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a b s t r a c t 

We study performance improvement in multi-echelon, closed loop spare part supply chains using oper- 

ational interventions based on real-time status information. Our objective is to minimize the total cost 

relevant costs, consisting of intervention costs and the backorder costs. In this paper, we focus on proac- 

tive interventions, aiming to avoid stockouts. We assume that all reactive interventions are fixed. Proac- 

tive interventions that we study include lateral transshipments, emergency shipments, stock reservations, 

expediting part repairs, and early new buys of parts. These interventions are invoked by using alert gen- 

eration, when the supply chain status deviates from the plan. We propose heuristic rules to generate 

alerts. We also develop heuristic rules for the choice of operational interventions. We model and test our 

heuristics in a simulation test bed, based on data of a global IT company by using the case data in Ger- 

many. Numerical experiments reveal the following key insights: (i) downstream interventions – proactive 

lateral and emergency shipments – have most impact in reducing costs, (ii) communicating losses in the 

supply chain (no returns, failed repairs) for early new buys has positive impact on fill rates at negligible 

costs, and (iii) expedite repair and stock reservations using the proposed rules is not profitable. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction and contribution to literature 

Capital goods are advanced technical systems that are cru- 

ial for delivering goods and services. Examples are airplanes, 

edical equipment, and industrial computers. Their availability is 

ery important for the users. When such an asset is not avail- 

ble, this may result in severe revenue loss and customer dis- 

atisfaction. To provide after-sales services and maintenance to 

sers, service providers of capital goods typically operate complex 

pare parts supply networks, and through service level agreements 

SLAs), they offer detailed service packages to ensure high uptime 

or users. Spare part supply networks differ from manufacturing 

upply chains in many aspects, see Cohen, Agrawal and Agrawal 

2006) . Relevant for this research are the inclusion of return, repair 

nd disposal of failed components, low demand rates, and fast re- 

ponse requirements. Also, the network should be capable of SLAs 

hat may vary between customers ( Kutanoglu & Mahajan, 2009 ; 

iemessen, Fleischmann, van Houtum, van Nunen & Pratsini, 2013 ), 

ith varying prices for the corresponding contracts to provide dif- 

erentiated services. 
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It is a challenge to minimize the costs of running the spare 

arts network while attaining the various SLAs. To achieve this, 

lanners make decisions at strategic level (e.g., where to locate 

arehouses), tactical level (e.g., the stock levels per part and per 

ocation), as well as day-to-day operational planning activities. At 

he operational level, planners must respond to deviations from 

actical plans when monitoring the supply chain, e.g., a part re- 

uest cannot be fulfilled from the nearest warehouse, or the cur- 

ent stock on hand falls below a threshold. In such a case, planners 

onsider interventions when they face an acute issue (e.g., urgent 

emand at a warehouse that is out of stock), or to anticipate on 

 high stockout risk in the short run. The first category are reac- 

ive interventions, the second category are proactive interventions. 

xamples of proactive interventions are (i) initiating an emergency 

hipment from upstream the supply chain to a warehouse nearby 

ustomer sites, (ii) relocating a part between stock locations at the 

ame level in the supply chain (i.e., a transshipment between local 

arehouses), and (iii) expediting return and repair of a failed part. 

To support planners making such decisions, a recent trend is to 

se a service control tower (SCT). According to Accenture (2015) , an 

CT “acts as a centralized hub that uses real-time data from a com- 

any’s existing, integrated data management and transactional sys- 

ems to integrate processes and tools across the end-to-end sup- 

ly service chain and drives business outcomes”. In a typical SCT, 
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he supply chain status is closely monitored by collecting a lot of 

eal-time data, and alerts (triggers or exception messages) are gen- 

rated in case of possible supply chain anomalies. Planners often 

nalyze such anomalies manually, but decision support could be 

ffered by presenting multiple intervention options with their esti- 

ated impact. The amount of real-time data facilitates operational 

lanning is a key aspect that differentiates SCTs from more tra- 

itional centralized inventory control systems focusing on tactical 

ecisions that have been studied extensively in the past decades 

see the review of de Kok et al., 2018 ). 

In recent work, Topan, Eruguz, Ma, van der Heijden and Dekker 

2020a) reviewed the literature on operational planning in service 

ontrol towers, and confronted this literature with practice to iden- 

ify challenges and needs in after-sales service logistics. Some of 

he findings in practice include: 

• Operational decisions in spare part supply chain are seldom ex- 

ecuted automatically. Thresholds for alerts are often somewhat 

arbitrary. Often, too many alerts are generated, such that plan- 

ners do not have time to check all these alerts. 
• Despite the fact that companies typically offer a range of ser- 

vice contracts with various SLAs, literature on customer differ- 

entiation in operational planning is scarce. 

We observe these issues in a case study at a global IT com- 

any for hardware solutions that is headquartered in Europe. The 

orward supply chain of the company consists of a central ware- 

ouse and several local warehouses. Failed parts are returned and 

epaired in the reverse supply chain, after which they are suitable 

or reuse in the forward part of the supply chain. Together, we have 

 closed loop spare part supply chain, where new buys compensate 

osses due to parts that are not returned or repaired. 

Customers have different SLAs, namely same-day deliveries 

premium customers) or next-day deliveries (nonpremium cus- 

omers). Nonpremium customers are served from the central ware- 

ouse, and premium customers can be served from multiple (but 

ot all) local warehouses within the required time window. Conse- 

uently, there are subsets of same-day customers that overlap and 

annot be easily decomposed over local warehouses. 

Inspired by the case study, we develop methods for alert gener- 

tion and heuristics to find good proactive interventions that im- 

rove SLA fulfillment and reduce the need for expensive reactive 

nterventions. Moreover, reactive interventions are rather trivial in 

his setting. When a same-day delivery cannot be satisfied from 

 nearby local warehouse, it is satisfied from the central ware- 

ouse via an emergency shipment. If the central warehouse is out 

f stock, it waits until new material arrives. Yet proactive interven- 

ions to avoid future stockouts remain as an issue. Therefore, we 

ocus on proactive interventions aiming to improve supply chain 

erformance. We develop a discrete-event simulation model with 

eal-life data from the case study as testbed for the decision rules 

hat we will develop. 

The contribution of our paper is as follows: 

• We develop heuristic decision rules for operational planning, 

i.e., interventions for a multi-echelon, closed loop spare part 

supply chain that do not allow for a decomposition over local 

warehouses. 
• We include customer differentiation, i.e., we have two differ- 

ent customer service levels, expressed as time windows within 

which spare parts should be delivered at the customer site. 
• We use our model and solution methods to study the impact of 

generating alerts and interventions in a real-life case study for 

the hardware solutions of a multinational IT company. We de- 

velop several insights including the trade-off between the num- 

ber of alerts being generated for interventions and the short- 
term performance of the supply chain. o

2 
The remainder of this paper is structured as follows. In 

ection 2 we review the related literature. We provide a de- 

ailed explanation of the case study that motivated our research in 

ection 3 . Section 4 deals with interventions and alert generation 

hat are applicable to the case study. We introduce our mathemat- 

cal model and notation in Section 5 . In Section 6 , we develop vari-

us decision rules for interventions. We evaluate the decision rules 

n a simulation study based on the case and provide key insights 

n Section 7 . Finally, we present our conclusions and directions for 

urther research in Section 8 . 

. Related literature 

Although strategic and tactical planning of spare parts is widely 

iscussed in the literature, there is a limited number of papers on 

perational planning. Our paper contributes to the latter stream 

f research. For a recent review of literature regarding operational 

nterventions in service control towers, we refer to Topan et al. 

2020a) . Our paper is also related to the papers that addresses 

ome of the interventions in our paper individually, e.g., expedit- 

ng (e.g., Song & Zipkin, 2009), lateral transshipments ( Paterson, 

iesmüller, Teunter & Glazebrook, 2011 ). Yet, our paper is differ- 

nt from these papers because we consider multiple interventions. 

e further differentiate our paper form vast majority of papers 

y selecting the interventions among many alternatives based on 

eal time information (instead of assuming fixed decisions and as- 

essing the impact of these decisions in the long term), and fur- 

hermore by considering a multi-echelon setting. The papers which 

onsider multiple interventions in a multi-echelon setting is sum- 

arized in Table 1 . 

Hoadley and Heyman (1977) proposes a mathematical model 

o determine emergency shipments, lateral transshipments, return 

llocation, and characterize the properties of the cost function. 

isher (1989) considers priority scheduling of repairs and cannibal- 

zation, and proposes different rules and policies and tests them in 

 simulation. Pyke (1990) and Abell, Miller, Neumann and Payne 

1992) have a similar approach, but they also include lateral trans- 

hipments. Caggiano, Muckstadt and Rappold (2006) consider re- 

air capacity, stock allocation and emergency shipments from the 

entral warehouse. They propose an MILP formulation and an ef- 

ective heuristic to find the optimal interventions. Grahovac and 

hakravarty (2001) consider lateral transshipments and emergency 

hipments only. Meissner and Senicheva (2018) apply approximate 

ynamic programming to find lateral transshipment decisions in a 

wo-echelon system for retail products with short selling seasons, 

egligible lead times and lost sales. Howard, Marklund, Tan and 

eijnen (2015) investigate lateral transshipments, emergency ship- 

ents, and proactive and reactive stock allocation interventions, 

sing queuing theory. Topan and van der Heijden (2020b) consider 

 similar setting and propose an MILP formulation to include both 

vent based and periodic interventions. They find that joint inter- 

entions reduce total downtime considerably, and that proactive 

mergency shipments contribute the most. 

Our work differs from these papers in the following ways: (1) 

e explore a broader range of proactive operational interventions, 

.e., using pipeline stock, emergency shipments from inventory up- 

tream, lateral transshipments, as well as reallocation of returns, 

xpediting repairs, and reservation at the upstream location. (2) 

e consider a large closed-loop supply chain including repair and 

eturn processes, where other papers typically focus on a part 

f the supply chain only (typically a part of the forward supply 

hain). (3) We combine alert generation (triggers) and interven- 

ions. (4) We cover losses in the supply chain due to part return 

nd repair. (5) The central warehouse deals with different types 

f demand: direct demand (next day and same day emergency) 
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Table 1 

Summary of papers on operational planning with multiple interventions in a multi-echelon setting. 
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nd replenishment orders of local warehouses. (6) Finally, our pa- 

er differs from most of these papers by testing our approach in a 

eal life case with actual data, whereas most of the papers in this 

eld are theoretical contributions. 

There are several papers on service differentiation ( Kranenburg 

 van Houtum, 2008 ), customer differentiation and stock reserva- 

ion at the central warehouse ( Axsäter, Olsson & Tydesjö, 2007 ), 

nd expediting ( Arts, Basten & Van Houtum, 2016 ). However, these 

apers focus on tactical planning (e.g., finding the optimal tar- 

et or base stock levels). We differ from these papers by focus- 

ng on operational planning (e.g., in our paper base stock levels 

re fixed). There are methods based on decomposing the complex 

ulti-echelon problem into simpler single-echelon problems. How- 

ver, these methods are applicable to tactical planning, e.g., find- 

ng optimal base stock levels and threshold levels (e.g., Howard et 

l., 2015 , Kranenburg & van Houtum, 2009 ), and not to operational 

lanning problems with a finite horizon. In a recent paper, Topan 

t al. (2020b) develop operational interventions for spare part sup- 

ly chains and test their method to a different case than ours. 

ompared to this paper, we also include (i) the return and verifica- 

ion process (ii) losses in the supply chain due to missing returns 

nd unsuccessful repairs with various yields, (iii) a new buy chan- 

el to compensate for these losses, (iii) customer differentiation 

different service levels for premium and nonpremium demand), 

iv) the impact of alert generation. 

. Case study 

A large manufacturer of IT-hardware, middleware and software 

rovides after sales services to its customers to support their daily 

perations. To reduce downtime due to spare part unavailability, 

he company has a global supply chain for its spare parts with 

ocal warehouses close to the customer sites. In this section, we 

ntroduce the current supply chain, spare parts flows, and opera- 

ional interventions at the manufacturer. We use the case study to 

uild our model. 
3 
.1. Current supply chain structure 

Fig. 1 shows the product flows In our case study. We focus on 

he part of the supply chain that serves customers of the manu- 

acturer in Germany. Spare parts are stored in 11 local warehouses , 

hich are replenished from a central warehouse in The Nether- 

ands. There are ten customer groups , each of which is an aggre- 

ated set of individual customers. 

.2. Forward part flows 

Each customer group consists of premium and nonpremium de- 

and. Nonpremium demand is satisfied from the central ware- 

ouse, as customers can always be delivered in time (next day) 

rom there, provided that the part is on stock. In this way, the 

anufacturer benefits from pooling demand uncertainty over cus- 

omer groups, but also differentiates its customer service for the 

wo customer groups. 

Premium demand is primarily satisfied from the nearest lo- 

al warehouse, the so-called primary local warehouse . If that local 

arehouse is out of stock, the part is supplied from a set of al- 

ernative local warehouses in a predetermined fixed sequence, in- 

ofar they can supply parts in time (same day). If this is not feasi- 

le, demand is satisfied the next day using an emergency shipment 

rom the central warehouse. These interventions to meet demand 

re called reactive interventions. 

Fig. 2 shows the local warehouses that can supply same-day de- 

iveries to each customer group (yet not the predetermined fixed 

equence of local warehouses, and for this, we keep a fixed se- 

uence of local warehouses for each customer). Local warehouses 

an deliver the same day to between one and four customer groups 

e.g., primary local warehouse 7 can provide same-day deliveries to 

ustomer groups 6, 7, 8 and 10). This complex structure with over- 

apping subsets of local warehouses for different customer groups 

ith same-day deliveries complicates the analysis. Therefore, a 

imple analysis based on decomposition over local warehouses is 

ot feasible. 
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Fig. 1. Supply chain in case study (SKU = Stock Keeping Unit; OEM = Original Equipment Manufacturer). 

Fig. 2. Customer groups and local warehouses in Germany. 
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.3. Reverse part flows 

Demand for a spare part is always associated with a part failure 

t the corresponding customer location. All parts are in principle 

echnically and economically repairable. Failed parts are sent once 

er week to the Central Return Location (CRL, cf. Fig. 1 ) for fur-

her processing, inspection and dispatching. Some failed parts may 

ontain privacy sensitive data and thus a fraction is not returned 

o the CRL, resulting in a part-specific return yield . Remaining parts 

re inspected and classified as either repairable , non-repairable or 

o-fault-found (i.e., serviceable). No-fault founds are sent periodi- 

ally (batched) to the central warehouse. Non-repairable parts are 

crapped at the CRL. Repairable parts are sent twice per week to 
4 
he Central Repair Vendor (CRV, cf. Fig. 1 ), where they are con- 

olidated and verified. The verification process checks for possible 

easons why repair should not be executed (e.g., expired warranty 

r a new part successor). Thus, a fraction is not forwarded for re- 

air, resulting in a part-specific verification yield . Parts that pass the 

erification process are forwarded to the Original Equipment Man- 

facturer (OEM) for repair. At the OEM, parts are further inspected 

y experts. Then repair may turn out to be infeasible, resulting in 

 part-specific repair yield . Those parts that are infeasible to repair 

re returned to the CRV to be scrapped. The remaining parts are 

epaired at the OEM. After repair, they are returned to the central 

arehouse as serviceable stock . These stocks are used to meet non- 

remium demand, replenish local warehouses, and to satisfy pre- 

ium demand unmet by any local warehouse. This all occurs on a 

irst Come, First Serve (FCFS) basis. 

.4. Inventory control 

At a tactical level, the inventories are controlled as follows. All 

he local warehouses use a periodic review, order-up-to level policy 

cf. Silver, Pyke & Thomas, 2017 ) with a review period of two days.

he order-up-to levels are determined such that the on-time deliv- 

ry percentage is approximately 95% for each SKU. As we have dis- 

rete demand with low rates, we cannot attain exactly 95% for ev- 

ry SKU. We found the order-up-to levels using some preliminary 

imulation experiments proceeding from an initial setting based on 

 basic periodic review inventory model. 

The central warehouse uses a continuous review reorder point, 

 s , S ) installation stock policy. That is, the central warehouse places 

 replenishment order at the OEM (a so-called new buy ) when its 

nstallation inventory position drops to or below the reorder point 

 . Then the size of the replenishment order raises the installation 

nventory position to the order-up-to level S . The installation in- 

entory position of the central warehouse is defined as the on- 

and stock minus the backorders from the local warehouses and 

onpremium customers, plus the new buy parts in the pipeline 

rom the OEM, plus the repaired parts in the pipeline between CRV 
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nd central warehouse, plus the pipeline stock of no-fault founds 

etween the CRL and the central warehouse. The reorder point at 

he central warehouse is chosen such, that the on-time delivery 

ercentage is about 95% for each SKU. Similar to the order-up-to 

evels of the local warehouses, we accomplished this using prelim- 

nary simulation experiments. 

.5. Operational interventions 

Currently, the company does not apply proactive interven- 

ions. The reactive interventions in place have been described in 

ection 3.2 . 

. Improvement potential: interventions and alerts 

In this section, we focus on proactive interventions to avoid 

tockout risks. Based on the case study, we identify two types of 

roactive interventions: proactive interventions for premium de- 

and, and those that are mainly made for nonpremium demand. 

.1. Proactive interventions for premium demand 

Same-day deliveries involve a set of local warehouses that can 

ulfill same-day requests. We consider the following interventions: 

• A proactive emergency shipment from central warehouse to a 

local warehouse connected to customer groups facing a high 

stockout risk. In this way, we expedite replenishment of inven- 

tories at local warehouses. 
• A proactive lateral transshipment from one local warehouse to 

another local warehouse. In this way, we rebalance inventories 

at local warehouses. 
• Reserving parts at the central warehouse for premium demand . 

Typically, a stockout for premium customers (i.e., same day de- 

livery) is considerably worse than a stockout for nonpremium 

customers (i.e., next day delivery). In that case, it may make 

sense to prioritize premium demand (if local warehouses are 

out of stock) and replenishment orders from local warehouses 

over nonpremium demand, when the central warehouse is 

low on inventory. Of course, this will have negative impact 

on the nonpremium service level, so we have to investigate 

whether this makes sense. Note that currently these two de- 

mand streams are handled FCFS. 

.2. Proactive interventions that are mainly for non-premium 

emand 

For nonpremium demand, we need to look at interventions that 

ecrease the stockout risk at the central warehouse. This also in- 

uences stockout risks of premium requests, because the central 

arehouse faces replenishment orders, as well as emergency ship- 

ents from the local warehouses for premium demand. 

• Expediting the repair process (i.e., shortening the lead time). Re- 

pairs of failed parts at the OEM can be expedited by giving 

that repair job priority. Expediting further upstream in the sup- 

ply chain, e.g., expediting returns by selecting a faster delivery 

mode is less interesting. Previous research has shown that the 

impact of shortening lead times decreases when we move away 

from downstream locations serving customer demand (Van der 

Heijden, Alvarez & Schutten, 2013 ). 
• Ordering new buys using real-time return and repair information . 

In the spare parts supply chain that we consider, losses occur 

because not all parts are returned or repaired. In the current 

situation, information on losses is not immediately taken into 
5 
account for new buy decisions at the central warehouse. An al- 

ternative is to integrate information about the installation in- 

ventory position of the central warehouse and losses to make 

the replenishment decisions. 
• Reserving parts at the central warehouse for direct demand . This 

is the similar to the third intervention for premium demand. 

Fulfilling nonpremium demand or emergency requests for pre- 

mium demand, is in the short run more important than replen- 

ishments of local warehouses. The replenishment orders may 

have lower priority as they do not immediately affect service 

levels for premium demand. Likely, at most one of the two 

stock reservation policies that we introduce may add value de- 

pending on the parameter settings, but not both. 

.3. Alert generation 

Planners are triggered to monitor the supply chain and to de- 

ide upon an operational intervention if needed. These alerts are 

ypically activated when a performance indicator exceeds a pre- 

pecified threshold. The main challenge is to select a good thresh- 

ld: an excessive number of alerts (system nervousness) may arise 

rom loose thresholds, whereas it can be too late for a proactive 

ntervention when thresholds are tight. Also, planners are able to 

andle a limited number of exception messages only, so generat- 

ng many messages cause planners to make their own selection of 

essages they will handle, and that choice is not necessarily the 

est one and it depends on the experience and skills of the plan- 

er. 

The alerts are related to the interventions under consideration. 

or most interventions, an alert is invoked if the inventories in the 

orward part of the supply chain (at central warehouse or the lo- 

al warehouses) are low. We use the following trigger mechanism: 

he Probability of stockout (POS) at a warehouse exceeds a certain 

hreshold . The POS is defined as the probability that demand ex- 

eeds the on-hand stock level during the remainder of the replen- 

shment lead-time (i.e., until the next part is scheduled to arrive). 

The second intervention in Section 4.2 , ordering new buys using 

eal-time return and repair information, requires a different trigger. 

hen we observe less returns and repairs than average, we can 

se this to justify buying additional parts, hence advancing new 

uys. In that way, inventory shortages at the central warehouse can 

e prevented. To use this, we set a threshold for the gap between 

he expected and the actual number of retuned and repaired parts 

n the last period. In Section 6 we explain how we incorporate de- 

ision rules for the interventions. In Section 7.4 we also address 

he impact of alert generation. 

. Notation and model assumptions 

Although we will test our decision rules in a simulation of a 

ulti-item system, we use a single item model: the multi-item 

roblem can simply be decomposed over parts. We will mea- 

ure the performance in terms of fill rates for premium and non- 

remium customers. As these are long-term measures, we base our 

perational decision rules on backorder costs that in the long-run 

ead to the fill rates targeted. 

We consider a two-echelon supply chain, consisting of a set J

f warehouses. We use index j = 0 for the central warehouse, and 

 = 1, 2, …, | J | −1 for the local warehouses. Demand arises from a

et I of customer groups, indexed as i ∈ { 1 , . . . , | I| } . Each customer 

roup may generate demand in two priority classes: premium de- 

and (in our case: same-day), denoted by m = 1, that needs to be 

atisfied within fixed time window T 1 , and nonpremium demand 

in our case: next-day), denoted by m = 2, that needs to be satis- 

ed within time window T 2 > T 1 . The demand of customer group i 

nd priority class m follows a Poisson distribution with mean λ
im 
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Table 2 

Overview of key notation for decision rules. 

Symbol Description 

Supply chain related 

I Set of customer groups ( i = 1 , . . . , | I| ) 
J Set of warehouses ( j = 0 , . . . , | J | − 1 ) 

m Demand class ordered in decreasing priority ( m = 1 , 2) 

T m Time window within which demand class m has to be filled ( m = 1 , 2) 

λim Mean demand of customer group i for class m 

λP Total mean premium demand (demand class 1) over all customer groups 

λNP Total mean nonpremium demand (demand class 2) over all customer groups 

λTOT Total mean demand over all customer groups and demand classes 

j ∗
i 

Primary warehouse j of customer group i 

H i Set of secondary warehouses of customer group i , where H i ⊂ J \ { 0 , j ∗
i 
} 

Lead-times 

L LW Shipment lead-time for replenishments from central warehouse to a local warehouse 

L CRL,i Return lead-time for replaced parts from customer group i to CRL 

L CRV Shipment lead-time from CRL to CRV, including verification time 

L OEM Shipment lead-time of unserviceable parts from CRV to OEM 

L rep Repair lead-time at the OEM 

L R _ CRV Shipment lead-time of repaired parts from OEM to CRV 

L CW Shipment lead-time from CRV to central warehouse 

L NB New buy lead time 

Yields 

γ Fraction of failed parts that are returned to the CRL (return yield) 

δ Fraction of returned parts that arrive serviceable at the CRL (“no fault found”) 

ε Fraction of returned parts that arrive failed but repairable at the CRL 

ϕ Verification yield at the CRV 

ω Repair yield at the CRV 

Supply chain status when an alert is generated and an intervention needs to be considered 

OH j On-hand stock at warehouse j , with OH 0 representing the central warehouse stock 

EIP LW Aggregate echelon inventory position at the local warehouse level 

P 1 , j Expected time until the next part arrives at local warehouse j (equal to L LW j if no part is in the pipeline between central 

warehouse and local warehouse j ) 

P 2 Expected time until the next part arrives at the central warehouse from either the new buy or repair stream. If both pipelines are 

empty, this is equal to L NB . 

Cost factors 

C E Costs of pro-active emergency shipment from central to local warehouse 

C L Cost of a pro-active lateral transshipment between two local warehouses 

C ER n Cost of expediting repair at stage n . 

C B 1 Backorder costs for premium demand per item, no matter the duration of the delay 

C B 2 Backorder costs for nonpremium demand per item, no matter the duration of the delay 

Performance 

EBO m ( s , t ) Expected backorders for class m demand over period t if we have s parts available 

F Pois (s | λ) Probability that a Poisson distributed random variable with mean λ is ≤ s 

p
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er period. Every customer group i has a primary local warehouse 

j ∗
i 
, and when it is out of stock we may source from a fixed set

 i ⊂ J \ { 0 , j ∗
i 
} of secondary local warehouses from which premium 

emand can still be satisfied within time window T 1 . We refer to 

able 2 for an overview of notation. 

We use the following model assumptions: 

1. All (return, repair and shipment) lead times are constant. 

2. The lead times from central warehouse to local warehouses are 

identical for all local warehouses. 

3. All demand has to be satisfied (i.e., we have backordering and 

not lost sales). 

4. The nonpremium demand is satisfied from the central ware- 

house, and the premium demand is satisfied from local ware- 

houses when there is sufficient on hand stock. 

5. Local warehouses use (S-1, S) inventory control policies with 

order-up-to-levels not higher than one. 

6. The central warehouse applies an installation stock ( s , S ) policy. 

In the supply chain, we have the following lead times. Upon 

ailure, the defective SKU is removed and is returned to a Central 

eturn Location (CRL) for inspection. Returns are made periodically 

in our case: once per week) with lead-time L CRL,i for customer 

roup i . Some parts are not returned, resulting in a return yield 

. The parts that are returned turn out to be (i) properly function- 

ng (serviceable parts), a fraction δ, (ii) defective but repairable, a 

raction ε, (iii) defective and not repairable, a fraction 1 − δ − ε. 
6 
epairable parts are sent to the central repair vendor (CRV) pe- 

iodically, and after consolidation and verification to the OEM for 

epair. Recall that all fractions are part-specific, but that we omit 

he part index for simplicity of notation. 

The lead time of a shipment from the CRL to the CRV, including 

erification is denoted by L CRV . A fraction does not pass verifica- 

ion and is scrapped at the CRV, resulting in a verification yield 

. The remaining parts are sent to the OEM for repair with lead- 

ime L OEM 

. After a repair lead-time L rep at the OEM, the part is 

eturned to the CRV with lead-time L R _ CRV . Some parts that arrive 

t the CRV after inspection at the OEM are faulty and these are 

crapped, resulting in a repair yield ω. The repaired parts are sent 

o the central warehouse (CW) with lead-time L CW 

, where parts 

re kept on stock or used to clear backorders. We denote the ship- 

ent lead time from the central warehouse to a local warehouse 

y L LW 

. When a new part needs to be bought from the OEM, we 

ace a new buy lead-time denoted by L NB . Note that we need all 

hese lead times separately and cannot aggregate them, since the 

nterventions that we consider – such as expediting - depend on 

he stage in the closed loop supply chain. Also, the information 

vailable depends on that stage: we have various yields at various 

oints in the reverse supply chain. Thus the uncertainty in supply 

ecreases when moving further in the supply chain, when more 

tages with each their own lead time have been passed. 

Furthermore, we have intervention costs. For premium demand, 

e denote the costs associated with an emergency shipment from 
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he central warehouse by C E and a lateral transshipment between 

ny local warehouses by C L . The costs associated with nonpremium 

emand interventions are denoted by C ER for expediting repair. Us- 

ng real-time return information and stock reservation for non- 

remium demand do not have costs associated with them. The 

ackorder costs are denoted by C B 1 for premium demand and C B 2 
or nonpremium demand. To describe the status of the supply 

hain at a certain point in time, we use the following notation. We 

efine P 1 , j as the lead-time until the next part arrives at the lo- 

al warehouse (i.e., a maximum of the regular replenishment lead- 

ime if nothing is in the pipeline). P 2 is defined as the lead-time 

ntil the next part arrives at the central warehouse (from either 

he new-buy or the repair stream). If both pipelines are empty for 

 certain SKU k , it holds that P 2 = L NB (i.e., the new buy lead-time).

e measure the status of the local warehouses by the aggregate 

chelon inventory position at the local warehouse level EIP LW 

, de- 

ned as the sum of all local warehouse stocks plus all parts in the 

ipeline between the central warehouse and all local warehouses, 

inus premium backorders (if any). 

. Operational planning 

This section provides heuristic rules for proactive interventions 

or premium ( Section 6.1 ) and nonpremium demand ( Section 6.2 ). 

.1. Interventions for premium demand 

Whenever there is an alert, the model allows choosing between 

ultiple interventions. As discussed in Section 4 , we include as 

ro-active interventions: (i) an emergency shipment from the cen- 

ral warehouse, (ii) a lateral transshipment from a local warehouse, 

nd (iii) reserving parts at the central warehouse for same-day de- 

and. The heuristic rule for the first two interventions is devel- 

ped in a single model (6.1.1). For the third intervention we pro- 

ose a separate heuristic rule in 6.1.2. 

.1.1. Proactive emergency and lateral transshipments 

At any point in time, the on hand stock at local warehouse 

 equals OH j , and the time until the next replenishment (order 

ize one) arrives equals P 1,j . If there is no replenishment order 

n the pipeline, we take P 1,j = L LW 

, as this is the earliest time for

ew material to arrive at the local warehouse. Our decision rules 

ry to minimize the total expected costs during P 1 , j , consisting of 

i) intervention costs, and (ii) expected stockout costs. As we dis- 

ussed, a decomposition over local warehouses is not feasible (cf. 

ection 1 and 3 ). Therefore, estimating the expected demand per 

ocal warehouse – and thus the expected backorder costs – dur- 

ng P 1 , j is not straightforward. We therefore deploy two heuris- 

ics to estimate the expected backorders: a look-ahead approach 

nd a Markov chain-based approach. The look-ahead approach ig- 

ores demand fulfillment by reactive lateral transshipments and 

edirection of demand among local warehouses during stockout. 

he Markov chain-based approach does incorporate demand fulfill- 

ent by reactive lateral transshipments and redirection of demand. 

owever, it includes additional assumptions and limitations (see 

elow), such as a maximum order-up-to level of one. The look- 

head approach can be applied in a wider range of settings, in- 

luding larger order-up-to levels. 

Recall that we use the following logic for reactive interventions 

or both heuristics: if a local warehouse is out of stock, we check 

 subset of other local warehouses in a fixed sequence until we 

ound a local warehouse that has a part on hand. If local ware- 

ouses who can fulfill demand within one day are out of stock, we 

se and emergency shipment from the central warehouse. 

Below we discuss these two heuristics to estimate expected 

ackorders. 
7 
Method 1: look-ahead approach 

We focus on a single local warehouse, and therefore we sup- 

ress the local warehouse index j . We calculate the expected back- 

rders as follows. Given that we have s parts available to satisfy 

remium demand in the next period with length t, we compute 

he expected premium backorders by: 

B O P ( s, t ) = 

∞ ∑ 

n = s +1 

( n − s ) 
( λP t ) 

n 
e −λP t 

n ! 
(1) 

We can rewrite this as 

B O P ( s, t ) = λP t ∗ { 1 − F Pois (s − 1 | λP t) } − s ∗ { 1 − F Pois (s | λP t) } (2) 

here we define the cumulative Poisson distribution as 

 Pois (s | λP t)= 0 if s < 0. 

We set t = L LW 

if no replenishment order is in the pipeline, 

nd t = P 1 otherwise. As a simple decomposition method is not 

easible for our case study, we estimate the demand faced by a 

ocal warehouse solely with the original demand rates dedicated 

o this warehouse. 

Method 2: Markov chain-based approach 

We use a discrete time Markov chain to evaluate the impact 

f proactive interventions decisions considering reactive interven- 

ions that can take later at all local warehouses over a period L LW 

. 

ere, we evaluate particularly the expected total number of backo- 

ders EB O P ( s, L LW 

) and costs associated with the interventions. Ad- 

itional to the main model assumptions, we further assume: 

a) Premium demand never exceeds one per period in the entire 

network. 

b) We neglect other proactive shipments decisions during evalua- 

tion period L LW 

at the local warehouses. 

c) The central warehouse has ample stock. 

Assumption (a) is the consequence of a negligible probability 

f having more than one unit of demand at each period at any 

ocal warehouse. Note that this is justified also because order-up- 

o-levels are not higher than one in our setting. Assumption (b) is 

eeded to model our evaluation using a Markov chain. Note that 

therwise we would need a Markov decision model to incorporate 

roactive decision that can be made later. The transitions represent 

he inventory status changes due to demand and the reactive inter- 

entions. We include the proactive intervention in the first period 

hat we aim to evaluate, and ignore any further proactive interven- 

ions over L LW 

. 

We define the starting state vector ( x 1 , . . . , x J ) , where x j denotes 

he number of discrete time units until the next replenishment or- 

er of local warehouse j will arrive. To exemplify, x 1 = 2 denotes 

hat the replenishment order of warehouse 1 is due in 2 days. Also, 

 1 = 0 denotes that the part is already on stock and there is no 

eplenishment order in the pipeline. This means that we can only 

se warehouse j for (direct or lateral) demand fulfillment when 

tate x j = 0 . We illustrate the Markov chain for a primary ware- 

ouse j where we distinguish between x j = 0 and x j > 0 . In both 

ases, demand with size 1 may occur at warehouse j in the next 

eriod, or no demand occurs. This leads to the following transi- 

ions: 

• A demand arrives with probability 1 − e 
− ∑ 

i ∈ I 
λi 1 

. As demand per 

period is at most one by assumption, we face customer class i 

demand with probability 
λi 1 ∑ 

i ∈ I λi 1 
. 

◦ The demand is satisfied from stock if the warehouse has 

positive stock, e.g., x j ∗
i 

= 0 . Considering that all pipeline 

stocks will advance 1 period (day) forward and a new re- 

plenishment order is placed for warehouse j, the transition 

is from ( x 1 , . . . , x J ) to ( x 1 − 1 , . . . , x j ∗ = L LW 

, . . . , x J − 1) . 

i 
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◦ If x j ∗
i 

> 0 , the demand at warehouse j is satisfied from the 

first secondary local warehouse in H i (so according to the 

“precedence list”) that has positive stock. Let this warehouse 

be j ′ . Given the advancement of pipeline stock and a re- 

plenishment order for warehouse j , the transition is from 

( x 1 , . . . , x J ) to ( max ( x 1 − 1 , 0) , . . . , max ( x j ∗
i 

− 1 , 0) , . . . , x j ′ =
L LW 

, . . . , max ( x J − 1 , 0) . 

◦ If none of the secondary local warehouses H i have posi- 

tive stock, demand is satisfied from the central warehouse 

by a reactive emergency shipment. Then, the transition is 

from ( x 1 , . . . , x J ) to ( max ( x 1 − 1 , 0) , . . . , max ( x J − 1 , 0)) . This

means a stockout for customer group i since demand is not 

satisfied the same-day. 

• No demand arrives with a probability e 
− ∑ 

i ∈ I 
λi 1 

. Then, the transi- 

tion is from ( x 1 , . . . , x J ) to ( max ( x 1 − 1 , 0) , . . . , max ( x J − 1 , 0)) . 

We calculate EB O L LW 

by using n -step transitions of the Markov 

hain where n = 1 , . . . , L LW 

. From assumption (a), the probability 

hat a demand occurrence at a local warehouse without stock 

 x j > 0 ) at any discrete time period gives the expected number of 

ackorders at the end of each discrete time period. Since we are 

nterested in the total backorders over L LW 

periods, we have L LW 

iscrete time periods, and thus, L LW 

such probabilities. To calcu- 

ate each, we calculate probabilities that a demand occurrence at a 

arehouse without stock at the end of day n using n -step transi- 

ions for n = 1 , . . . , L LW 

. Their sum gives EB O P ( s, L LW 

) . To evaluate

ach intervention, we calculate EB O P ( s, L LW 

) and costs associated 

t all local warehouses over a period L LW 

of starting with an initial 

tate that the intervention will lead to. An intervention is selected 

f the decrease in expected costs exceeds the intervention costs. 

.1.2. Reserving parts at the central warehouse for premium demand 

If backorder costs for premium demand are considerably higher 

han those for nonpremium demand, it makes sense to prioritize 

hipments for premium demand, i.e., replenishment orders by the 

ocal warehouses and emergency shipments. When a nonpremium 

ustomer arrives, we check the supply chain status and estimate 

he expected shortage costs until the next replenishment arrives at 

he central warehouse to select among the two options: to reject 

he nonpremium demand or to fill the nonpremium demand. We 

eject nonpremium demand if we find a (significant) reduction in 

otal shortage costs. 

The key status information here consists of (i) the expected 

ime until the next part(s) arrive at the central warehouse P 2 , 

ii) the on-hand stock level at the central warehouse OH 0 , and 

iii) the total number of parts available in the downstream (at or 

n transport to the local warehouses, minus premium backorders) 

ust before the nonpremium customer arrives, represented by the 

ggregate echelon inventory position EIP LW 

. 

If we block a nonpremium customer, we have one nonpremium 

ackorder for sure. We also have one part extra to satisfy pre- 

ium demand in the period until the next part(s) in the pipeline 

f the central warehouse arrive at the local warehouses, so during 

 2 + L LW 

. We estimate the premium backorder reduction by aggre- 

ating demand and inventories over all local warehouses. That is, 

e assume that any part available at the downstream can be used 

o satisfy premium demand at every local warehouse. Obviously, 

his assumes we use the parts at the downstream perfectly. This 

ssumption will be closer to reality if we apply proactive lateral 

nd emergency shipments as discussed in 6.1.1. 

Blocking the nonpremium customer implies that we have 

H 0 + EIP LW 

parts available to satisfy premium demand during 

 2 + L LW 

, whereas we have OH 0 + EIP LW 

-1 parts available if we do

ot block. When we plug this in (2), the impact of blocking the 
8 
onpremium customer on premium backorders equals 

EB O P = E B O P ( O H 0 + E I P LW 

− 1 , λP ( P 2 + L LW 

) ) 

− E B O P ( O H 0 + E I P LW 

, λP ( P 2 + L LW 

) ) (3) 

This can be rewritten as (see also equation (2.7) in Van Houtum 

 Kranenburg, 2015 ), 

EB O P = 1 − F Pois (O H 0 + EI P LW 

− 1 | λP ( P 2 + L LW 

) ) (4) 

The nonpremium customer is blocked if the expected cost re- 

uction in premium backorders exceeds the increase in backorder 

ost of nonpremium customers due to the rejection, i.e., 

 B 1 �EB O P > C B 2 (5) 

.2. Interventions for nonpremium demand 

Interventions for nonpremium demand focus on the central 

arehouse. Recall that the central warehouse (i) satisfies non- 

remium demand, (ii) replenishes local warehouses, (iii) fills emer- 

ency requests from the local warehouses, (iv) receives repaired 

arts and (v) orders new buys from the OEM. As discussed in 

ection 4 , we include the following pro-active interventions: (i) 

xpediting the repair process (6.2.1), (ii) ordering new buys using 

eal-time information on losses in the return and repair process 

6.2.2), and (iii) reserving parts for direct demand (6.2.3). 

.2.1. Expediting the repair process 

We may intervene at three stages during the repair process: 

stage 1) before repair has started, we prioritize the repair job, 

hereby reducing waiting time before the start and during the ex- 

cution of repair, (stage 2) after repair and still at the OEM, us- 

ng an expedited shipment from the OEM to the CRV, and (stage 

) after repair and at the CRV, using an expedited shipment the 

RV to the central warehouse. We can reduce the lead time in 

tage n to a fraction κn of the original lead time ( 0 < κn < 1 ). We

ay reduce lead times in multiple stages. If we deploy expedit- 

ng at all three stages, we reduce the total return lead-time to 

1 L rep + κ2 L R _ CRV + κ3 L CW 

. If the part is at stage 2 of the repair pro-

ess, the expedited repair lead-time is κ2 L R _ CRV + κ3 L CW 

and if the 

art is at stage 3, the expedited repair lead-time is κ3 L CW 

. Expe- 

iting makes most sense for the part that is scheduled to arrive at 

he central warehouse earliest. 

We propose the following decision rule. Let the next part that 

s expected to arrive at the central warehouse be in repair stage 

 . Then, we can shorten the expected remaining lead time (either 

rom new buy or from repair) from P 2 to P e,n , n = 1 , 2 , 3 . Here

he input parameter P e,n denotes the expedited remaining repair 

ead time in stage n . In the numerical experiments ( Section 7 ),

e will set this equal to a fraction of the original remaining re- 

air lead time P 2 . Note that expediting repair does not have any 

mpact in the short run if a new buy order arrives before expe- 

ited repair. Also, we note that an early arrival of part at the cen- 

ral warehouse means less nonpremium backorders and less delay 

n fulfilling (replenishment orders of) premium demand. As it is 

ifficult to distinguish the impact on nonpremium and premium 

ackorders and the majority is nonpremium demand, we use only 

onpremium backorder costs to estimate the impact of expediting. 

nalogously to Section 6.1.2 , we find expected backorders at the 

entral warehouse over time t by: 

B O CW 

( s, t ) = λT OT t ∗ { 1 − F Pois (s − 1 | λT OT t) } 
− s ∗ { 1 − F Pois (s | λT OT t) } (6) 

We expedite repair if the marginal benefit of expediting exceeds 

he marginal intervention cost C ERn in stage n , i.e., 

 

E B O CW 

( O H 0 , P 2 ) − E B O CW 

( O H 0 , P e,n ) ] ∗ C B 2 
C 

> 1 . (7) 

ERn 
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Table 3 

Expected and actual number of parts leaving the supply chain. 

Location → CRL CRV OEM 

Actual number of parts leaving the supply chain Q F - Q R – Q NFF Q R – Q V Q V – Q C 
Expected number of parts leaving the supply chain (1 - γ - ε) Q F (1 - ϕ) Q R (1 - ω) Q V 
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With a similar logic, we could also develop decision rules for 

ny further parts scheduled to arrive from the repair pipeline. 

ikely the marginal returns of these interventions will decrease 

ith the number of repairs to expedite, so this only makes sense if 

ur numerical experiments reveal that expediting the first arriving 

arts adds sufficient value (which will turn out to be not the case). 

.2.2. Ordering new buys using real-time return information 

Recall that the installation inventory position at the central 

arehouse includes the on-hand stock level and the pipeline stock 

rom both the new buy stream and the repair stream and is con- 

rolled using an ( s, S ) installation stock policy. Consequently, in- 

ormation on parts that leave the supply chain (i.e., because they 

re not returned or repaired) is delayed. Only a fraction of failed 

arts may arrive in the part of the repair stream that is visible 

or the central warehouse (i.e., between the CRV and the central 

arehouse). This reduces the installation inventory position and 

his may lead to placing a new buy order. 

We can reduce the information delay by tracking the actual 

umber of parts leaving the supply chain compared to the ex- 

ected number of parts. For example, if more parts have left the 

upply chain than normal, the central warehouse may replenish its 

nventory earlier than prescribed by its (s, S) policy to compensate 

he parts left the system (and the other way around). Note that 

ailed parts are transshipped through the supply chain in batches, 

here some parts in a batch may leave the supply chain earlier 

t various locations, resulting in a yield. Parts that stay within the 

upply chain always remain in the same batch. At the CRL (return), 

RV (verification) and OEM (repair) the yield may be smaller than 

. 

At the CRL batches of parts are returned from the installed base 

nd are checked for repairability. For the CRL we use the following 

otation: 

• Q F = number of parts that have failed since the previous batch 

of failed parts has been returned from the installed base 
• Q R = number of parts identified as repairable at the CRL from a 

batch of returned parts (sent to CRV) 
• Q NF F = number of parts identified as “no fault found” at the CRL 

from a batch of returned parts (“serviceable” parts) 

At the CRV, batches of repairable parts arrive from the CRL and 

re verified: 

• Q V = number of parts verified as repairable at the CRV that 

enter the repair process at the OEM 

At the OEM, we track how many repairs are successful: 

• Q C = number of parts that have been repaired successfully 

We track the difference between the actual and expected num- 

er of parts leaving the supply chain since the last replenishment 

rder at the central warehouse, see Table 3 . If the cumulative ac- 

ual number minus the expected number exceeds some threshold 

max (trigger), we decide to order early. That is, we order S − IP if 

he installation inventory position at the central warehouse IP falls 

t or below s + �max . 

.2.3. Reserving parts at the central warehouse for direct demand 

We consider reserving stock for direct demand and backorder- 

ng replenishment orders from local warehouses when the central 
9 
arehouse stock is low. Direct demand consists of nonpremium 

emand and overflow of premium demand (i.e., reactive emer- 

ency shipments to meet premium demand that cannot be sat- 

sfied from local warehouses). Such a stock reservation can make 

ense, as delay in satisfying direct demand will immediately lead 

o penalty costs, whereas a delay in replenishment orders does not 

mmediately lead to penalty costs. We decline a replenishment re- 

uest arriving from a local warehouse whenever the decrease in 

otal backorder costs for direct demand is higher than increase in 

he total backorder costs for premium demand. We use the follow- 

ng logic to determine the expected backorders for the different 

emands streams, which are then multiplied by their respective 

osts parameter. 

Similar to Section 6.1.2 , if we reject the replenishment request, 

e have EIP LW 

parts available to satisfy premium demand until 

 2 + L LW 

, and OH 0 parts to satisfy nonpremium demand and reactive 

mergency shipments for premium demand until P 2 . If we accept 

he replenishment request, we have one part more for premium 

emand at the local warehouses ( EIP LW 

+ 1) and one part less for 

onpremium demand and premium emergency shipments ( OH 0 –

). Similar to (3) and (4), we find that the impact of rejecting re- 

lenishment order on premium backorders is negative: 

 B O P ( E I P LW 

, P 2 + L LW 

) − E B O P ( E I P LW 

+ 1 , P 2 + L LW 

) 

= F Pois (EI P LW 

| λP ( P 2 + L LW 

) ) − 1 (8) 

The nonpremium backorders are affected over the interval [0, 

 2 ]. We first approximate the shortage under the option “reject”. 

hen we can also (approximately) evaluate the “accept” option if 

e replacing EIP LW 

by EIP LW 

+ 1, and OH 0 by OH 0 −1. 

The nonpremium backorders in the interval [0, P 2 ] depend on 

he overflow premium demand that needs to be satisfied from the 

entral warehouse if the local warehouse stock is insufficient. Let 

 PS be the time until the first shortage of premium demand oc- 

urs (and so a request for an emergency shipment is issued to 

he central warehouse), and M = min { T PS , P 2 } . In the interval [0, 

 ], the central warehouse faces nonpremium demand only. In [ M , 

 2 ], the CW also faces emergency shipment requests to satisfy pre- 

ium demand. T PS equals the time until premium demand equals 

I P LW 

+ 1 . As demand is Poisson distributed, the time between de- 

and events is exponentially distributed with parameter λp , and 

o T PS has an Erlang distribution with parameters EI P LW 

+ 1 and 

p , with mean E[ T PS ] = 

EI P LW 

+1 

λP 
. The probability that T PS ≥ P 2 is the

robability that premium demand until P 2 is not more than EI P LW 

, 

o F Pois (EI P LW 

| λP P 2 ) . Some calculus reveals that 

 [ M ] = 

EI P LW 

+ 1 

λP 
{ 1 − F Pois ( EI P LW 

+ 1 | λP P 2 ) } + P 2 F Pois ( EI P LW 

| λP P 2 ) 

(9) 

We use two approximations to simplify the calculations. 

pproximation 1. We replace M by its expectation E[ M] . Then 

he nonpremium backorders in [ 0 , E[ M] ] are simply given by 

 B O NP ( O H 0 , E [ M] ) , where we use (2) for EB O NP ( s, t ) replacing λP 

y λNP . 

For the nonpremium backorders in [E[ M ], P 2 ], we first approx- 

mate the total expected shortage over [0, P 2 ]. The expected to- 

al demand over [0, P ] consists of nonpremium demand over the 
2 
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Table 4 

SKU-specific properties. 

Demand rates (per year) Lead times (days) Yields at CRV 

SKU k Premium λP Nonpremium λNP New buy L NB , k Repair L rep , k Verification ϕ k Repair ω k 

1 119 878 84 10 1.00 0.970 

2 85 850 84 10 1.00 0.975 

3 56 607 84 10 0.94 0.975 

4 53 636 122 97 0.97 0.970 

5 40 600 43 10 0.45 0.975 

6 40 576 64 10 0.96 0.975 

7 38 357 60 10 0.78 0.975 

8 38 239 67 10 0.84 0.975 

9 37 168 100 84 1.00 0.910 

10 36 309 65 10 0.19 0.975 
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ntire interval, plus emergency orders for premium demand over 

E[ M ], P 2 ]), so λNP P 2 + λP ( P 2 − E[ M] ) . 

pproximation 2. The total demand is Poisson distributed with 

onstant rate over [0, P 2 ]. Then we approximate the total back- 

rders (nonpremium demand + premium emergency requests) by 

B O PNP ( O H 0 , P 2 ) using (2), replacing λP by λNP + λP ( 1 − E[ M] / P 2 ) . 

hese are backorders over [0, P 2 ], so we have to deduct the ex- 

ected backorders in [0, E[ M ]]. Then we find the nonpremium 

ackorders in [E[ M ], P 2 ] as a fraction λNP / ( λP + λNP ) of the total

xpected backorders, so: 

λNP 

( λP + λNP ) 
{ E B O PNP ( O H 0 , P 2 ) − E B O NP ( O H 0 , E [ M ] ) } (10) 

Then, the sum of expected nonpremium backorders in [0, E[M]] 

nd in [E[ M ], P 2 ] equals 

λNP 

( λP + λNP ) 
∗ EB O PNP ( O H 0 , P 2 ) + 

λP 

( λP + λNP ) 
∗ EB O NP ( O H 0 , E [ M ] ) 

(11) 

. Numerical results 

Based on the case study and model described, we construct a 

iscrete-event simulation model in Plant Simulation 15.2. We pro- 

rammed the decision logic using the built-in language SimTalk. 

he simulation model is used to evaluate the effectiveness of 

roactive interventions for operational planning on the service 

evel, expressed in fill rates. We first define the basic setting in 

ection 7.1 , and next discuss the key results in Section 7.2 . We dis-

uss the impact of alert generation in Section 7.3 . 

.1. Experimental design 

We used the replication-deletion approach (cf. Law, 2014 ), 

here each replication corresponds to a five-year simulation of the 

losed loop supply chain. In each replication, we generate demand 

or each stock keeping unit from Poisson distribution with mean 

alues as observed in our case study, as we observed one-by-one 

emand in all cases. For the yield at each stage we simply use a 

ernoulli distribution with yield rates as observed in the case data. 

elch’s Method revealed that a warm-up period of one year is suf- 

cient, leaving us with four years to collect results. We chose the 

umber of replications such that the half-width of the 95% confi- 

ence interval of the fill rate for premium demand and for non- 

remium demand is at most equal to 0.01. We found that 30 repli- 

ations are sufficient in all instances. The average run time per in- 

tance is about 35 s on a Dell XPS17 9700, Intel Core i7–10875H, 

6GB RAM. 

As basis for our experiments, we use the case study as 

escribed in Section 3 for K = 5 representative SKUs. Table 4 
10 
ummarizes the key characteristics of these SKUs. All failed 

arts are returned to the CRL and are repairable ( γ = ε= 1 

nd δ= 0). The shipment lead times for the return flows are 

 CRL,i = L CRV = L OEM 

= L R_CRV = L CW 

= 5 days. The regular replenish-

ent lead-time between central warehouse and each local ware- 

ouse equals L LW 

= 5 days. Emergency shipments from the central 

arehouse and proactive lateral transshipments both take one day. 

xpediting repair shortens the remaining lead-time by 50%. As key 

erformance indicators, we use the fill rate per demand class (pre- 

ium, nonpremium). We choose the backorder costs for premium 

nd nonpremium customers as C B 1 = 20,0 0 0 and C B 2 = 20 0 0, irre- 

pective the delay. In this way, we attain decent fill rates, as we 

ill see in the numerical results. 

To gain more insight, we also added 15 fictional SKUs. First, we 

sed the ten SKUs from Table 4 and doubled the shipment lead 

imes between central warehouse and local warehouses (SKU 11–

0). Our hypothesis H1 is that interventions in the downstream 

art of the supply chain are more effective if these lead times are 

onger. Second, we used the first five SKUs with the highest de- 

and rates and generated five more SKUs with double demand 

ates (SKU 21–25). Our hypothesis H2 is that we have more possi- 

ilities to intervene if we have more items in the various pipelines, 

nd therefore may find more impact of operational interventions. 

inally, we added experiments for the ten SKUS from Table 4 with 

% less stock at the central warehouse. Our hypothesis H3 is that 

tock reservations may have more impact if the central warehouse 

uns out of stock more frequently. We also performed experiments 

or SKU 21–25 with 5% less warehouse stock and with doubled 

hipment lead-times between the central warehouse and the lo- 

al warehouses. These experiments show similar results compared 

o SKUs 1–10. We omitted the results in Table 5 for sake of con- 

iseness, but we included the details in the appendix. 

We consider six proactive intervention types as described in 

ection 4 . We use a benchmark scenario to compare our scenarios 

gainst to identify which intervention type has the highest positive 

mpact. The benchmark scenario is the one above without proac- 

ive interventions (reactive interventions only). Next, we combine 

nterventions to assess which combination makes most sense. 

.2. Numerical results and insights 

Table 5 shows they key results from the simulation study. The 

ntervention costs are the average costs of all reactive and proac- 

ive interventions per year. We display the weighted average fill 

ate per demand class over the SKUs as mentioned in the header 

f column 3 and 4, weighted on the demand rate. We provide de- 

ailed results per SKU in the appendix ( Table A1 - A3 ). As we need

rder-up-to levels higher than one at a subset of local warehouses 

n experiment 22–26, we only apply the look-ahead heuristic for 

roactive lateral and emergency shipments and not the Markov- 

hain approach. For a fair comparison, we also show the weighted 



B. Gerrits, E. Topan and M.C. van der Heijden European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; February 4, 2022;1:11 ] 

Table 5 

Key results of the simulation experiments. Black values show no significant change compared to the scenario without interventions (reactive only). Green (red) values 

show significant positive (negative) changes based on T-test with α = 0.05. 

Experiment Proactive interventions Weighted fill rate (SKU 1–10) Intervention costs (yearly) 

Premium Nonpremium 

1 None (reactive only) 95.2 94.4 € 0 

2 Lateral transshipments (look-ahead) 98.1 94.4 € 340K 

3 Lateral transshipments (Markov chain) 97.6 94.4 € 161K 

4 Emergency shipments 99.5 94.3 € 330K 

5 Stock reservation for premium demand 95.1 94.4 € 1.5K 

6 Expedite repair 95.2 94.4 € 10K 

7 Use return and repair losses for new buys 95.2 94.9 € 1K 

8 Stock reservation for direct demand 92.6 95.5 € 4K 

9 Combination of 2 and 5 98.0 94.4 € 338K 

10 Combination of 2 and 8 96.2 96.4 € 332K 

11 Combination of 2, 4, 6, 7 and 8 92.0 94.1 € 654K 

5% Less central warehouse stock 

12 None (reactive only) 94.6 91.2 € 0 

13 Emergency shipments 98.1 90.5 € 277K 

14 Lateral transshipments (look-ahead) 97.7 91.2 € 313K 

15 Stock reservation for direct demand 90.3 93.0 € 95K 

16 Stock reservation for premium demand 94.6 91.2 ( € 8 K) 

Double shipment lead-times 

Weighted fill-rate 

(SKU 11–20) 

17 None (reactive only) 95.2 95.3 € 0 

18 Emergency shipments 99.5 95.3 € 900K 

19 Lateral transshipments (look-ahead) 98.5 95.2 € 276K 

20 Stock reservation for direct demand 93.7 96.4 € 50K 

21 Stock reservation for premium demand 95.2 95.3 ( € 1 K) 

Double demand rates 

Weighted fill-rate 

(SKU 21–25) 

22 None (reactive only) 95.2 [95.5] 95.3 [95.1] € 0 

23 Emergency shipments 98.8 [99.3] 94.3 [95.2] € 195K 

24 Lateral transshipments (look-ahead) 98.2 [98.3] 95.3 [95.3] € 286K 

25 Stock reservation for direct demand 93.5 [93.3] 96.5 [96.4] € 12K 

26 Stock reservation for premium demand 95.2 [95.5] 95.3 [95.3] ( € 1 K) 
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low demand rates and fast replenishment. 
ll-rate of SKUs 1 to 5 in the base setting between square brackets 

or experiments 22 to 26. We conclude from Table 5: 

1. Pro-active lateral transshipments and pro-active emergency 

shipments have the highest impact on premium demand fill rat

at the cost of additional shipments. 

Proactive emergency shipments yield a higher fill rate (i.e., 

9.5%) than proactive lateral transshipments (i.e., 97.6%), whereas 

he number of emergency shipments is also much lower than 

he number of lateral transshipments. The key reason is that us- 

ng proactive emergency shipments shorten regular replenishment 

ead times by a factor five proactive lateral transshipments do 

ot have such an effect. Proactive emergency shipments are made 

hen inventories are low only; yet they replace about 20–30% of 

he regular replenishments. A drawback of proactive lateral trans- 

hipments, despite having the same lead-time as emergency ship- 

ents, is that they may cause problems at other local warehouses, 

riggering a possible transshipment there and starting a ripple ef- 

ect of lateral transshipments. For emergency shipments it holds 

hat stock is brought from upstream, not causing any ripple effects 

t other local warehouses. As in our case, the central warehouse 

ypically has ample stock, proactive emergency shipments do not 

egatively impact fill rates at other local warehouses or for non- 

remium demand. 

2. The look-ahead heuristic for pro-active lateral transshipments 

performs similarly to the Markov Chain approach at the expens

of twice as many shipments. 

We observe from Experiment 3 and 4 that the premium fill 

ates are slightly better for the look-ahead heuristic (i.e., 98.1%) 

han for the Markov Chain (MC) approach (i.e., 97.6%), but at 
11 
he expense of 72% more transshipments. The MC approach in- 

ludes the impact of a lateral transshipment on the entire network, 

hereas the look-ahead heuristic looks at the impact of a lateral 

ransshipment only on that local warehouse. This is further dis- 

ussed in Section 7.3 . The drawback of the MC approach is that 

t takes considerably more computation time. That will not be a 

ottleneck for practical usage, but it is for lengthy simulation runs. 

herefore, we combine other interventions with the look-ahead ap- 

roach only. 

3. Stock reservation for direct demand positively impacts nonprem

ium fill rates and negatively impacts premium fill rates. 

As nonpremium demand and reactive emergency shipments of 

remium customers are prioritized at the central warehouse, regu- 

ar local warehouse replenishment orders are delayed. As a con- 

equence, the nonpremium fill rate increases and the premium 

ll rate decreases. This intervention seems counterproductive as 

he decrease in premium fill rate is larger than the increase in 

onpremium fill rate. Further analysis shows that premium de- 

and is satisfied 22% more often the next day via an reactive 

mergency shipment from the central warehouse. The negative 

ffect is thus somewhat diminished, as the delay is only one 

ay. Note that the decrease in premium fill rates can be coun- 

erbalanced by deploying proactive lateral transshipments addi- 

ionally, keeping the nonpremium fill rate at 96.4%, whilst in- 

reasing the premium fill rate to 96.2% (see experiment 10 in 

able 5 ). 

4. Stock reservation for premium demand is not fruitful due to 
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Fig. 3. The cumulative impact of proactive lateral transshipments. 
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Stock reservation for premium demand only occurs once or 

wice per year, therefore the impact on fill rates is negligible. In 

ur case, premium demand rates are considerably lower than non- 

remium demand rates, resulting in a low probability that a re- 

erved part is actually used to fulfill premium demand. This may 

lso be due to our approximations. First, we assume that all stock 

n the pipeline to or at the local warehouses can be used to satisfy 

ll premium demand. This is generally not true, although a com- 

ination with proactive lateral transshipments may help. Second, 

e use a myopic rule focusing on the earliest arriving replenish- 

ent, either from the new buy stream or the repair stream. Given 

he yields and batching for new buys, the earliest arriving replen- 

shment is most of the time a single part from the repair chan- 

el. This may be insufficient to solve all issues, and we may need 

 more sophisticated rule that includes more information further 

pstream the supply chain. 

5. Including information on actual losses in the supply chain has a

small positive impact on nonpremium fill rates at very little cos

This intervention only requires the registration of scrapped 

nd non-repaired parts and information exchange with the cen- 

ral warehouse, so costs are low. Some parts have higher impact 

han other, i.e. ranging from 0.3 to 1.4 percent point increase (see 

ppendix 1 for details). Further research needs to show exactly 

hich factors determine the success of this intervention. 

6. Expediting repair is almost never used as an operational 

intervention 

We have fairly frequent stream of repaired parts to the central 

arehouse. Combined with low repair lead times (e.g., 10 days re- 

air plus 15 days in total for shipment) and high repair yields (e.g., 

5%), and that repair process is far from demand fulfillment, expe- 

iting repair has no value in our case study. 

7. Pro-active emergency shipments in combination with lower 

central warehouse stock or higher demand rates negatively 

influences nonpremium fill-rates. 

From experiments 12–16 we observe that both pro-active emer- 

ency shipments and lateral transshipments improve premium fill 

ates. However, pro-active emergency shipments negatively influ- 

nce nonpremium fill rates, due to lower central warehouse stock 
12 
evels (experiment 13) or due to higher demand rates (experiment 

3), whereas this was not the case in the base case setting. As the 

remium demand rate is roughly 10% of the nonpremium demand 

ate and 20% to 30% of the regular local warehouse replenishments 

re replaced by emergency shipments, there is only a slight, but 

ignificant impact on the nonpremium fill rates. Moreover, we see 

hat stock reservation for premium demand is still not fruitful for 

remium fill rates. However, due to this reservation, the number of 

eactive emergency shipments drop and this reduces costs. 

8. Proactive lateral transshipment have more positive impact 

when increasing shipment lead-times between the central 

warehouse and the local warehouse. 

The impact of pro-active lateral transshipments is further in- 

reased when the shipment lead-times between the central ware- 

ouse and local warehouses. We would also expect similar behav- 

or for pro-active emergency shipments, but the 99.5% premium 

ll-rate of experiment 4 is difficult to improve. 

The last conclusion confirms our hypothesis H1 for sensitivity 

nalysis as mentioned in Section 7.1 . However, we have to reject 

ur hypothesis H2 and H3: higher demand rates do not lead to 

ore impact of interventions, and stock reservations are not more 

ffective under less central warehouse stock. 

.3. Impact of alert generation 

Planners using service control towers in practice face the issue 

hat too many alerts are being generated to handle. Therefore, it 

akes sense to study how many alerts – and thus interventions 

account for the largest part of the gain. The decision rule states 

hat whenever the expected total costs (i.e., expected backorders 

osts plus intervention costs) decrease when performing an inter- 

ention, it is executed. This net improvement may be close to zero, 

esulting in an additional shipment or stock reservation with very 

arginal impact. We show the analysis in Fig. 3 . 

We observe that 29% of the shipments (558 out of 1909) ac- 

ount for 80% of the improvement when deploying the look-ahead 

euristic. A threshold-based approach, which controls the alert 

eneration, is useful to limit the number of proactive transship- 

ents without losing too much performance. 



B. Gerrits, E. Topan and M.C. van der Heijden European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; February 4, 2022;1:11 ] 

8

c

t

t

e

a

c

s

A

A

t

w

L

A

. Conclusions and further research 

This paper studied performance improvement in multi-echelon, 

losed loop spare part supply chains using operational interven- 

ions based on real-time status information in a service con- 

rol tower. Proactive interventions include lateral transshipments, 

mergency shipments, stock reservations, expediting part repairs, 

nd early new buys of parts. Numerical experiments based on a 

ase study of a global IT-manufacturer reveal the following in- 

ights: 

1. Operational interventions make most sense in the downstream 

part of the supply chain. If we move upstream the supply chain, 

expediting or prioritization makes less sense, likely because 

more process steps have to be executed until the part arrives 

at the final customer. 

2. Pro-active lateral transshipments in the local network and pro- 

active emergency shipments from the central warehouse to the 

local warehouse have the highest impact on fill rates, at the 

costs of additional shipments. 

3. The proposed look-ahead heuristic for pro-active lateral trans- 

shipments performs similarly to the more advanced Markov 

Chain approach, yet at the expense of twice as many lateral 

transshipments. 

4. Stock reservation for direct demand positively influences non- 

premium fill rates, particularly when the central warehouse 

stock is low, at the expense of a decrease in premium fill 

rates, rendering the intervention counterproductive. This can be 

counteracted by combining stock reservation for direct demand 

with proactive lateral transshipments, emphasizing the value of 

integrating interventions. 
Table A1 

Experimental results for regular settings and 5% less warehouse stock. Numbers in bo

NP = non-premium demand, P = premium demand. L.T. = Lateral Transhipment, E.S. = Em

vation for premium demand. 

Regular settings 

No interventions L.T. E.S. Include return info Expedite rep

SKU NP P NP P NP P NP P NP P 

1 95.7% 94.9% −0.3% 2.9% −0.3% 4.4% 0.3% 0.0% −0.2% −0.1

2 95.3% 95.2% −0.1% 3.1% −0.5% 3.7% 0.6% 0.0% 0.4% −0.1

3 95.3% 95.5% −0.2% 3.3% −0.1% 3.9% 0.3% 0.0% −0.1% 0.0%

4 95.7% 95.4% −0.2% 1.4% −0.3% 3.8% 0.1% 0.0% 0.0% 0.0%

5 95.5% 94.6% 0.1% 4.1% 0.0% 5.3% 0.4% 0.0% 0.1% 0.0%

6 95.2% 95.8% 0.4% 2.6% 0.3% 3.6% 1.4% 0.1% 0.3% 0.0%

7 95.5% 95.4% 0.2% 2.3% −0.1% 4.1% −0.1% −0.1% 0.3% 0.0%

8 95.2% 94.7% 0.6% 4.4% 0.2% 4.5% 0.8% 0.2% 0.5% 0.1%

9 95.0% 95.8% 0.4% 1.5% 0.4% 3.6% 0.9% 0.2% 0.7% 0.1%

10 95.0% 95.8% −0.1% 3.5% 0.1% 3.7% 0.0% −0.1% 0.1% −0.1

Avg 95.4% 95.2% 0.0% 2.9% −0.1% 4.1% 0.5% 0.0% 0.1% 0.0%

5% less warehouse stock 

SKU NP P NP P NP P NP P NP P 

1 91.7% 94.0% 0.3% 3.2% −1.6% 4.2% 0.9% 0.4% 0.3% 0.1%

2 92.7% 94.4% −0.1% 3.7% −0.6% 3.6% 1.1% 0.4% 0.4% 0.3%

3 90.9% 95.1% 0.0% 3.2% 0.0% 3.9% 0.7% 0.1% −0.1% 0.0%

4 88.1% 94.0% −0.4% 1.9% −2.7% 1.8% 0.1% −0.1% −0.3% −0.3

5 89.7% 94.3% −0.2% 4.3% 0.1% 5.2% 0.5% −0.1% 0.0% 0.0%

6 92.8% 95.4% 0.1% 2.8% −0.2% 3.6% 1.1% 0.3% 0.2% 0.0%

7 90.8% 95.0% 0.1% 2.6% 0.1% 3.9% 0.0% 0.1% 0.2% 0.0%

8 94.7% 94.7% 0.1% 4.3% 0.1% 4.2% 0.5% 0.0% 0.0% −0.1

9 91.4% 95.6% 0.0% 1.2% −0.2% 3.1% 0.4% 0.0% −0.4% 0.0%

10 90.8% 95.5% −0.1% 3.8% −0.4% 3.6% 0.1% 0.0% 0.3% 0.0%

Avg 91.2% 94.6% 0.0% 3.1% −0.7% 3.7% 0.6% 0.2% 0.1% 0.0%

13 
5. For proactive lateral transshipments it holds that roughly 30% 

of the performed interventions account for 80% of the improve- 

ment in fill rates, underling the importance of a proper alert 

generation mechanism to handle only the alerts where inter- 

ventions are most useful. 

6. Including information on losses in the supply chain has a small 

positive impact on fill rates at little costs. 

7. Stock reservation for premium demand and expediting repair 

do not influence fill rates, also not when lower yields (more 

losses in the supply chain) are enforced. 

s further research, we include the following topics: 

• A more extensive study on a wider range of problem instances, 

for example of a global supply chain with longer lead times. 

Possibly, the subset of the proactive interventions for which we 

did not find significant results yet, can be more useful. 
• Extend the approach to allow for compound Poisson demand to 

capture intermittent demand. 
• Improved rules for stock reservation that look further upstream 

the supply chain and that distinguish more than two demand 

classes. 
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ppendix 1. Experimental results 

Table A1 , Table A2 , Table A3 . 
ld indicate a significant difference com pared to no interventions (alpha = 0.05). 

ergency Shipment, SR- d = Stock reservation for direct demand, SR- p = Stock reser- 

air SR-d SR-p LT + SR-d LT + SR-p All 

NP P NP P NP P NP P NP P 

% 1.0% −1.3% −0.2% 0.0% 0.7% 1.1% −0.1% 2.8% −6.9% −0.5% 

% 1.0% −3.2% −0.1% −0.1% 0.8% 2.5% −0.1% 3.1% −2.6% 1.7% 

 0.4% −1.7% −0.2% 0.1% 0.4% 2.3% −0.2% 3.3% −6.3% 4.1% 

 1.1% −1.5% −0.2% −0.1% 0.6% 1.0% 0.0% 1.5% −4.3% −1.5% 

 0.8% −1.2% 0.1% 0.0% 0.7% 3.8% 0.1% 3.2% −2.1% 3.7% 

 1.3% −1.1% 0.2% 0.0% 1.3% 2.4% 0.4% 2.6% 0.3% 1.9% 

 1.8% −3.7% 0.1% −0.1% 1.6% 1.5% 0.1% 2.3% −1.0% −6.8% 

 1.7% −4.6% 0.1% 0.1% 2.1% 3.7% 0.3% 4.4% 0.5% 1.3% 

 3.2% −4.5% 0.2% 0.2% 2.8% 0.8% 0.4% 1.7% 0.2% −9.7% 

% 1.3% −7.0% −0.1% 0.0% 1.3% 2.7% −0.1% 3.5% −2.7% −1.8% 

 1.1% −2.6% −0.1% 0.0% 1.0% 2.0% 0.0% 2.8% −3.2% −0.3% 

NP P NP P NP P NP P NP P 

 1.7% −2.1% 0.3% 0.1% 1.2% 1.1% 0.3% 1.0% −7.0% −1.5% 

 2.0% −4.0% −0.1% 0.3% 1.8% 2.9% 0.2% 3.6% −1.9% 1.0% 

 0.7% −3.0% −0.2% −0.1% 0.9% 1.9% −0.1% 3.2% −6.8% 4.1% 

% 2.3% −4.4% −0.1% −0.2% 2.1% 1.0% −0.4% 2.1% −3.2% −5.7% 

 0.8% −2.6% 0.0% 0.0% 0.8% 3.6% −0.2% 4.3% −3.1% 3.6% 

 1.3% −1.9% −0.3% −0.1% −0.2% 2.7% 0.3% 2.3% 0.4% 2.1% 

 3.1% −5.9% 0.0% 0.0% 0.0% 2.6% 0.3% 0.9% −0.8% −11.8% 

% 1.9% −5.8% −0.1% −0.2% 0.0% 4.4% 0.4% 3.4% −0.5% 0.1% 

 3.7% −8.7% 0.1% 0.0% 0.0% 1.2% 0.4% 1.9% 0.3% −16.0% 

 2.0% −10.9% 0.0% 0.0% −0.3% 3.8% 0.2% 2.1% −2.6% −4.7% 

 1.8% −4.3% 0.0% 0.0% 0.9% 2.3% 0.1% 2.4% −3.2% −2.1% 
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Table A2 

Experimental results for doubled shipment lead-time between central warehouse and local warehouse (SKUs 11–20). Numbers in bold indicate a significant difference compared to no interventions (alpha = 0.05). NP = non- 

premium demand, P = premium demand. L.T. = Lateral Transhipment, E.S. = Emergency Shipment, SR- d = Stock reservation for direct demand, SR- p = Stock reservation for premium demand. 

Doubled shipment lead-time between central warehouse and local warehouses 

No interventions L.T. E.S. Include return info Expedite repair SR-d SR-p LT + SR-d LT + SR-p All 

SKU NP P NP P NP P NP P NP P NP P NP P NP P NP P NP P 

11 95.4% 95.0% −0.1% 3.4% −0.2% 4.5% 0.7% 0.0% 0.0% −0.2% 1.0% −0.9% −0.1% 0.0% 1.0% 2.6% 0.0% 3.5% −6.5% 2.6% 

12 94.8% 94.8% 0.2% 3.6% −0.2% 4.3% 1.1% 0.1% 0.0% 0.0% 1.6% −1.6% 0.3% −0.1% 1.6% 3.4% 0.1% 3.5% −2.4% 2.6% 

13 95.0% 94.9% 0.2% 3.6% 0.0% 4.6% 0.5% 0.2% 0.0% 0.1% 0.7% −1.4% 0.0% 0.2% 0.7% 1.9% 0.2% 3.4% −5.8% 3.0% 

14 95.7% 95.4% −0.2% 2.0% −0.3% 4.2% 0.2% −0.1% −0.3% −0.1% 0.9% −0.6% −0.4% −0.1% 0.4% 1.6% 0.1% 2.0% −3.7% 2.6% 

15 95.5% 94.8% 0.0% 4.5% 0.1% 5.1% 0.5% 0.2% −0.1% 0.3% 0.8% −0.8% −0.1% 0.2% 0.6% 4.2% 0.0% 4.5% −2.4% 3.9% 

16 95.5% 96.4% −0.1% 2.1% −0.1% 3.5% 1.2% 0.1% 0.0% −0.1% 0.6% −0.4% −0.1% −0.1% 1.2% 1.5% 0.0% 1.6% −0.5% 1.2% 

17 95.5% 96.1% 0.0% 1.7% −0.2% 3.7% 0.1% 0.0% 0.0% 0.0% 1.4% −1.5% 0.0% 0.0% 1.4% 0.7% 0.2% 2.0% −1.7% −11.0% 

18 95.2% 94.3% 0.3% 5.2% 0.2% 4.8% 0.6% 0.1% 0.3% 0.0% 1.8% −2.7% 0.1% 0.0% 1.7% 4.1% 0.1% 4.4% 0.4% 2.4% 

19 95.6% 96.9% −0.1% 1.5% −0.2% 2.6% 0.1% 0.1% −0.2% 0.0% 2.2% −2.3% 0.2% 0.1% 2.1% 1.0% 0.1% 1.6% −0.6% −16.4% 

20 95.1% 94.2% −0.1% 5.7% −0.1% 5.6% −0.2% −0.1% 0.1% 0.0% 1.1% −4.7% −0.1% 0.0% 1.3% 4.7% −0.2% 5.3% −3.0% 0.8% 

Avg 95.3% 95.2% 0.0% 3.3% −0.1% 4.3% 0.6% 0.1% 0.0% 0.0% 1.1% −1.5% 0.0% 0.0% 1.1% 2.6% 0.0% 3.2% −3.2% 0.2% 
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Table A3 

Experimental results for regular settings, 5% less warehouse stock and double shipment lead-time between central warehouse and local warehouse and where the demand rates of SKU 1 to 5 have been doubled and renumbered 

to SKU 21 to 25 accordingly. Numbers in bold indicate a significant difference compared to no interventions (alpha = 0.05). NP = non-premium demand, P = premium demand. L.T. = Lateral Transhipment, E.S. = Emergency 

Shipment, SR- d = Stock reservation for direct demand, SR- p = Stock reservation for premium demand. 

Regular settings 

No interventions L.T. E.S. Include return info Expedite repair SR-d SR-p LT + SR-d LT + SR-p All 

SKU NP P NP P NP P NP P NP P NP P NP P NP P NP P NP P 

21 95.1% 94.9% 0.1% 2.8% −0.2% 2.4% 0.8% 0.2% 0.1% 0.0% 1.4% −2.3% 0.1% 0.0% 1.1% 2.1% 0.1% 2.8% −3.3% 2.9% 

22 95.0% 96.6% 0.1% 1.3% 0.2% 1.1% 0.6% 0.1% 0.1% 0.0% 1.7% −2.6% 0.1% 0.0% 1.5% 0.6% 0.1% 1.4% 0.0% 1.6% 

23 95.9% 94.9% −0.1% 0.5% −0.1% 3.0% 0.6% 0.1% 0.0% 0.1% 0.5% −0.9% 0.0% 0.1% 0.4% 0.1% 0.0% 0.5% −4.3% 4.1% 

24 94.8% 95.7% 0.1% 2.0% −0.1% 2.7% 0.3% 0.1% −0.1% −0.1% 1.6% −2.1% −0.1% −0.1% 1.5% 1.2% 0.0% 2.0% −5.9% 1.3% 

25 94.7% 94.4% 0.1% 4.6% 0.1% 4.8% 0.7% 0.0% 0.0% 0.0% 0.8% −2.4% 0.0% 0.0% 0.9% 4.3% 0.1% 4.6% −3.1% 4.4% 

Avg 84.2% 88.3% 0.1% 2.1% 0.0% 2.5% 0.6% 0.1% 0.1% 0.0% 1.2% −2.1% 0.1% 0.0% 1.1% 1.5% 0.0% 2.2% −3.1% 2.7% 

5% less warehouse stock 

SKU NP P NP P NP P NP P NP P NP P NP P NP P NP P NP P 

21 88.6% 93.2% 0.0% 3.6% −3.2% 2.8% 1.3% 0.3% 0.0% −0.1% 1.7% −4.9% 0.0% −0.1% 1.5% 1.5% 0.1% 3.7% −4.9% 3.7% 

22 93.4% 96.0% −0.3% 1.5% −1.4% 1.4% 0.8% 0.3% −0.1% −0.2% 1.8% −3.5% −0.1% −0.2% 1.6% 0.8% 0.1% 1.7% −0.7% 2.1% 

23 91.1% 94.5% −0.1% 0.5% −0.5% 3.2% 0.9% 0.1% −0.1% 0.0% 0.6% −2.2% −0.1% 0.0% 0.8% 0.5% 0.0% 0.5% −6.1% 3.2% 

24 80.7% 89.7% −0.2% 3.5% −0.2% 3.1% 0.2% 0.4% 0.2% 0.4% 4.0% −5.7% 0.2% 0.1% 2.7% 0.8% −0.2% 3.9% −5.0% 1.4% 

25 90.6% 94.2% −0.2% 4.9% 0.1% 5.0% 0.8% 0.1% 0.0% 0.0% 1.0% −2.9% 0.0% 0.0% 1.1% 4.5% 0.1% 4.9% −5.0% 4.6% 

Avg 89.1% 93.7% −0.1% 2.7% −1.2% 2.8% 0.9% 0.2% 0.0% 0.0% 1.8% −4.0% 0.0% −0.1% 1.5% 1.4% 0.0% 2.9% −4.1% 3.0% 

Doubled shipment lead-time between central warehouse and local warehouses 

No interventions L.T. E.S. Include return info Expedite repair SR-d SR-p LT + SR-d LT + SR-p All 

SKU NP P NP P NP P NP P NP P NP P NP P NP P NP P NP P 

21 95.3% 96.0% −0.1% 3.0% −2.1% 2.8% 0.7% 0.1% 0.1% 0.1% 1.2% −2.2% 0.0% 0.1% 1.1% 2.2% −0.1% 2.0% −2.4% 0.4% 

22 95.5% 94.7% −0.1% 3.6% −1.2% 3.7% 0.4% −0.1% −0.2% −0.2% 1.5% −2.5% −0.2% −0.1% 1.4% 2.5% −0.2% 3.6% −0.2% 1.7% 

23 95.8% 94.8% 0.1% 2.2% −0.7% 4.3% 0.7% 0.2% 0.1% 0.1% 0.5% −0.5% 0.1% 0.1% 0.4% 2.0% 0.1% 2.2% 0.2% 4.5% 

24 94.3% 95.4% 0.1% 1.6% −0.4% 3.5% 0.7% 0.1% 0.1% −0.1% 1.7% −1.4% 0.1% −0.1% 1.6% 1.4% 0.1% 2.3% −4.7% 2.4% 

25 94.8% 94.7% 0.0% 4.3% −0.1% 5.0% 0.5% 0.1% 0.0% 0.0% 0.7% −0.7% 0.0% 0.0% 0.9% 4.4% 0.0% 3.9% −2.9% 3.7% 

Avg 95.2% 95.3% 0.0% 3.0% −1.0% 3.6% 0.6% 0.1% 0.0% 0.0% 1.2% −1.7% 0.0% 0.0% 1.1% 2.4% −0.1% 2.7% −1.9% 2.0% 
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