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Energy propagation in 1D granular soft-stiff chain
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Abstract. When a mechanical wave travels through a medium, its intensity diminishes with distance. The
research focuses on the energy transfer with distance as well as across different wavenumbers, as the mechanical
wave propagates. The diffusive characteristic of energy propagation has been discussed for one-dimensional
chains composed of random, pre-stressed soft and stiff particles interacting through Hertzian repulsive forces,
which can be solved analytically after linearization. The effect of soft-stiff ratio (disorder in property) on
energy transfer across wavenumbers is examined using a standing sinusoidal wave initial condition (with a
specific wavenumber). From the total energy signals in wavenumber space, as function of time, it is observed
that stronger disorder leads to more rapid loss of energy of the signal and faster transfer of energy to other

wavenumbers.

1 Introduction

Disorder in granular matter usually occurs when mixing
grains of various sizes, or different materials. Particulate
mixtures are of interest for a large number of fields, mate-
rials, and applications. Complex mixtures with more than
one particle species exhibit different mechanical properties
than those of its ingredients. Recent studies have shown
that the mechanical and acoustic behavior of binary granu-
lar mixtures are strongly influenced by the relative amount
of the components [1-5].

When a mechanical wave propagates through a
medium, a gradual decay of wave amplitude can be ob-
served. In certain materials, wave pressure (amplitude) is
only reduced by the spreading of the wave due to scat-
tering [6—10]. The effect produced is to weaken the wave.
Scattering is the reflection of the sound waves in directions
other than its original direction of propagation.

Disorder may have an effect on the mechanical wave
transmission through the granular material in its own
unique way (for instance, contact disorder due to tiny poly-
dispersity can reduce the mechanical wave speed and the
transport of high frequency waves) [11-16]. Predicting the
energy propagation characteristics in real and wavenum-
ber space through disordered (simplified) model granular
media, like chains, can assist in understanding the over-
all properties of wave propagation through real inhomoge-
neous media like soils.

Including disorder, e.g., adding inclusions with differ-
ent properties or size, will lead to enhanced absorption in
typical frequency ranges/bands, relative to the original ma-
terial. The focus of this article is on the energy propagation
through a 1D granular chain such that the P-wave mode is
isolated from shear or rotational modes [17, 18].
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A video is available at https://doi.org/10.48448/nymm-h063

2 Granular chain model

At first, the equations of motion are derived. A 1D-chain
of mesoscopic grains has been modeled using the Hertzian
(nonlinear) repulsive interaction law [19, 20]. The force
between adjacent particles i and j (jcanbei+ 1 ori— 1),
with mass 7% and m‘Y, is:

Fijy=kipdiy Oup 20, (1
where X; ;) is the dimensional inter-particle contact stiff-
ness, & is the dimensional dynamic inter-particle over-
lap and the 3/2 exponent comes from the Hertzian law.
The dimensional dynamic overlap is written as 6., =
70 + 7D — | — 0| such that it is strictly non-negative
for contacts, where 7 and X are the absolute dimensional
radius and position, respectively. Anticipating an appro-
priate scaling of the problem, the tilde symbol is used for
dimensional quantities. The chain has been compressed
initially with a force P such that there is some initial strain
associated with the equilibrium configuration which keeps
particles in contact. This assists in modeling mechanical
wave propagation across well established granular chains.
Assuming an external pre-compressional force P on the
granular chain in mechanical equilibrium, the initial parti-
cle overlap is given by:
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where 7 is a length scale, i.e. characteristic lenght. Physi-
cal paramteres are scaled to obtain a non-dimensionalized
equation of motion for particles. To establish a non-
dimensionalized equation of motion, a minimum of three
number of scaling paramets are required: characteristic
mass (771,) which we take as the mean particle mass of the
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system, characteristic stiffness (k,) and a length scale (?).
We choose the length scale to be related to the overlap of a
characteristic contact in static equilibrium. However, one
could use particle size or the driving amplitude.

To define the characteristic stiffness, we consider the
contact of two identical particles of the mean mass. Un-
der the applied compressive force, the initial overlap be-
tween such particles provides us with £ = Ay (with non-
dimensional initial overlap Ay = Ao/t = 1). Inserting the
scaled particle overlap & j, = 8¢ ;,/€ in Eq. (1) yields:

Faj= '?(i,pﬁ/zéfi{,z-y 3

The non-dimensional mass b = @@ /7, the non-
dimensional stiffness is «;; = & /&, and the non-
dimensional displacement is u = ii/£. Without new scal-
ing parameters, this also defines the non-dimensional time
t = 7/7, where
1,
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thus, the non-dimensional repulsive interaction force be-
comes:
73
C
Fij=—=Fuj- (5)
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We write an equation of motion for the general particle
ii=1,.,N)as:

&30
7

We denote the displacement of particle i from its equi-
librium position )Eg) as 1@ = fu® = 3O — )Eg). Thus, for a
contact between i and j (with j > i), the scaled overlap is
5(,"]‘) =A+u? -y,

The non-dimensional equation of motion for particle i
is now given by

AU — k(i—l,i)g3/263/2

~ i 3/2
(-1, — K(i,i+1)€3/26 / (6)

(ii+1)’

) d2u®

bl
dr?

=Fi_1i = Fiivn
' i~1)y13
= K1, [ Aoty — @ — )P
= ki Agisn — @D —uPR ()

where the stiffness ratio ;) = k(. )/Ko has been defined
implicitly. Note that in this study, & ; is the disorder pa-
rameter. The implication of the disorder is explained later.

2.1 Linearized equation of motion

Here, we linearize the general force—displacement relation
about the equilibrium configuration. The nondimensional
phrasing of Eq. (1) is given by:
_ 3/2

Fij) = K0 ), ®)
which can be expanded around the initial overlap A j),
if the amplitudes of the displacement ) are small dur-
ing mechanical wave propagation, so the relative displace-
ments 6 j — Mg jy = u” —u"”, and the nonlinear terms can
be ignored so that:

3 . )
- 32 12 )
F(i,j) >~ K(i,j)A([’j) — EK(i’j)A(i,j)(u(j) b ) (9)

There are p = 0,...,N + 1 (in total N + 2) particles
in the granular chain with particles 0 and (N + 1) as the
boundaries of the chain such that u® = 0 and u™*D =
0. Alternatively, periodic boundaries are realized by using
N + 1 particles, equivalent to setting u© = u™*D # 0, that
is also allowed to move, so all vectors and matrices get
length N + 1 with 2/ = N + 1, with i integer. Eq. (9) results
in N equations which are assembled in a matrix form:

d’u
M@ = Ku, (10)
where M is a diagonal matrix with b, 5@ b3 b as
diagonal elements, K is a symmetric, tri-diagonal matrix

; 30,23 2/3 ; 3,2/3 .
with —5(K(i it K(i_l’i)) as diagonal, 5K (s AS superdiag-

onal and %K(Zfl ) as subdiagonal elements, other elements
of K are 0. u is the displacement vector containing dis-
placements u” as elements. The solution of this equation

is given in eigenspace and real space, respectively, by:
z0) =CPa+C%b or u@t) =SCPa+SCPb, (11)

where CV is a diagonal matrix with sin(w ;1) as diagonal
elements, C? is also a diagonal matrix with cos(w 1) as di-
agonal elements, a and b are vectors which are determined
from initial conditions u, (initial displacement vector) and
v, (initial velocity vector).

a=H'S"'v, and b=S"'u, (12)

where H is a diagonal matrix with w; as the diagonal ele-
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Figure 1. Sinusoidal waveform initial condition for a fixed-end
and periodic granular chain.

2.2 Standing wave condition

An initial sinusoidal waveform (see Fig. 1) is applied to
the (periodic) chain in the form of u, = u, sin (N %)
andv, =0 (wherep =1,.,N+1or0,..,N, N=1, ...,
(N+1)/2 specifies the particular tone of the standing wave).
It is important to avoid opening and closing of contacts by
setting the condition u, < 1 (initial particle overlap A,)
in order to hold the validity of the linearized equations of

motion (Sect. 2.1). a and b are given as:
a=H'S'v,=0 and b=S"u,. (13)

Hence, the displacement and velocity of the particles be-
come:
u=SC?8'u, and v=-SHC"VS 'u,; (14)
which is also written as:
i

. N < 2
() = uy Y Sijcos(@;n) DS ;sin (NN—)
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Figure 2. Binned total energy response ({é(#))) of chains made with ratio v = 0.1 (a,d), 0.5 (b,e), and 0.9 (c,f) agitated initially with

kins = 0.981 (top row) and k;,; = 2.159 (bottom row).

2.3 Total energy and binning energy

In this section, we define the total energy calculated in
wavenumber space. The Total Energy Ey of individual
particles is the sum of its kinetic Ey;, and potential ener-
gies Epo:

Etot = Egin + Epot‘ (16)

Using expressions obtained earlier, Eq. (15), the total en-
ergy is written as:

ED® = 5GP - SFO0uP 0. (1)

After that, the total energy calculated in wavenumber
space is binned. This helps to deal with one eigenmode
per a group with an averaged total energy instead of many
eignemodes. If we consider Ak the bandwidth of the bin
and r the central wavenumber, the binning of the total en-
ergy becomes:

r+Ak/2

=) ERw, (18)

r—Ak/2
Since the total energy is conserved, hence:

B

D00 =) ERw, (19)

r=1 k

where B is the total number of bins assigned in wavenum-
ber space. The energy results shown later are normalized
by the total energy as a probability density:

e(’)(t)
B

%, eN(1)

r=1

RIOE (20)

2.4 Implication of disorder in a monodisperse
chain

In earlier studies, the effect of mass and inter-particle con-
tact stiffness disorder in a pre-stressed monodisperce gran-
ular chain subjected to ballistic and harmonic perturbation
of the boundary was studied [13, 21-23].

In the current study, two different types of particles, so
called soft and stiff, are chosen for creation of a chain. The
mass and inter-particle stiffness between the soft particles
are assigned to be half of the mass and inter-particle stiff-
ness of the stiff particles. Also, the inter-particle stiffness
between soft and stiff particles are set to be 2/3 of the stiff
particles. Particles are placed randomly in the granular
chain at every realization.

3 Results and discussion

N particles long granular chains with three different soft
to stiff ratios (number of soft to stiff particles in chain),
v = 0.1,0.5, and 0.9, have been used with standing wave
initial conditions. This section deals with the analysis en-
ergy transfer between different wave numbers in time. In
order to improve the quality of the signals, every content
ratio analysis was averaged over 100 realizations.

Eq. (17) is used to obtain total energy in wavenumber
space, then Eq. (20) is used to bin the energy responses
accordingly. The number of bins used for the computation
here is B = 32 with a bandwidth Ak = 7/32 = 0.0982.
Fig. 2 shows the evolution of the binned total energy in
wave number space (color scale in the plots is E(k)(t)) for

tot

bands initially agitated at wave number, k;,; = N % =

0.981 (top plots) and 2.159 (bottom plots) which corre-
spond to bin numbers » = 10 and r = 23.
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A peak is initially observed at the agitated wavenum-
ber (ki,s), the peak decreases as the time progresses, the
decay rate is lower for lower wavenumber and lesser en-
ergy transferred to other bands, which can be observed
when top plots are compared with the bottom ones.

Comparing the plots for v = 0.5 with others, it is found
that higher disorder in a chain leads to faster energy trans-
fer to other bands. In other words, when the disorder of the
chain is higher regardless of the stiffness of particles, the
attenuation takes place faster with incorporation of more
neighboring bands.

4 Conclusion

In this study, the influence of soft-stiff ratio disorder on
energy propagation was examined using a harmonic wave
propagation in a granular chain, where soft and stiff parti-
cles are distributed randomly in the chain.

At first, the micro-mechanical model of the granular
chain with linearized Hertzian repulsive interaction forces
acting between the granules was explained. After that, the
equations used for computing the total energy response in
wavenumber space. Calculated total energy were grouped
in order to deal with fewer wavenumbers. From the results
it can be concluded that higher disorder causes a faster de-
cay of higher wavenumbers, whereas lower wavenumbers
remain in the system for a longer time.

In future work, the diffusive characteristic of energy
propagation and its frequency dependence will be included
into a reduced order model to establish a master equa-
tion with the aid of a one-dimensional soft-stiff disordered
granular chain.
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