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Abstract A deep neural network (DNN), evolved from a

traditional artificial neural network, has been seamlessly

adapted for the spatial data domain over the years. Deep

learning (DL) has been widely applied for a number of

applications and a variety of thematic domains. This article

reports on a systematic review of methods adapted in major

DNN applications with remote sensing data published

between 2010 and 2020 aiming to understand the major

application area, a framework for model development and

the prospect of DL application in spatial data analysis. It

has been found that image fusion, change detection, scene

classification, image segmentation, and feature detection

are the most commonly used application areas. Based on

the publication in these thematic areas, a generic frame-

work has been devised to guide a model development using

DL based on the methods followed in the past. Finally,

recent trends and prospects in terms of data, method, and

application of deep learning with remote sensing data are

discussed. The review finds that while DL-based

approaches have the potential to unfold hidden informa-

tion, they face challenges in selecting the most appropriate

data, methods, and model parameterizations which may

hinder the performance. The increasing trend of application

of DL in the spatial domain is expected to leverage its

strength at its optimum to the research frontiers.

Keywords Deep learning � Machine learning � Remote

sensing � Classification � Convolution neural network

(CNN) � Long short-term memory (LSTM) � Autoencoder

1 Introduction

Remote sensing image analysis has been one of the most

popular research areas over the last two decades for wide

areas of application including but not limited to classifi-

cation, change detection, disaster monitoring, pattern

recognition, image fusion, segmentation etc. to unfold the

natural phenomenon, and monitoring the earth’s surface

dynamics among others. Along with the advancement of

remote sensing technologies, high performance of com-

puting machines and low cost of resources, an abundance

of remote sensing big data is available [1, 2]. Physical

models have been the major methodological framework for

analyzing remote sensing data. Machine learning tech-

niques, also known as universal approximators, have been

used for computational efficiency gain, empirical model

development, and to solve classification problems [3]. Due

to its ability to handle high dimensional remote sensing

data even with a limited number of samples, Support

Vector Machines (SVM), and easy to use ensemble algo-

rithms like Random Forest (RF), have been the choice of

the remote sensing community in the past years [4, 5].

Deep learning has recently claimed a strong presence with
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significant success in image analysis for various applica-

tions over conventional machine learning techniques.

A number of factors like choice of data selection tech-

niques, modeling approach, hyper parameterization; vali-

dation; are important for good model development.

Contemplation to best practices in model development is

crucial in any modeling endeavor; it is even more impor-

tant in the development of deep learning models since they

are modeled based on the data and not underlying physical

processes. The selection of an inappropriate model and

hyper-parameterization would misguide the orientation of

the overall project and hence the chances of wrong decision

prevail.

Although a number of review papers on Deep Learning

(DL) in using remote sensing-based data have been pub-

lished, the focus of these papers are primarily the appli-

cation, architectural framework, and their performance

[6–8], none of them addressed the overall methodological

framework starting from input/output data selection to

model evaluation. Therefore, the motivation for our study

was to conduct a comprehensive review of the methodol-

ogy adopted in major sub-areas of the remote sensing

related to deep learning: Spatial Deep Learning (SDL),

including image fusion, image registration, scene classifi-

cation, object detection, LULC classification, image seg-

mentation, and other tasks. The purpose of this work is to

analyze the methods for modeling DL framework using

remote sensing-based data for a wide variety of applica-

tions (Fig. 1).

2 Method

To identify the articles for the review, a title, abstract, and

keyword search was done in the Scopus database. using the

terms ‘‘deep learning’’ and ‘‘remote sensing’’, (search date:

June 18, 2020). The search gives 23,751 results. They fall

under various subject areas; Computer Science, Earth and

Planetary Sciences, Engineering, Physics and Astronomy,

Mathematics etc. Among them, we are interested in the

peer-reviewed publications of Earth and Planetary Sci-

ences. Hence others were filtered out and 427 left. This

database was used as the basis for further review and

analysis. After reviewing the title, abstract and keyword,

with major application areas of spatial analysis we ended

up with 97 articles for the final revision.

We have reviewed 97 papers that have been published in

well-known international journals from 2010 to 2020 and

presented a synthesized methodological framework in

detail in this work based on these 97 papers. The rest of the

paper is organized as follows: Sect. 3 is results that include

two sub-sections: subsection 3.1 summarize the selected

major applications and methods following to develop the

deep neural network (DNN) models based on remote

sensing images. subSect. 3.2 outlines the synthesized

framework based on the review in subsect. 3.1 and major

steps in the DNN model development process are

explained. The discussion and outlook toward future

research are given in Sect. 4. Finally, the summary of the

review is presented in Sect. 5.

Although a number of review papers on Deep Learning

(DL) in using remote sensing-based data have been pub-

lished, the focus of these papers is primarily the

Fig. 1 The general framework to synthesize current status on spatial deep learning
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application, architectural framework and their perfor-

mance, none of them has addressed the overall method-

ological framework starting from input/output data

selection to model evaluation. Therefore, in this work, we

systematically reviewed and analyzed the methods for

modeling DL framework using remote sensing-based spa-

tial data analysis for a wide variety of applications. The

major steps and consideration of the review is depicted in

Fig. 1 and defined as follows. (1) To provide an overview

on the use of deep learning with remote sensing data and

their approach in various thematic and application areas of

in spatial analysis such as image classification, image

segmentation, image fusion, change detection, etc. (2) To

develop a framework used for DN model development. (3)

Uses the Bibliometrix to identify the trend of the deep

learning application in spatial data analysis and synthesize

the future direction.

3 Applications of deep learning with remote
sensing data

The deep learning (DL) has a wide variety of applications

in different thematic areas such as natural language pro-

cessing, pattern detection, image processing among others.

Though, image processing is one of the major applications

of DL, the remotely sensed images have different charac-

teristics and significances compared to the application than

the common images. The remotely sensed images have

their features such as spatially referenced, multi/hyper-

spectral and often available on regular basis—timeseries,

that all introduce more complexities comparing the natural

images. Therefore, they could have diverse applications

and may require more resources for processing due to rich

content and temporal availability. The volume is excep-

tionally increasing over time and the trend is likely to

continue in the coming days too. On the other hand, DL has

the capacity in feature representation [6] and to model very

complex patterns successfully. Similar to many other

fields, DL is gaining popularity in the remote sensing-based

spatial dataset for various thematic areas such as change

detection, image fusion, science detection, etc. The sub-

sequent sections below include a comprehensive discussion

of DL application based on remote sensing images, the

methodology adopted, and the overall summary of the

methodology while fitting the model.

3.1 Image fusion

Deep learning has been used in data fusion for different

applications such as tree species recognition and tree

mapping, urban/man-made feature/function. Furthermore,

there also have been some studies on image fusion without

the focus on a specific application and with many appli-

cation possibilities and also on image simulation using a

different type of data source [9]. Based on the different

data categories, most of the reviewed paper used multi-

spectral image pair [10], multispectral and hyperspectral

image [11], multispectral and panchromatic image pair,

multispectral and SAR imagery [9, 12], hyperspectral and

LiDAR data [9] and fusion of remote sensing and social

data [13].

Most of the papers have used the different architecture

of deep learning for the fusion of the dataset, there were

major two approaches for the fusion of the images, first, the

one-step approach where the fusion of images was done

directly without extraction of features and second, two-step

approach where extraction of feature or probability layer

was followed by the fusion [14–17]. In the first approach,

Nezami et al. [11] have used three dimensional convolu-

tional neural network(3D-CNN) for the tree species iden-

tification, where the network consisted of 3 convolution

layers, 3 batch normalization layers, 2 max pool layers, and

1,1 Softmax and rectified layers. Similarly, Yuan et al. [16]

used their multiscale and multi-depth convolution neural

network (MSDCNN) model which was an improvement to

CNN. The model had 3 layers of CNN and a deeper CNN

with two multiscale layers [16]. Lahaye et al. [17] used a

model similar to a deep belief network that had restricted

Boltzmann machines (RBM) and each RBM was trained

separately. He & Yokoya [9] used the conditional gener-

ative adversarial network (cGAN) model with generator

and discriminator sub-network where the generator net-

work took the optical and the synthetic aperture radar

(SAR) data as input and created an optical image which

then fed into the discriminator network to identify real or

fake simulation.

Secondly, the authors who used a two-step approach of

feature extraction and fusion of features, also have used

interesting methods such as for fusion of remote and social

sensing data, 1D-CNN and long short term memory

(LSTM) model were used where those models extracted

the social sensing feature and then fused [13]. Similarly,

for the deep representation of RS images, Yu et al. [18]

used a model with layers consisting of convolution, pool-

ing, and non-linear operators which transformed the input

images into features followed by fusion operators. Cheng

et al. [19] used two networks for segmentation and edge

detection which were later coupled by fusion, the edge

detection network used backpropagation for fine-tuning the

results. For the fusion of hyperspectral and LiDAR data,

Liao et al. [20] used a two-stage deep fusion framework

where LiDAR and hyperspectral images were passed sep-

arately and then the probability maps were generated and

those probability maps were fused. Chaib et al. [14] used

the VGG net for the deep feature extraction from very high
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resolution (VHR) images and it was followed by discrim-

inate correlation analysis (DCA) transformation. At last,

the fusion of the transformed feature was done, the final

output represented the input images by a single feature

[14]. For urban land use mapping, Feng et al. [21] used a

combination of two networks of hyperspectral and LiDAR

branches. From the hyperspectral branch, spatial-spectral

features were extracted and from the LiDAR branch height

features were extracted [21]. The extracted features were

then fused using the feature fusion model and classification

was done by Softmax classifier [21]. Shao & Cai [15]

extracted features from panchromatic and multispectral

images separately, to overcome the difference in spatial

resolution Wald’s protocol was used. The model had dee-

per architecture to exploit the high nonlinearities and each

layer consisted of 64 filters with a size of 3 9 3 9 64, after

the feature extraction from both images, they were fused

[15].

3.2 Disaster monitoring & post-disaster estimation

For disaster management, mostly deep learning and remote

sensing images are used for monitoring and detection of

natural or manmade disasters. Some of the papers have

focused on disaster preparedness and disaster management

side such as Antoniou & Potsiou [22]. Most of the paper

focused on the monitoring/detection of the hazard itself

than that of mapping its impact. Sun et al. [23] used deep

learning for the prediction of the ground PM2.5 values

instead of monitoring the physical hazard on the ground.

Ma et al. [24] used deep learning for mapping the elements

at risk (buildings) instead of mapping the hazard.

The methods used for disaster detection and manage-

ment are mostly detection/recognition algorithms such as

hazard detection, the element at risk detection, and facili-

ties detection and prediction/modeling algorithms [22].

Firstly, for detection algorithms, Liu & Wu [25] used the

autoencoder model with arbitrary neurons and backpropa-

gation for the detection of landslides in their WavDAE-2

model. The deep learning framework with constraints

(DLWC) model for landslide detection using hyperspectral

images purposed by [26] used the constrain which shows

the probability of having landslides and which limits the

false positive classification in the model. Zhao et al. [27]

used an approximately symmetrical deep neural network

(ASDNN) for change detection in heterogeneous images,

the model consisted of multiple hidden layers with stacked

Restricted Boltzmann machine (RBMS), the model focuses

on the novel algorithm rather than that of the application.

For the detection of the soccer fields for helicopter landing,

Antoniou & Potsiou [22] used a deep learning autoencoder

model with three encoding layers. After each deep layer

batch normalization was also performed. Ma et al. [24]

have simplified the You Only Look Once YOLOv3 model

by replacing the DARKNET53 CNN with lightweight

shuffleNet v2 and other loss functions were replaced by

generalized intersection over union loss; by doing that the

model became quite simpler. Some papers also have used

deep learning in unmanned aerial vehicle (UAV) images as

well as SAR images. Baur et al. [28] used a faster regional-

convolutional neural network (Faster R-CNN) model on

the UAV images for the detection of landmines. Paper by

Zeng & Wang [29] used SAR images with an oil spill

convolution network (OSCNet), the model is based on the

VGG-16 and uses the CNN for detection of oil spills.

Secondly, for the prediction/modeling of the different

parameters such as drought or PM2.5 which cannot be seen

directly in the image or mapped directly through the image,

different covariates have been used together with the

remote sensing imagery [28]. Shen et al. [30] used the

drought index as a dependent variable with remote sensing

imagery as independent variable. Furthermore, the author

used the deep feedforward neural network (DFNN) model

to train the data with all the covariates [30]. In the case of

monitoring PM2.5 using remote sensing imagery, Sun et al.

[23] used PM25-DNNmodel to monitor PM2.5 using

satellite imagery. The author also used ReLU and linear

functions for activation of the source and output layer and

generated the PM2.5 concentration from neurons.

3.3 Scene classification

Deep learning (DL) has been widely used in scene classi-

fication, land use classification [31], classification and

reconstruction of urban buildings and tree classification

[32].

Most of these studies used UC Merced Land-Use Data

Set [33], NWPU-RESISC45 Data Set [34], WHU-RS data

Set [35], Aerial Image data [36], Google data set [37],

Brazilian coffee scene data set [38], SAT-4 [39], SAT-6

[40], RSSCN7 dataset for land use classification [41], and

tree classification [42]. Likewise, both terrestrial and aerial

laser scanning point clouds were used for the classification

and reconstruction of the urban building [43]. Second, the

use of DL was further broadened with image retrieval

[42, 44], image processing [45] multimodal image regis-

tration [46] and image classification [47]. For these, Spot-7

PXS and S2 time series were used in image processing,

UCMD and dual-source remote sensing image data set

containing panchromatic and multispectral images in

image retrieval, and Google Earth, World View-2, Landsat

8, TerraSAR-x, and Google maps were used in multimodal

image registration.

Most of the papers considered in the study have used

data preprocessing and the different architecture of deep

learning for scene classification. At first, dataset curation;

123

B. Mishra et al.



use of edge-aware resampling algorithm and ground point

removal; noise removal, and main direction adjustment of

the tree trunk were used as initial steps for data prepro-

cessing [42, 47]. This also includes radiometric correction

of the images. While preparing the dataset, the images were

resized to be well-matched with the required input size

during feature extraction [40] and DCA fusion [14]. In

some cases, dual samples were randomly tiled from the

pairs of remote sensing images [44].

After the completion of preprocessing, the images were

passed through a series of steps based on the different

architecture of the model used. Gu et al. [39] proposed a

multiple deep rule-based (DRB) classifiers model trained

with the segments of remote sensing images at different

levels of granularity. This DRB ensemble of a multilayer

classifier is a modular/layered form with (1) rotation layer;

(2) segmentation layer; (3) scaling layer; (4) feature

extraction layer and (5) massively parallel rule-based sys-

tem. Chaib et al. [14] suggested a three-step model for

scene classification containing feature extraction with deep

VGG-Net, the use of DCA approach to fusing the extracted

features, and the use of a support vector machine (SVM) as

a classifier. The multiscale CCN framework also consists

of three main steps. First, a multiscale image set was

generated by rescaling and one of its rescaled images was

sampled from its multiscale image set. Second, these

images were fed into the F-net and V-net to compute the

Softmax loss and similarity loss. Finally, the partial

derivatives of the weights shared by the F-net and V-net

were computed and the shared parameters were updated for

classification [41]. Liu et al. [47] also proposed a deep few-

shot learning method. Initially, spectral-spatial features

were extracted to reduce the labeling uncertainty via a deep

residual 3-D convolutional neural network. Then, the net-

work was trained by episodes to learn a metric space where

samples from the same class are close and those from

different classes are far and the testing samples were

classified by the nearest neighbor classifier in the learned

metric space. For tree classification, Zou et al. [32] pro-

posed a novel voxel-based deep learning method that

includes three major steps such as individual tree extraction

based on the density of the point clouds, low-level feature

representation through voxel-based rasterization and the

classification.

Likewise, some of the studies involved a two-step model

for scene classification. Zou et al. [48] suggested a deep

belief network (DBN) for layer-wise feature abstraction

and reconstruction weight fine-tuning. The DBN used a

family of Restricted Boltzmann Machines to calculate the

layer-wise reconstruction weights which were then back-

propagated to fine-tune the weights. Gong et al. [49] rec-

ommended diversity-promoting deep structural metric

learning (D-DSML) for scene classification. In the training

phase, training samples were passed through initializing

CNN and then through the training D-DSML. Then these

samples were fine-tuned with Softmax classifier. In a semi-

supervised generative framework, two independent classi-

fiers (each of them is constructed by a deep feature

extractor CNN and a one vs rest SVM) and one discrimi-

native evaluator were involved in image scene classifica-

tion. Boualleg et al. [35] devised a two-step deep forest

model, an ensemble-learning method of deep learning. It

consists of convolution layers and fully connected layers in

pre-trained CNN for feature extraction followed by multi-

grained scanning and cascade forest structure in the deep

forest for feature classification. Liu et al. [47] suggested a

Siamese network model containing two images obtained

from the same class as a positive pair and a different class

as a negative pair. These networks further compose two

identical CNN models, three additional convolutional lay-

ers, and one square layer. A metric learning regularization

term was imposed on the features as learned through CNN

models. A new hybrid deep learning model-Inception-

LSTM model which combines the Inception-V3 model and

the LSTM model is also a two-step scene classification

model [37]. In this model, features were extracted from the

pre-trained Inception-V3 model through the BN layer

network structure as a bridge, and the scene was finally

classified by the Softmax classifier. In contrast, Weng et al.

[31] developed a single step land use classification via

Extreme Learning Classifier (ELM) where preprocessed

images were pre-trained as CNN excluding fully connected

layer and the ELM was trained as the classifier and tested

on the CNN features.

3.4 Landcover classification

Deep learning has been used widely in land use and land

cover classification in various ways with a diverse dataset.

Major applications include classifying residential area,

park, buildings, storage tanks, tennis court, parking lot,

harbor, intersection, forest, agriculture, chaparral, river,

beach, golf, overpass, and runway among others. However,

few others focus only on specific sub-classes such as a tree,

shrub, and grass classification, delineation of impervious

surfaces [50], urban built-up area classification, complex

wetland (bog, fen, marsh, swamp, and shallow-water)

classification, scrub, willow swamp CP hammock, CP/Oak,

slash pine, oak broadleaf, hardwood, swamp, marsh,

mudflats, water [51–53].

The majority of the works are based on the pre-pro-

cessed dataset they include the University of California

(UC) Merced, which is the most popular in the land use and

land cover classification using DL methods, similarly, KSA

and AID, ImageNet database, the Space Net dataset for the

cross-domain classification [54]. Additionally, an airborne
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dataset is also found commonly used with DL algorithms

such as the SAT-4 and SAT-6, RSOD datasets (prepared by

Long et al.; it contains 446 aircraft images [54], AVIRIS

sensor [55], Aerial photos of S1 [56]. Further, a large

number of workers are based on very high-resolution

satellite images they include but not limited to IKONOS-2,

GeoEye-1, and WorldView-2 with spatial resolutions of 1,

0.5, and 0.5 m large-scale aerial images of size 600 9 600

with multiresolution (8–0.5 m) [57], Demons-2 and

QuickBird, Pleiades -1A images, RapidEye, Quickbird II,

Gaofen-1, Jilin-1, Ziyuan-3, Google Earth data [58]. Some

works are based on the Lidar point cloud dataset while

others are based on multispectral images from various

satellite sensors[50] however, hyperspectral images [56],

images RGB only images [53], SAR images mainly Sen-

tinel-1A RS satellites [59] and Polarimetric synthetic

aperture radar (PolSAR) imagery [60], and AIRSAR sensor

[61]. are also used. Furthermore, Sentinel-2, Landsat 8

images and MERIS and ENVISAT etc. are also widely

used sensors with DL [62].

Prior to the classification, satellite images were cor-

rected for atmospheric effects, provided the benchmark

[63], re-sampling and registration [50], geometric trans-

formation [64], normalized and formalized by the proposed

self-adaptive cellular-based method [52], used initial

whitening [58], pan-sharpening [53] as data pre-processing

steps. Feature extraction was done before training the

models for the land cover classification [62]. For example,

Ammour et al. (2018) [57] used pre-trained CNN for the

feature extraction and denoising the input images using

autoencoder (DAE) for dimensionality reduction.

Architecture used for the land use and land cover clas-

sification are the variant of CNN [62]. Deep Q-network

(DQN) [43], multilayer perceptron (MLP) [55], LSTM

[52], Deep Fully Convolutional Network [54], DNN [64], a

semantic segmentation-based deep learning method, Dee-

pLabV3 ? , are applied for classification [47], adaptive

multiscale deep fusion residual network (AMDF-ResNet)

[51], ImageNet Pretrained Networks [44], ResNet [46],

Hybrid of principle component analysis (PCA), deep

learning architecture, and logistic regression [58], a multi-

scale dense network (MSDN) [35], GoogLeNet network

[48] are used for classification.

Performance of classification models was evaluated by

the overall accuracy (OA), kappa coefficient, average

accuracy (AA), confusion matrix, and paired T-test [54].

Each dataset was divided into training and test set having

fivefold cross-validation [65]. The scatter diagram is plot-

ted based on the values of the estimated percentage of

impervious surface (PIS) and real PIS to show the accuracy

and effectiveness of AEIDLMRS (Automatic extraction of

urban impervious surfaces based on deep learning and

multi-source remote sensing data). The employed metrics

for the analysis are the co-efficient of determination (R2),

root means square (RMSE), and the mean absolute error

(MAE) [50].

3.5 Change detection

One of the major applications of DL using remote sensing

images is change detection. Monitoring of urbanization

[66] and large-scale deforestation which are rather chal-

lenging via field survey but remote sensing based on DL

algorithm has been emerging as a reliable approach. Some

papers explored the prospect of transfer learning on a

change detection task when small training samples are

available. In addition, the possibility of fully automated

change detection based on pre-classification using unsu-

pervised learning or spectral indices was also used. Gong

et al. [49] demonstrated that the use of superpixels

improves the change detection task.

Architectures used for change detection were mainly

variants of convolutional neural networks and deep belief

networks. Authors of some of the reviewed papers tested

multiple architectures to evaluate their performance while

some focused on single architecture. Ortega Adarme et al.

[4] tested three architectures: Early Fusion with 3 convo-

lutional layers and 2 fully connected layers using a con-

catenated double temporal image, Siamese Network with

two parallel subnetworks having 3 convolutional layers

shared between the double temporal images, and Convo-

lutional Support Vector Machine with 3 convolutional

layers with SVM as convolutional filters. De Bem et al.

[67] used relatively deeper networks with skip connections

from the encoder to corresponding decoder layers: Sharp-

Mask with 114 layers, U-Net with 69 layers and ResUNet

of 93 layers with residual network replacing conventional

convolution block. Song and Choi [68] built a change

detection network with a combination of 3D FCN having

nine 3D convolutional layers, LSTM, and two 2D FCN

where the first 3D FCN layer was a multiscale convolu-

tional layer and weights of 3D FCN were transferred from

pretraining of 3D FCN as segmentation network. Yang

et al. [69] jointly trained two parallel U-Net based network

of 9 layers with lower layers shared between the source

domain and target domain and fine-tuned the upper layers

of the target domain using pseudo labels from unsupervised

learning. Networks built using supervised classifiers such

as extreme learning machines and SVM on top of DBN,

DBN was first trained unsupervised manner and subse-

quently fine-tuned with labeled data [70, 71]. For change

detection, deep learning was used in an end-to-end manner

or with features extracted from the input images as input

for the deep learning model [70].

Some papers focused on automating the entire change

detection task using high confidence labels—from
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unsupervised learning or a rule-based method using spec-

tral indices sensitive to the target surface—as the input

labels for a deep learning network. Gong et al. [49] first

performed preliminary classification on superpixels with

Otsu method using spectral feature map, textural feature

map, and spatial feature maps separately, and labeled them

as changed or unchanged based on majority voting, then

trained deep belief network and sparse denoising autoen-

coder using pseudo labels to perform classification on

uncertain pixels. Huang et al. [72] used spectral indices to

detect buildings in both the images, then fused the differ-

ence and ratio images and dilated the shadow, thus to

obtain few high confidence changed and unchanged labels

to use for fine-tuning deep belief network-extreme learning

machine (DBF-ELM) model. Yang et al. [69] used the

unsupervised algorithm robust semi-supervised fuzzy

C-means (RFLICM)to generate preliminary change maps,

selected high confidence changed and unchanged pixels

based on a difference in local land cover variation and

distance from the cluster center, which was subsequently

used to train the change detection network.

3.6 Image segmentation

Deep learning was implemented for semantic segmentation

of remotely sensed images as well as 3D point clouds.

General land use land cover classification was the major

application of remote sensing image segmentation.

Besides, some papers focused on the detection of target

objects with specific applications such as automatic road

detection for updating road maps, water bodies detection

for monitoring water resources, and rice lodging detection

for crop damage assessment [73]. The availability of

benchmark datasets facilitated experiments for new archi-

tectures for segmentation tasks without specific applica-

tion. Pierdicca et al. [74] used 3D point cloud data for the

segmentation of cultural heritage sites useful for 3D doc-

umentation of cultural monuments and recognizing his-

torical architectural elements in the heritage sites. Some

papers demonstrated the possibilities of successful transfer

learning using synthetic data [70] or using secondary

manually labeled data, and the effectiveness of dimen-

sionality reduction of multispectral satellite images for

reducing computation load without compromising accuracy

[75]. Yan et al. [71] focused on data preprocessing and the

development of an auxiliary network called rotation den-

sity network to simplify as well as improve the segmen-

tation of 3D point clouds of the mining area.

Two categories of deep learning architectures were more

frequently used for segmentation: convolutional network

for regular imageries and point-based network for 3D point

clouds [61]. Some of the papers reviewed demonstrated the

effective adoption of existing deep learning models for

remote sensing applications while others developed models

specifically for remote sensing images [57]. Majority of

segmentations on regular imageries employed fully con-

volutional neural network (FCN) based architectures.

SegNets, ResNets, UNets, and DeepLabV3 ? were fre-

quently used for segmentation of remote sensing images.

SegNets and FCN-8 s were widely used as benchmark

architectures for demonstrating the effectiveness of

recently developed networks. Audebert et al. [76] branched

the decoder of SegNet to get outputs at several resolutions

in order to improve the segmentation results; they also

build an early fusion network named V-FuseNet by fusing

features maps from orthophoto and auxiliary data in the

encoder layers and a late fusion network by fusing outputs

of two independent network using SegNet and ResNet-34.

Kemker et al. [70] used SharpMask and RefineNet built

upon ResNet-50 backbone by connecting feature maps

from encoder to decoder through refinement modules. Wu

et al. [77] used FCN with ResNet-50 backbone and UNet

with 19 layers to perform semantic segmentation using

transferred weights and a small number of color-coded

PolSAR images. SegNet and FCN-AlexNet were used to

assess rice lodging using vegetation indices as input data

[73]. Henry et al. [78] tested three network architectures of

different depth FCN-8 with VGG19 backbone (19 layers),

Residual UNet with 15 layers, and DeepLabV3 ? with 65

layers for road segmentation using SAR data. SegNet was

used to demonstrate the effectiveness of dimensionality

reduction on multispectral remote sensing data [75]. Li

et al. [79] modified DeepLabV3 ? to use input images at

multiple scales for the extraction of water bodies.

However, newer architectures were also proposed for

remote sensing image segmentation [80, 81]. Chen et al.

[82] proposed ResNet-like ‘‘Shortcut block’’ and used it to

develop very deep networks (67 and 139 layers) SNFCN

and SDFCN with and without skip connections from the

encoder to a decoder. Mi et al. [83] developed a hybrid

model consisting of two branches: the main branch com-

prising of four layers of ResNet-101, 4 parallel layers of

atrous spatial pyramid pooling, and differential decision

trees, and an auxiliary branch with several convolutional

layers for feature extraction followed by super-pixel seg-

mentation. Deep learning at multiple-scales was realised by

branching the decoder to get outputs at several layers [76],

feeding neural network with input at multiple scales [79],

or by combining features at several resolutions within the

network [80]. A deep interactive segmentation network that

used user interactions to generate guidance maps as

attention criteria for the subsequent Attention-Guided

Multi-scale Segmentation Network (AGMSSeg-Net) was

developed by Li et al. [80]. The authors used the guidance

maps and features extracted with pre-trained VGG-19 as

extra channels of the input image [80]. Although the use of
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a graph model for image segmentation was uncommon,

Attention Graph Convolution Network (AGCN) was

developed by stacking attention mechanism layer and two

graph convolution layers to perform segmentation on big

SAR data by using super pixels as nodes of the graph [1].

Semi supervised method of image annotation was devel-

oped by Yao et al. [84] using the low level features, that

are, gist features, color histogram features and SIFT fea-

tures as input to stacked discriminative sparse autoencoder

(SDSAE); the weights learnt by training SDSAE on land

cover classification data was transferred, and classification

was performed by additional classification layer and image

patch-level labelled data, thus reducing the overall com-

putation time.

Segmentation operations with point clouds were per-

formed directly on 3D points rather than on projected

surfaces or voxels. Bachhofner et al. (2020) used U-Net

architecture-based generalized sparse convolutional neural

network (GSCNN) built with sparse convolution blocks to

segment 3D points generated from tri-stereo satellite ima-

gery [85]. The segmentation of archeological and cultural

heritage sites was performed with a dynamic graph con-

volution neural network (DGCNN) constructed with sev-

eral blocks of edge convolutional layers [74]. Yan et al.

[71] developed an auxiliary network called Rotation Den-

sity Network that efficiently extracts structural features

based on the density of point cloud and used it in con-

junction with point-based networks PointNet or PointCNN

to enhance the point cloud segmentation of the mining

area.

The issue of insufficient training samples for remote

sensing data was addressed via data augmentation tech-

niques such as flipping, rotating, Gaussian transform,

Gaussian blur, random scaling, random translation, and via

transfer learning [83, 85]. CRF was used as a post-pro-

cessing technique to fine-tune the segmentation results by

some authors [84, 86].

3.7 Feature detection

Among many applications, feature extraction from remote

sensing images using deep learning methods, especially the

convolutional neural network is very common. These

applications include tree detection for forest management

[86, 87] parcel detection for precision agriculture, building,

road, bridge, and built-up area detection for urban plan-

ning, and Geographic Information System, global reservoir

detection. Few studies on feature detection using deep

learning were not focused on a specific application but

aimed to detect a various object in remotely sensed images.

Based on the data source, the majority of reviewed works

consider the satellite imagery as a primary data source

while few studies consider another aerial imaginary such as

Unmanned Aerial Vehicle (UAV) and synthetic aperture

radar (SAR). The data source varies in their spectral res-

olution, spatial resolution and temporal resolution.

Most of the paper used a variation of CNN for feature

extraction such as Mask R-CNN for tree detection, RI-

CNN with rotational invariant layer for object detection,

Siamese U-Net and Modified U-Net with Xception for

Building extraction, CNN-ResNet-50 global reservoir

detection, Building Region Proposal CNN for building

extraction, Multi-task learning with U-Net for road

extraction, Multi-Scale Feature CNN for cloud detection,

Double stream deep CNN [81, 88]. Each modified version

of CNN consists of multiple layers: the convolutional layer,

the pooling layer, fully connected layer. The convolutional

layer and pooling layer are the key components of these

networks for feature map generation.

In Mask RCNN [87] the first few layers extract the

feature map, and this feature map goes to later layers for

object detection. Similarly, in [89] the U-Net is used to

extract features. It consists of encoder and decoder block,

where the encoder block has three convolutional layers and

one max pooling layer while the decoder block has one

convolutional layer, normalization, and activation followed

by another same set of layers. In Hui et al. [90] U-Net

architecture is modified with the Xception module to

extract the effective feature from remote sensing images.

Also, Multitasking is implemented to incorporate the

structure information of the building. The convolutional

block of the encoder of the U-net is replaced with the

Xception module. The U-net architecture consists of a one-

pre convolution layer, followed by five successive Xcep-

tion modules in the encoder side whereas the face-up-conv

block of the decoder is similar to the original U-Net.

Liu et al. [47] building region proposal network based

on CNN (BRPN) was used to generate candidate building

areas instead of sliding windows used in the fast RCNN

model. Unlike Regional Proposal Network is embedded in

Fast-RCNN, BRPN constructs the network by combining

the spatial hierarchies of the multilevel image training

dataset. In this work, a shared feature from CNN is used to

generate a building region proposal in BRPN. However,

few studies explore the other possibilities for feature

extraction rather than using CNN. Chen et al. [88] imple-

mented an attention and balanced feature pyramid (ABFP)

network to generate feature maps that use the concepts of

Balanced Feature Pyramid and Attention mechanism. Since

BFP network can aggregate low level and high-level fea-

ture better while attention mechanism passes the useful

information to next level and ignore the useless informa-

tion, the integration of these two techniques improves the

overall precision of object recognition in SAR images.

Similarly, a fully convolutional network to segment the

image on a pixel by pixel basis with the symmetric encode-
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decoder module to extract multi-scale features and residual

connections to train the network effectively was proposed

[91].

4 Methods used for DN model development

The review of the application domain and methods fol-

lowed in each domain by past researchers using remote

sensing data has suggested that a set of common steps are

to be followed to develop the DN model regardless of the

problem domain [15, 92]. In this sub-section a generic

framework comprises these common set of steps, synthe-

sized out of the review, is presented which is expected to

work as a guideline for devising DN model using remote

sensing dataset. It should be noted that the model devel-

opment steps covered here have been enhanced to suit the

deep learning from the [92], which covered the ANN in

hydrology. Figure 2 illustrates the generic framework for

the DN model development.

The very first step of the model development is started

from the problem objective, contextualizing the modeling

problem, and conceptualizing the systems that include the

identification of the model output and a set of potential

input variables available to train and test the model. As the

deep learning models are data-driven, the set of input

variables/indices are very important. This mostly depends

on the data availability and prior knowledge of the mod-

eler. Once the model input dataset and output variable are

confirmed, the next steps would be data preparation that

suits to fit the models followed by the model development

step followed by architecture selection, hyper-parameteri-

zation, and model evaluation. The details of each step are

explained in the subsequent subsections as follows.

4.1 Data input–output selection and preprocessing

4.1.1 Choice of potential inputs and outputs

The outcome variable/data is defined based on the study

objective, while, the input dataset is first selected based on

the expert’s knowledge. However, different approaches

have been applied to filter out the most irrelevant dataset

and finalize the input variables for the model. The most

common methods of feature selection include filter,

wrapper, and hybrid methods. The filter-based method is

based on different statistical measures such as variance,

chi-square, or correlation coefficients, a variance of infla-

tion factor (VIF), and then selects the highest-ranked fea-

tures. The wrapper method sequentially searches the best

input subset of the input dataset to fit the model. It uses the

best set of input variables that yield the best accuracy. It

uses the accuracy of the previous model and judges if a

new input variable is to be included or needs to be

Fig. 2 Deep learning model development process
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removed. It is done in three ways, exhaustive search: tries

all possible combinations and select the best performing

input set, forward selection: it works from the single input

variables and sequentially adding one feature at a time and

evaluate the best set of input variables. The backward

selection: it starts with all input variables and removes one

feature at a time and evaluates the performance and choose

the input variable sets that yield the best outcome. The

hybrid methods incorporate the characteristics of filter and

wrapper feature selection methods [62].

In the remote sensing-based dataset, the input pixel

values come as an array and extract the features in different

layers. Such layers of features are not designed by the

analyst; they are learned from the data using the general-

purpose learning procedure. Such a network itself discov-

ers the underlying structures in a high-dimensional dataset.

Therefore, the input dataset selection in the remote sensing

application could work differently than the general-purpose

applications and have not been discussed in detail about the

input data selection in any papers [41].

4.1.2 Data pre-processing/preparation

The pre-processing, or data preparation for the input ima-

ges is very important in remote sensing. The very first step

of the study should go through image correction such as

radiometric correction, band line repair, atmospheric cor-

rection, co-registration, and resample if uses the multi-

sources and multi-resolution. The data preprocessing

includes several operations that suit the different types of

input data and the output variables. Data augmentation is

one of the most common operations to increase the data

volume artificially that could reduce the overfitting in case

there is not enough input dataset. It was performed by a

rotation of training tiles (90�, 180�, 270�) and horizontal

and vertical flipping. Pre-classification of the input images

was also done as a preprocessing which is the input/output

data set for some deep learning models [49]. Crop the

images into various patches of different sizes of different

dimensions such as 16 9 16, 224 9 224, 300 9 300 pix-

els, and 450 9 450 [93]. The patch size is selected based

on the spatial resolution, targeted applications mostly

through expert knowledge or hit and trial methods. Such

patches are labeled using the reference dataset [70].

Labeled the feature in an input image are for the input

sample this is done manually, such as major road type,

road, water, built-up, vegetation, specific crop fields, crop

properties such as crop lodging, ridge and background, etc.

The majority of such labeled is done using some reference

datasets such as Google Earth images using annotated tools

like ‘‘LabelMe’’ 87. However, many studies are based on

different image processing tools to label the input dataset,

such as Bachhofner et al. [85] labeled the dataset manually

into five classes.

4.1.3 Data division – input and output selection

The input datasets are divided into train, validation, and

test set in various ratios such as 50%, 25%, and 25%

respectively. This proportion is different in different stud-

ies, there is neither a rule of thumb nor an objective method

for this. The input images were divided for taring and

testing in 3:1 ratio (for Vaihingen, 16 ? 4 and Potsdam

18 ? 6) by Chen et al. [82]; similarly, data was separated

into training (80%) and test sets (20%) by Wu et al. 2017

[77]. 100 images were used for training and 10 images for

testing by [75]. The dataset was separated into training,

cross-validation, and test sets (60 ? 20 ? 20%) with (lat-

est) 2019 data used only for testing in [73]. Vaihengen and

Potsdam datasets were divided into training/test sets with

16/17 and 24/14 tiles. Similarly, 80% used for training and

20% for testing were used in [85] and 75% data as a

training sample and 25% as testing in [71]. Braga et al.

[87], divided the 19,656 samples into 15,122 as a training

sample and 4535 images as test samples. A very large

number of studies were based on the various image

libraries. The most commonly used libraries include UC

Merced for the land use classification [18], Google Earth

Images for the reference dataset, WHU-RS data set, Goo-

gLeNet network trained on ImageNet data set[57].

4.2 Selection of model architecture

Given easy-to-use machine learning libraries like scikit-

learn, Keras, multiple deep learning models are available to

fit a predictive model with the set of data. It is the process

of choosing the most appropriate model from the number

of candidate models considering multidimensional influ-

ential factors, for example, time taken to train the model,

resources need, their performances, available resources,

etc. The model selection can be done using probabilistic,

random train/test and resample approaches. The random

train and test split work based on the division of the input

dataset into train and test ratio wise. There are few libraries

such as train_test_split function in scikit-learn python

library. The different proportions of the data split can use

to test the model performance with the unseen dataset. In

the resampling technique, the model is chosen based on the

performance of the model, which is done by resampling the

data set into train and through a set of iteration. The per-

formance is computed with the out-of-sample data. They

include the K-Fold, Stratified K-Fold etc. The probabilistic

model selection involves scoring the model’s performance

using the probability framework such as maximum
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likelihood estimation to choose the most appropriate model

among the number of candidate models.

Referring to the peer-reviewed articles in applications of

remote sensing datasets, the formal process of model

selection was not explained in most of the papers. The

majority of them seems to be based on the expert knowl-

edge and the historical application of the methods, pri-

marily, the LSTM was used for the time series dataset,

while in the image processing that likely influences spatial

information such as classification, scene segmentation,

changes detection, CNN is used in most of the cases. The

majority of such studies have directly adopted and used the

pre-provided libraries dataset to train and test them. Such

as ResNET-50 [77], SegNet [75], U-Net [77], Dee-

pLabV3 ? [79], FCN-AlexNet [73], Rotated Density

Network (RD-Net) [71]. A large portion of them is con-

cerned only with the model performance. None of the

manuscripts have discussed the availability and require-

ment of the resources while selecting the models.

CNN’s are usually used where convolutional operations

are a good assumption; however, in some applications the

CNN has been used for feature extraction [50] followed by

other models. In terms of application, autoencoders, CNN

and RBM or DBN do not have a clear separation; however,

most of such studies choose CNN. While the problem of

dimensionality reduction is raised, autoencoders are using

along with other architectures, for example, Ammour et al.

[57] used the pre-trained CNN for the feature extraction

and autoencoder for dimensionality reduction. The DBN is

considered an ideal deep learning model while the labeled

training sample size is small as it is good in feature

learning capability [19]. The VGG net was used for the

extraction of deep features from the input VHR images

[14]. Autoencoders were implemented to learn features of

the large dataset in an unsupervised manner [57].

Alternatively, many works are based on the pre-trained

image classification networks that have already learned to

extract powerful and informative features from natural

images and use it as a starting point to learn a new task.

The majority of the pre-trained networks are trained on a

subset of the ImageNet database which is used in the

ImageNet Large-Scale Visual Recognition Challenge

(ILSVRC) [94]. These networks have been trained on more

than a million images and can classify images into 1000

object categories, such as a keyboard, coffee mug, pencil,

and many animals. Using a pre-trained network with

transfer learning is typically much faster and easier than

training a network from scratch but a pre-trained network

dedicated to remote sensing is not available in the market.

4.3 Model fitting

4.3.1 Model structure selection

Deep learning models consist of two types of parameters

(i) hyperparameters – set before start the training and (ii)

model parameters – learned during the model training such

as weight of neurons. It develops a functional form of the

relationship f(.) between model inputs and outputs(s) dur-

ing the training time [16]. Optimizing a number of

hyperparameters to develop an optimum relationship

between inputs and output(s) while working with deep

learning is a challenging task. The optimal network struc-

ture should balance between the network complexity –

network size, transfer function, etc., and the performance

of the network. If the network complexity is too low i.e. a

number of layers and the hidden neuron is low, processing

speed is high, however, the network may not well capture

the best relationship between input and output dataset, and

increase the processing speed [95]. On the contrary, it is

too complex while increasing the number of layers and

neurons, increase the complexity, perhaps it works well but

it is too time-consuming and resource-demanding. The

most important characteristics are network accuracy,

speed, and size. Choosing an optimum network is generally

a tradeoff between these characteristics. The most common

way is to start with a basic model and improve the model

iteratively. That could take a list of pixels as input and

class-label output [84] in case of remote sensing-based

classifications, segmentation or data fusion. The model

structure selection/ hyperparameters tuning involves

selecting the number of layers, number of hidden units per

layer, activation function, optimizer, hidden layers, learn-

ing rate, initialization, batch size, number of epochs,

dropout, and normalization layer.

A large number of layers may introduce overfitting,

vanishing, and exploding gradient problem while a lower

number could introduce the large bias and perform less. In

case of the number of hidden units no rule of thumb is

available, but it should be less than the number of inputs. If

the data size is smaller, a small number of hidden units

could work better, the higher the hidden unit better the

learning and feature representation capacity [47] in the

complex problems. It is, in general, the tradeoff between

high bias and variance. Rectified Linear Unit (ReLu),

Sigmoid, tanh, and variant of ReLu such as LeakyReLU

and ReLU6 [7] are the most common activation function.

Deep network may be better with ReLU and its variant

while Sigmoid/Tanh are recommended for shallow net-

works. Adam, and SGD are the most common optimizers.

Adam is the most common for deep learning which con-

verges faster than others, while SGD is better for shallow

networks and AdaDelta and AdaGrad are recommended for
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sparse datasets. If learning rate is high, the learning process

might not converge to minima while if it is low, the model

runs extremely slow. The choice of optimizer governs the

learning rate, for SGD the most common is 0.1, while it is

0.001/0.01 for Adam [85]. The option of using the decay

parameter is available to speed up the learning rate Ini-

tialization often works with the default configuration;

however uniform initialization is preferred with ReLU.

Xavier initialization is used to make sure that the variance

of input and output remains equal which can prevent the

signal to go too high or low [29]. Though, random weight

initialization is especially faster in the pre-trained network,

both supervised and unsupervised pre-training could ini-

tialize a network in a better way than random initialization

[74]. Batch size is often recommended to be less than the

number of sample size If it is small, the pattern would be

less repeating and convergence could be difficult [96]. If it

is high, the learning rate is slow as the number of iterations

will increase. The recommended batch size is the power of

2 [25] The higher number of epochs may lead to the model

to overfit that cannot generalize the problems and could

lead to vanishing and exploding gradient problems. How-

ever, a lower number of epochs may limit the potential of

the model, therefore it is the tradeoff between training time

and performance [28]. The majority of the works have

adopted 0.5 as the standard dropout value. Batch normal-

ization minimizes the distribution shift that improves the

optimization of the network. It stabilizes, speeds up the

training process and sometimes improves the accuracy of

the network by standardizing the input parameters.

4.3.2 Model calibration

Once set the hyperparameter, their optimizations in the

deep learning are done in four ways (a) manual searches: a

trial and error method, that is tuned manually, and one of

the most common approaches, using this approach is easy

but not guaranteed that the hypermeters are optimized;

(b) random search: fit the model with the sample drawn

randomly from the problem space, and perform the cross-

validation such as k-fold validation, evaluate the model

with optimization metrics and choose the best performing

model; (c) grid search: an approach that systematically

tests the multiple values of hypermeters by retraining the

model for each value of the parameters automatically, it

could be very slow if the number of hypermeters is high

and (d) automated hypermeter tuning: Bayesian optimiza-

tion method test model with different combinations of

hyperparameters value, evaluate the results and choose the

new set of hyperparameters based on the results, the pro-

cess ends up with a set of possible hyperparameter and

optimal model function [7]. The process can be automated

through different platforms like scikit-learn, Grid-

SearchCV, and Hypers.

4.3.3 Model evaluation

The performance of the model needs to be accessed while

train the model regularly. It provides a test platform for

fine-tuning a model’s parameters and selecting the best

performing model – best set of hyperparameterization. A

number of matrics for the model evaluation have been used

to quantiify the model performance, and iit depends on the

the given machine learniing task such as classification,

regrassion, ranking, clustering, among others [97]. Some

metrics, such as precision-recall have been used for various

task but classification accuracy, and confusion matrix,

logarithmic loss, F-score are used for classifiication. But,

root mean square error (RMSE), and mean absolute error

(MAE).

4.4 Model validation

The fitted models need to be evaluated in order to confirm

their reliability and confidence in their estimated results

against the observed dataset. Two standard ways of model

evaluation are found (i) holdout – using a separate hold or

test sample that used after the end of model training to

evaluate the performance with the unseen dataset [14] and

(ii) k-fold cross-validation that allows to train the model

with the multiple splits and estimates the overall accuracy

by taking the average of the k individual accuracy.

The number of evaluation metrics is available either in

holdout or in k-fold cross-validation to quantity the model

performance has been implemented in different studies, it

depends on the nature of the model and their applications.

Based on the application and data nature two types of

evaluation metrics are found: (i) classification metric –

works with the classification problems, (ii) regression

metric – works with the regression problem. The classifi-

cation metric consists of confusion matrix, the most com-

mon method, overall accuracy, precision, recall, F1 score,

the area under the curve (AUC), Kappa coefficients, scatter

diagram are also frequently used approaches. All these

metrics are applicable for both approaches holdout and

k-fold cross-validation approach that is done multiple

times, using different nonoverlapping train and test random

splits of the dataset. Accuracy levels are averaged to report

a synthetic performance measure of all cases [64]. To

evaluate the model visual as well as the average silhouette

width method to analyze the quality of the output which

provided the compactness and separation of the clusters

[17].

The coefficient of determination (r2) is the most com-

mon evaluation metric for the regression problems, root

123

B. Mishra et al.



mean square error (RMSE), mean square error, mean

absolute error is also commonly used measures. The r2

describes how much of the variance between the estimated

and real values is described by the linear fit. It varies

between 0 and 1, the higher the value, the better the per-

formance. While the RMSE is a quadratic scoring rule that

measures the average quantity of error between the esti-

mated value and real value. The MAE is the sum of the

absolute differences between prediction and observed

values.

5 Discussion

In this paper, we reviewed articles that used DL for remote

sensing data. in several applications like image fusion, land

cover classification, scene classification, disaster monitor-

ing, image segmentation, change detection and feature

detection. We have synthesized a generic framework to

develop the DL model, which includes input/output

preparation, architecture selection, hyper-parameterization

and validation of the models.

Over the last couple of years, AI and DL methods had a

transformative impact in a number of fields of geospatial

data science such as segmentation, image fusion, and

object detection among others. These techniques have

already demonstrated the high potential to empower the

next generation of geoinformatics. Location-based dis-

covery and near human-level perception has been obtained

with the analysis of relevant information obtained through

satellite and field-based sensors.

A large number of papers under consideration focus on

implementation of DL algorithms for remote sensing and

prefer to use stable benchmark datasets such as RSSCN7,

UC-Merced dataset and WHU-RS dataset but avoid using

the real localized dataset [97]. Therefore, the focus has to

shift from a mere implementation of model to the devel-

opment of the training datasets and the model itself [7].

Transfer learning [71] has been heavily used due to its

strength to train the model with limited number of the

datasets and with low resources in a short time interval.

CNN is very popular due to its ability to extract features

automatically from a huge set of data across the application

without manual intervention. For example, Ammour et al.

[57] has used a pre-trained CNN network for feature

extraction and autoencoder for denoising automatically

[57]. However, it is difficult to evaluate such automatically

extracted features, as visualization in deep learning rarely

goes beyond the second layer, which can represent only

very basic features such as edge and gradient. Few trials

have been done to visualize automatically extracted fea-

tures in different applications). However, such works have

not been found in the remote sensing datasets.

Additionally, unsupervised DL models that are capable to

train without using the unlabeled dataset, might overcome

the primary issue like limited availability of the training

sample. Hence, it justifies the need for unsupervised DL

models in RS.

Deep learning tasks such as segmentation and object

detection are used in digital mapping like topographic

mapping and cadastral mapping. Most of the articles

reviewed in this paper target single features. However, in

order to generate a complete digital topographic map,

many features like building, roads, elevation, vegetation

might be needed along with their names. Such an approach

is missing in the literature. Semantic segmentation has

been tried in some cases to identify all the features at once

but this approach also lacks capacity to provide the textual

information about the location such as road names without

which the map is not complete. Hence, we can safely say

that the current development of deep learning can generate

segmentation and boundaries with some uncertainties, but

it still lacks the capacity to generate geocoding and

understanding topological relationships.

Figure 3a depicts the bib text analysis that shows the

trend of the publications over the year while searching the

key-words ‘‘deep learning’’ and ‘‘remote sensing’’ in Sco-

pus. The deep learning-based publications using remote

sensing-based dataset was published for the first time in the

history in 2008 which has a very slow pace until 2015 after

that it goes to an exponential rate. The Fig. 3b shows the

cloud tag of the keywords used in the reviewed publica-

tions. Remote Sensing data, CNN model and application

area like semantic segmentation, and object detection have

been found most popular in the last decade. In these

applications DL is expected to discover spatial concepts

and inherit expert knowledge through the mathematic

models. Although DL has successfully been applied in

spatial applications such as object detection, scene detec-

tion, data fusion, their uses as a tool for the practical

application is still not widely available. The major chal-

lenges include the availability of sufficient training sam-

ples, strong non-linearity, and low signal-to-noise ratios.

We suggest to focus on above mentioned standing issues

for the future research.

Availability of higher resolution spatial and temporal

dataset is always a big issue in an application of remote

sensing-based data due to the tradeoff between spatial

resolution and the re-visit time of the satellite. Handling

multi-source multi-temporal, multi-resolution and multi-

platform, dataset is always a big challenge. One of the

biggest advantages of DNN is its efficiency to make use of

multi-sources dataset having various disparities to solve a

problem. Even though, a large effort is required while

preparing the multi-sources dataset to fit the model, it helps

a lot to overcome the standing bottleneck of limited
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number of input samples. Apart from that, making use of

multi-model dataset can also ease the data availability that

helps to increase the quality and reliability of DL methods.

While considering the DL applications with spatial

dataset, majority of the work was found in segmentation,

clustering, object detection, scene detection, i.e. focused in

the feature but not in the complete cycle of the geospatial

analysis. The application of DL in the disaster monitoring

is very limited, Hence, more exploration is necessary in

this sector. Additionally, digital mapping would another

promising application with the DL in future. Another

frontier in the application of DL is the smart digitization.

So far, the research is focused on extracting the geometric

features and segmentation networks. The DL can be further

leveraged to extract the topological relationship, geotag-

ging, and help explainable digitization. Additionally,

capacity of visualization of automatically extracted fea-

tures in different applications) has not fully been explored

with the spatial dataset., Therefore, further research is

recommended to visualize and validate the automatically

extracted features in spatial science.

Preparing manually labeled huge dataset for the model

training and testing is a time-consuming and may not be

feasible in some applications. Therefore, semi-supervised

or unsupervised learning is required to overcome the

dependency on label-based datasets. Similarly, to increase

the reusability of a trained network for different datasets

and task, transfer learning could be a very promising

approach for the network re-usability. In which, optimized

parameters for one dataset can be used as initialization of

hyper-parameterization for learning with the different

dataset; the only need to do is fine-tuning with real dataset

from the specific application. That can save the huge

resources and time required for labelled data collection and

train the network with random hyper-parameterization.

After a very impressive performance of the DL, an

explainable DL model is required in order to widespread

acceptance and building trust. The clear-box DL could help

understand how the model process input dataset and

explain the prediction and gain access to the process rather

than the output alone. In many sectors, people are already

working intensively for the clear-box DL models however,

a very limited papers are found in the remote sensing

application in this direction. Therefore, a whitebox/gray

box DL is strongly proposed in coming days.

6 Conclusion

In this review, methods and application areas of DL

approaches using geospatial datasets are critically analyzed

and a general-purpose DL framework is synthesized.

Recent past and, future trends are discussed for the read-

ership who has embarked on their journey in the DL-based

application with the spatial dataset. Naturally, DL methods

have created both opportunities and challenges in the

geospatial frontier. It has already been implemented in a

number of applications yielding promising results, how-

ever, more advanced DL approaches and their application

must now be explored. Data, method and application are

the three prominent aspects found while summering the

roadmap for applying DL in different geospatial tasks.

Firstly, the possibility of using a multi-model dataset

should be well explored. Semi-supervised or unsupervised

approaches should be well considered to reduce the

dependency on the labor-intensive dataset labeling activity.

Enough focus is needed for, model re-usability – transfer

Fig. 3 Number of publications identified in Scopus with the keyword ‘‘deep learning’’ and ‘‘remote sensing’’ (a) and cloud tag obtained from the

abstract and keyworks in the reviewed publication (b)
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function and model transparency with white-box model

development. Finally, the implementation of DL for smart

digital mapping and relatively less explored and highly

important domain of disaster management has a high

potential. The strength of DL in spatial science has not

been fully leveraged yet, so it has a fair chance to dominate

the research for a couple of decades. Future researchers are

expected to unfold further strengths of DL.
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