8788(0.5053) 0.5488(0.4127)
neural-fc 0.9678(0.4276) 0.8476(0.6150)

RBF 1.0179(0.2517) 0.6582(0.3297)
neighbor 0.8657(0.0884) 0.7469(0.1156)
MARS 1.6363(2.4886) 2.3530(10.0750)

tree 0.9483(0.0776) 0.9053(0.1489)

TABLE 4: Median of the normalized empirical L2-error for
each estimate and regression functions m3

m3

noise 5%
sample size n = 100 n = 200
ε̄L2,N̄

(avg) 9023.9 9018.4

neural-sc 0.5983(0.6832) 0.2006(0.3523)
neural-x 0.5168(0.6809) 0.3156(0.2091)
neural-fc 0.7337(0.6276) 0.3657(0.4543)

RBF 0.6764(0.4601) 0.5527(0.3601)
neighbor 0.8188(0.1170) 0.7137(0.0985)
MARS 0.9925(1.7966) 0.6596(0.7020)

tree 0.7017(0.2901) 0.4624(0.1447)
m3

noise 20%
sample size n = 100 n = 200
ε̄L2,N̄

(avg) 9117.1 9017.4

neural-sc 0.5521(0.3977) 0.3223(0.3143)
neural-x 0.5555(0.6642) 0.3147(0.2386)
neural-fc 0.8311(0.4058) 0.3397(0.4208)

RBF 0.6580(0.4698) 0.5312(0.3780)
neighbor 0.8024(0.1117) 0.7191(0.0987)
MARS 1.1440(5.5270) 0.6445(0.7419)

tree 0.6873(0.2788) 0.4697(0.1501)

TABLE 5: Median of the normalized empirical L2-error for
each estimate and regression functions m4 with noise 5%

m4

noise 5%
sample size n = 100 n = 200
ε̄L2,N̄

(avg) 5485.1 5468.7

neural-sc 0.3672(0.2972) 0.1571(0.1581)
neural-x 0.5667(0.8250) 0.2723(0.3540)
neural-fc 0.1170(0.5696) 0.0394(0.1405)

RBF 0.8612(0.3638) 0.8024(0.4667)
neighbor 0.8655(0.1006) 0.8105(0.1014)
MARS 1.4588(3.3845) 0.7384(4.6870)

tree 0.6215(0.2619) 0.3622(0.2567)

TABLE 6: Median of the normalized empirical L2-error for
each estimate and regression function m4 with noise 20%

m4

noise 20%
sample size n = 100 n = 200
ε̄L2,N̄

(avg) 5485.3 5456.6

neural-sc 0.4295(0.3284) 0.2026(0.6585)
neural-x 0.5266(0.4642) 0.3663(0.5245)
neural-fc 0.1551(0.4228) 0.0399(0.0756)

RBF 0.9983(0.3678) 0.8046(0.4744)
neighbor 0.8648(0.0912) 0.8141(0.0831)
MARS 1.6776(17.3311) 0.7137(2.6324)

tree 0.6218(0.2553) 0.3461(0.2620)

TABLE 7: Median of the normalized empirical L2-error for
each estimate and regression function m5

m5

noise 5%
sample size n = 100 n = 200
ε̄L2,N̄

(avg) 0.0049

neural-sc 0.0037(0.0048) 0.0011(0.0012)
neural-x 10.0835(100.7) 7.0749(226.1946)
neural-fc 0.0010(0.0065) 0.0006(0.0014)

RBF 0.0204(0.0089) 0.0051(0.0023)
neighbor 0.3875(0.1197) 0.2679(0.0835)
MARS 0.1799(0.1099) 0.1107(0.0775)

tree 0.6215(0.2619) 0.3622(0.2567)

m5

noise 20%
sample size n = 100 n = 200
ε̄L2,N̄

(avg) 0.0049 0.0049

neural-sc 0.0967(0.1671) 0.0237(0.0278)
neural-x 0.7286(161.174) 0.1686(108.228)
neural-fc 0.0098(0.0906) 0.0077(0.0347)

RBF 0.0649(0.0284) 0.0361(0.0112)
neighbor 0.3814(0.1259) 0.2724(0.0922)
MARS 0.1993(0.1036) 0.1122(0.0577)

tree 0.6218(0.2553) 0.3461(0.2620)

We observe that our estimate outperforms the other
approaches in 8 out of 12 examples in the three examples
m1,m2 and m3 of regression functions with low local di-
mensionality. Especially in cases m1 and m3, the error of
our estimate is about half the error in each of the other
approaches for n = 200 and σ = 0.05, except for the
error of the other neural networks. We also observe, that
the relative improvement of our estimate (and of the other
networks) with an increasing sample size is much larger
than the improvements for most of the other approaches
(except form2 for the RBF and form3 for MARS). This could
be a plausible indicator of a better rate of convergence.
It makes sense that we also get good approximations for
the fully connected neural networks, since some of the
sparse networks can be expressed by fully connected ones
(e.g., choosing some weights as zero). The estimate neural-
x of [3] was originally constructed to estimate regression
functions with some composition assumption, for instance
(p, C)-smooth generalized hierarchical interaction models.
Since our regression functions represent a (p, C)-smooth
generalized hierarchical interaction model on each polytope,
it is plausible that this estimate also performs well for
those regression functions. Nevertheless, with regard to our
simulation results we see, that (with four exceptions) our
sparse neural networks perform better than the other neural
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network estimates.
With regards to the regression functions m4 and m5 the
error of our sparse estimator is at least twice as large as
the error of the fully connected networks. In these cases
the regression functions do not fulfill Definition 3 of low
local dimensionality. This indicates, that the architecture of
our sparse networks was specially tailored to functions with
low local dimensionality and shows no advantages for other
function classes.

5 REAL-WORLD DATA EXPERIMENT

The different approaches of the simulation study were
further tested on a real–world data set to emphasize the
practical relevance of our estimate. The data set under study
was the earlier mentioned 2–year usage log of a bike sharing
system named Captial Bike Sharing (CBS) at Washington,
D.C., USA ( [18]), where we conjecture some low local
dimensionality in the data set, which fits our assumption
on the regression function. The data set consists of 17379
data points, where each of them represents one hour of
a day between 2011 and 2012; 500 were used for training
and testing and the rest was used to compute the errors
contained in Table 8. We used the same parameter sets as in
the simulation study for all of our estimates and normalized
the results again with the simplest estimate i.e. the average
of the observed data . Table 8 summarizes the results. Again

TABLE 8: Normalized empirical L2-risk for each estimate
for the bike sharing data

neural-sc neural-x neural-fc RBF
0.1680 0.3706 0.5924 0.8121

neighbor MARS tree
0.6829 0.3970 0.6522

we observe that our estimate outperforms the others i.e. the
error of our estimate is about half the error of the second
best approach (MARS). Hence our assumption of low local
dimensionality seems plausible, at least for this real data set,
since the estimate following this assumption outperforms all
other estimates.
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