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The synergistic combination of deep learning (DL) mod-
els and Earth observation (EO) promises significant 

advances to support the Sustainable Development Goals 
(SDGs). New developments and a plethora of applications 
are already changing the way humanity will face the chal-
lenges of our planet. This article reviews current DL ap-
proaches for EO data, along with their applications toward 
monitoring and achieving the SDGs most impacted by the 
rapid development of DL in EO. We systematically review 
case studies to achieve zero hunger, create sustainable cit-
ies, deliver tenure security, mitigate and adapt to climate 
change, and preserve biodiversity. Important societal, eco-
nomic, and environmental implications are covered. Excit-
ing times are coming when algorithms and Earth data can 
help in our endeavor to address the climate crisis and sup-
port more sustainable development. 

THE EXPANDING ROLE OF DEEP LEARNING AND 
EARTH OBSERVATION FOR THE SUSTAINABLE 
DEVELOPMENT GOALS
Machine learning has played a fundamental role in the 
analysis of EO data for more than three decades, and its 

importance has been continuously growing. From the early 
investigations in artificial neural networks and statistical 
techniques [1], [2], the EO community has been striving for 
effective algorithms to automate the extraction of informa-
tion from various sources of remotely sensed images, in situ 
data, and models. The developments in sensor technologies 
and the increasing availability of voluminous data go hand 
in hand with the demand for more accurate and scalable 
information extraction methods and tools. This demand is 
spurred by many geospatial applications and the growing 
awareness of the necessity to monitor system Earth for mul-
tiple threats to our natural environment, our climate, and 
the sustainable development of human societies.

After a long period when neural networks fell out of 
fashion, the DL revolution started about a decade ago and 
brought back attention to these powerful learning algo-
rithms [3], [4]. Thanks to the development of specialized 
hardware, i.e., GPUs, and availability of large benchmark 
data sets, DL networks became more popular. They re-
vealed extremely versatile learning machines able to learn 
virtually any task in data and image analysis [5]. Neural 
networks can be seen as trainable data-processing graphs, 
where the input data are gradually transformed through a 
sequence of layers that extract intermediate features and are 
finally used to predict the target output. 
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In a supervised setting, the network is trained with a 
set of input–output instances, exemplifying the function-
al relationship between the explanatory covariates and 
the target variable to predict. Although simplistic, this 
view depicts the flexibility of neural networks for data 
analysis purposes. A variety of architectures have been 
developed so far, the most popular being multilayer per-
ceptrons [6], convolutional neural networks (CNNs) [7], 
recurrent neural networks (RNNs) [8], autoencoders [9], 
and generative adversarial networks [10]. Moreover, as 
the number of consecutive layers increases, i.e., the net-
work becomes deeper, the algorithm tends to improve its 
ability to learn informative features, capturing intricate 
structures within input variables and their relations with 
the target output.

In the context of EO applications, deep networks can 
address a large variety of analysis tasks, from image clas-
sification and segmentation to data fusion, change detec-
tion, object detection, and delineation. Deep networks can 
be designed according to the characteristics of the remotely 
sensed data and, possibly, fuse different sensor data types 
and information layers. One of the main advantages of DL 
is the ability to learn abstract hierarchical representations 
of the data, allowing networks to bring spatial, spectral, 
and temporal patterns hidden in the data to the surface. 
This results in state-of-the-art performance and enables 
researchers and engineers to streamline the information 
extraction processing chain, potentially integrating multi-
modal data fusion, feature extraction, and inference tasks 
into one holistic, end-to-end learning framework. The com-
bination of DL with powerful computing infrastructure 
and massive EO data sets opens up tremendous opportuni-
ties for geospatial applications. State-of-the-art DL methods 
are closing the gap between the performance of automated 
workflows and the need for accurate and reliable informa-
tion imposed by real applications.

Moving beyond research laboratories, today, EO and 
DL have the opportunity to contribute to some of the most 
pressing global societal challenges, such as those identi-
fied by the 2030 Agenda for Sustainable Development [11]. 
The United Nations (UN) has defined a set of 17 SDGs as a 
plan of action to reach peace and prosperity for all people 
on our planet by 2030. The goals are related to social, eco-
nomic, and environmental challenges, and they provide a 
blueprint for shared action. It is recognized that eradicat-
ing poverty in all its forms and dimensions is the great-
est global challenge and an indispensable requirement for 
sustainable development. Each of the 17 goals has a set of 
targets and indicators to measure, monitor, and report the 
progress of each country. 

The global framework established by the UN is designed 
around 169 targets and 232 indicators, representing the 
first truly data-driven framework in which countries can 
engage with evidence-based decision making and policy 
development [12]. The 2030 agenda recognizes that if you 
can’t measure it, you can’t manage it, thus emphasizing the 
importance of objective, accurate, and trustworthy infor-
mation for decision making. This approach requires using 
multiple types of data, such as traditional national ac-
counts, household surveys, and routine administrative data 
as well as new sources, such as EO data for the extraction of 
updated geospatial information.

The role of EO in support of the SDGs has been recog-
nized and facilitated by international organizations, such 
as the Group on Earth Observation, Committee on Earth 
Observation Satellites, and European Space Agency (ESA) 
[12]–[14]. EO can provide continuous temporal informa-
tion over the globe, capturing the sustainability of the de-
velopments underpinning the SDG framework. Satellite, 
airborne, and unmanned aerial vehicle (UAV) acquisitions 
provide data at multiple scales for monitoring the state of 
natural ecosystems, natural resources, oceans, coasts, land, 
and built infrastructure as well as their changes over time. 

EO data are spatially and temporally consistent, allow-
ing for effective comparisons of the results among different 
countries and in various years. EO data are also complemen-
tary with traditional statistical methods, offering a source of 
information to cross-check the validity of in situ data mea-
surements (such as survey and inventory data) that are com-
monly collected by national statistical offices. Moreover, EO 
can significantly reduce the cost of monitoring SDG targets 
and indicators with respect to traditional data collection 
methods. According to the “Compendium of EO Contribu-
tions to the SDG Targets and Indicators” recently released by 
the ESA [14], 34 SDG indicators can be either directly (17 in-
dicators) or indirectly (17 indicators) informed with space-
based EO data across 29 targets and 11 goals. 

Table 1 summarizes where EO data can contribute to 
SDG targets and indicators, providing examples of EO 
applications in support of monitoring the progress and 
achieving the goals. The ESA analysis [14] also recogniz-
es the role of the technical infrastructure for storing and 
processing big EO data and, in particular, the relevance of 
cloud computing, parallel processing systems, and data 
cubes. However, the contribution of machine learning and 
DL toward the SDGs is not equally emphasized for their 
ability to extract meaningful and consistent information 
from EO data. This article aims to analyze the role of and 
opportunities for DL in EO to support the 2030 agenda for 
sustainable development (Figure 1). 

DEEP LEARNING FOR EARTH OBSERVATION DATA
Advancements in DL, often based on computer vision re-
search, had a large influence in EO image analysis, result-
ing in the adoption of DL for a variety of data types and 
geospatial applications [15]–[18].

EOs can generate data for monitoring a number of SDG targets and indi-
cators. DL contributes to extracting meaningful and consistent information. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE    MONTH 20224 

VERY-HIGH-RESOLUTION IMAGES
The analysis of very-high-resolution (VHR) images has 
been the first to benefit from DL. Given the large amount of 
spatial information and context contained in VHR images, 

the extraction of features has always been an active field 
of investigation [19]. With DL, it became possible to learn 
large dictionaries of convolutional filters directly from 
data. The appearance of publicly available large-scale data 

TABLE 1. THE SDG TARGETS AND INDICATORS THAT CAN BE SUPPORTED BY EO-DERIVED PRODUCTS. 

SDG TARGETS INDICATORS EO APPLICATION IN SUPPORT OF SDG TARGETS AND INDICATORS 

1.4 

1.5 

1.4.1, 1.4.2 Extraction of visible cadastral boundaries and information in support of fit-for-purpose 
land administration systems 
Risk assessment of natural and climate-induced disasters, early warning, and postevent 
damage assessment 

2.3 
2.4 

2.3.1 
2.4.1 

Spatial distribution of cropland and smallholder farms as well as the estimation of agricultural 
productivity 
Assessment of the vulnerability to climate change, extreme weather, drought, flooding, and 
other disasters 

3.3 
3.6 
3.9 
3.d

3.9.1, 3.9.2 

Early warning system for vector-borne disease 
Extraction of road maps and assessment of road conditions (paved/unpaved) 
Mapping of hazardous chemicals and pollutants in the air, water, and soil 
Geospatial information in support of assessing health risks 

5.a 5.a.1 Extraction of visible cadastral boundaries and geospatial information in support of assess-
ing ownership and securing rights over agricultural land 

6.1, 6.3, 6.4
6.5 
6.6 

6.3.2 

6.6.1 

Mapping of water quality and pollutant concentrations 
Geospatial data for runoff modeling and global rainfall data 
Mapping of water-related ecosystems and changes in the extent of water-related ecosystems 
over time 

7.1 
7.2 

7.1.1 Mapping the human presence and availability of electricity (e.g., using nighttime images) 
Geospatial information in support of renewable energies 

9.1 9.1.1 Road and transportation network information in rural areas to support assessing acces-
sibility to all-season roads 

(Continued)
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sets issued from competitions enabled the appearance of 
deep networks specific for scene classification [20], [21] and 
the semantic segmentation [22]–[24] of VHR data. The au-
thors in [20] introduced an explicit metric-learning regular-
ization term in the loss function to learn more discrimina-
tive features. A large number of works appeared to process 
these data sets for classifying land cover at the single-pixel 
level: in [25], the authors proposed a hybrid system based 
on both CNN and traditional descriptor features and then 
used them in a random forest. In a subsequent article [26], 
the author trained two CNN models, one for color and the 
other for height data. In both cases, predictions were pro-
vided at the patch level (i.e., a single label was predicted for 
the whole patch), and a conditional random field was used 
to smooth the results.

After these first efforts, articles started to appear apply-
ing fully convolutional networks (FCNs) [27], providing 
predictions for each pixel of the patch in one go and greatly 
reducing the computational cost at the inference time [28]–
[32]. Since these pioneering works, a large number of ar-
ticles tackling semantic segmentation have been published 
in the field and pushed the boundaries of the performance 
on these data sets. Of notable interest are articles that tack-
led issues such as the integration of prior knowledge [33], 
edge information [34], and invariances [35] as well as the 
explicit inclusion of spatial reasoning [36].

Other works looked at methods to fuse the multireso-
lution bands acquired by most VHR satellite sensors, such 
as panchromatic (PAN) and multispectral (MS) images 
[37]–[39]. Bergado et al. [37], introduced a multiresolution 

TABLE 1. THE SDG TARGETS AND INDICATORS THAT CAN BE SUPPORTED BY EO-DERIVED PRODUCTS. 

11.1, 11.3 

11.2 
11.4 
11.5

11.6 

11.7 
11.b, 11.c

11.1.1, 11.3.1

11.2.1

11.6.2 

11.7.1

Mapping of slum distributions and the extent, housing quality, density, and socioeconomic 
conditions of slum dwellers 
Road network information for assessing the accessibility to public transport 
Geospatial mapping and monitoring of cultural and natural heritage sites 
Risk assessment and early warning of vulnerable urban areas and disaster-induced damage 
assessment 
Air quality maps [particulate matter (PM)-2.5 and PM-10 concentration] and mapping 
waste sites 
Maps of urban green and public open spaces 
Geospatial information for the development of resilient cities in developing countries 

12.2 
12.4 

Maps of natural resources 
Information about waste and pollutants released in the air, water, and soil 

13.1 
13.2 

Risks and damages associated with climate-related hazards and natural disasters 
Environmental variables for climate change models 

14.1 14.1.1 Coastal eutrophication and floating plastic debris density 

14.2 Maps of marine and coastal ecosystems 

14.3 14.3.1 Marine acidity (pH) 

14.4 14.4.1 Geochemical (chlorophyll concentration) and geophysical analysis (sea surface tempera-
ture and ocean currents) and forecast for global and regional seas 

15.1 15.1.1 Forest maps 

15.2 15.2.1 Forest inventories, deforestation/afforestation maps, and wildfire risk assessment 

15.3 15.3.1 Maps of deserts and degraded land as well as the prediction of drought and floods 

15.4 15.4.1;15.4.2 Mountain biodiversity maps 

15.5 Biodiversity maps 

15.7 Wildlife detection to support actions to end the poaching and trafficking of protected 
species 

Our list differs slightly from those reported in [12]–[14]. We focus here on targets and indicators that can be more directly supported by EO applications and derived products and are 
not limited to satellite EO but also consider other EO platforms. (Source: https://www.un.org/sustainabledevelopment/) The content of this publication has not been approved by the 
United Nations and does not reflect the views of the United Nations or its officials or Member States.

(Continued)
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FCN, called the fusion network (FuseNet), to perform an end-
to-end image fusion and land cover classification (Figure 
2). This architecture, tailored to VHR satellite data char-
acteristics, resulted in higher performance than methods 
based on pan-sharpening. Contextual label information is 
included in ReuseNet [40], a fully convolutional recurrent 
network able to learn the contextual label-to-label depen-
dencies that are commonly captured by techniques based 
on conditional random fields.

Going beyond the human design of the CNN archi-
tecture, Wang et al. [43] investigated a neural architecture 

search (NAS) approach [41], [42] to au-
tomatically design the CNN for the clas-
sification of VHR images. Unlike other 
NAS methods based on reinforcement 
learning or evolutionary algorithms 
over a discrete and nondifferentiable 
search space, their framework uses a 
gradient-based method to optimize 
both architecture and model param-
eters [44]. A switchable module allows 
for addressing both image classification 
and semantic segmentation.

Another promising research line in-
vestigates the extension of DL models 
to the direct prediction of regularized 
vector outcomes, i.e., outputs that can 
be immediately ingested in geographic 
information system (GIS) environ-
ments [45]–[48] (Figure 3). These de-
velopments are expected to have many 
practical uses for building outline de-
lineation, road network extraction, and 
more, in general, for urban planning 
and monitoring applications in the con-
text of SDG 11.

IMAGE TIME SERIES
RNNs are a powerful method for mod-
eling sequential data, leading to much 

progress, especially in language processing [49]–[51]. Their 
capability of learning long-range patterns over time makes 
RNNs promising tools for a variety of tasks in remote sens-
ing (RS), too. One important example in the context of 
SDGs is food security and the assessment of famine risk 
(SDG 2), which calls for large-scale mapping of agricultural 
activities. RNNs allow the learning of temporal patterns 
specific to different kinds of agricultural land use, as dem-
onstrated in [52]–[55]. (See more details in the “Crop Type 
Mapping” section.) 

A cell is the basic building block of an RNN. It com-
bines the data of the current time step in the sequence 
and the unit’s output from the previous time step as two 
inputs. While RNNs can, in principle, handle sequences 
of arbitrary and varying lengths, they are (in their basic 
form) challenged by long-term dependencies since learn-
ing those would require the propagation of gradients over 
many time steps. Gated architectures like long short-term 
memory (LSTM) cells [56] and gated recurrent units (GRUs) 
[57] aim at mitigating this problem. They use gating mecha-
nisms to store and propagate information over longer time
intervals to reduce the vanishing gradient problem. In gen-
eral, abstract features are often represented better by deeper 
architectures [58]. In the same way that multiple hidden
layers can be stacked in traditional feed-forward networks,
multiple recurrent cells can also be stacked on top of each
other; i.e., the output (or hidden state) of the lower cell is
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FIGURE 2. The architecture of the PAN–MS fusion network 
(FuseNet) for the pixelwise classification of VHR multiresolution 
images [37], [40].
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connected to the input of the next-higher cell, allowing for 
different dynamics.

HYPERSPECTRAL IMAGES
Hyperspectral images (HSIs) have intensively contributed 
to SDGs, in particular, SDGs 2 [60], 6 [61], 14 [62], and 
15 [63]. CNNs might be the most widely used deep archi-
tecture for feature extraction and classification due to the 
utilization of shared weights and local connections, which 
substantially decrease the number of trainable parameters 
in such networks compared to their fully connected alter-
natives. In the literature, 1D [64], 2D [65], and 3D CNNs 
[66] have been employed to extract spectral, spatial, and
spectral–spatial information, respectively, from HSI im-
ages. The high dimensionality of HSIs, which leads to a
greater number of trainable parameters compared to gray-
scale or MS images, along with the availability of only a
limited number of training samples, make the training
stage of such data extremely challenging. To address these
issues, some basic strategies, such as dropout and weight
decay, can be used. In addition, four sets of strategies have
been investigated to properly train such high-dimensional
data with only a limited number of training samples, such
as dimensionality reduction [67], data augmentation [68],
transfer learning [69], and semisupervised or even unsu-
pervised learning [70].

RNNs have also been applied to HSI image analysis. 
By considering the spectral signature of each pixel vector 
as sequential data, an RNN can be applied to a single HSI 
for classification [71]. In this context, for each pixel vector, 
the spectral values are usually fed into the RNN from the 
first band to the last one (this can also be done in a bidirec-
tional way [72]), and the output of the hidden layer at the 
last band is the extracted spectral feature. In real applica-
tions, the sequences’ lengths can be very long (equal to the 
number of bands), which leads to training difficulties, such 
as gradient vanishing or explosion. To address this issue, a 
possible solution is to group the spectral bands into shorter 
sequences [73] or use LSTM [74] and GRU [75].

SYNTHETIC APERTURE RADAR
Synthetic aperture radar (SAR) emits coherent microwave 
pulses and records the amplitude and phase of their back-
scattered echo. As an active sensor, it is independent of 
daylight, and, due to the used frequencies, it can penetrate 
clouds; dust; and—to some degree—vegetation, soil, ice, 
and other materials. Applications range from estimating 
surface characteristics, such as roughness and moisture, 
to using polarimetric SAR for land cover/use classification, 
interferometric SAR (InSAR) for the generation of digital 
elevation models, and tomographic SAR to estimate height 
profiles over forests or urban areas. 

However, SAR has not yet seen the same attention of DL 
as optical sensors. (For a detailed review of DL in SAR, we 
refer readers to [76].) The reasons for this are manifold. First, 
the imaging geometry differs greatly from optical cameras, 

causing effects unknown in optical imagery, such as layover 
or the displacement of moving objects. Furthermore, ob-
jects’ appearances are strongly view dependent (e.g., certain 
types of backscatter happen only for certain geometric ar-
rangements between the sensor and object). Second, SAR 
records the amplitude and phase of the received backscatter 
of a coherent pulse and is, therefore, complex valued. 

While the absolute phase of a single-channel SAR im-
age has no direct meaning, the relative phase between two 
polarimetric channels or two SAR acquisitions is highly 
important. Since most machine learning methods and 
frameworks are designed for real-valued data, early ap-
proaches to apply DL to SAR data relied on the extraction 
of real-valued (and mostly hand-crafted) features used as 
the input for the network (e.g., [77]). To address this issue, 
complex-valued CNNs and FCNs that directly work on the 
complex-valued data by using complex-valued convolu-
tions and activation functions as well as loss functions are 
introduced in [78] and [79], respectively. An NAS approach 
is proposed in [80] to automate the CNN architecture de-
sign for SAR data and applied to a land cover/land use clas-
sification. CNNs for scene classification are studied in [81], 
and RNN architectures for object detection are investigated 
in [82].

The phase of multiple SAR images plays a particular role 
in InSAR as it relates to changes in height. It is used to gener-
ate digital elevation models as well as monitor earthquakes 
and volcanoes or general land subsidence. Corresponding 
networks need to be invariant to constant phase offsets 
and take the cyclic nature of the phase angle into account. 
CNNs have been used to enhance the quality of measured 
interferograms [83]; directly estimate the interferometric 
phase and coherence [84]; and perform phase unwrapping 
[85], i.e., the conversion of the cyclic phase into an absolute 

(a) (b)

FIGURE 3. (a) The instance segmentation algorithm with raster 
output mask region-based CNN. (Source: [59]; used with permis-
sion.) (b) The regularized outline extraction with polygonal output. 
(Source: [48]; used with permission.)
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phase field to estimate topographic heights or deforma-
tions. One particular problem in InSAR processing is decor-
relation of the two SAR measurements, which can be due to 
several causes, including temporal changes and volumetric 
scattering. The latter often indicates vegetation and is used 
in [86] as input to a U-Net [87] to derive forests maps.

Another effect that has hindered the direct application 
of methods designed for optical images to SAR data is 
speckle: a chaotic fluctuation inherent to all measure-
ments based on coherent waves caused by the interfer-
ence of multiple backscattering in one resolution cell. 
Speckle reduction has greatly benefited from DL through 
supervised CNN-based denoising [88] [89] and a mul-
tistream complex-valued FCN [90] or by exploiting ap-
proaches, such as noise2noise (e.g., in [91] and [92]), that 
do not require clean data.

BIG GEODATA FUSION
A sharp increase in the amount of data captured by sens-
ing devices has led to the big data deluge, creation of the 
new field of data science, and popularization of DL algo-
rithms to deal with such data [93]. In a similar manner, the 
field of RS has been influenced by an ever-growing number 
of spaceborne, airborne, and proximate sensing devices, 
such as UAVs, to acquire multiscale data from a particular 
scene. The increase in the number, quality, and volume of 
passive sensing devices has been coupled with a growth in 
the number of alternative modes of measurement, such as 
airborne lidar, which generates point clouds representing 
elevation [94], and SAR sensors [95]. Furthermore, the new 
sources of ancillary data (e.g., data from crowdsourcing and 
social media [96]) have been used along with RS devices for 
a variety of applications in the context of smart cities and 
smart environments, hazard and disaster identification, 
and tracking.

Multisource data fusion aims to integrate the data of dif-
ferent types, distributions, and sources (they can be from 
a single sensor or different ones) by leveraging modality-
specific information to improve the performance of the 
processing approaches compared to a single modality. CNN 
and its variants have significantly contributed to a wide 
range of multisource data fusion scenarios, such as the fol-
lowing:
◗ spatiospectral fusion to produce a fine-spectral-, fine-

spatial-resolution image [97], [98]
◗ spatiotemporal fusion to create a fine-spatiotemporal-

resolution image [99], [100]
◗ active (e.g., SAR and lidar) and passive (e.g., MS and hy-

perspectral) data fusion, mainly to improve classifica-
tion performance or data matching [101], [102]

◗ RS and social media fusion [93], [103].

DEEP LEARNING APPLICATIONS CONTRIBUTING 
TO THE SUSTAINABLE DEVELOPMENT GOALS
This section provides an overview of DL and EO applica-
tions contributing to the monitoring and achievement of 

selected SDGs. We focus on applications in the context of 
zero hunger (SDG 2), sustainable cities and communities 
(SDG 11), tenure security (multiple SDGs), climate actions 
(SDG 13), and life on land (SDG 15). 

ZERO HUNGER
Monitoring agricultural land use and production is essen-
tial to achieve zero hunger (SDG 2). It is of high impor-
tance for food production, biodiversity, and forestry [104]. 
An increasing world population, climate change, and 
changes in food consumption habits put yet-uncultivated 
areas under pressure while leading to intensification in 
existing agricultural areas [105]. Cropland expansion and 
the intensive use of agricultural areas are often connected 
with negative ecological impacts, like deforestation and 
biodiversity loss, but also the degradation of ecosystem 
services like ground and surface water quality [106], [107]. 
Therefore, the dense, accurate monitoring of agricultural 
lands plays an essential role for their optimal and sustain-
able management.

Some of the communities most vulnerable to hunger are 
smallholder farmers, who dominate agriculture in sub-Sa-
haran Africa, with an estimated 51 million farms predomi-
nantly characterized by rain-fed production for household 
consumption [108]. African smallholder farmers often live 
in poverty in areas prone to natural hazards, where climate 
change is exacerbating the risks of hunger and breakdown 
of food systems. The large population growth in these areas 
urgently requires increased production, resilience to natu-
ral disasters, improvements in financial services, and the 
governance of food production systems. These improve-
ments are fundamental for defeating hunger and malnutri-
tion, realizing SDG 2 and, in particular, target 2.3, which 
aims to double the agricultural productivity and incomes 
of small-scale food producers by 2030. Sustainably increas-
ing the productivity of these agricultural systems and, thus, 
improving food security and the livelihoods of smallholder 
families is a challenge, partly due to a lack of information 
about these systems.

The knowledge of crop areas and certain land uses is of 
importance for many political programs that aim to reduce 
and alleviate the environmental impacts of intensive ag-
riculture, too [104]. Policy-driven incentives, for instance, 
encourage that a particular share of a farm’s area remain 
extensively used grassland to promote biodiversity, or they 
give subsidies to promote a certain crop mix in the rota-
tion [109]. Information collection is traditionally based on 
farmer self-reporting and spot-checking by authorities in 
the field, which is laborious, costly, and prone to errors. 

Modern machine learning methods in combination 
with publicly available satellite imagery provide new pos-
sibilities for more accurate spatially dense monitoring of 
agricultural sites at high temporal resolution and low cost. 
One particularly promising recent sensor is Sentinel-2, due 
to its low ground sampling distance (10 m) at a revisit rate 
of three to five days. In general, the spectral signal of the 
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vegetation as captured by the satellite has specific charac-
teristics as a function of the following:
◗ soil structure and composition (e.g., the soil brightness,

water content, type, and so on)
◗ vegetation structure (e.g., the canopy cover, leaf area in-

dex (LAI), plant height, and leaf angle, among others)
◗ leaf biochemistry (e.g., chlorophyll, water and nitrogen 

content) [110].
Not only does each plant species have its own spectral signa-
ture, but spectral characteristics are also highly dependent 
on the phenological stage of the plant [111], [112]. Instead 
of merely analyzing images at a single point in time, time 
series (sequences) of satellite images provide significant ad-
ditional evidence about crop species, and time-series analy-
sis is a standard practice in agricultural RS. 

CROP TYPE MAPPING
Crop classification from satellite data has been widely 
studied in RS. Traditional machine learning approaches 
with handcrafted features [113], [114] predominantly rely 
on vegetation indexes like the normalized difference veg-
etation index [115], [116]. Different strategies have been 
explored to include the temporal evolution as further evi-
dence for classification, such as temporal windows [117], 
hidden Markov models and dynamic time warping [118], 
[119], and conditional random fields [120]. These tradi-
tional machine learning models have in common that they 
struggle to represent the complex spatiotemporal dynamics 
of spectral features.

Recent DL models no longer rely on hand-engineered 
features to encode spectral, spatial, and temporal patterns. 
They can learn very complex, highly nonlinear relation-
ships if given sufficient labeled training data and compu-
tational resources. The authors in [122] propose the use of 
a CNN that combines cross-entropy and regression losses 
for simultaneously mapping and counting oil palm, coco-
nut palm, and olive trees at the country scale. In [52], the 
authors use an RNN with LSTM to encode temporal de-
pendencies in the data, while, in [123], the results on the 
same data set are improved by encoding both temporal and 
spatial dependencies via convolutional LSTM. In [124], sat-
ellite images are first processed individually with a CNN 
to obtain per-image features; then, temporal dependencies 
between these features are modeled with a separate RNN. 

Further options are temporal CNNs that also combine 
features across time with convolutions [125] or models 
that use the attention principle [126] to aggregate informa-
tion across time [53]. The work in [54] combines a pixel-
set encoder and transformer [126] and shows an improved 
performance over RNN-based approaches. The authors in 

[55] build a deep RNN with a new cell structure termed
stackable recurrent (STAR) that trains better than LSTM- and 
GRU-type models and is more parameter efficient. This
makes it possible to train deeper models, which translates
to improved performance across a range of sequence mod-
eling tasks.

A recent alternative to RNN approaches for crop map-
ping involves neural ordinary differential equations, which 
can interpolate in the case of missing data [127]—due cloud 
coverage, for example. Finally, recent approaches have con-
sidered spatiotemporal bidirectional long short-term mem-
ory (bi-LSTM) architectures to fully exploit the informa-
tion of long time series of high-resolution Sentinel-2 data to 
classify different crop types (rice, fallow, barley, oat, wheat, 
sunflower, and triticale) [121] (see Figure 4).

DELINEATION OF FIELD BOUNDARIES
Field boundaries are essential for digital agricultural ser-
vices enabling the estimation of cropland areas to aggre-
gate and record specific information in a spatial database, 
such as the crop grown, soil type, yield, and application of 
pesticide and fertilizer. Moreover, they facilitate the extrac-
tion of land tenure boundaries for recording land rights in 
cadastral systems (see the “Deliver Tenure Security for All” 
section). Early research on field boundary delineation from 
EO data has focused on unsupervised techniques based 
on edge detection or segmentation [128]–[130]. These ap-
proaches are typically applied to areas characterized by 
intensive agriculture with large plots using medium-res-
olution images. However, small-area fields (<2 hectares) 
represent 40% of the fields worldwide and make up 70% 
of the cropland in Asia and Africa [131]. The delineation of 
such fields is extremely challenging since plots are small, ir-
regularly shaped, and often with indistinct boundaries. In 
these circumstances, standard techniques fail in achieving 
the required accuracy. 

To this end, DL-based strategies have resulted in signifi-
cantly higher performance [132], [133]. An approach based 
on SegNet [134] and combinatorial grouping was proposed 
in [132] (Figure 5). The FCN is trained to detect field con-
tours, discarding irrelevant edges. The detected sparse edges 
are then used as the input to the oriented watershed trans-
form algorithm to extract a hierarchy of closed segments 
and iteratively merge adjacent regions based on the strength 
of their common boundary [135]. The final segmentation is 
obtained by applying the single-scale combinatorial group-
ing algorithm, which explores the segmentation hierarchy, 
to generate accurate field segments [136]. Promising results 
are obtained in two study areas in Nigeria and Mali. Mar-
vaniya et al. [133] present a multistage approach that uses 
a combination of DL for edge detection and a sequence of 
postprocessing steps for improving the results.

Other recent DL-based solutions include [137]–[140]. 
A method based on U-Net and open data from the land 
parcel identification system of Spain was investigated in 
[137]. Waldner and Diakogiannis [138] adopted a multitask 

Machine learning in combination with open EO data provides new possibili-
ties for monitoring agricultural sites at low cost.
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approach to tackle the problem. They used ResUNet-a to 
identify the extent of fields, field boundaries, and distance 
to the closest boundary. Using a single monthly composite 
image from Sentinel-2 as the input, their model could accu-
rately map the field extent and boundaries. Other notable 
works have investigated a superresolution mapping ap-
proach [139] and the combination of neural networks with 
a graph-based growing contours method to extract agricul-
tural field polygons [140].

SUSTAINABLE CITIES AND COMMUNITIES
Cities are the economic hubs of modern nations and home 
of an estimated 55.3% of the world’s population. By 2030, 
urban areas are projected to house 60% of people globally, 
reaching 68% by 2050 [141]. While urbanization creates 
opportunities for economic developments, it also creates 
enormous social and environmental challenges. Some of 
the most pressing issues are the management of natural 
hazards, pollution, and the surge of socioeconomic in-
equalities resulting from excluding the poor from the so-
cial fabric.

According to UN-Habitat, approximately 1 billion peo-
ple worldwide reside in informal settlements, commonly 
called slums, living in deprived conditions and lacking 
access to essential services, such as safe water, acceptable 
sanitation, and durable housing [142]. The rapid urban-
ization processes in low- and middle-income countries 
contribute to the proliferation of deprived neighborhoods 
where dwellers live in crowded areas in unhealthy condi-
tions and, often, without tenure security. In addition to 
that, these communities are also among the most vulner-
able to the effects of climate change as well as the increas-
ing frequency and intensity of natural disasters, such as 
floods, heatwaves, droughts, landslides, storms, wildfires, 
and cyclones [143].

MAPPING SLUMS AND URBAN POVERTY
The 2030 agenda pays particular attention to these global 
challenges with SDG 11, which aims at inclusive, safe, resil-
ient, and sustainable cities and human settlements. The key 
indicator 11.1.1 requires monitoring “the proportion of ur-
ban population living in slums, informal settlements or in-
adequate housing.” Current global statistics show a decline 
in the percentage of the urban population living in slums 
but an absolute increase of inhabitants living in such areas 
[144]. Nevertheless, official national statistics are often out-
dated, inconsistent, or simply inaccurate. Small slum pock-
ets are generally neglected, and population counts based on 
census data are subject to large uncertainties, especially in 
large metropolitan areas [145]. More accurate and globally 

consistent methods to gather data on slum populations and 
their socioeconomic conditions are, therefore, needed.

Several studies show the ability of RS techniques to iden-
tify informal settlements, providing a relatively consistent 
mapping approach applicable over large areas and repeat-
able in time [146]. Maps derived from VHR satellite data 
can support SDG 11 and the monitoring indicator 11.1.1 
in particular. Detailed 2D and 3D geospatial information 
extracted from UAV data can support the planning and 
monitoring of urban upgrading projects, thus contributing 
to targets 11.b and 11.c [147], [148] (Figure 6). The map-
ping of informal settlements can be performed on the basis 
of physical and morphological characteristics captured by 
VHR satellite images. Slums are commonly densely built-
up areas characterized by small buildings arranged accord-
ing to irregular layout patterns and a lack of green spaces. 

Extracting these characteristics automatically from im-
ages is, however, a difficult task. The spectral information 
alone is insufficient to discriminate between different ur-
ban typologies (formal versus informal). It is necessary to 
extract contextual features capable of capturing long-range 
pixel dependency for distinguishing the different spatial 
patterns. Conventional machine learning approaches re-
sort to the extraction of texture statistics, local binary pat-
terns, oriented gradients, and segment-based features [149], 
[150]. However, these methods depend on several free pa-
rameters, which are difficult to optimize and, usually, set 
according to user experience.

The ability of CNNs to automatically learn high-level 
spatial features results in a streamlined workflow for slum 
mapping and higher classification accuracy. Mboga et al. 
[151] apply a CNN to detect informal settlements in Dar
es Salaam, Tanzania, reporting an accuracy improvement
over a support vector machine classifier trained with tex-
ture features and local binary patterns (Figure 7). The au-
thors in [32] introduce FCNs for mapping informal settle-
ments from VHR images. To this end, they adopt an FCN
architecture with dilated convolutions [named FCN-dilat-
ed kernel (DK)], thereby capturing long-range pixel depen-
dencies while keeping a limited number of network param-
eters (Figure 7). The best results are obtained by a network
with six convolutional layers using increasing dilation fac-
tors. Moreover, they report a significant advantage in terms
of the computational cost at testing time with respect to
patch-based CNN.

Wurm et al. [152] investigate the transferability of an 
FCN model pretrained on VHR images to map slums in 
coarser-resolution Sentinel-2 images and SAR data acquired 
by TerraSAR-X. They use an FCN-VGG19 architecture adapt-
ed from [27]. Their results show that transfer learning can 
significantly improve the results on Sentinel-2 but not on 
TerraSAR-X data. Wang et al. [153] investigate a U-Net com-
pound model, including dilated convolution operations, to 
map deprivation pockets in Bangalore, India. The authors 
in [154] use an FCN-based approach to study the tempo-
ral dynamics of slums, looking in particular, at temporary 

Approximately 1 billion people worldwide reside in informal settlements, 
living in deprived conditions and lacking access to essential services.
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exploit the spatial regularities and temporal dimension of a sequence of Sentinel-2 time series to predict the land use over (a) a number of classes 
of interest and (b) the pixel probability map. (Adapted from [121]; used with permission.) 
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slum pockets. The study investigates two change-detection 
approaches based on an FCN with dilated convolutions. 
The first approach uses a postclassification change detec-
tion, and the second trains FCNs to directly classify the 
transition in the land cover classes.

REVEALING SOCIOECONOMIC INEQUALITIES
The articles mentioned cast the slum mapping problem 
as a crisp classification, assuming that a boundary can be 
drawn to separate formal and deprived settlements. De-
parting from this dichotomy, Ajami et al. [155] adopt a 
framework conceptualizing the multidimensional nature 
of deprivation including not only the physical (e.g., poor 
house material) and financial levels (e.g., low-income resi-
dents), but also human, social, and contextual variables, 
such as accessibility to health care, education, and other 
services or social exclusion factors. The study introduces a 
data-driven approach to summarize multiple deprivation 
variables (both categorical and real valued) into a single 

real-valued socioeconomic index, named the data-driven 
index of multiple deprivations. A CNN-based transfer-learning 
method predicts the socioeconomic index values based on 
VHR images and GIS features. The results show that an en-
semble nonlinear regression model, combining the results 
of the CNN and models based on hand-crafted and GIS fea-
tures, can explain 75% of the variation in the poverty index 
obtained from household data.

Other works have applied DL models to nighttime sat-
ellite images, street views, and aerial imagery to infer so-
cioeconomic conditions. Jean et al. [156] use a CNN-based 
model to predict economic well-being across five African 
countries. The CNN model, pretrained on ImageNet, is fine-
tuned to predict nighttime light intensities (used as a proxy 
for economic activities) corresponding to the input daytime 
satellite imagery. Finally, the CNN-extracted features, along 
with survey data, are used as the input to a ridge regression 
algorithm to infer the economic well-being. Social, envi-
ronmental, and health conditions are extracted in [157] by 

(b)(a)

FIGURE 6. A UAV image acquired over an informal settlement in Kigali, Rwanda: the (a) 2D orthomosaic and (b) 3D photogrammetric point 
cloud. (Source: [147]; used with permission.)

(a) (b) (c) (d)

FIGURE 5. The DL workflow for the field boundary delineation in smallholder farms from (a) VHR imagery from WorldView-3. (Source: 
[132]; used with permission.) (b) SegNet is first applied to extract (fragmented) contours of the agricultural fields. (c) The oriented water-
shed transform is then utilized to extract a hierarchical segmentation. (d) Finally, the single-scale combinatorial grouping algorithm global-
izes the local cues using an efficient implementation of normalized cuts and explores the combinatorial space of the segmentation hierarchy 
to generate regions that are likely to represent complete fields.
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a DL method applied to street-view images for major cities 
in the United Kingdom. Abitbol et al. [159] use a modified 
EfficientNetB0 CNN architecture [158] to predict socioeco-
nomic status across France from aerial images and employ 
activation maps to interpret the urban topology.

DELIVER TENURE SECURITY FOR ALL
Secure property rights and efficient registration systems are 
essential for the modern economy. They give guaranty to 
individuals and businesses to invest in land, creating the 
conditions for improving the livelihoods and sustainable 
management of natural resources as well as enabling gov-
ernments to collect property taxes, which are necessary 
to finance infrastructure and services for citizens. Unfor-
tunately, a mere 30% of the global population has legally 
registered rights to their land and homes [160], [161], which 
means that more than 5 billion of the world’s 7.8 billion 
people do not have documented land rights. Moreover, 
this percentage drops to 10% in African countries [162]. 
The insecurity of land tenure and property rights is often 
at the root of poverty and inequality [163], [164], leading 
to legal conflicts, unequal economic systems, and locks of 
assets, challenging effective and democratic governance 
principles.

The 2030 agenda recognizes the fundamental role of 
land rights security in several targets and indicators under 
SDGs 1, 2, 5, 11, 15, and 16. The correct registration of land 
tenure rights directly impacts food security, environmental 
sustainability, and the advance of women’s empowerment 
worldwide. In many countries, the land is communally 

owned, but tenure insecurity is often the product of the 
government’s inability to respond to the technical regular-
ization needs [165]. 

Therefore, significant efforts are needed to formalize 
land ownership of the poor and vulnerable (target 1.4, indi-
cator 1.4.2). Secure access to land is essential for small-scale 
agricultural producers to invest in their land and contribute 
to the market (targets 2.3 and 2.4). It is also fundamental 
for gender equality, ensuring women’s rights to land tenure 
(SDG 5). The authors in [166] show that secure land tenure 
for women improves investments in agricultural develop-
ments and enhances the chance of women’s involvement in 
family food and agricultural productivity. A lack of tenure 
security also impacts the development of sustainable cities 
(SDG 11), management of natural resources (SDG 15), and 
synergy between land administration agencies, courts, and 
legal support services (SDG 16).

Strategies to support these goals rely partly on the de-
velopment of land administration systems (LASs) to for-
malize land rights and implement land-related policies 
[167]. There is a clear need for innovation for the fast, 
accurate, and cost-effective cadastral mapping needed 
for LASs [168]. The traditional surveying methods prove 
to be quite costly, slow, and labor intensive. In response, 

(a) (b) (c) (d)

FIGURE 7. The informal settlement mapping over two test areas in Dar es Salaam, Tanzania, using a patch-based CNN and FCN-DK6: the 
(a) VHR image, (b) reference map, (c) patch-based CNN, and (d) FCN-DK6. “Informal settlements” are shown in yellow, and the “rest” are
indicated by blue.

The insecurity of land tenure and property rights is often at the root of pov-
erty and inequality.
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fit-for-purpose (FFP) land administration [169] advises 
and supports the development of new technologies using 
remotely sensed data and taking the country context into 
account. The FFP concept is also included in the recently 
developed framework for effective land administration de-
veloped by the UN Expert Group on Land Administration 
and Management, which is acting as a standard at the in-
ternational level [170]. 

Spatial land rights recording, i.e., cadastral mapping, is 
the most expensive part of an LAS [171]. The automation or 
semiautomation of cadastral boundary delineation based 
on satellite or UAV images has been investigated since phys-
ical objects often coincide with visible cadastral boundar-
ies and can be detected through image analysis [172]–[176]. 
The extracted boundaries should be combined with legal 
information, a procedure known as adjudication, and incor-
porate local knowledge from human operators.

The initially explored methods for the automated ex-
traction of cadastral boundaries from EO images are based 
on image segmentation and edge detection [173]. However, 
the main disadvantages of these methods are sensitivity to 
intraparcel variability and the dependence of the selected 
parameters [177], [178]. Better results have been achieved 
using learning-based contour detectors, such as the global-
ized probability of boundary (gPb) [135], which combines 
brightness, color, and texture cues into a globalization 
framework using spectral clustering. 

Recent studies explored DL methods [179], [180]. The 
consortium of the its4land project (https://its4land.com/) 
developed a suite of open source solutions for land tenure 
recording using EO data [168], [181]–[183]. It developed 
methods based on the gPb, simple linear iterative cluster-
ing superpixels, and a CNN to extract cadastral boundaries 
and a strategy to assign costs to each line incorporating lo-
cal user knowledge. This work resulted in an open source 
plug-in for a Quantum Geographic Information System 
providing user-guided delineation functions calculat-
ing the least-cost paths along the extracted and weighted 
boundaries. Experiments were conducted using aerial im-
ages acquired in Ethiopia and UAV images from Rwanda 
and Kenya (Figure 8). Overall, the obtained results based 
on CNN-derived boundaries achieved a precision of 76%. 
The use of this semiautomated interactive method leads 
users to spend 38% less time and 80% fewer clicks com-
pared to manual delineation [179], [184]. 

Following this research line, Xia et al. [180] explored the 
potential of FCNs to extract cadastral boundaries in urban 
and semiurban areas in Rwanda using UAV data. The au-
thors adopted the FCN-DK architecture, which, compared 
to gPb and multiresolution segmentation, resulted in over-
all better performance. Nevertheless, the performance of 
any automated method depends on the presence of visible 
objects delimiting the boundary of the property (e.g., fenc-
es, pathways, walls, roads, or land cover transitions). 

In support of the full land recording process, Chipo-
fya et al. [185] developed an approach incorporating 

hand-drawn sketch maps with remotely sensed data. 
Their method converts the raster sketch map into a vector 
automatically, and the hand-drawn symbols are detect-
ed and recognized using a CNN. The system performs a 
stroke-based image segmentation wherein the boundar-
ies of sketched objects are drawn and delineated. Finally, 
the concepts corresponding to the detected symbols are 
applied to the image segments based on the distance and 
a fixed set of rules specifying the spatial constraints on 
configurations of different types of features.

CLIMATE ACTION
The current scenario of climate change and projections 
from climate models call for definite and urgent action, 
as requested by SDG 13 [186], [187]. Extreme events are 
more severe, frequent, and unexpected in space and time 
[188]. The Earth system is actually changing globally but 
also on the local and regional scales, with huge implica-
tions for ecosystems, biodiversity, and agriculture, just to 
name a few. In this scenario, humanity faces the challenges 
of both the mitigation of and adaptation to climate change; 
that is, to try to reduce emissions as much as possible while 
preparing for unavoidable consequences that are no longer 
a future but a reality [189]. Machine learning and DL, in 
particular, can help in the myriad of aspects concerned in 
both issues. The 2030 agenda focuses mainly on adaptation 
aspects, with target 13.1 demanding the strengthening of 
resilience and the adaptive capacity to climate-related haz-
ards and natural disasters in all countries. 

The mitigation of greenhouse gas emissions requires 
important changes to electricity systems, transportation, 
buildings, industry, and land use. Adaptation requires 
planning for resilience and disaster management, given an 
understanding of climate and extreme events; see [189] for 
an organized collective effort to synthesize both the meth-
ods and challenges.

DEEP LEARNING FOR CLIMATE CHANGE MITIGATION
Reducing emissions can be achieved with machine learn-
ing and DL models. For instance, several DL models have 
been used to forecast electricity supply and demand, e.g., 
to create short- and medium-term forecasts of solar [190] 
and wind power [191], [192] or even use deep networks 
to produce demand forecasts that optimize for electricity 
scheduling costs rather than forecast accuracy [193]. DL in 
combination with RS satellite imagery has also been used 
to generate size and location data for rooftop solar panels 
[194], [195], and there are some deep networks that esti-
mate the state of the system [196], [197]. As electricity gets 
transported from generators to consumers, some of it gets 
lost as resistive heat on electricity lines. Prior work has 
performed predictive maintenance using LSTMs [198] and 
neural network-plus-clustering techniques [199] on electric 
grid data. 

Another important field of action is transportation. De-
carbonizing transport is essential to a low-carbon society, 
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and there are numerous applications where machine learn-
ing can make an impact. For instance, vehicles can be de-
tected in VHR images accurately [200]–[202], and image 
counts can serve to estimate the average vehicle traffic 
[203]. Neural networks have also been used for analyzing 
the preferences of customers traveling by high-speed trains.

Many critical systems inside buildings can be made 
radically more efficient. Deep autoencoders can be used 
to simplify information about machine operation so that 
deep neural networks can then more easily predict multiple 
kinds of faults [204]. Occupancy detection in buildings can 
help identify energy demands, a problem where deep neu-
ral networks have been also applied [205]. DL can also help 
to monitor and optimize the operations in smart buildings 
[206]. Machine learning may be able to assist with many 
aspects of CO2 sequestration. While still in its infancy, we 
have seen recent approaches on the use of convolutional 
image-to-image regression techniques for uncertainty 
quantification in a global carbon storage simulation study 
[207]. Such models can help in the development of novel 
strategies to monitor and develop underground carbon se-
questration techniques.

DEEP LEARNING FOR CLIMATE CHANGE ADAPTATION
We use general circulation and Earth system models to an-
ticipate climate scenarios on our planet as well as inform 
local and national governments for decision making. 
Models have become very precise in projecting scenarios, 
but they still disagree in some particular cases and are 
very computationally expensive to run. Machine learning 
in general and DL in particular can help to mitigate both 
aspects. The largest part of the uncertainty comes from 
the parameterization of clouds and aerosols in the mod-
els, which have clear implications, as bright clouds block 
sunlight and cool Earth. Deep neural networks have been 
used to emulate the behavior of high-resolution clouds, 
resolving simulations at a fraction of the computational 
cost [208]. Improvements are expected with the combina-
tion of DL and process understanding in a new form of 
hybrid modeling approaches that are data driven while 
respecting the fundamental laws of physics [4], [209]. Fu-
ture improvements in climate modeling will necessarily 
have to account for the proper characterization and mod-
eling of ice sheet dynamics and sea level rise, yet machine 
learning has not yet approached such problems systemati-
cally [209]–[211].

Weather models are optimized to track the rapid, cha-
otic changes of the atmosphere, and DL has recently im-
pacted the associated problems. For instance, deep net-
works are now heavily used to make local forecasts from 
coarse 10–100-km climate or weather model predictions 
[212]; other researchers try to translate high-resolution cli-
mate forecasts into risk scenarios, e.g., of localized flood-
ing patterns from past data [213], which have clear im-
pacts on individuals. Accurately forecasting hazards and 
their impacts has societal, economical, and environmental 

implications. DL is now present in initiatives involving 
preserving ecosystems at risk [214]; monitoring the chanc-
es of food insecurity [215]; and deploying a swift, effective 
disaster response [216]. 

However, humans can also intervene in the system 
directly. This is the field of geoengineering. For example, 
neural network approaches could facilitate the fast release 
of aerosols in both space and time [217]. Modeling impacts 
is also of high relevance; the authors in [218] use deep neu-
ral networks to estimate the effects of aerosols on human 
health, while Crane-Droesch et al. [219] use them to es-
timate the effects of solar geoengineering on agriculture. 
Finally, we should note that geoengineering raises many 
ethical questions, where explainable, accountable artifi-
cial intelligence (AI) and fair learning should be part of 
the discussion.

LIFE ON LAND
SDG 15 aims to protect, restore, and promote the sustain-
able use of terrestrial ecosystems; sustainably manage for-
ests; combat desertification; halt and reverse land degrada-
tion; and stop the loss of biodiversity. Achieving this goal 
has far-reaching consequences that are closely interlinked 
with many other SDGs. Here, we review several application 
domains where DL and EO play a central role. 

SUSTAINABLE FOREST MANAGEMENT
The relevance of the sustainable management of forests is 
linked directly to SDG 15, and target 15.2 in particular, 
but it goes well beyond that. Indeed, the “The State of the 
World’s Forests 2018” report of the Food and Agriculture 
Organization [220] identifies that forests and trees are rel-
evant for 28 targets from 10 different SDGs. On the one 
hand, forests are a key variable to mitigate the effects of cli-
mate change; they protect the soil and water and contain 
more than 75% of the world’s terrestrial biodiversity. On 
the other hand, forests provide products and services, such 
as food, medicine, and fuel, that are of high socioeconomic 

FIGURE 8. The cadastral mapping tool (its4land) applied to a rural 
area in Ethiopia. 
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importance in particular in rural areas. The combination 
of RS and DL has been extensively used to monitor forests, 
e.g., by producing global forest maps [86], delineating in-
dividual tree crowns in aerial imagery [221], [222], or per-
forming damage assessment after storms [223].

Despite their relevance, the loss of the world’s forests 
through deforestation and forest degradation is an increas-
ing issue destroying natural habitats; limiting resources 
for the world’s poorest; and, in the long term, worsening 
climate change by significantly contributing to CO2 emis-
sions. Reasons for deforestation include tree logging for ma-
terials, mining, and farming. Agriculture producing palm 
oil, beef, soy, pulp, and paper is responsible for nearly three 
quarters of the tropical deforestation [220].

Deforestation is mostly happening in rural areas and of-
ten performed in secrecy, which requires monitoring large 
regions that are difficult to access. Thus, RS is the ideal 
tool for mapping and monitoring forests that inspired the 
publication of open data (e.g., in the context of the “Under-
standing the Amazon From Space” challenge organized by 
Planet [224]) as well as the usage of DL approaches. Several 
works focus on experimental comparisons between differ-
ent network models and shallow learners [225], [226] or ap-
ply ensembles of different CNN architectures (e.g., [227]—a 
participant in the aforementioned challenge). In [228], de-
forestation mapping is modeled via spatiotemporal deep 
CNNs by taking several domain-specific components (e.g., 
the handling of clouds) into account. Modern approaches 
go beyond a mere mapping of forest areas or direct defor-
estation and, instead, aim for identifying possible reasons 
for forest loss. ForestNet [229] not only proposes a deep 
convolutional network to characterize the processes lead-
ing to deforestation but also provides a data set based on 
Landsat 8 imagery of forest loss events annotated by expert 
interpreters.

WILDFIRE RISK
Wildfires, as one of the major factors contributing to defor-
estation, are becoming more frequent and destructive due 
to several reasons, including higher temperatures, increased 
droughts, fuel accumulation, and dead vegetation as well 
as increased population density in close proximity to for-
ests and wildlands. Traditionally, wildfires are detected by 
human observers either by chance (and then reported to 
local emergency numbers) or from dedicated watchtowers. 
Current works aim to complement or even replace the latter 
by deploying ground-based camera networks (e.g., a High 
Performance Wireless Research and Education Network 
and Alert Wildfire in the state of California, United States, 
where, in 2018, more than 8,000 wildfires burned 800,000 
hectares of land). The camera feed of these networks can 
then be automatically analyzed by DL approaches as, e.g., 

in [230], which uses an inception network to detect smoke. 
An alternative is the usage of UAVs as proposed in [231], 
which uses a saliency-based system to generate image re-
gion proposals that are then analyzed by a standard CNN 
for classification. 

Satellite imagery can be used for wildfire detection as 
well but comes with its own challenges. Geosynchronous 
satellites, such as GOES 16 or GOES 17, constantly observe 
large parts of a hemisphere but have a rather coarse resolu-
tion of several square kilometers, which makes the detec-
tion of wildfires in their early stages difficult. Nevertheless, 
their image data have been used in combination with DL 
for wildfire detection (e.g., in [232]). Orbiting satellites, 
such as Moderate Resolution Imaging Spectroradiometer 
(MODIS), Visible Infrared Imaging Radiometer Suite, Land-
sat, and Sentinel-1/-2 (VIIRS), on the other hand, have a 
much finer spatial resolution but revisit times of several 
hours to days. In particular, SAR sensors offer unique 
benefits, as they are able to penetrate clouds and smoke 
and are independent of daylight. Sentinel-1 time-series 
data and DL have, for example, been used in [233] to pro-
vide a near-real-time progression monitoring of wildfires.

Beyond the detection and monitoring of wildfires, fore-
casting their future burns and spread is another important 
application area [234], [235]. Bergado et al. [235] use a big 
geodata set to predict wildfire burns. They design FCNs for 
predicting daily maps of the probability of a wildfire burn 
over the next seven days, utilizing an extensive set of wild-
fire-related input variables taken from various data sources. 
A total of 29 quantitative features are selected as the input 
to the models. These features encode factors associated with 
wildfire burn, such as topography (the elevation, slope, 
and aspect), weather (the temperature, humidity, solar ra-
diation, rainfall, wind speed and direction, and lightning 
flash density), proximity to anthropogenic interfaces (the 
distance to and power lines), and fuel characteristics (the 
fuel type, fuel moisture, and emissivity). Historical wild-
fire burn records for Victoria, Australia, collected over the 
period of 2006–2017 are used for training and testing the 
DL models. DL and RS have also been used for postevent 
analysis, e.g., for damage assessment [236] or to analyze the 
impact of wildfires on tree species [237].

BIOPHYSICAL PARAMETER ESTIMATION
The problem of retrieving biogeophysical parameters spans 
a wide variety of applications and has a direct impact on 
achieving the SDGs. The related goals require creating spa-
tially explicit and temporally resolved maps of quantities 
and essential climate variables to monitor vegetation sta-
tus and health, agricultural, and forest production. Param-
eters should be estimated in a consistent and standardized 
manner to improve accountability. 

The use and abuse of vegetation indexes as proxies 
for vegetation status and health has been challenged re-
cently by machine learning approaches, from the nonlin-
ear generalization of indexes [238] to more advanced, yet 

RS is the ideal tool for monitoring large forests that are difficult to access.
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supervised, machine learning models [209]. Many param-
eters are now estimated using machine learning; for exam-
ple, surface temperature and moisture are key parameters 
for weather prediction, with great impacts on agriculture 
and the environment, in ecology, hydrology, meteorology, 
and biology, while the LAI and fractional vegetation cover 
help in assessing the vegetation cover and dynamics, with 
implications for crop production. Several seminal works 
relevant for DL parameter retrieval have been published 
with a focus on earth sciences [4], [209], environmental 
applications [16], and RS [15]. 

Land parameter retrieval often concerns biochemical 
parameters but can also include physical ones, such as the 
land surface temperature, which was retrieved from micro-
wave radiometer data with DL in [241] and tested on refer-
ence data from both ground stations and other optical sat-
ellite data with good results. The LAI and leaf chlorophyll 
content have been retrieved with optical sensors and using 
neural networks, yet mostly using shallow architectures 
[242].

Retrieving parameters can often be hampered by the 
scarcity of measurements and observations to spatialize 
them with machine learning. This is the situation with the 
relevant parameters for monitoring the land and vegeta-
tion, such as the canopy water content. For such a case, one 
can resort to radiative transfer models to generate a lookup 
table of expressive simulations to learn from and upscale it 
in Google Earth Engine globally [243]. 

There are some other cases where samples are available 
in big databases but not sufficiently complete, with many 
missing attributes or uncertainty in the wild. This was the 
case for important leaf and plant traits, like phosphorus or 
nitrogen concentrations, that were not upscaled until the 
exploitation of the TRY database along with multisensor fu-
sion and machine learning [244]. The upscaling of carbon, 
heat, and energy fluxes from eddy covariance data has been 
recently tackled with all kind of machine learning models 
and neural networks in particular. The key parameters for 
sensing the health and sensitivity of our warming planet 
are the gross primary production and net ecosystem ex-
change. Their estimation with neural networks and ensem-
ble methods allow us to quantify global land–atmosphere 
interactions and benchmark land surface model simula-
tions [245], [246].

Research in farming applications also relates to biologi-
cal parameter retrieval. Often, though, the goal is not to 
use predictions as parameters in models but as proxies for 
the health condition of crops in so-called smart farming ap-
plications. By monitoring and optimizing these vegetation 
indexes, the goal is to increase the crop yield. The variables 
of interest, such as the crop type, crop yield, soil moisture, 
and weather variables, can also be used to model and un-
derstand the ecosystems that farming affects [247]. Most 
often, though, they are applied to data sets covering only 
smaller regions of agricultural areas. As opposed to biologi-
cal parameter retrieval applications, DL is frequently used 

in farming applications. Some country-level work on agri-
culture has been done for, e.g., corn crop yield [248] and 
wheat [249], but little research exists on larger-scale studies 
where predictions could be used in models. The authors in 
[250] provide a comparison of several AI methods on a case 
study in the midwestern United States.

Forest cover, biomass, and vegetation height are other 
types of biological parameters that are of high impor-
tance to understand and monitor Earth, with obvious 
societal and economical implications. DL has also been 
applied to this problem, although mostly on the conti-
nent-level scale; e.g., in [251], researchers used the LSTM 
networks; the authors in [252] modeled forest dynamics 
over a 28-year period by stacking time series and formu-
lating the task as a change-classification problem; and 
[253] predicted the above-ground forest biomass from li-
dar and Landsat 8 data with stacked sparse autoencoders.
The authors in [254] map the vegetation height densely
at a 10-m resolution from stacks of Sentinel-2 MS optical
satellite imagery at the country scale using CNNs with a
regression loss.

WILDLIFE CONSERVATION
A global loss of biodiversity is observed at all levels [255], 
and mammals are no exception, with one fifth of them 
at risk of extinction [256]. Conservation relies heavily on 
monitoring to estimate the biodiversity as well as resources 
to sustain life and risks related to human activities (hunt-
ing, poaching, expanding agriculture, and so on). Despite 
the urgency of protecting animal populations, the moni-
toring of them is more often done locally in reserves or by 
experts on foot and hardly meets the scaling and update re-
quirements to monitor fauna effectively. Due to their larger 
field of view and the relatively high revisit time potential, 
satellites [257] and—more importantly—drones [258] are 
considered more for surveying by wildlife ecologists [259], 
[260]. Drones open perspectives for monitoring on de-
mand, the safe detection of poachers, and an estimation 
of grazing potential. To process the sheer amount of data 
collected by drones, researchers are starting to resort to DL 
massively to identify animals in the wild with object detec-
tion pipelines [261]–[264]. 

These efforts go hand in hand with computer vision-
based community efforts aiming at processing the wide ar-
chives of camera trap images, i.e., static cameras placed at 
strategic locations in reserves [265]. To support research in 
DL-based animal conservation, a number of software suites 
are being proposed, including Annotation Interface for Da-
ta-Driven Ecology (AIDE) [266], which allows ecologists
to upload their camera traps or aerial survey and deploy
pretrained (or their own) models in the cloud on Microsoft

RS and DL can accelerate conservation efforts and play a central role in the 
battle against poaching.
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Azure. Examples of deployments of AIDE in camera trap 
image classification and single-animal detection are report-
ed in Figure 9. The questions of accuracy with respect to an-
imal size and image resolution or when related to the ratio 
of the background versus animal occupancy in the images 
(the animals only occupy a fraction of the data collected) 
are central in these articles. The detection and tracking of 
poachers is also on the rise, with approaches using thermal 
images at night [267] or based on deep reinforcement learn-
ing [268].

In the context of animal censuses, a question of 
wide interest is the time efficiency versus number of 
animals these algorithms miss. Precise counts are of 
prime importance, and a low recall would force rangers 
to go through the entire image collection for verifica-
tion, which would negate the benefits of the DL detec-
tion pipeline. Recent research compared DL and citizen 
science counting methods [269] and concluded that 
both led to similar accuracy, with a significant speedup 
achieved when using DL. Also, an active research field 
is the joining of these two worlds via active learning 
[270] algorithms: by allowing an interactive back and
forth between the annotators and DL models, signifi-
cant speedups as well as increased generalization to
new campaigns and transfer to new reserves have been
achieved [271]. Finally, these interactive pipelines are
currently made accessible to the large ecological com-
munity, for instance, via web-based platforms enabling
interactive annotation guided by DL models classifying
or detecting in the background [266].

CHALLENGES AND FUTURE OPPORTUNITIES
The previous section shows several examples of geospatial 
applications where DL and EO allow a systematic investiga-
tion of global phenomena, providing continuous and spa-
tially consistent information supporting evidence-based 
decision making and local interventions. We expect that 
the coming decade will see a surge of research in this direc-
tion, with innovative methodological developments and 
an increase in the number and scope of applications in sup-
port of the SDGs. 

However, several questions remain to be addressed: 
some are purely scientific, and others are at the interface 
among scientific communities, stakeholders, and deci-
sion makers. Will the EO scientific community succeed 
in producing accurate, reliable, consistent, and up-to-date 
geospatial information? Moreover, are these results trust-
worthy for governmental authorities, stakeholders, and 
local communities? In other words, are DL models trust-
ed by nonexperts, who are in charge of decision making 
and policy development? The success of evidence-based 
decision making largely depends on the trust that people 
have in the data. Transparent data analysis methods and 
clear communication are fundamental to set proper ex-
pectations and build trust between data providers and 
decision makers.

OPEN CHALLENGES

UNCERTAINTY QUANTIFICATION
To be of true value and gain trust by people, DL models 
need to provide an indication of the reliability of model 
predictions. Assigning well-calibrated uncertainties to 
model outputs plays a critical role in many real-world appli-
cations. A significant additional benefit of the uncertainty 
estimates assigned to each data point of the model output 
is that this creates a practical interface to more traditional 
postprocessing steps using Bayesian models at their core.

We can define the uncertainty within DL in a twofold 
way: that inherent to all models is epistemic uncertainty, 
and that inherent to all data is aleatoric uncertainty. The 
former captures the dissimilarity of unseen data com-
pared to what our model has been trained on, i.e., sam-
ples that lie within the training distribution have a low 
epistemic uncertainty, and those that are out of distribu-
tion have a high epistemic uncertainty. Aleatoric uncer-
tainty results from the noise inherent in the observations, 
such as sensor noise [272]. In addition, there are uncer-
tainties in the spatial domain that arise, for instance, 
when variables are aggregated over spatial units (e.g., dis-
tricts or administrative units), resulting in the so-called 
modifiable areal unit problem. It is, thus, important to 
consider all sources of uncertainties and their propaga-
tion through the whole processing pipeline that affect the 
quality of the final product.

DATA QUALITY QUANTIFICATION FOR 
DECISION MAKING
It is essential to realize that, to support evidence-based 
policy making and promote data-driven planning and deci-
sion making, the quality of data products must be carefully 
assessed and carefully communicated so that nonexperts 
can understand. On the one hand, we encourage the scien-
tific community to pay more attention to how data qual-
ity is assessed and communicated. On the other hand, we 
recommend that policy developers incorporate data uncer-
tainties into the decision-making process explicitly. In this 
respect, we recognize the importance of defining standard 
data quality measures. Thus, we promote a tighter collabo-
ration between the scientific community and policy mak-
ers to define standards on quality measures to quantify the 
SDG indicators.

MODEL EXPLAINABILITY
In addition to the uncertainty quantification, there is a 
growing interest in making machine learning and DL mod-
els more interpretable and understandable, aiming at neu-
ral networks that provide human-understandable justifica-
tions for their output, leading to insights about the inner 
workings [273], [274]. In EO, explainable AI is a relatively 
new field but quickly becoming important due to the im-
plications that trustable black-box models can have on the 
usage of DL in societal applications. 
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In the context of agricultural EO, Campos-Taberner 
et al. [121] investigated how to deepen the understanding of 
an RNN for land use classification based on Sentinel-2 time 
series. In [275], the authors studied how land use can be 
employed to explain the automatic prediction of the land-
scape’s scenic value (a form of a cultural ecosystem service). 
To do so, they used semantic bottlenecks [276] as the in-
termediate layers of a regression network, predicting land-
scape beauty from Sentinel-2 images. Forcing the network 
to choose among human-interpretable solutions, then re-
combined linearly, the model allows an understanding of 
why (in terms of land use) the model predicts a given score.

MODEL TRANSFERABILITY
One of the greatest challenges of DL in EO is the often-lim-
ited model transferability. For example, a slum-mapping 
DL model trained in Dar es Salaam is unlikely to produce 
accurate results in Bangalore or São Paulo. This happens 
not only because the RS images may be affected by dif-
ferent acquisition and radiometric conditions but also 
because cities in various parts of the world have different 
characteristics and definitions of what constitutes a slum. 
Despite several studies in domain adaptation and transfer 
learning [277], model transferability remains a challenge 
to ensure the spatial and national consistency of indicators 
derived from DL models. Moreover, nonexperts might be 
unaware of this problem. It is, therefore, essential that DL 
model developers provide clear guidance to users regard-
ing the domain where the model is expected to produce 
valid results.

INTERDISCIPLINARY APPROACH
Addressing global societal problems requires a vast pal-
ette of expertise ranging from RS, DL algorithm develop-
ment, and advanced computational skills as well as domain 
knowledge in fields such as agriculture, forestry, ecology, 
urban management and planning, social sciences, land ad-
ministration, animal conservation, and so on. It requires 
researchers to collaborate and co-design solutions together 
with other scientists and engage with stakeholders, indus-
trial partners, local communities, and governmental and 
nongovernmental organizations. The barriers between dif-
ferent scientific (and nonscientific) communities are often 
a challenge for an effective interdisciplinary approach.

FUTURE OPPORTUNITIES
In this article, we recognize the importance of the avail-
ability of data and computational facilities for the success 
of DL models. Developments in this direction are offering 
new opportunities to the EO community. For half a centu-
ry, Earth has been under continuous observation by satel-
lites to monitor and understand environmental processes. 
However, historically, RS data were foremost available to 
those governmental agencies, research institutes, and com-
mercial companies that had direct access to the correspond-
ing sensors. A mixture of different political, organizational, 

and legal reasons made a free distribution of acquired data 
difficult to impossible, resulting in a limited number of 
mostly small data sets [278]. The traditional approach to 
developing and testing new methods on small and local 
data still prevails today. In particular, in the context of DL, 
this is problematic, as approaches are evaluated on data sets 

Classification of Camera Traps Images

Detection in Community Images

Detection in UAV Data
(c)

(b)

(a)

FIGURE 9. Three deployment cases of the AIDE platform [266] 
in camera trap images: for (a) camera trap image classification, 
(b) animal detection from tourists’ and photographers’ pictures
acquired during a safari [using the “Great Zebra and Giraffe Count”
(GZGC) campaign (http://lila.science/datasets/great-zebra-giraffe-id], 
and (c) detecting wildlife in UAV images in the Kuzikus reserve in
Namibia. In the GZGC case, a typical deployment is shown: a user
is editing the detections, while a model is training in the cloud (bot-
tom right box); the predictions of the current model (dashed lines)
are also used as guidance.
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(often consisting of only a single small image as, e.g., the 
HSI data set Indian Pines) that do not provide a sufficient 
amount of independent test samples.

BIG AND OPEN GEODATA
Fortunately, during the last years, large parts of the com-
munity have been moving away from closed data and em-
braced open science principles such as findable, accessible, 
interoperable, and reusable [279] and free and open source 
software [280]. These developments enable transparent 
and reproducible scientific research, allow the distribution 
and reuse of data and methods, and lead to the more effi-
cient creation of new data products. This led to open code  
libraries [such as Open RS (http://openremotesensing 
.net) and the IEEE RS Code Library (https://rscl-grss.org/), 
public evaluation servers [such as the IEEE Geoscience 
and Remote Sensing Society Data and Algorithm Stan-
dard Evaluation website (http://dase.grss-ieee.org)], and 
modern benchmark data sets for a multitude of combina-
tions of EO sensors and tasks, which are rapidly replacing 
older small-scale data sets. These are more in line with the 
actual situation in RS, as current EO data have passed the 
petabyte scale and pose common big data challenges re-
garding volume (i.e., the amount of data), velocity (that 
is, the temporal pace at which new data are acquired), and 
variety (the heterogeneity regarding image acquisition, 
such as sensors types and modes as well as environmental 
factors) [281]. 

CLOUD COMPUTING INFRASTRUCTURES
New opportunities are also arising from the availability of 
cloud computing infrastructures that allow the visualiza-
tion and analysis of large-scale data [e.g., Landsat [282] 
and Sentinel data (https://scihub.copernicus.eu/)] directly 
in the cloud without the need for local downloading, stor-
ing, and processing. Examples include Digital Earth Aus-
tralia [283], Earth System Data Lab [284], Swiss Data Cube 
[285], Copernicus Data and Information Access Services, 
and Google Earth Engine [239]. The availability of large 
and open data sets in combination with powerful comput-
ing infrastructures sets the premise for researchers to work 
more cohesively on addressing the environmental and so-
cietal challenges of our time.

A GLOBAL PICTURE OF WORLDWIDE PHENOMENA 
Finally, we want to remark that the combination of DL and 
EO offers the opportunity to obtain a truly global picture 
of environmental and societal phenomena that go beyond 
national boundaries as opposed to the data typically col-
lected by national statistical agencies. As discussed in [240], 
the national-level reporting structure of the SDGs limits 
the ability to capture environmental phenomena that cross 
national borders. Moreover, differences in the data collec-
tion practices of the national offices often result in incon-
sistent data. EO can provide spatially and temporally con-
sistent data, while DL offers the tools to extract semantic 

information in an objective and reproducible manner. We, 
thus, advocate for the use of DL and EO to monitor prog-
ress toward the SDGs and encourage the geoscience and RS 
communities to play active roles in discussions with stake-
holders and policy makers.

CONCLUSION
We have reviewed the latest developments in the context 
of DL for EO and a large number of applications that con-
tribute to the UN agenda for sustainable development. 
The combination of DL and EO appears to be a strategic 
asset that can play an essential role in addressing many of 
the challenges raised by the UN agenda and, beyond that, 
some of the most urgent demands of human societies. Un-
derstanding the role of DL in EO for extracting nationwide 
geospatial statistical data has far-reaching societal implica-
tions for policy development and decision making. Going 
beyond the SDG agenda, DL and EO can play significant 
roles in other international agendas, such as the New Ur-
ban Agenda (https://habitat3.org/the-new-urban-agenda) 
or Sendai framework for disaster risk reduction.
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