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Abstract—Attack trees are an important tool in se-
curity analysis, and an important part of attack tree
analysis is computing metrics. This paper focuses on
dynamic attack trees and their min time metric. For
general attack trees, calculating min time efficiently
is an open problem, with the fastest current method
being enumerating all minimal attacks, which is
NP-hard. This paper introduces 3 new tools for
calculating min time. First, we show that static attack
trees can be handled by a fast bottom-up algorithm.
Second, we introduce a novel method for general
dynamic attack trees based on mixed integer linear
programming. Third, we show how the computation
can be sped up by identifying the modules of an
attack tree, i.e. subtrees connected to the rest of the
attack tree via only one node. Experiments on a
generated testing set of large attack trees verify that
these methods have a large impact on performance.

Index Terms—Attack trees, quantitative analysis,
optimization, mixed integer linear programming.

I. INTRODUCTION

(Dynamic) attack trees. Attack trees are a promi-

nent methodology in security analysis. They fa-

cilitate security specialists in identifying, docu-

menting, analyzing an prioritizing cyberrisks. At-

tack trees are included in several popular system

engineering frameworks, e.g. UMLsec [1] and

SysMLsec [2], and are supported by industrial

tools such as Isograph’s AttackTree [3].

An attack tree is an hierarchical diagram that

describes a system’s vulnerabilities to an adver-

sary’s attacks. Attack trees have been used in

many different scenarios, such as IoT insider

threats [4], electronic voting [5], and military

information infrastructure [6]. Their popularity is

owed to their simplicity on one hand, which allows

↓

OR AND SAND BAS

Fig. 1: The nodes of a dynamic attack tree.

for a wide range of applications, and their anal-

izability on the other hand. Despite their name,

attack trees are rooted directed acyclic graphs.

Its root represents the adversary’s goal, while

the leaves represent basic attack steps (BASes)

undertaken by the adversary. Each internal root is

labeled with a gate, determining how its activation

depends on that of its children.

Standard attack trees (SATs, also called static

attack trees) feature only OR and AND gates, but

many extensions have been introduced to describe

more elaborate attack scenarios [7]. One of the

most prominent extensions are dynamic attack

trees (DATs) [8]. DATs introduce a SAND (“se-

quential AND”) gate, which is activated only when

its children are activated sequentially. By contrast,

an AND-node’s children can be activated in parallel.

An epic example is given in Figure 2.

Quantitative analysis. Quantitative analysis aims

at computing attack tree metrics. Such metrics

are key performance indicators that formalize how

well a system performs in terms of security. These

metrics are essential when comparing alternatives

or making trade-offs. Many such metrics exist,

such as the minimal cost, minimal required skill,

or maximal damage of a successful attack. This

paper focuses on the metric min time: the minimal

time the adversary needs to perform a successful

attack, given the duration of the BASes.

http://arxiv.org/abs/2111.05114v1
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Fig. 2: A DAT for the Trojan War. To conquer

Troy, the glancing-eyed Achaeans must either:

collect wood (w), build a battering ram (r), and

then assault Troy (a); collect wood, build a horse

(h), and then trick the Trojans (t); or starve out

the Trojans (s).

The metric min time is an important metric,

since the success of a security attack crucially

depends on time: attacks that take too long are

not viable. Insight in timing behaviors of attacks

is therefore a key to devising effective counter-

measures. Note that min time is especially relevant

in the context of DATs: On many metrics, such

as cost, probability, skill required, the SAND and

AND gates behave identical. Thus, to compute

those metrics, the algorithms developed for SATs

immediately generalize to DATs. It is in the timing

behavior that the difference between SAND and

AND manifests itself, so that novel computation

algorithms are needed.

Algorithms for min time. The problem of com-

puting min time is as follows: if each BAS is given

a duration, what is the minimum time needed to

reach the root of the attack tree?

The algorithms to compute min time crucially

depend on two factors [9]: (1) the shape of the

attack tree, i.e., trees vs DAGs and (2) the presence

of SAND gates, i.e., SATs vs DATs.

Tree-shaped DATs. A (static or dynamic) attack

tree that is tree-shaped can be computed via an in-

tuitive bottom up algorithm, by propagating values

from the leaves to the top. This algorithm works

for general attributes (e.g. cost, probability, time,

skill), by using appropriate operators to interpret

how the values propagate through the gates. This

bottom-up method was first proposed by [10] for

static trees and later extended in [8] to dynamic

attack trees. Their correctness of this algorithm

crucially relies on subtle distributivity laws of the

↓

2 3

↓

4

Fig. 3: Example DAT for which the bottom-up

algorithm does not work.

chosen operators.

For DAG-shaped trees, the bottom up algorithm

does not work in general, essentially because

the values in different branches are no longer

independent. For example, in the DAT of Figure

3 the bottom-up algorithm of [8] will calculate

min time as max(2 + 3, 3 + 4) = 7. However,

the only succseful attack is the one that activates

the three BASes sequentially, and so min time

equals 2 + 3 + 4 = 9. For DAG-shaped SATs [9]

proposes an efficient procedure exploiting binary

decision diagrams (BDDs) that computes generic

metrics over static DAGs. BDDs are compact

representations of Boolean functions, and since

static attack trees are Boolean functions, this is

a natural fit. The algorithms in [9] work for a

general class of metrics that take values in a so-

called attribute domain, i.e. a triple (V,△,▽) of a

set V with two commutative associative operators

△ and ▽, where ▽ distributes over △.

A key contribution of this paper is the realiza-

tion that the bottom-up algorithm introduced in

[8] for tree-like DATs can calculate min time for

any static attack tree, even DAG-shaped. The key

reason is that the attribute domain (R,max,min)
corresponding to min time is idempotent, i.e.,

min(x, x) = max(x, x) = x. This yields an

enormous complexity reduction with respect to

[9]: while the BDD-approach is exponential, the

bottom-up method is linear in the size (number of

nodes and edges) of the attack tree.

DAG-shaped DATs. In [9], efficient computation

for DAG-shaped dynamic attack trees is left as an

open problem. min time is computed by an enu-

merative method: by first generating all minimal

attacks, and taking the one with the lowest attack

time. Clearly this is computationally expensive.

In this paper, we present a novel method to



Tree DAG

Static Bottom-up BDDs → Bottom-up

Dynamic Bottom-up Enumerative → MILP

TABLE I: Algorithms for min time. We improve

the static DAG-case from BDDs to bottom-up and

for dynamic DAGs from enumerative to MILP.

calculate min time for general DATs based on

Mixed-Integer Linear Programming (MILP). Con-

cretely, we translate calculating min time into an

optimization problem. The natural formulation of

min time as an optimization problem, however,

yields a set of constraints that is nonlinear. We

rewrite these into linear constraints by introducing

auxiliary integer variables. Since dedicated solvers

exist for MILP, this speeds up computation time

considerably.

Modular analysis. To improve performance, we

combine MILP with modular analysis [11]. Con-

cretely, we identify independent modules in a

DAT, i.e., rooted subDATs whose nodes are only

connected to the rest of the DAT via the root

of the subDAT. We show that modules can be

analyzed separately. Further, if a module is tree-

shaped or static, then we can deploy the more

efficient bottom-up algorithm. We integrate these

modules into our MILP algorithm.

Generalized semantics. Another point we set-

tle in this paper is a generalized semantics for

DATs. As SAND gates require their children

to be executed consecutively, different branches

in the DAT may impose conflicting restrictions

on the execution orders. For example, the DAT

SAND(a, a) demands that a is executed before a,

which is infeasible. To rule out these conflicts, [9]

imposed well-formedness criteria. However, these

also ruled out some satisfiable DATs. Furthermore,

the definition of an attack in that work was overly

restrictive, and for some DATs the fastest attack

is not an attack under that definition. This leads

to an overestimation of min time. In this work we

extend the definition of a (successful) attack so

min time is correctly defined. This new definition

has the additional advantage of being applicable

to all DATs, not just the well-formed ones.

Experimental validation. We compare the perfor-

mance of four methods (modular versus nonmod-

ular and enumerative versus MILP) on a set 750

DATs, obtained by combining smaller DATs from

the literature. The experiments show that on larger

DATs modular MILP has the best performance,

followed by modular enumerative.

Contributions. Summarized our main contribu-

tions are:

1) A generalization of the poset semantics of

[9] that significantly relaxes the syntactic

constraints on the use of SAND-gates.

2) A novel algorithm to calculate min time for

general DATs based on MILP.

3) A proof that bottom-up algorithm correctly

calculates min time for all static ATs, includ-

ing DAG-shaped ones.

4) A modularization approach that yields sig-

nificant speed ups by separately handling

fragments of the DAT that are static or tree-

shaped.

5) Extensive experimental validation to evaluate

the performance of the algorithms.

Data sources. The code for the experiments, the

generated DATs and the experimental results are

available in [12].

Paper organization. The structure of this paper

is as follows. In Section II we discuss related

literature. In Section III we review DATs and their

semantics. In Section IV we show how MILP can

be used to find min time. In Section V we discuss

how modular analysis can cut down computation

time, and in Section VI we perform experiments

to compare MILP and modular analysis to the

enumerative approach.

II. RELATED WORK

Dynamic attack trees were first formally defined

in [8], although the addition of a sequential oper-

ator to attack trees had been discussed in earlier

work [13], [14]. In [8] semantics for DATs are

defined in terms of series-parallel graphs, based

on the multiset semantics for standard attack trees

in [10]. These semantics assume that each node

must be activated separately for each of its parents.

Effectively, this turns any DAG-like DAT into a

tree-shaped one, which limits the range of scenar-

ios that can be modeled.

Another approach to the semantics of DATs,

using posets, is developed in [9]. In that paper each

node can be activated only once, which allows for



a more flexible modeling of different scenarios.

The paper also discusses how a general class of

metrics on DATs can be computed, although the

calculation of time-related metrics such as min

time on general DATs is left as an open problem.

In [15] and [16] DATs are modeled as priced-

timed automata. This allows for a detailed analy-

sis, including the calculation of min time, but the

interpretation of SAND-nodes is different from our

paper: rather than imposing a sequential order on

BAS activations, it determines in what order the

children of a node are checked for being activated.

This results in different semantics.

Closely related to DATs are dynamic fault trees

(DFTs), which are used to model safety rather than

security threats [17]. Temporal relations in DFTs

are typically expressed by other means than SAND-

nodes. The poset semantics of DFTs are studied

via extended binary decision diagrams in [18].

III. DYNAMIC ATTACK TREES

This section reviews the definition of dynamic

attack trees, and develops their semantics and the

min time metric. The following definition of a DAT

is from [9].

Definition 1. A dynamic attack tree (DAT) is

a rooted directed acyclic graph T = (N,E)
where each node v has a type γ(v) ∈
{BAS, OR, AND, SAND} such that γ(v) = BAS if

and only if v is a leaf, and every node v with

γ(v) = SAND has an ordering of its set of children.

Note that a DAT, despite its name, is not nec-

essarily a tree. If it is, we call it treelike.

The root is denoted RT . For

γ ∈ {BAS, OR, AND, SAND}, we write Nγ for the

set of nodes v with γ(v) = γ. If γ(v) = SAND
and v has (ordered) children v1, . . . , vn, we write

v = SAND(v1, . . . , vn) for convenience. We do

the same for OR and AND, where the ordering of

the children does not matter. We write Tv for

the subDAG consisting of all descendants of v,

i.e. all v′ for which there is a path from v to v′.
Furthermore, we let Bv be the set of descendants

of v in NBAS, i.e. the a ∈ NBAS.

A dynamic attack tree codifies the ways an

attacker can make a system fail by executing the

basic attack steps i.e. the nodes in NBAS. A non-

BAS node is reached depending on its children,

where OR and AND have the expected meaning,

and a SAND-node is reached if all its children are

reached in their given order (the precise semantics

are defined below). The adversary’s goal is to

reach the root node RT .

In the literature, two interpretations of BASes

with multiple parent nodes exist. The difference

affects both the semantics and the metrics. In

the first interpretation, multiple activation (MA),

[10], [8], [19] each BAS can be activated multiple

times, and every parent of a node requires its

own activation of that node. In this interpretation

SAND(a, a) succeeds only if a is activated twice

consecutively. By replacing nodes with multiple

parents by one copy for each parent, any DAT can

be transformed into a treelike one with equivalent

semantics and metrics. As a result, quantitative

analysis is ‘solved’ in the sense that metrics can be

calculated quickly via a bottom-up algorithm [20].

The downside is that MA cannot adequately model

systems in which one action can have multiple

independent consequences.

In the other interpretation, single activation

(SA), [9], [21], each BAS is executed at most

once, and a node only needs to be activated once

to count as an input for all its parent nodes. For

example, in this interpretation SAND(a, a) cannot

be satisfied, because a cannot be activated before

itself. SA has the advantage of being able to

describe a much wider range of systems. However,

the downside is that quantitative analysis is NP-

hard in general [9].

For the remainder of this paper we follow SA in

order to be able to model more realistic scenarios.

Note that the two interpretations are the same for

treelike DATs. Since every DAT is equivalent to

a treelike one under MA, SA can model every

scenario that MA can.

A. Semantics

In this section, we discuss the semantics of

DATs. We mostly follow [9], though we need a

more general definition because that work only

defines the semantics of so-called well-formed

DATs.

An attack (A,≺) consists of a set A of BASes

activated by the attacker, and a strict partial order

≺, where a ≺ a′ means that a is executed before

a′.
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a b c

Fig. 4: An example of a DAT.

Definition 2. The set AT of attacks on T is

defined as the set of strictly partially ordered sets

O = (A,≺), where A ⊆ NBAS. This set has a

partial order ≤ given by O ≤ O′, for O = (A,≺)
and O′ = (A′,≺′), if and only if A ⊆ A′ and

≺ ⊆ ≺′.

We are interested in successful attacks, i.e.

attacks that manage to reach the root node. Suc-

cessful attacks are defined recursively as follows:

Definition 3. Let v be a node. We say that an

attack O = (A,�) reaches v if:

1) v ∈ NBAS and v ∈ A;

2) v = OR(v1, . . . , vn) and O reaches at least

one of the vi;
3) v = AND(v1, . . . , vn) and O reaches all of

the vi;
4) v = SAND(v1, . . . , vn) and O reaches all of

the vi, and for all ai ∈ O ∩ Bvi , ai+1 ∈
O ∩Bvi+1

one has ai ≺ ai+1.

An attack is successful if it reaches RT .

This allows us to define the semantics of T :

Definition 4. The semantics of a DAT T is the set

ST of succesful attacks on T .

The intuition behind a SAND-gate v =
SAND(v1, . . . , vn) is that it is only reached if all of

the BASes of vi have been (sucesfully) executed

before any of the BASes of vi+1 has started.

We note that contrary to the static case (without

SAND-gates), it is possible that ST = ∅. For

example, SSAND(a,a) = ∅. Note that being suc-

cessful is not monotonous on the set of attacks,

i.e. it is possible that O is successful while O′

is not, even if O ≤ O′. For instance, in Fig-

ure 4 ({a, c}, {(a, c)}) is a successful attack, but

({a, b, c}, {(a, c)}) is not.

The key differences with [9] are as follows: In

that work, attacks are called attacks only if they

↓

a b

Fig. 5: An example of a well-formed DAT for

which the semantics in [9] are insufficient.

satisfy the ordering constraints imposed by all

SAND-gates. This is defined only for well-formed

DATs, i.e., DATs for which all these ordering

constraints put together are still satisfiable. More

formally, that work only considers attacks that we

call full in the following definition.

Definition 5. Let T be a DAT. Define a relation

⊏
′ on NBAS by a ⊑′ a′ if and only if there exists a

node v = SAND(v1, . . . , vn) and an i < n such

that a ∈ Bvi and a′ ∈ Bvi+1
. Let ⊏ be the

transitive closure of ⊏′.

1) T is called well-formed if ⊏ is a strict partial

order.

2) An attack (A,≺) on a well-formed DAT is

called full if ≺ equals ⊏ |A.

However, not all attacks will be full, because

an attack may not need to reach all SAND-nodes

in order to reach the root, and non-reached nodes

should not put restrictions on attacks. Consider,

for instance, the well-formed DAT of Figure 5.

Only ({a, b}, {(a, b)}) is a full succesful attack.

However, ({a, b},∅) is a succesful attack as well.

We see that non-full attacks are needed to fully de-

scribe the semantics of well-formed DATs, which

motivates our Definition 2. Furthermore, our defi-

nition defines the semantics of general DATs, not

just the well-formed ones.

B. The min time metric

This paper focuses on calculating min time, i.e.,

the minimal time it takes to perform a successful

attack on a given DAT. While other metrics exist

for DATs, min time is a fundamental time metric,

and calculating min time for non-treelike DATs is

an open problem [9].

Min time is defined as follows: Every BAS a
has a duration da ∈ R≥0, denoting the time it



takes to executes a. If a ≺ a′, then the BAS a′

can only be started once a has been completed,

while a and a′ can be activated in parallel if such

a relation does not exist. As such, we can define

the total duration of an attack as

t(O, d) = max
C max. chain

in O

∑

a∈C

da, (1)

where the maximum is taken over the maximal

chains (i.e., maximal linearly ordered subsets) of

the strict poset O. We will often omit d from the

notation and write t(O) if there is no confusion.

Note that t is monotonous: if O ≤ O′ one has

t(O) ≤ t(O′). We define min time as

mt(T, d) = min
O∈ST

t(O, d). (2)

Again we omit the argument d when there is

no confusion. Note that mt(T ) = ∞ if ST = ∅.

It follows from the monotonicity of t that the

minimum in (2) is attained in one of the minimal

elements of the poset ST . Hence when calculating

mt(T ) it suffices to only look at the minimal

elements of ST , as expressed by the following

proposition.

Proposition 6. Let GT ⊂ ST such that GT con-

tains all minimal elements of the poset (ST ,≤).
Then

mt(T, d) = min
O∈GT

t(O, d). (3)

In Appendix A we discuss a bottom-up method

to find such GT . In the absence of other ap-

proaches such as a bottom-up approach, one can

use this proposition to calculate mt(T ) as in

Algorithm 1, which first finds such a GT as in

Theorem 15, and then calculates mt(T ) via (3).

Algorithm 1 has exponential time complexity, and

generally finding the set of minimal attacks is NP-

complete [9]. This means that there is a need to

find other approaches that do not rely on the set

of minimal attacks.

Input: Dynamic attack tree T , duration

vector d ∈ R
NBAS

Output: Min time mt(T, d).

GT ← as in Theorem 15;

return minO∈GT
t(O, d)

Algorithm 1: MT-Enum for a DAT T .

↑
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↓
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2 3 2 3 1

3652

Fig. 6: The Trojan War DAT of Figure 2 aug-

mented with durations.

Example 7. Figure 6 depicts the Trojan War

DAT of Figure 2 augmented with durations for

the BASes. To calculate mt(T ) we first find the

minimal attacks. Represented as Hasse diagrams

these are

O1 =

a

r

w

, O2 =

t

h

w

, O3 = s.

These have duration t(O1) = 2 + 3 + 2 = 7,

t(O2) = 2 + 3 + 1 = 6, and t(O3) = 3652. It

follows that mt(T ) = min{7, 6, 3652} = 6.

IV. AN MILP APPROACH TO min time

This section describes a novel method to

compute mt(T ) based on mixed-integer linear

programming (MILP). Although MILP is NP-

complete, a number of good heuristics and solvers

exist specifically for MILP, which can result in a

low computation time. We first show that min time

can be found by solving an optimization problem

in Theorem 9, and then we describe how that

optimization problem can be rewritten into the

MILP framework.

The building block of the new approach is

the notion of time assignment, which assigns to

each node a completion time fv that respects all

timing constraints in the DAT. If fv = ∞ then

v is not reached at all. The formal definition is

stated below; recall that Bv is the set of BAS-

descendants of v.

Definition 8. Let T be a DAT. For a node v with

children v1, . . . , vn and i < n, define

Zv
i := Bvi ×Bvi+1

. (4)



A time assignment is a vector f ∈ [0,∞]N

satisfying:

1) For each a ∈ NBAS,

fa ≥ da; (5)

2) For each v = OR(v1, . . . , vn),

fv ≥ min
i

fvi ; (6)

3) For each v = AND(v1, . . . , vn),

fv ≥ max
i

fvi ; (7)

4) For each v = SAND(v1, . . . , vn), the follow-

ing must hold:

a) it holds that

fv ≥ fvn ; (8)

b) If there is a i ≤ n such that fvi = ∞,

then

fv =∞; (9)

c) If there exist i < n and (a, a′) ∈ Zv
i such

that fa′ − da′ < fa <∞, then

fv =∞. (10)

The set of all time assignments for T is denoted

FT .

The conditions for SAND-nodes can be under-

stood as follows. Equation (8) tells us that v
cannot be reached before vn, and (9) tells us that

v cannot be reached if any of its children is not

reached. Note that fa′ − da′ is the starting time

of a BAS a′, and so (10) tells us that v can only

be reached if the BASes of vi+1 are only started

once those of vi have been completed.

Note that we allow for a delay in completing

node v, even when sufficiently many of its chil-

dren have been completed. The following theorem

relates time assignments to min time:

Theorem 9. mt(T ) = minf∈FT
fRT

.

This theorem is proven in Appendix B. It allows

us to calculate mt(T ) by solving the following

optimization problem.

minimizef∈[0,∞]N fRT
(11)

s.t. (5) for all a ∈ NBAS,

(6) for all v ∈ NOR,

(7) for all v ∈ NAND,

(8)–(10) for all v ∈ NSAND.

Note that (11) is not an integral problem, due

to the nonlinear constraints (6)–(10). We use aux-

iliary integer variables to transform these con-

straints into linear ones.

First, we need to get rid of the ∞ in equations

(5)–(10), which we do by replacing it with a

suitably large real number. Define the constant

M = 1 +
∑

a∈NBAS

da. (12)

The following lemma shows that if T is satisfi-

able, then to minimize (11) one can just focus on

the f that have fv ∈ [0,M − 1] ∪∞. The lemma

is proven in Appendix B.

Lemma 10. There is a time assignment f mini-

mizing (11) such that fv ∈ [0,M − 1]∪∞ for all

v.

This lemma shows that we can use M to play

the role of ∞ where necessary. We enforce this

by demanding fv ∈ [0,M ], and we interpret

fv = M to mean that v is not reached. For a

node v, let nv be its number of children, which are

denoted v1, . . . , vnv
. We then use standard MILP

techniques [22] to rewrite (6)–(10).

To rewrite (6), we introduce an auxiliary binary

variable xv
i for each v ∈ NOR and each i ≤ nv .

The purpose of xv
i is to represent the truthfulness

of the statement “i = argmini′ fvi′ ”. We can then

represent (6) by

∀i ≤ nv : fv ≥ fvi +M(xv
i − 1), (13)

∑

i≤nv

xv
i ≥ 1. (14)

Thus, Equation (13) is automatically satisfied if

xv
i = 0, and reduces to fv ≥ fvi if xv

i = 1.

Equation (14) ensures that the latter must happen

for at least one i, so together these encode fv ≥
mini fvi .

Equation (7) can be rewritten without auxiliary

variables into

∀i ≤ nv : fv ≥ fvi . (15)

Finally, we consider (8)–(10). For v ∈ NSAND,

we introduce an auxiliary binary variable yv that



minimize fRT

subject to

fv ∈ R, ∀v ∈ N

fa ≥ da, ∀a ∈ NBAS

xv
i ∈ {0, 1}, ∀v ∈ NOR∀i ≤ nv

fv ≥ fvi +M(xv
i − 1), ∀v ∈ NOR∀i ≤ nv

∑

i≤nv

xv
i ≥ 1, ∀v ∈ NOR

fv ≥ fvi , ∀v ∈ NAND∀i ≤ nv

yv ∈ {0, 1}, ∀v ∈ NSAND

zvi,a,a′ ∈ {0, 1}, ∀v ∈ NSAND∀i < nv∀(a, a
′) ∈ Zv

i

fv ≥ fvnv
, ∀v ∈ NSAND

fv ≥Myv, ∀v ∈ NSAND

yv ≥
1+fvi−M

M , ∀v ∈ NSAND∀i < nv

yv ≥ fa−fa′+da′

M − zvi,a,a′ , ∀v ∈ NSAND∀i < nv∀(a, a
′) ∈ Zv

i

yv ≥ M−fa+1
M + (zvi,a,a′ − 1). ∀v ∈ NSAND∀i < nv∀(a, a

′) ∈ Zv
i

Fig. 7: Problem (11) rewritten in the MILP framework.

encodes “∃i < n : fvi = ∞ or ∃i∃(a, a′) ∈
Zv
i : fa′ − da′ < fa < ∞.” Then we can write

(8)–(10) as

fv ≥ fnv
, (16)

fv ≥Myv. (17)

To ensure yv = 1 whenever one of the fvi = ∞,

we add the constraint

∀i < nv : y
v ≥

1 + fvi −M

M
, (18)

which forces yv = 1 only when fvi > M − 1.

Furthermore, to ensure yv = 1 whenever some

a, a′ satisfy fa′ − da′ < fa, we would like to add

the constraint

∀i < nv∀(a, a
′) ∈ Zv

i :

yv ≥ min
{

fa−fa′+da′

M , M−fa
M

}

. (19)

This forces yv = 1 only when both fa′−da′ < fa
and fa < M . To get rid of the minimum, we

introduce an auxiliary variable zvi,a,a′ for each i <

nv and (a, a′) ∈ Zv
i as we did in (13) and (14).

We then replace (19) with

∀i < nv∀(a, a
′) ∈ Zv

i : yv ≥
fa−fa′+da′

M − zvi,a,a′ ,
(20)

∀i < nv∀(a, a
′) ∈ Zv

i : yv ≥
M−fa

M − (1 − zvi,a,a′).
(21)

Taking all of this together, it can be shown that

the constraint fv ∈ [0,M ] holds automatically for

all ‘reasonable’ f and can be replaced by fv ∈ R.

We then find that the optimization problem (11)

can be rewritten into the MILP problem in Figure

7, and that min time can be found via Algorithm

2.

Input: Dynamic attack tree T , duration

vector d ∈ R
NBAS

Output: Min time mt(T, d).

P ← problem of Figure 7;

return Solution of P
Algorithm 2: MT-MILP for a DAT T .

Note that the optimization of Figure 7 returns an

f with fRT
≤M−1 if and only if ST 6= ∅. Hence



this optimization can also be used to determine

whether T can successfuly be attacked.

V. COMPUTATION TIME REDUCTION

In this section, we introduce an algorithm re-

ducing the complexity of computing mt(T ). The

algorithm consists of two components: First, we

show that a bottom-up algorithm from [8] can be

used to calculate min time for static (no SAND-

nodes) and treelike DATs. As the state of the

art method, based on binary decision diagrams

[9], has exponential complexity, and the bottom-

up algorithm has linear complexity, this is a big

improvement. Second, we split up the calculation

of min time into parts by identifying the modules

of a DAT, i.e. subDAGs that are connected to the

rest of the DAT via only one node.

A. Bottom-up computation

An important tool is the algorithm MT-BU intro-

duced in [8] presented in Algorithm 3. Recall that

Tv is subDAG of v consisting of the descendants

of v.

Input: Dynamic attack tree T , duration

vector d ∈ R
NBAS

Output: Potential min time mt(T, d).

if γ(v) = BAS then
return dv

else if γ(v) = OR then
return minv′∈ch(v) MT-BU(Tv′ , d|Bv′

)
else if γ(v) = AND then

return maxv′∈ch(v) MT-BU(Tv′ , d|Bv′
)

else // γ(v) = SAND

return
∑

v′∈ch(v) MT-BU(Tv′ , d|Bv′
)

Algorithm 3: MT-BU for a DAT T .

This algorithm attempts to calculate mt(T ) by

traversing T bottom-up, which only has linear

time complexity and is significantly faster than

Algorithm 2. However, MT-BU does not correctly

calculate mt(T ) for general T . It is shown that it

does so for treelike T :

Theorem 11. [9] If T is a treelike DAT, then

MT-BU correctly calculates mt(T ).

We call a DAT T static if NSAND = ∅. The

quantitative analysis of static attack trees (SATs)

is studied in [9] for metrics of a general type

called attribute domains. A bottom-up algorithm

does not work for calculating general metrics on

general SATs, because a node with multiple parent

nodes may be counted multiple times. However,

for min time the relevant operations are min and

max, which are idempotent, i.e., min(x, x) =
max(x, x) = x. This means that it does not matter

that nodes occur multiple times in one formula,

and it allows us to prove the following theorem in

Appendix C.

Theorem 12. Assume T is static. Then MT-BU

calculates mt(T ).

The fastest state-of-the-art method for calculat-

ing min time for SATs is the binary decision dia-

gram (BDD) approach of [9], where the Boolean

function of a SAT is converted to a BDD, and a

bottom-up algorithm on the BDD then calculates

min time. However, the BDD of a Boolean func-

tion can be of exponential size, which means the

overall approach has exponential time complexity

in worst-case scenarios. By contrast, Algorithm 3

has linear time complexity, which makes a huge

difference for large SATs.

Note that idempotency is a crucial property for

MT-BU to work; in general, computing an attribute

domain metric on SATs is NP-hard [9].

B. Modular analysis

While Algorithm 3 can greatly reduce complex-

ity, it only does so in two relatively rare cases.

However, it is possible to also reduce complexity

when T is only partially static and/or treelike. A

well-established method in studying attack trees is

to consider the modules of T :

Definition 13. [11] A module is a node v ∈ N \
NBAS such that all paths from T \ Tv to Tv pass

through v.

Intuitively, the subtree Tv generated by a mod-

ule v is connected to the rest of the tree only

through v. As the following theorem shows, this

allows us to subdivide the problem of finding

mt(T ) into two parts: first we calculate mt(Tv),
and then we replace v by a new BAS with duration

mt(Tv), and calculate min time of the resulting

DAT.

Theorem 14. Let T be a DAT, and let v be a

module of T . Let T v be the node obtained by



removing v and replacing v itself with a new BAS

ṽ, and let dv be a duration vector for T v given

by

dva =

{

da, if a ∈ NBAS \Bv,

mt(Tv, d|Bv
), if a = ṽ.

(22)

Then mt(T, d) = mt(T v, dv).

This theorem is proven in Appendix D. It

reduces complexity in two ways: First, we split

the tree up into two parts whose total size is the

same as the original tree. Since MILP is NP-hard,

this can have a big impact on computation time.

Furthermore, the smaller DAT Tv can be static or

treelike, in which case we can use MT-BU.

Input: Dynamic attack tree T , duration

vector d ∈ R
NBAS , Algorithm A to

calculate min time

Output: Min time mt(T ).

V ← Module(T );
while V 6= ∅ do

Choose v ∈ V minimal;

if Tv is static or treelike then

d0 ← MT-BU(Tv, d|Bv
);

else

d0 ← A(Tv, d|Bv
);

(T, d)← (T v, dv);

return dRT
// RT is a BAS now

Algorithm 4: AMod for a DAT T . The notation

T v and dv is from Theorem 14.

The resulting algorithm is displayed in Al-

gorithm 4. Here Module refers to an algorithm

that finds the modules of T ; this can be done

with linear time complexity [11]. Algorithm AMod

makes use of an algorithm A that calculates min

time. For this one can use MT-Enum or MT-MILP, or

potentially any new algorithm that calculates min

time. Note that when T is treelike, every inner

node is a module, in which case AMod becomes

equivalent to MT-BU for any A.

VI. EXPERIMENTS

This section compares the performance of our

methods. Since computation time only becomes

relevant for large inputs, we want to test the

methods on a set of suitably large DATs. How-

ever, to our knowledge there is no established

Source |N | Treelike Durations

[16] Fig. 1 12 no unknown
[16] Fig. 8 20 no unknown
[16] Fig. 9 12 no unknown
[15] Fig. 1 16 yes unknown
[14] Fig. 3 8 yes known
[14] Fig. 5 21 yes known
[14] Fig. 7 25 yes known
[25] Fig. 2 20 yes unknown
[26] Fig. 1 15 yes unknown

TABLE II: DATs from the literature used as

building blocks. The trees from [25] and [26] are

attack-defense trees; only the root component of

the attack part was used for these trees.

benchmark suite of DATs, and many DATs from

the literature only have ≤ 25 nodes. Therefore,

we create a testing set of DATs by combining a

set of DATs from the literature into larger ones.

Then, we compare (1) the MILP method MT-MILP

to the enumerative algorithm MT-Enum and (2) the

effect of modular analysis on performance time.

Our experiments show that the MILP algorithm

combined with modularization outperforms the

other algorithms on larger DATs. The enumerative

algorithm with modularization is the second best

performing.

All experiments are performed on a PC with

an Intel Core i7-7700HQ 2.8GHz processor and

32GB memory. All algorithms are implemented

in Matlab, and for MILP we use the YALMIP

environment [23] to translate the optimization

problem into the Mosek solver [24], a state-of-

the-art optimizer that can handle MILP problems.

The code and results are available in [12].

A. Generation of testing DATs

In order to create a set of testing DATs that

are large enough for a meaningful performance

comparison, we do the following. As building

blocks, we use a selection of DATs from the

literature, presented in Table II. For some of the

duration of the BASes were random variables,

and we took the expected value for the duration;

otherwise we took a random duration from [1, 10].
To combine two DATs T1, T2 into a larger one, we

introduce a new root node v with a random label,

and add edges (v,RT1
) and (v,RT2

). Then, we

pick random BASes b1 from T1 and b2 from T2

and identify them (with a new random duration).

The new DAT represents a system consisting of



Monolithic Modular
Enumerative MILP Enumerative MILP
MT-Enum MT-MILP MT-EnumMod MT-MILPMod

max time (T80) 203.48 12706 1.9844 4.8906
mean log time (T80) -0.4788 0.0101 -0.4137 -0.2528

max time (T150) 3810.1 40.438
mean log time (T150) 0.2974 0.1935

TABLE III: Summary of the results. All times are in seconds. T80 contains 400 DATs with ≤ 100
nodes, and T150 contains 750 DATs with ≤ 168 nodes.

two subsystems that share one BAS. This is not the

only way to combine two DATs into a single larger

one, but we choose this method to ensure non-

treelike DATs, as for treelike DATs the bottom-up

algorithm MT-BU suffices.

For a given integer nmin, we combine DATs

randomly drawn from Table II via the method

above until |N | ≥ nmin. We do this 5 times

for each 1 ≤ nmin ≤ 80, giving us a testing

set T80 of 400 DATs with 8 ≤ |N | ≤ 100. In

order to compare performance on larger DATs, we

also generate trees for 81 ≤ nmin ≤ 150, which

together with T80 gives us a testing set T150 of

750 trees with 8 ≤ |N | ≤ 168.

B. Time comparisons

We measure the computation time of the four

algorithms on the testing sets. For the modular

methods we use the testing set T150; for the

monolithic methods we use the smaller testing set

T80 as these methods turn out to take considerably

more time. The results are summarized in Table

III. All methods have a computation time of < 10s

for more than 95% of the testing sets, but they

differ mostly in their outliers. Therefore we choose

to report the mean log rather than the mean, which

would be heavily skewed towards the outliers.

Table III shows that on T80, the monolithic (i.e.

nonmodular) enumerative method is the fastest on

typical trees, the outliers are considerably larger

than for the two modular approaches. Of the mod-

ular approaches, the enumerative method performs

better on T80, but the MILP method performs

better on T150, suggesting that modular MILP

is the best method for large DATs. This is also

reflected in Figure 8, where the mean log time is

given for the four algorithms, for DATs grouped

by |N |. Furthermore, we see that the MILP ap-

proaches start of as considerably slower than their

enumerative counterparts, but scale better as |N |
increases.

More detailed one-on-one comparisons between

algorithms are given in Figure 9. For most DATs,

computation time is low, and the difference be-

tween the two methods is low. The difference

between methods lies in the outliers. When com-

paring modular to monolithic approaches (b,c)

only the monolithic approach has large outliers,

showing the advantage of the modular approach.

In (a) both algorithms have outliers, with those

of MILP being considerably larger; the opposite

is true in (b), where the outliers of the enumera-

tive method are larger. Overall, these plots show

that the modular MILP approach performs best,

especially for outlier DATs.

VII. CONCLUSION AND DISCUSSION

This paper introduced two novel tools to cal-

culate min time for DATs. First, we introduced a

novel MILP-based approach that finds min time by

phrasing it as an optimization problem. Second,

we show how modular analysis can be used to re-

duce the computation time of any min time calcu-

lation algorithm. In the experiments, we compared

these to the enumerative method, both monolithic

and modular. The experiments show that for large

DATs both MILP and modular analysis can have

a big impact on computation time.

There are several directions in which this work

can be expanded. First, it would be interesting to

see whether an MILP approach can be used to

calculate other metrics than just min time. Since

MILP deals with real numbers, it will not work

for general attribute domains in the sense of [9],

but it is plausible that the MILP approach can be

extended to other metrics, both on DATs and other

types of attack trees.

Second, modular analysis can also be used for

other metrics, as has been done for fault trees [27],
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[28]. Since modular analysis is a very general

idea, a good approach would be to develop an

axiomatization of metrics that can be handled

via modular analysis, so that the method can be

applied to a large set of metrics at once.
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APPENDIX A

SUFFICIENT SETS OF SUCCESSFUL ATTACKS

The aim of this appendix is to give a bottom-

up algorithm that, for a DAT T , determines a set

GT of successful attacks containing the minimal

elements of ST . By Proposition 6 having such a

GT can aid in calculating min time.

We find GT via a bottom-up procedure. We

present the idea of the procedure in the following;

the formal statement and proof is in Theorem 15.

The idea is to find for every node v a set g(v)
of attacks reaching v, such that g(v) contains

all minimal attacks reaching v. We then take

GT = g(RT ).
For a BAS a it suffices to take

g(a) = {({a},∅)}, (23)

as that set’s single element is the minimal attack

reaching a. For a node v = OR(v1, v2), an attack

reaches v if it reaches either v1 or v2. Therefore

we take

g(v) = g(v1) ∪ g(v2). (24)

https://figshare.com/s/d61b7f95c9d622f393e2


For v = AND(v1, v2), an attack that reaches v
has to reach both v1 and v2. We get such attacks

by taking attacks O and O′ reaching v1 and v2,

respectively, and then taking the minimal attack

containing both of them. Formally, this is done as

follows. For a relation R on a set X , we denote

its transitive closure by tr(R). If O = (A,≺) and

O = (A′,≺′) are two attacks, then we define the

attack P (O,O′) = (A1,≺1) by

A1 = A ∪ A′, (25)

≺1 = tr(≺ ∪ ≺′), (26)

if ≺1 is a strict partial order on A1; otherwise

we leave P (O,O′) undefined. Then O,O′ ≤
P (O,O′), and P (O,O′) is the minimal attack

with that property if it exists, and no such attack

exists if P (O,O′) does not exists. We then let

g(v) be the set of all P (O,O′), where O ∈ g(v1)
and O′ ∈ g(v2), for which P (O,O′) exists.

For v = SAND(v1, v2) we do something similar,

but we also need to add relations a1 ≺ a2 for

a1 ∈ Bv1 and a2 ∈ Bv2 . Formally, for subsets

X,Y ⊂ NBAS, we define LX,Y (O) = (A2,≺2) by

A2 = A, (27)

≺2 = tr(≺ ∪((A ∩X)× (A ∩ Y ))), (28)

if ≺2 is a strict partial order on A2, and other-

wise we leave it undefined. The intuition is that

SX,Y (O) is equal to O, except that it enforces that

elements of X are activated before those of Y .

Finally define SX,Y (O,O
′) = LX,Y (P (O,O′));

then g(v) is the set of all SBv1
,Bv2

(O,O′),
where O ∈ g(v1) and O′ ∈ g(v2), for which

SBv1
,Bv2

(O,O′) exists.

The following theorem formalizes the . For

notational convenience, we only formulate it for

binary T , but it can easily be expanded to the

general setting.

Theorem 15. Define a function g : N → P(AT )
by

∀a ∈ NBAS : g(a) = {({a},∅)}, (29)

g(OR(v1, v2)) = g(v1) ∪ g(v2), (30)

g(AND(v1, v2)) =

{

X = P (O1,O2) :
O1∈g(v1),
O2∈g(v2),
X exists

}

,

(31)

g(SAND(v1, v2)) =

{

Y = SBv1
,Bv2

(O1,O2) :
O1∈g(v1),
O2∈g(v2),

Y exists

}

,

(32)

Then GT := g(RT ) is a set of successful attacks

that contains the minimal elements of ST .

Proof. Let Av be the subset of AT of attacks

activating v. We prove by induction that g(v) is

a subset of Av containing all minimal elements.

For O ∈ AT , we denote

U(O) = {O′ ∈ AT : O ≤ O′}. (33)

We can distinguish the following cases:

• if a ∈ NBAS, then an attack (A,≺) activates

a if and only if a ∈ A; hence ({a},∅) is the

unique minimal element of Av .

• if v = OR(v1, v2), an attack O is successful if

O ∈ Av1 ∪Av2 . By the induction hypothesis

the set of such attacks that are minimal is a

subset of g(v1) ∪ g(v2).

• if v = AND(v1, v2), an attack O is successful

if O ∈ Av1 ∩Av2 . Note that by induction we

have

Av1 ∩ Av2 =
⋃

O1∈g(v1),
O2∈g(v2)

U(O1) ∩ U(O2).

(34)

Take such O1 = (A1,≺1) and O2 = (A2,≺2

). An attack O = (A,≺) is an element of

U(O1) ∩ U(O2) if and only if

A ⊃ A1 ∪ A2, (35)

≺ ⊃≺1 ∪ ≺2 . (36)

Since O is a strict poset, this means that

P (O1,O2) ≤ O if the former exists, and

otherwise such an O does not exist. It follows

that

Av1∩Av2 =
⋃

O1∈g(v1),O2∈g(v2),
P (O1,O2) exists

U(P (O1,O2)),

(37)

hence g(v) contains the minimal elements of

Av .

• Suppose v = SAND(v1, v2). If O1 = (A1,≺1)
with A1 ∩ Bv2 = ∅ activates v1 and O2

activates v2, then SBv1
,Bv2

(O1,O2), if it ex-

ists, activates v. This shows that g(v) contains



only attacks activating v. On the other hand,

suppose that O = (A,≺) activates v. Define

A1 = A ∩Bv1 , (38)

≺1 =≺|A1
, (39)

A2 = A ∩Bv2 , (40)

≺2 =≺|A2
. (41)

Then (A1,≺1) activates v1, (A2,≺2) acti-

vates v2. By the induction hypothesis, there

exist O′
1 ≤ (A1,≺1) and O′

2 ≤ (A2,≺2) in

g(v1) and g(v2), respectively; then

SBv1
,Bv2

(O′
1,O

′
2) ≤ O. (42)

This shows that g(v) contains the minimal

elements of Av.

APPENDIX B

PROOFS OF THEOREM 9 AND LEMMA 10

To prove Theorem 9 we need some auxiliary

results. We start with a stricter definition of time

assignments.

Definition 16. A time assignment f is called exact

if equality holds in (6) and (7) for all v, and

equality holds in (8) if the prerequisite conditions

for (9) and (10) are not satisfied. The set of exact

time assignments is denoted FE,T .

The advantage of exact time assignments is that

they are easier to reason about. The following

lemma shows that restricting ourselves to exact

time assignments does not affect the minimum.

Lemma 17. minf∈FT
fRT

= minf∈FE,T
fRT

.

Proof. Let f ∈ FT , and define f ′ ∈ FE,T by f ′
a =

fa for a ∈ NBAS, and having f ′ satisfy equality in

(6) and (7) for all v, and by satisfying equality in

(8) if the prerequisite conditions for (9) and (10)

are not satisfied. By induction it is straightforward

to show that f ′
RT
≤ fRT

, which proves the lemma.

The following lemma has a straightforward

proof by induction which is therefore omitted.

Lemma 18. Let f be an exact time assignment

with fRT
<∞. Then fv ∈ {fa : a ∈ Bv} ∪ {∞}

for all v ∈ N .

We need two more lemmas as ingredients for

the proof of Theorem 9.

Lemma 19. Let f be an exact time assignment.

Then there exists a successful attack O with

t(O) ≤ fRT
.

Proof. Let C ∈ (0,∞). Define the attack OC
f =

(AC
f ,≺

C
f ) by

AC
f = {a ∈ NBAS : fa ≤ C}, (43)

≺C
f = {(a, a′) ∈ (AC

f )
2 : fa ≤ fa′ − da′}. (44)

We prove by induction on T that for any f and

C one has that OC
f reaches a node v when fv ≤

C < ∞. For convenience we assume that T is

binary; this does not substantially alter the proof

but makes the notation easier.

• Suppose a ∈ NBAS, and suppose fa ≤ C.

Then a ∈ AC
f and OC

f is successful.

• Suppose v = OR(v1, v2) and fv ≤ C < ∞.

Since fv = min{fv1 , fv2}, we may assume

WLOG that fv1 ≤ C. By the induction hy-

pothesis the attack OC
f reaches v1. It follows

that OC
f reaches v1, and so it reaches v too.

• The case that v = AND(v1, v2) is analogous

to the OR-case.

• Suppose that v = SAND(v1, v2) and fv ≤
C <∞; then

fv1 ≤ fv2 = fv ≤ C <∞ (45)

and fa ≤ fa′ − da′ for all a ∈ Bv1 and

a′ ∈ Bv2 for those a with fa < ∞. By

the induction hypothesis, one proves as in

the OR-case that OC
f reaches both v1 and

v2. Furthermore, by definition of ≺C
f one

has a ≺C
f a′ for all a ∈ AC

f ∩ Bv1 and

a′ ∈ AC
f ∩Bv2 . We conclude that OC

f reaches

v.

Now take C = fRT
< ∞; the resulting attack

O
fRT

f is successful. Lemma 18 then tells us that

fRT
∈
{

fa : a ∈ A
fRT

f

}

. (46)

Since the maximum of the RHS is at most equal

to fRT
we find

fRT
= max

a∈A
fRT
f

fa. (47)

On the other hand, by induction it can be shown

straightforwardly that for every chain C in O
fRT

f

one has

fmaxC ≥
∑

a∈C

da. (48)



Combining this with (47) we find fRT
≥ t(O

fRT

f ).

Lemma 20. Let O be a successful attack. Then

there exists an exact time assignment f such that

fRT
≤ t(O).

Proof. Let O = (A,≺). Define an exact time

assignment fO as follows:

• If a ∈ NBAS \A, take fO,a =∞;

• If a ∈ A, define fO recursively by

fO,⊣ = da +max
a′≺a

fO,a′ , (49)

where the maximum over the empty set

equals 0;

• If v ∈ N \ NBAS, define fO,v by taking

equality in (6)–(8).

We prove by induction on T that fO,v <∞ if O
reaches v. For convenience we again assume that

T is binary.

• When v ∈ NBAS it is clear from the definition.

• Suppose v = OR(v1, v2). WLOG O reaches

v1, so by the induction hypothesis fO,v1 <
∞. As fO,v ≤ fO,v1 the induction hypothesis

holds for v.

• The case v = AND(v1, v2) is analogous to the

OR-case.

• Suppose v = SAND(v1, v2). Since v is

reached, this means that v1 and v2 are

reached and that a ≺ a′ for all a ∈ Bv1 ∩A,

a′ ∈ Bv2 ∩A. The first statement implies, by

the induction hypothesis, that fv1 , fv2 < ∞.

The second statement, together with the def-

inition of fO on BASes, implies that fa ≤
fa′ − da′ for a, a′ as above, which means

that the prerequisite condition for (10) never

holds. It follows that fO,v <∞.

Since O is successful one has fO,RT
<∞, so by

Lemma 18 we know that

fO,RT
∈ {fa : a ∈ A}. (50)

However, by induction on the strict poset O one

can prove that t(O) = maxa∈A fO,a. It follows

that t(O) ≥ fO,RT
, as was to be shown.

Proof of Theorem 9. By Lemma 17 it is enough

to only consider exact time assignments. From

Lemma 19 it follows that

min
O∈ST

t(O) ≤ min
f∈FE,T

fRT
. (51)

On the other hand, Lemma 20 tells us that

min
O∈ST

t(O) ≥ min
f∈FE,T

fRT
. (52)

Since the LHS of these two inequalities is equal to

mt(T ), these two inequalities together prove the

theorem.

Proof of Lemma 10. If ST = ∅, then the optimal

f has fRT
= ∞; hence the constant time assign-

ment f ≡ ∞ also minimizes (11).

Suppose ST 6= ∅, and let f be a time assign-

ment minimizing (11). Since ST 6= ∅ one has

fRT
= mt(T ) < ∞. Let O be as in Lemma 19,

and let f ′ = fO be as in the proof of Lemma

20. Then f ′
RT
≤ fRT

= mt(T ), but since fRT

is minimal this is an equality. Furthermore, is

straightforward to prove by induction that f ′
v ≤

M − 1 for all v from the definition of fO.

APPENDIX C
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If (A,≺) is a successful attack, then so is

(A,∅), as there are no SAND-gates to put restric-

tions on ≺. Furthermore,

mt(T ) = min
(A,∅)∈ST

max
a∈A

da. (53)

We now prove the theorem by induction on v that

MT-BU(Tv, d|Bv
) = mt(Tv). If v ∈ NBAS, then

({v},∅) is the only successful attack on v, which

indeed has duration dv = MT-BU(Tv, d|{v}). Now

let v = OR(v1, . . . , vn). A minimal successful

attack on v is a minimal successful attack on one

of the vi. It follows that

mt(v) = min
(A,∅)∈STv

max
a∈A

da (54)

= min
i

min
(A,∅)∈STvi

max
a∈A

da (55)

= min
i

MT-BU(Tvi , d|Bvi
) (56)

= MT-BU(Tv, d|Bvi
), (57)

where the second equation follows from the in-

duction hypothesis. This proves the theorem for

v; the AND-case is analogous.

APPENDIX D
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To prove this theorem, we first prove two aux-

iliary lemmas. Throughout this section, we write

dv := d|Bv
for convenience.



Lemma 21. Let O be a successful attack on T v.

then there is a successful attack O′ on T with

t(O, d) = t(O′, dv).

Proof. Let O = (A,≺). If ṽ /∈ A, then O is also

a successful attack on T , and t(O, d) = t(O, dv).
Now suppose ṽ ∈ A. Let O− = (A−,≺−) be a

successful attack on Tv that satisfies t(O−, dv) =
mt(Tv, dv). Define an attack O′ = (A′,≺′) on T
by A′ = A \ {ṽ}∪A−, and a ≺′ a′ if and only if

one of the following holds:

• a, a′ ∈ A \ {ṽ} and a ≺ a′;

• a, a′ ∈ A− and a ≺− a′;

• a ∈ A \ {ṽ}, a′ ∈ A−, and a ≺ ṽ;

• a ∈ A−, a′ ∈ A \ {ṽ} and ṽ ≺ a′.

Intuitively, O′ is the order obtained by taking O
and replacing ṽ with the attack O−. Since v is a

module, A \ {ṽ} and A− are disjoint, and O′ is

an attack. Since it activates v and O is a sucessful

attack on T v, the attack O′ is successful on T .

Furthermore, the maximal chains C′ of O′ are

obtained by taking a maximal chain C of O and

replacing a possible instance of ṽ with a maximal

chain C− of O−. From the definition of dvṽ it

follows that if ṽ /∈ C one has

∑

a∈C′

da =
∑

a∈C

dva, (58)

and if ṽ ∈ C one has

∑

a∈C′

da =
∑

a∈C

dva +
∑

a∈C−

da − dvṽ (59)

≥
∑

a∈C

dva, (60)

with equality if and only if C− satisfies

mt(Tv, dv) =
∑

a∈C−

da. Taking the maximum

over all C in both (58) and (60), we find that

t(O′, d) = max
C′ max. chain

in O′

∑

a∈C′

da (61)

= max
C max. chain

in O

∑

a∈C

dva (62)

= t(O, dv). (63)

Lemma 22. Let O be a successful attack on T .

Then there exists a successful attack O′ on T v

with t(O, d) ≥ t(O′, dv).

Proof. Let O = (A,≺). If O does not reach v,

define O′ = (A′,≺′) by

A′ = A \Bv, (64)

≺′ =≺ |A′ . (65)

Then O′ is a successful attack on both T v and T .

Since O′ ≤ O one has t(O′, dv) = t(O′, d) ≤
t(O, d). Now suppose O reaches v; then O|Bv

is

a successful attack on Tv. Define another attack

O1 = (A1,≺1) on T by A1 = A \A and a ≺1 a′

if and only if one of the following holds:

• a, a′ ∈ A \Bv and a ≺ a′;
• a, a′ ∈ Bv and a ≺ a′;
• a ∈ A \ Bv, a′ ∈ Bv and a ≺ b for all

b ∈ Bv ∩ A;

• a ∈ Bv, a′ ∈ A \ Bv and b ≺ a′ for all

b ∈ Bv ∩ A.

O1 is the attack obtained from O by removing all

relations between elements of A\Bv and elements

of Bv that are not shared with all elements of

Bv . Since v is a module, the constraints on ≺
regarding relations between elements of Bv and

elements of A \ Bv in Definition 3 are the same

for all elements of Bv . Hence we find that O1 is

successful because O is. Furthermore, O1 ≤ O,

so t(O1, d) ≤ t(O, d).
Define an attack O′ = (A′,≺′) on T v by A′ =

A1 \ Bv ∪ {ṽ} and a ≺′ a′ if and only if one of

the following holds:

• a, a′ ∈ A1 \Bv and a ≺1 a′;
• a ∈ A1 \ Bv , a′ = ṽ, and a ≺1 b for all

b ∈ A1 ∩Bv;

• a = ṽ, a′ ∈ A1 \ Bv, and b ≺1 a′ for all

b ∈ A1 ∩Bv.

Since O1 is successful on T we find that O′ is

successful on T v. Furthermore, the set of maximal

chains of O1 is obtained by taking a maximal

chain of O′ and replacing ṽ (if it occurs) with

a maximal chain of O|Bv
. It follows that

t(O1, d)

= max(M1,M2 − dvṽ + t(O|Bv
, dv)) (66)

where

M1 = max
C max. chain of O′ :

ṽ /∈C

∑

a∈C

da, (67)

M2 = max
C max. chain of O′ :

ṽ∈C

∑

a∈C

da. (68)



By definition of dvṽ one has t(O|Bv
, dv) ≥ dvṽ .

Since t(O′, dv) = max{M1,M2}, it follows that

t(O1, d) ≥ t(O′, dv). Since we already know that

t(O, d) ≥ t(O1, d), we get t(O, d) ≥ t(O′, dv).

Proof of Theorem 14. By Lemma 21 one has

mt(T, d) ≤ mt(T v, dv), and by Lemma 22 one

has mt(T, d) ≥ mt(T v, dv).
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