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Abstract: Drones are becoming increasingly popular not only for recreational purposes but also in a
variety of applications in engineering, disaster management, logistics, securing airports, and others.
In addition to their useful applications, an alarming concern regarding physical infrastructure security,
safety, and surveillance at airports has arisen due to the potential of their use in malicious activities.
In recent years, there have been many reports of the unauthorized use of various types of drones
at airports and the disruption of airline operations. To address this problem, this study proposes a
novel deep learning-based method for the efficient detection and recognition of two types of drones
and birds. Evaluation of the proposed approach with the prepared image dataset demonstrates better
efficiency compared to existing detection systems in the literature. Furthermore, drones are often
confused with birds because of their physical and behavioral similarity. The proposed method is not
only able to detect the presence or absence of drones in an area but also to recognize and distinguish
between two types of drones, as well as distinguish them from birds. The dataset used in this work
to train the network consists of 10,000 visible images containing two types of drones as multirotors,
helicopters, and also birds. The proposed deep learning method can directly detect and recognize
two types of drones and distinguish them from birds with an accuracy of 83%, mAP of 84%, and IoU
of 81%. The values of average recall, average accuracy, and average F1-score were also reported as
84%, 83%, and 83%, respectively, in three classes.

Keywords: drone; UAV; deep learning; convolutional neural network CNN; drone image dataset;
drone detection; drone recognition

1. Introduction

With the increasing development of drones and their manufacturing technologies, the
number of them being used for military, commercial, and security purposes is increasing [1–3].
In recent years, the use of different types of drones has received much attention due to
their efficiency in applications such as airport security, the protection of its facilities, and
integration into security and surveillance systems [4–6]. On the other hand, drones can
also be considered a serious threat in these security areas, and therefore, it is important to
develop an efficient approach to detect types of drones in these applications [7–9]. Such
technologies can be used in airport security and any military systems to prevent drone
intrusion or to ensure their security [7,10,11]. Therefore, the detection, recognition, and
identification of UAVs are crucial in discussing public safety and the threats posed by their
existence. Detection is the process of observing the target, and this target may be suspicious
and threaten the security of the target environment, recognition is the determination of the
target category, and identification refers to diagnosing the type of target category. In this
article, based on the physical and behavioral similarities between drones and birds, two
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types of drones are detected and recognized and their distinction from birds is determined.
For this purpose, various sensors can be applied such as radar [12,13], LIDAR [14], and
RF-based [15,16] sensors. In addition, drone detection and recognition have also been
performed using acoustic sensors [17,18] and thermal sensors [19]. However, the use of
these sensors is costly and energy-consuming [12]. In addition, drone integration with these
sensors is limited due to the weight and size required, and in the case of thermal imagery,
sensors usually suffer from a lower resolution. However, the use of visible imagery does
not have the problems associated with integrating sensors and drones, and unlike thermal
sensors, it has higher resolution. However, visible imagery also has problems such as
occluded areas, crowded backgrounds, and lighting problems within the image. Therefore,
the solution to this problem depends on the method used to detect and recognize the drone.

In the last decade, deep learning networks have become the best model for visual pro-
cessing, such as object detection and tracking [20–23]. Object detection using deep learning
networks has received much attention due to its higher computational power and accu-
racy [24]. Among deep neural networks, convolutional neural networks (CNNs) are the best
representative for object recognition [25]. These networks are powerful in feature extraction
and hence have been considered and investigated more for object recognition [26–28]. They
are more desirable for object recognition as they extract more features than conventional
object recognition methods [29,30]. Object recognition methods are divided into two cate-
gories according to their function in examining network input. The first category includes
area-based detection methods where a set of the proposed areas is first considered, and
then each of these areas is classified into different object categories. The second category
refers to classification and regression-based detection methods such as YOLO [31] and
SSD [32] deep learning methods [33].

Due to the importance of detecting and recognizing drones for various applications,
providing public safety, and problems associated with different sensors, the use of visible
imagery is better due to features such as high resolution, low cost, and the ability to
integrate with different types of drones. However, there are challenges such as crowded
backgrounds and confusing drones with birds due to their small size in these images;
therefore, it is necessary to use a suitable method to solve these challenges. YOLO Deep
Learning Network is the best way to overcome these challenges due to its higher accuracy,
speed, and the accurate analysis of the input images. Among the different versions of this
network, the latest version has a higher speed and accuracy in detecting objects [34]. For
this reason, this paper investigates UAV detection and recognition using YOLOv4 Deep
Convolutional Neural Networks and visible imagery.

1.1. Drone Detection and Recognition Challenges

It is important to detect and recognize different types of drones as they can trespass
into sensitive areas and pose potential threats. However, detecting and recognizing different
types of drones and distinguishing them from birds is always fraught with challenges.
Some of these challenges are discussed below.

1.1.1. The Resemblance of Drones and Birds

Drones can be mistaken for birds, especially at long distances, because of their similar-
ity in behavior and physical characteristics. For some samples on the similarity of drones
and birds, see Figure 1.
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1.1.2. Different Weather Conditions and Crowded Background

Problems such as the presence of drones in crowded environments, varying weather
conditions, and different lighting conditions make drone detection difficult (Figure 2).
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1.1.3. Small Size of Drones at Long Distances

The presence of drones at long ranges makes them smaller and causes problems in
detection and recognition. Figure 3 illustrate this challenge.
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1.1.4. Lack of Scalability

The presence of drones at close and distant distances with different resolutions poses
challenges to accurately detect and recognize different types of drones (Figure 4).
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Given the challenges in detecting and recognizing different types of drones and
distinguishing them from birds, it is very important to use a fast and accurate method to
overcome these challenges and prevent drone intrusion into critical infrastructure.

2. Related Works

In recent years, drone detection, recognition, and identification have received much
attention in various applications. The concept of detection in this study means the ability
to detect the presence of a drone as opposed to its absence. The concept of recognition is
also the ability to detect the category to which the drone belongs. Identification is also the
ability to recognize the type of drone group. In this study, the problem of drone detection
was investigated using the dataset and the proposed method. According to the studies,
the dataset for drone detection is obtained using active and passive sensors [35,36]. In
studies related to the detection and recognition of drones using active sensors, the use
of radar and LIDAR sensors is discussed [14,35,37]. Problems with both of these sensors
include high costs and limited integration into small drones. In addition, the use of thermal
sensors results in lower accuracy due to low spatial resolution [19], and the use of acoustic
sensors in drone detection and recognition has limitations such as high cost and limited
onboard use [17]. Therefore, due to the aforementioned limitations of using active sensors,
visible imagery was used in the context of passive sensors that do not have the mentioned
problems and do not have weight limitations when integrated into small drones.
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As previously mentioned, issues such as the unpredictable movements and speed of
drones, the long-distance of the drone, its close resemblance to birds, its small size, the
presence of hidden areas in the images, crowded backgrounds, the inability to separate the
background, the problems with light in visible images, and different weather conditions
challenge drone detection and recognition.

For this reason, new methods of deep learning are used to solve the challenges based
on studies. In 2001, Q et al. detected moving objects using a set of visible images with fixed
background and edge tracker methods. The object is then detected by finding the edge
difference in successive images [38]. In 2011, Lai et al., in a study called vision-based air
collision detection system, detected drones using morphological filters to prevent airborne
collisions [39]. In 2016, Ganti et al. detected drones using background subtraction and
image-based methods [40]. Moreover, Li et al. proposed a new drone detection method
by mounting cameras on a large variety of drones. In this work, the drone was detected
by computing background motion with a perspective transformation model and detecting
moving objects by foreground spatio-temporal features [41]. In 2017, Wu et al. detected the
drone using visible images and image sensors. In this study, the drone is detected using a
saliency map, and it is localized using a Kalman filter [42].

In these studies, the traditional method of background subtraction has been used
to detect drones, which do not have the appropriate accuracy and speed compared to
modern methods. This year, researchers detected drones in a set of visible images using
artificial intelligence-based methods and using RPN [43], CNN, Zeiler, VGG16 [44], and
YOLOv2 neural networks [45]. The limitation of these studies was the low accuracy in
detecting drones, which was improved in later studies by improving the methods used.
In 2018, Li et al. detected drones in video datasets by subtracting background images
and classification methods based on deep learning networks. In this article, the Kalman
filter is applied to moving objects for better detection [24]. In this study, the deep learning
method used can improve the accuracy of diagnosis using visual information. In 2019,
drone detection was performed using YOLO [46], Faster-RCNN [47], and SSD [47] methods.
RCNN and SSD methods were used to detect drones in video datasets, with the RCNN
method showing better accuracy. The use of the YOLOv3 deep learning network in this
study has resulted in improved accuracy and precision of drone detection compared to
other methods due to its lightweight architecture and appropriate depth. In 2020, drones
were detected using YOLOv4 [48], YOLOv3 [21,48], YOLOv2 [20], tiny-YOLOv3 [49], Fast-
RCNN [49], and SSD [48] networks and the results were compared [48]. The three models
YOLOv4, YOLOv3, and SSD were compared, and, respectively, YOLOv4, YOLOv3, and
SSD had the best accuracy. The YOLOv2 and YOLOv3 deep learning networks had the
best accuracy.

In 2021, using a deep learning network, the challenges in drone detection were exam-
ined in more detail. This year, segmentation-based methods were used to detect drones
in crowded backgrounds [50], and another study detected drones in real-time using the
YOLOv3 network on NVIDIA Jetson TX2 hardware [51]. The use of this method has pro-
vided good accuracy and speed and is capable of detecting drones of various sizes. Other
methods used to detect drones include Faster RCNN, SSD, YOLOv3, and DETR, whose
performance was examined in a series of visible images [22]. All the methods used in
this study performed well in detecting drones, but YOLOv3 provided the best precision.
Researchers have also recently used YOLOv4 [52], a pruned YOLOv4 [36], RetinaNet [36],
FCOS [36], and YOLOv3 [36] network in video and image datasets to achieve high accuracy
in drone detection. The use of YOLOv4 in the first study provided acceptable drone detec-
tion results compared to similar studies and had better accuracy. Furthermore, in the next
study, the networks used had good accuracy but good performance in detecting small and
fast drones. Therefore, the pruned YOLOv4 method gave better performance compared
to these methods. In 2021, Coluccia et al. identified several types of multirotors and a
fixed-wing with their commercial models in video sequences. The diagnostic system in this
work is associated with a warning algorithm that sounds when the drone is observed. In
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this work, the standard Cascade R-CNN architecture, Faster R-CNN, YOLOv3 network,
and YOLOv5 network were used to identify drones vs. birds. The discussion on detection
in a variety of backgrounds with additional data also needs to be extended [53].

Based on the results of the studies, the YOLOv4 Deep Learning network presents
higher accuracy and speed in detecting and recognizing drones in visible imagery than
conventional methods. Therefore, this method was used to detect and classify two types of
drones, such as multirotors, helicopters, and birds.

3. Materials and Methods

Due to the challenges in drone detection and recognition such as crowded background,
a close resemblance to birds, smaller size of drones, longer distance, and lighting problems
in the image, in this study, a deep learning-based method is proposed. The proposed drone
detection and recognition process consist of four main steps, as presented in Figure 5. The
first step is to prepare the data properly as the input of the proposed architecture. The
second step is the network training phase which is implemented to detect and recognize
two types of drones and also birds. Then, in the third step, the trained model is tested
using a large variety of drone and bird datasets. Finally, the performance of the model is
evaluated, and the detection and recognition process is performed on the input test data.
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3.1. Input Preparation

In order to train the network, a set of drone and bird visible images are prepared to be
fed into the proposed network. According to Figure 6, the drone dataset used for training
includes a number of multirotors, helicopters, and birds (Figure 6). In total, 70% of the
images are used for training and the rest for validation.
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Preparation of the input data involves drawing the ground truth bounding box around
the drone and converting it to the normal input format between [0, 1]. In the proposed
method, as presented in Figure 7, the input includes the class number, the center coordinate
of the bounding box (x, y), and its width and height (w, h) [31].
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Afterwards, the normalized coordinates of the center of the bounding box containing
the drone and its height and width are obtained. This information includes x_center,
y_center, w, and h. The input data is then divided into two categories of training and
testing. Then the bounding box information in the appropriate format is sent to the training
stage and finally for the network test.

3.2. Training the Deep Learning Network

Considering the reviewed advantages of the YOLOv4 deep learning network, in
this paper, it is applied to detect flying drones and birds in crowded environments. The
proposed network consists of a four-section architecture as the input, backbone, neck, and
head (Figure 8).
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3.2.1. Backbone; Feature Map Extractor

In the backbone, input data which is prepared in the previous step, is introduced into
the network, and feature extraction is performed on the visible imagery of drones and birds
dataset. CSPDarknet53, where CSP stands for cross stage partial, is the feature extractor
network used in the proposed method to extract more accurate features. This network has
good accuracy and speed due to having desirable convolution layers [34].

• CSPDarknet53

The proposed method uses the CSPDarknet53 [54] feature extraction network to detect
two types of drones and birds. CSPDarknet53 is a convolutional neural network that uses
the Darknet53 network architecture. This feature extractor divides the basic drone feature
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map into two sections while they are finally merged step by step to extract drone features
from the input dataset. This stage is one of the most critical in drone and bird detection.
It is obvious that better performance and more accurate feature extraction will improve
the detection in terms of accuracy and speed and error reduction while detecting and
recognizing drones and birds.

3.2.2. Neck; Feature Map Collector

When the feature extraction is completed, the generated feature map is introduced
to the next processing step, which is the neck part in the proposed method and is a
feature map collector. This part consists of two main sections as additional blocks and
path aggregation blocks. In the additional blocks section, spatial pyramid pooling (SPP)
and a path aggregation network (PAN) were used in the path aggregation blocks [34].
According to Figure 9, In the SPP network, the input drone and bird dataset first enter
the convolutional layer, and a feature map is generated. The created feature map then
goes through three integration layers with different scales of 16 × 256-d, 4 × 256-d, and
256-d [28]. Then, a one-dimensional vector is created and enters the fully connected (FC)
layers. All neurons in these layers are connected to the neurons of the previous layer. The
main function of the FC layers is to combine the local property in the lower layer with
the local property in the upper layers. One of the advantages of using the SPP network
is to improve the prediction speed of bounding boxes containing drones or birds. This
network, due to having three pooling layers, can receive inputs of different sizes and have
an acceptable performance [28]. Finally, the improved PAN network completes the neck
step in the proposed detection and recognition method [55].
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3.2.3. Head; Detection and Recognition Results

The head stage in the proposed deep learning network consists of three main sections.
First, the input drone and bird images with input parameters enter the network, and they
are divided into S × S cells, in which s is determined by the network. This image enters
the network, and the convolutional layers in the YOLO network are applied to each cell
grid of the convolutional network. The output of the network in the last step is the class
probabilities along with the bounding box, which are represented as a three-dimensional
tensor with dimensions of (5 + C) × B × S × S. The value of C indicates the number of
classes and the value of B indicates the number of the predicted bounding boxes. Each
drone bounding box contains the information of the center point (x, y) and the width and
height of the bounding box (w, h), and the confidence score parameter. Then in the last
two stages of the proposed architecture, the type of the extracted drone or whether it is a
bird is predicted and classified.

To improve the detection and recognition capabilities of the proposed method, two
features called bag of freebies (BOF) and bag of specials (BOS) are applied.

1. Bag of Freebies (BoF)
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The bag of Freebies method is only responsible for increasing the cost of training or
changing the proposed training strategy. In the proposed network, CutMix [56] and Mosaic
methods for data enhancement, DropBlock regularization [57], and class label smoothing
are used as the most important BoF features. Data augmentation methods are also used to
increase the variety of drone and bird images and to improve the generalization of the deep
learning model. For example, in this study, to overcome photometric distortions of the
drone and bird dataset, methods are used to adjust brightness, color, saturation, contrast,
and image noise reduction. In addition to eliminate geometric distortions and increase the
generalizability, scalability, and accuracy of prediction, methods such as random rotation,
scaling, cutting, and rotating images of drones or birds are considered.

Another feature of BoF is the use of Focal Loss (FL) [52], which is an improved version
of the cross-entropy (CE) [58] loss function. FL fixes class imbalance problems and assigns
more weight to misclassified examples or the object of our interest and less weight to easy
examples such as background objects. Thus, focal loss can reduce the influence of simple
examples and focus on hard negative examples. FL has an additional coefficient (1 − pt)
γ to the cross-entropy loss, with a tunable focusing parameter γ ≥ 0; it is presented in
Equations (1) and (2).

CE(ρt) = − log ρt (1)

FL(ρt) = −(1− ρt)
γ log ρt (2)

The proposed network uses the concept of label smoothing to create a more robust
model. Label smoothing smooths hard labels and turns them into soft labels. This concept
avoids overconfidence that often occurs in deep networks.

In order to network training, the inclusion of IoU loss is also considered in the proposed
method. To evaluate the model quality in traditional deep learning models, the L2 concept is
used to calculate the difference between the real bounding box and the predicted bounding
box. One of the disadvantages of the L2 error is that it limits and minimizes the errors both
in the larger and the smaller bounding boxes (Figure 10). However, using the IoU loss can
provide a more accurate prediction of the bounding box error [34].
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2. Bag of Specials (BoS)

BoS is a set of methods that increases the accuracy of object detection and recognition
for types of drones and birds exploration, despite a small increase in the cost of inference.
Several techniques have been used in BoS [34]. Some of the main techniques are the
use of the Mish activity function, CSP connections path aggregation network (PAN) [34],
and spatial pyramid pooling (SPP) block [28]. In the proposed detection and recognition
method, the Mish activity function helps to improve the information flow in the network.
This function avoids saturation and generally avoids the gradient vanishing problem on
near-zero values and overfitting issues [34]. At the end, after completing the network
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training process, the model weight file is created and saved to test the network with a
variety of drone and bird images.

3.3. Testing the Deep Learning Network

To test the capabilities of the proposed deep learning network in the detection and
recognition of drones (multirotor, helicopter) and to distinguish drones from birds in visible
imagery, the generated weight file, which is the result of the training stage, is applied. The
proposed technique also uses the non-maximum suppression (NMS) method to select the
best bounding box containing the drone or bird from several predicted bounding boxes.
This method is used to remove possible bounding boxes and select the best bounding box
that contains the drone or bird. Finally, the final bounding box containing the target objects
and the output parameters of the bounding box are presented.

3.4. Evaluation Metrics

To evaluate the potential of the proposed method, the IoU, precision, mAP, recall,
accuracy, and F1-score are used. This evaluation strategy will give us a better understanding
of how the model works.

• IoU (Intersection over Union). This evaluation metric means the degree of overlap
between the predicted bounding box and the ground truth bounding box. In this
study, a threshold of 0.7 was used to classify the input data. This means that if the
IoU value is more than 0.7, the classification is True Positive (TP) and otherwise False
Positive (FP). Using the number of these values, a complexity matrix was formed, and
the rest of the evaluation metrics were calculated using it.

• Confusion matrix. This is a matrix of size n × n (n = number of classes) to show
how accurate the model works [59]. The columns of this matrix represent the true
class of intended objects, which in this case includes two types of drones and birds.
On the other hand, the rows of this matrix represent the predicted classes by the
proposed deep learning model. For a better explanation of the confusion matrix in
this application, an example of the confusion matrix 2 × 2 is shown in Figure 11. The
positive class is related to drones, and the negative class is related to birds. Since this
study involves three classes, this matrix is generalized to a size of 3 × 3. Precision,
recall, F1-score, and accuracy can be calculated using FN, TN, TP, and FP values.
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• Precision means that among the inputs whose class is predicted to be positive, what
percentage of them are actually positive class members [59]. According to Equation
(3), the value of this metric is between zero and one. Precision is calculated separately
for each of the classes. In this study, precision is defined in each of the multirotor,
helicopter, and bird classes. For instance, the precision of the multirotor class means
that of all the inputs projected as multirotor, what percentage are actually multirotor.
Similarly, these criteria are defined for other classes.

Precision =
TP

TP + FP
(3)

• mAP is determined by calculating the average precision of the multirotor, helicopter,
and bird classes. In other words, the mAP evaluation metric compares the ground
truth bounding box with the predicted bounding box of the targets and calculates a
certain value as the score. An increase in this number indicates the more accurate
performance of the proposed model in detection and recognition (Equation (4)).

mAP =
1

|Classes|∑c ∈Classes
TP(c)

TP(c) + FP(c)
(4)

• Recall indicates the percentage of the total data in the positive class, which is predicted
to be positive [59]. Similar to the concept of precision, recall is calculated separately
for each class. For example, the recall in the multirotor class means that among all
the entries that are multirotor, what percentage of them are correctly detected and
recognized as multirotor (Equation (5)).

Recall =
TP

TP + FN
(5)

• F1-score is the harmonic average of recall and precision and is calculated separately
for each of the classes [59]. According to Equation (6), this measure performs well on
unbalanced data because it considers false negative and false positive values [59].

F1_score =
2TP

2TP + FP + FN
(6)

• Accuracy shows the overall performance of the model [59]. Accuracy means that
the proposed model correctly detects and recognizes what percentage of the data
is truly positive and negative. In this study, accuracy means that the deep learning
model correctly detects the percentage of the input data class (multirotor, helicopter,
and bird).

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

4. Experiments and Result

In order to evaluate the capability of the proposed method regarding the detection
and recognition of types of drones and to distinguish them from birds, the implementation
steps and the dataset are resented, and the obtained results are discussed.

4.1. Data Acquisition and Model Implementation

To begin the training phase of the network, it is necessary to prepare a dataset of drones
and birds. To increase the performance, reliability, and generalizability of the network, a
variety of public images and videos covering two types of multirotor and helicopter drones
and a set of several bird species are used. Common to all these images is the use of a visible
sensor with a resolution between 96 dpi and 300 dpi. The imaging system in this study
is a digital camera. The images were taken keeping in mind the basic concepts of digital
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photography such as aperture, ISO, and shutter speed settings. In addition, the collection
of videos was converted into images with a frame rate of 2 FPS.

Figure 12 illustrates some sample images of multirotor and helicopter drone types.
Multi-rotors include four types as Quadrotor, Hexarotor, Octo Coax Wide, and Octorotor,
and the collected data covers all four types of multirotors. These images are collected in
different environments with crowded backgrounds and different lighting conditions at
diverse distances to evaluate the accuracy and generalizability of the proposed model in
different conditions. The proposed dataset contains images where different types of moving
drones. A total collection of 10,000 images covering multirotors, helicopters, and birds
are collected. Approximately 70% of the collected images are used for network training
and 30% for network testing. Therefore, there are 1166 images of each of the four types of
multirotors (quadrotor, hexarotor, octo coax wide, and octorotor), helicopters and birds,
of which a total of 7000 images are prepared for the training phase.To label the images
and draw the rectangle that fits the object, the computer vision annotation tool (CVAT) is
applied, and the data is divided into three classes. In this method, the multirotor is labeled
in the first class, the helicopters in the second class, and the birds in the third class.
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In this study, the Darknet framework [60] and an Nvidia Geforce MX450 graphics pro-
cessing unit (GPU) are used to train the network. Furthermore, CUDNN 8.2, Cuda Toolkit
10.0, and OpenCV Library version 4.0.1 are implemented to train the deep convolutional
neural network technique.

In order to train the proposed CNN model, the main source code of the darknet
framework is prepared, and the configuration files are modified [34]. Moreover, the
number of classes in the configuration file is changed to three. In this method, there are
three convolutional layers before each of the three layers of YOLO to build a high-level
feature map of the drone-vs-bird images. In these three layers, filters are used to extract the
features from input drone-vs-bird images. According to Equation (3) and the number of
classes equal to 3, the number of filters is changed to 24 in the three convolutional layers,
as is explained.

Filters = (number o f classes + 5)× 3 (8)

To start the training step of the deep learning network, the number of batches and
learning rate is set to 1 and 0.0005, respectively. The subdivision is set to 64 according
to the GPU type used, and the size of each of the input images is 160 × 160. The steps
are changed to 16,000, 18,000 using the formula (80% maximum batches, 90% maximum
batches). Finally, the model is trained with 20,000 iterations, and the weights file is saved
after every 10,000 iterations. The overall view process of training the network and reducing
the average loss until 0.52 after 20,000 iterations and 23 h is presented in Figure 13. To test
the network, the final weight file is used, and its performance is compared using evaluation
metrics.
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4.2. Evaluation of the Proposed Method

In order to present and observe the functioning of the proposed method, in this study,
the confusion matrix representation is used. As presented in Figure 14, in this matrix, the
columns represent the actual classes, and the rows represent the predicted classes. Based on
Figure 14, it is obvious that in the proposed network, 83% of the samples that are originally
taken from multirotors, are correctly detected as multirotor class. In the other two classes,
the rate is 87 and 80 percent. It is also clear that the cells related to misdiagnoses have lower
values in the network, and the cells related to correct diagnoses have higher values. For
example, in the multirotor class, 10% of the multirotors were mistaken for a bird, and 7%
were mistaken for a helicopter, while 83% of the multirotors were correctly diagnosed as
multirotor. In the other two classes, it is the same, and the percentage of errors is less than
the percentage of correct diagnoses.



Aerospace 2022, 9, 31 13 of 20

Aerospace 2022, 9, x FOR PEER REVIEW 13 of 20 
 

 

test the network, the final weight file is used, and its performance is compared using eval-
uation metrics. 

 
Figure 13. The average loss graph during training the network. 

4.2. Evaluation of the Proposed Method 
In order to present and observe the functioning of the proposed method, in this 

study, the confusion matrix representation is used. As presented in Figure 14, in this ma-
trix, the columns represent the actual classes, and the rows represent the predicted clas-
ses.  Based on Figure 14, it is obvious that in the proposed network, 83% of the samples 
that are originally taken from multirotors, are correctly detected as multirotor class. In the 
other two classes, the rate is 87 and 80 percent. It is also clear that the cells related to mis-
diagnoses have lower values in the network, and the cells related to correct diagnoses 
have higher values. For example, in the multirotor class, 10% of the multirotors were mis-
taken for a bird, and 7% were mistaken for a helicopter, while 83% of the multirotors were 
correctly diagnosed as multirotor. In the other two classes, it is the same, and the percent-
age of errors is less than the percentage of correct diagnoses. 

 

Figure 14. The confusion matrix of the proposed method.

The proposed deep learning network is also accurately evaluated using confusion
matrix, mAP, accuracy, precision, recall, and F1-score measures in the detection and recogni-
tion of the two types of drones and birds. Table 1 show the evaluation indices results of the
proposed model. According to this table, the overall evaluation metrics of the model such
as accuracy, mAP, and IoU reached 83%, 84%, and 81%, respectively, indicating the general-
izability of the model and the possibility of a lower error rate in drone image detection and
recognition of input drone images.

Table 1. Evaluation results of the models.

Dataset Num of Images Precision % Recall % F1-Score % Accuracy % mAP % IoU %

Bird 1000 90 87 88 - - -

Helicopter 1000 86 80 83 - - -

Multirotor 1000 76 83 79 - - -

Total 3000 - - - 83 84 81

Evaluation metrics such as precision, recall, and F1 score are displayed in the three classes
of bird, multirotor, and helicopter (Figure 15). As it appears from this figure, these evalua-
tion matrics reached high values in the precision, recall, and F1-score.

Figure 16 illustrates some samples of the obtained results related to the detection and
recognition of two types of drones and their capability in distinguishing them from birds
in the proposed network. As it is apparent, the detection and recognition of drones and
birds with bounding boxes and class probabilities is displayed.



Aerospace 2022, 9, 31 14 of 20

Aerospace 2022, 9, x FOR PEER REVIEW 14 of 20 
 

 

Figure 14. The confusion matrix of the proposed method. 

The proposed deep learning network is also accurately evaluated using confusion 
matrix, mAP, accuracy, precision, recall, and F1-score measures in the detection and 
recognition of the two types of drones and birds. Table 1 show the evaluation indices re-
sults of the proposed model. According to this table, the overall evaluation metrics of the 
model such as accuracy, mAP, and IoU reached 83%, 84%, and 81%, respectively, indicat-
ing the generalizability of the model and the possibility of a lower error rate in drone 
image detection and recognition of input drone images. 

Table 1. Evaluation results of the models. 

Dataset 
Num of 
Images 

Precision 
% 

Recall 
% 

F1-Score 
% 

Accuracy 
% 

mAP 
% 

IoU 
% 

Bird 1000 90 87 88 - - - 
Helicopter 1000 86 80 83 - - - 
Multirotor 1000 76 83 79 - - - 

Total 3000 - - - 83 84 81 

Evaluation metrics such as precision, recall, and F1 score are displayed in the three 
classes of bird, multirotor, and helicopter (Figure 15). As it appears from this figure, these 
evaluation matrics reached high values in the precision, recall, and F1-score. 

 
Figure 15. Evaluation metrics of the proposed CNN network. 

Figure 16 illustrates some samples of the obtained results related to the detection and 
recognition of two types of drones and their capability in distinguishing them from birds 
in the proposed network. As it is apparent, the detection and recognition of drones and 
birds with bounding boxes and class probabilities is displayed. 

  

Figure 15. Evaluation metrics of the proposed CNN network.

Aerospace 2022, 9, x FOR PEER REVIEW 15 of 20 
 

 

Dataset Sample 1 Sample 2 Sample 3 Sample 4 

Bird 

   

Helicopter 

    

Multirotor 

    
Figure 16. Some samples of detection and recognition results of the proposed network. 

4.3. Model Evaluation in Addressing the Challenges 
Drone detection and recognition always face challenges such as  the inability to iso-

late the background, crowded backgrounds, lighting issues within the image, and the 
presence of occluded areas. On the other hand, the small size of the drone and its far dis-
tance caused it to be confused with the bird and reduced the accuracy of the diagnosis. 
The proposed convolutional neural network can overcome a variety of challenges in drone 
detection and recognition, such as multirotors, helicopters, and distinguishing between 
birds and drones even at longer ranges.  As it appears from Figure 17, small drones are 
detected using the network in a variety of images with different lighting conditions and 
crowded backgrounds. In these images, drones and birds with a minimum dimension of 
15 × 30 and a maximum dimension of 600 × 600 are detected and recognized. 

Challenge Sample 1 Sample 2 Sample 3 

(a) Confusion with 
bird 

   

(b) Crowded  
backgrounds 

  

(c) Small drone size 

   

Figure 16. Some samples of detection and recognition results of the proposed network.

4.3. Model Evaluation in Addressing the Challenges

Drone detection and recognition always face challenges such as the inability to isolate
the background, crowded backgrounds, lighting issues within the image, and the presence
of occluded areas. On the other hand, the small size of the drone and its far distance caused
it to be confused with the bird and reduced the accuracy of the diagnosis. The proposed
convolutional neural network can overcome a variety of challenges in drone detection and
recognition, such as multirotors, helicopters, and distinguishing between birds and drones
even at longer ranges. As it appears from Figure 17, small drones are detected using the
network in a variety of images with different lighting conditions and crowded backgrounds.
In these images, drones and birds with a minimum dimension of 15 × 30 and a maximum
dimension of 600 × 600 are detected and recognized.
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Figure 17. Some samples of solving a variety of challenges in drone detection.

Some samples of drone detection and its distinction from birds in the model are
presented in Figure 17. As it is apparent in the figure, the proposed model has the ability
to distinguish birds and drones from each other and solve these challenges. In addition,
some samples of drone detection in crowded background environments are also illustrated
in this figure. This model is able to detect drones in these images. Furthermore, the third
row of this figure shows the ability to detect and recognize different types of drones at
longer distances. Considering the accuracy, it can be said that the implemented network is
able to detect different types of drones with higher accuracy. In the last row, samples with
different dimensions are detected, and higher accuracy is achieved.

Figure 18 illustrates some samples of more complex and challenging images of different
drone sizes in different weather and light conditions and complex backgrounds. Based on
this figure, it can be said that the network in question has the ability to detect and recognize
drones in these images.
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5. Discussion

As presented in the evaluation section, the proposed model uses evaluation metrics
such as confusion matrix, IoU, mAP, accuracy, precision, recall, and F1-score. The use
of the mAP metric in this study was to determine the mean average precision of a set of
diagnoses in the proposed model, reaching 84%, showing the overall performance of the
proposed model in three classes. The accuracy criterion was checked to determine the
correct classification of the input data into three classes and also showed the robustness
and generalizability of the implemented model. In this study, we achieved an accuracy of
83%, indicating a high error of the system in classification. To determine the overlap of the
predicted bounding box in the model, the IoU metric was checked against the ground truth
bounding box, which reached a value of 81%, indicating that 81% of the predicted bounding
boxes overlap with the ground truth bounding boxes, which is an acceptable value. In
order to accurately evaluate the performance of the model, the metrics of precision, recall,
and F1 score in three classes were calculated separately. The results of the model in three
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separate classes are as follows: (76% precision, 83% recall, 79% F1-score) for multirotor,
(86% precision, 80% recall, 83% F1-score) for helicopter, and (90% precision, 87% recall, 88%
F1-score) for birds. According to the results, these evaluation criteria have desirable values
in all three classes separately, which according to their definitions, indicate the proper
performance of the model in all three classes separately, and it is necessary to examine them
in each class.

In recent studies, deep learning methods have been used to detect and recognize
drones. In 2021, Xun et al., the drone was detected using a set of visible images and the
YOLOv3 deep learning network method [51]. This year, Isaac-Medina et al. detected
drones using SSD, DETR, YOLOv3, and Faster RCNN in visible imagery [22]. One of
the limitations of these studies is the inability to detect small objects and the inability to
detect drones at long distances. Finally, Liu et al. detected drones using pruned YOLOv4,
RetinaNet, FCOS, and YOLOv3 deep learning networks in video and image datasets [36].
This study improved the challenges related to small drone detection but did not address
the challenges related to crowded backgrounds and the similarity between drones and
birds. In addition, the drone detection problem was solved in a single class, and detection
was not discussed in any of the research.

In this paper, the YOLOv4 deep learning network was used to detect and recognize
target objects, which has high accuracy in long-distance small drone detection. In addition,
challenges related to drone detection and recognition in environments with crowded
backgrounds, hidden areas, and issues such as confusing drones with birds in visible
imagery were addressed. No studies have been conducted to detect and recognize two
types of drones (multirotors, helicopters).

6. Conclusions

Due to the emerging and development of the application of drones and the security
threats associated with their presence in sensitive locations such as airports, drone detection
and recognition has attracted much attention. Due to similar behavior and appearance of
drones and birds in the sky, as well as their high speed and problems such as crowded
backgrounds, the presence of hidden areas, lighting problems in the images, and the small
size of drones at long distances, this paper proposes a new deep learning-based method
for detecting and recognizing drones and birds to solve the problems caused by their
unauthorized existence.

In this study, two types of drones and birds were extracted from videos and images. A
collection of 10,000 visible images was collected. The training, testing, and evaluation of the
model were performed on the collected dataset. Moreover, using the Convolutional Deep
Learning Network and Nvidia Geforce MX450 Graphics Processing Unit (GPU), scores
of 84% mAPs, 81% IoU, and 83% accuracy were achieved, which solved the challenges
well. Future work will use other deep learning networks to compare their performance in
drone-vs-bird detection, and identification will be performed in addition to detection and
recognition. In addition to multi-rotors and helicopters, we also aim detect and recognize
other types of drones, such as fixed-wing and VTOL. Drone detection, recognition, and
localization can be performed in real-time and on onboard systems.
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