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For timing-sensitive edge applications, the demand for efficient lightweight machine learning solutions has

increased recently. Tree ensembles are among the state-of-the-art in many machine learning applications.

While single decision trees are comparably small, an ensemble of trees can have a significant memory foot-

print leading to cache locality issues, which are crucial to performance in terms of execution time. In this

work, we analyze memory-locality issues of the two most common realizations of decision trees, i.e., na-

tive and if-else trees. We highlight that both realizations demand a more careful memory layout to improve

caching behavior and maximize performance. We adopt a probabilistic model of decision tree inference to

find the best memory layout for each tree at the application layer. Further, we present an efficient heuristic

to take architecture-dependent information into account thereby optimizing the given ensemble for a target

computer architecture. Our code-generation framework, which is freely available on an open-source reposi-

tory, produces optimized code sessions while preserving the structure and accuracy of the trees. With several

real-world data sets, we evaluate the elapsed time of various tree realizations on server hardware as well as

embedded systems for Intel and ARM processors. Our optimized memory layout achieves a reduction in exe-

cution time up to 75 % execution for server-class systems, and up to 70 % for embedded systems, respectively.
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1 INTRODUCTION

Data collection has become ubiquitous in the era of the Internet of Things, where sensors and re-
stricted computing facilities are embedded into various physical objects [38]. A plenitude of such
resource constrained devices gather volumes of data but also apply machine learning models in
real-time at the edge. Decision tree ensembles as well as Deep Learning are currently among the
state of the art in machine learning and are dominating machine learning competitions such as
the ones hosted on www.kaggle.com. Kaggle is one of the largest online communities for data
science challenges and machine learning competitions which frequently results in real-world ap-
plications of machine learning in, e.g., HIV research1 or improving the search of the Higgs Boson2.
For unstructured data such as text or images, Deep Learning is currently among the state of the art,
whereas for structured data, decision-tree ensembles such as Gradient Boosting or Random Forest
seem to work best3. Hence, it is no surprise that for real-time applications, tree ensembles have
become important to augment our society in many fields, e.g., classification of celestial objects
in astrophysics [11], pedestrian detection [32], 3D face analysis [17], noise signal analysis [37],
nano-partical analysis [26, 40], etc.

Such applications have pushed the issue of efficient real-time inference forward [30]. In order to
detect a particular event in these applications, a stream of sensor measurements must be classified.
Such real-time scenarios therefore require the learned model deployed on edge computing devices
to be efficiently executed. Consider an example setup, where battery powered sensor nodes are
placed in a field and collect environment data. In order to save energy for radio transmission,
the sensor nodes directly apply machine learning models to the raw sensor data and only submit
the classification or regression result to a central instance. Optimizing the execution of the
machine learning model in order to save execution time and thus energy, can help to extend the
battery lifetime and increase maintenance cycles significantly. Since decision trees and random
forests are popular candidates for such extreme resource constrained environments, this work
provides means to optimize their execution time in such scenarios.

Whereas machine learning research has focused for a long time on purely algorithmic proper-
ties, the borderline between realizational details and algorithmic contributions has become blurred.
It has been shown that the caching behaviour of realized algorithms determines the performance
even more than algorithmic differences [34]. For real-time applications, the caching behaviour to
decision trees (DT) is also critical. Such a problem is elevated further by ensembles of trees such
as Random Forests (RF) that combine multiple trees into a single classifier and improve the clas-
sification accuracy, which challenge the cache significantly. It follows that the memory footprint
for these models to host all tree nodes is often larger than the size of cache memories equipped,
especially on embedded systems and therefore a clever memory layout is required. Several designs
for DTs on memory layout have been proposed in the literature, e.g., [4, 22], but none considers
the setting of real-time inference. The conference version of this work [9] is the first to focus on
the optimization for real-time inference by taking the caching behavior into account.

In order to provide more intuition for the studied problem, we explain an extremely simplified
example in Figure 1. On the left side of the figure, an extremely small decision tree is illustrated. The
labels at the edges depict the empirical probability, which node of the tree is inferred subsequently.
In this example, we assume that the tree is inferred on the most probable path, i.e., n0, n2, n6. The
naive mapping would traverse the tree layer wise and place the nodes in memory, as illustrated in
the top right of the figure. If we now assume that 4 nodes can fit into one cache line, two cache

1https://www.science.org/doi/10.1126/science.331.6018.698.
2https://www.symmetrymagazine.org/article/july-2014/the-machine-learning-community-takes-on-the-higgs.
3https://wandb.ai/site/articles/ama-with-anthony-goldbloom-ceo-of-kaggle.
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Fig. 1. Simplified tree mapping example.

lines need to be entirely loaded from main memory, in order to execute the tree. Consequently, an
extremely simple optimization is to sort all tree nodes by their absolute access probability (n0: 100%,
n1: 20%, n2: 80%, n3: 10%, n4: 10%, n5: 8%, n6:72%) and place this order in memory, as depicted in the
bottom right part of the figure. It can be seen that only one cache line needs to be fully loaded from
main memory in order to execute the tree along this path. Since cache lines are always entirely
loaded from main memory to the cache, 50% of memory accesses can be saved in this scenario.

In this work, we reveal that two common DT realizations, i.e., 1) a loop to iterate over each
tree node within a continuous data structure forming so-called native tree, and 2) a series of if-else
blocks to unroll all possible iterations forming so-called if-else tree, may suffer from the memory-
locality issues, especially when the trees are deep. Probabilities for accessing single nodes are
usually not equal, e.g., the root has a higher probability to be accessed than a single leaf. Arranging
trees in memory trivially as these common realizations neglect this probability distribution and
thus potentially cause useless data- or instruction-prefetching, mitigating advantages of caches.

In general, after the initial training phase only the tree structure and its parameters is fixed,
i.e., dependencies between nodes are static. However, the layout of the realization in memory
remains open. For native trees, the layout is maintained by references to child nodes, which can
be adjusted arbitrarily. For if-else trees, a similar concept can also be achieved by introducing
goto statements to break the sequence of if-else blocks. Hence, our ultimate goal is to construct a
mapping of tree nodes to memory locations, considering the probabilities of nodes to be accessed
in such a way that the cache behaviour is optimized during inference. Since the cache memories
equipped on different architectures might differ, our optimization algorithms particularly preserve
some architecture-dependent parameters reflecting their impacts. Based on the preliminary results
in [9], this manuscript further improves the code size estimation for if-else tree optimizations by
analyzing the possible variances of generated instructions. To the best of our knowledge, this work
is the first to accelerate the real-time inference of DTs by optimizing the memory layout to benefit
the caching behaviors without sacrificing any accuracy.
Our Contributions in a Nutshell:

• We analyze the memory-locality issues of two common DT realizations, i.e., native and if-
else trees (See Section 3)
• We present two cache-aware optimizations for each tree realization respectively, which uti-

lizes the profiled probability of each node to arrange the memory layout of tree nodes in a
path-wise manner (see Section 4)
• We provide a variance-aware node size estimation, based on the analysis of potential vari-

ance generated by the GNU compiler optimizations, to improve the efficiency of the if-else
tree optimization (see Section 5).
• We conduct a comprehensive evaluation of cache misses and execution time reduction on

server-class and embedded systems for the Intel and ARM CPU architectures over different
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maximum tree depths, number of trees in an ensemble, and different budgets related to the
size of the instruction-cache (see Section 6).

The source code of the developed framework is publicly available4 on https://github.com/tudo-
ls8/arch-forest.

2 DECISION TREES AND RANDOM FOREST

We consider supervised learning problems, in which we infer a model f̂ : Rd → Y from labelled

training data {(�xi ,yi ) |i = 1, . . . ,N } to predict the value f̂ (�x ) of new, unseen observations. For
Y = R we have a regression problem, for Y = {0, 1, . . . } we have a classification problem.

One of the most-used algorithms for these types of problems are decision tree ensembles. A
decision tree (DT) is a binary search tree in which each inner node contains binary decision
and the leaf nodes contain the predictions of the tree. The inner nodes use axis-aligned splits of
the form 1{xk ≤ t } where k is a pre-computed feature index and t is a pre-computed threshold.
Depending on the outcome of 1{xk ≤ t } either the left or the right child of the node is visited
until a leaf node is found and its prediction is returned. Let sl (x ) : X → {0, 1} be the series of
splits which is ‘1’ if x belongs to leaf l and ‘0’ if not, then the prediction of a tree is given by

h(x ) =
∑Li

l=1
ŷi,lsi,l (x ), where ŷi,l ∈ RC is the (constant) prediction value of leaf l and Li is the

total number of leaves in tree hi . To compute the split features and split thresholds in each node
the gini score (CART) or the information gain (ID3) is minimized which measure the impurity of a
split. The induction starts with the root node and the entire dataset. Then the optimal splitting is
computed and the training data is split into the left part (1{xk ≤ t }) and the right part (1{xk > t }).
The splitting is repeated until either a node is ‘pure’ (it contains only examples form one class) or
another abort criterion, e.g., a maximum number of nodes in the tree, is reached. The predictions
on the leave nodes are computed by estimating the class probabilities of all observations in that
specific leaf.

A Random Forest (RF) extends a single DT by training a set of M axis-aligned decision trees
and weighing them equally: f (x ) = 1

K

∑K
i=1 h(x ). Each tree is trained on a bootstrap sample of the

original training and a subset of di � d features to promote diversity among the trees. Algorithm
1 summarizes this approach.

In the classical Random Forest (RF) approach proposed by Breiman [8], the set of K DTs are
trained with different samples of input features. In the literature, other RFs variations have been
explored, such as those that train trees on samples of data (bagging) [5] or those that randomly
generate trees without training at all [19]. However, it is common to all these methods, that they
use tree-structured predictors as base learners and that they inject some form of randomness into
the training.

In the theoretical analysis of these methods, we often encounter the fact that base learners
should be as large as possible: Breiman has shown that bagging in general, and Random Forest
specifically, reduce the variance of a biased learner [6]. Thus, for optimal performance, individual
trees should minimize the bias error, which implies that they should not be restricted in size. In [7],
Breiman extended his formal argument by empirical support. More recent theoretical analysis of
RFs such as [2, 3, 14, 28] consistently support Breimans original claim that trees should be as large
as possible. In short, recommendations for the optimal tree height range between O (logN ) and
O (N ), both, from a theoretical and empirical perspective. This makes RF fundamentally different

4The original framework was published in [9], which is available since 2018 on https://bitbucket.org/sbuschjaeger/arch-

forest/.
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ALGORITHM 1: Random Forest algorithm [8].

1: for i = 1, . . . ,K do

2: Xi ← bootstrap_sample(X )
3: hi ← new_tree()
4: nodes ← [(hi ,Xi )]
5: while len(nodes) > 0 do

6: n,Xn ← nodes.pop()
7: split ← compute_best_split(Xn ,d )
8: n.set_split(Xn , split )
9: Xl ,Xr ← split_data(Xn , split )

10: nl ,nr ← new_children(n)
11: if tree_not_done then

12: nodes .append(nl ,Xl )
13: nodes .append(nr ,Xr )
14: end if

15: end while

16: trees .append(hi )
17: weiдhts .append(1/K )
18: end for

from other ensemble learners such as Boosting [18], where the size of individual base learners are
restricted to reduce over-fitting.

2.1 A Probabilistic View of DT Execution

For each DT, each node receives a unique identifier (e.g., in breath-first order) i . We denote the
left child of i with l (i ) and the right child with r (i ). Let M denote the number of leaves in a DT.
Since each leaf has a unique path from the root of the DT, there are M different paths from the
root node to the leaves. Every node in the tree stores information about the feature, as well as
a split-value against which the feature is compared to (split-point). Additionally, every leaf node
stores its associated prediction (i.e., 0 or 1).

To classify a sample �x , the inference starts from the root node of the tree and follows the chil-
dren according to the comparisons at each split node until a leaf node is reached. Afterwards, an
associated prediction value of the leaf node is returned. Every observation takes exactly one path
π (�x ) from the root node to one leaf node. To simplify the notation, we drop the argument �x , if we
are not interested in the path of a specific observation.

Following the probabilistic view of DT inference [10], we model each comparison at a split node i
as a Bernoulli experiment in which one takes the path towards the left child with probabilityp (i →
l (i )) and, respectively, for the right child withp (i → r (i )). It holds thatp (i → l (i )) = 1−p (i → r (i )).
An example can be found in Figure 1. Please note that the probabilities p (i → l (i )) and p (i → r (i ))
can be estimated during training by counting the number of samples at each node i taking the
left and right path. Assume a path of length L with π = (i1, i2, . . . , iL ), where i j+1 is either the

left or the right child of the jth node on the path. Then, following this path consists of a series of
Bernoulli experiments each with probability p (i j → i j+1). Let P denote the set of all paths in the
tree. The probability to take path π ∈ P is given by

p (π ) = p (i0 → i1) · . . . · p (iL−1 → iL ) =
L∏

j=0

p (i j → i j+1)

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 6, Article 68. Publication date: October 2022.
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Again, let i be a node, then there is exactly one path π = (0, . . . , i ) ending in node i . We denote
the probability of the path leading to node i as p (i ) = p ((0, . . . , i )). Let T be the set of all nodes in
the tree, we define the probability for every subset of nodes T ⊆ T as:

p (T ) =
∑

i ∈T
p (i )

2.2 Problem Definition

In this paper, we consider the performance optimization for executing a given tree ensemble model,
i.e., a Random Forest with the probabilistic information of its DTs. We assume the accuracy of the
learned model is ensured at the training phase, and the proposed optimizations at the application

layer only focus on the efficient execution of DTs without touching the tree structures, i.e., depen-
dencies between nodes are preserved. The aim of this work is to derive optimized code segments
that optimize the memory locality to benefit the underlying caching behaviors. The considered per-
formance metric is the elapsed time of executing the optimized realizations on a new, previously
unseen observation. The optimization is applied with the knowledge of probabilities of the train-
ing data (known observations), hence the unseen observations may slightly differ in the access
probabilities. This effect is therefore also included in the performance metric.

Consider a binary DT in Figure 1 as an example. When a tree node of the DT is executed, it either
(a) reports the associated prediction if the node is a leaf, or (b) performs a comparison between
a targeted feature with a threshold to decide the next destination, e.g., the left child or the right
child. Two common DT realizations are considered here:

• A straightforward realization, named the native tree, uses a loop to iterate over each node
of a tree within a continuous data structure, e.g., arranged by a one-dimensional array. An
example code can be found in Listing 1.
• An alternative realization, named the if-else tree, statically generates if-else blocks. Here, the

split values of a tree are all hard-coded as constant values into the instructions. An example
code can be found in Listing 2.

1 s t r u c t Node {

2 b o o l i s L e a f ;

3 unsigned i n t p r e d i c t i o n ; / / P r e d i c t e d L a b e l

4 unsigned char f e a t u r e ; / / T a r g e t e d f e a t u r e

5 f l o a t s p l i t ; / / T h r e s h o l d

6 unsigned short l e f t C h i l d ;

7 unsigned short r i g h t C h i l d ;

8 } ;

9 Node t r e e [ ] = { { 0 , 0 , 0 , 8 1 9 1 , 1 , 2 } , { 0 , 0 , 1 , 2 0 4 8 , 3 , 4 } , . . ] }

10 b o o l p r e d i c t ( short const x [ 3 ] ) {

11 unsigned i n t i = 0 ;

12 while ( ! t r e e [ i ] . i s L e a f ) {

13 i f ( x [ t r e e [ i ] . f e a t u r e ] <= t r e e [ i ] . s p l i t ) {

14 i = t r e e [ i ] . l e f t C h i l d ;

15 } e l s e {

16 i = t r e e [ i ] . r i g h t C h i l d ;

17 }

18 }

19 return t r e e [ i ] . p r e d i c t i o n ;

20 }

Listing 1. Example for Native tree structure in C++.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 6, Article 68. Publication date: October 2022.
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Fig. 2. Overview of the developed framework. The dashed block is only activated within the optimization of
if-else tree. Here we take input with JSON format and output with C++ format to simplify the presentation.

Based on a given tree-ensemble model, which can be given as a JSON file, we develop a frame-
work to generate optimized code sessions for native trees and if-else trees. As shown in Figure 2,
firstly such abstracted models defined in Section 2 are derived from the given inputs. Afterwards,
depending upon which target is chosen, the proposed optimizations (see Section 4) for different DT
realizations will be conducted correspondingly. For the simplicity of the presentation, we assume
the realization is generated in C++ for the rest of the paper.5

1 b o o l p r e d i c t ( short const x [ 3 ] ) {

2 i f ( x [ 0 ] <= 8 1 9 1 ) {

3 i f ( x [ 1 ] <= 2 0 4 8 ) {

4 return t r u e ;

5 } e l s e {

6 return f a l s e ;

7 }

8 } e l s e {

9 i f ( x [ 2 ] <= 5 1 2 ) {

10 return t r u e ;

11 } e l s e {

12 return f a l s e ;

13 }

14 }

15 }

Listing 2. Example for If-else structure in C++.

Although our optimizations are practiced at the application layer, which rely on the size of each
node to manage the memory layout, architecture-dependent information should also be taken
into consideration. Particularly, unlike in native trees, the node size in if-else trees depends on the
targeted architecture and generated instructions, which can only be determined after the compi-
lation phase. To this end, we analyze possible variances under O3 compilation option and employ
objdump of the standard GNU binary utilities to capture the hardware-dependent information and
improve the accuracy of node size estimation (see Section 5). Further optimizations can be achieved
by the co-design of application and compilation, which is considered out of the scope, so left for
the future work (see Section 8).

3 MEMORY LOCALITY

Due to the significant performance gap between the main memory (DRAM) and the processor,
modern computer architectures have introduced a memory hierarchy. In addition to the main

5The insights of the proposed optimization can be generally applied for any common imperative programming language

like C.
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memory, smaller and faster memory subsystems next to the processors, in the forms of cache and
scratchpad memory, are used to hide the long memory latencies of DRAM. Drepper provides very
insightful discussions about the impact of memory hierarchy on the performance of programs [15].

In this paper, we consider modern computer systems with instruction and data-caches. The key
assumption of the memory hierarchy is the locality:

• Temporal locality: Recently accessed items will be accessed in the near future, e.g., small
program loops
• Spatial locality: Items at addresses close to the addresses of recently accessed items will be

accessed in the near future, e.g., sequential accesses to elements of an array.

Unfortunately, two most common realizations of DTs do not exploit such localities when they clas-
sify a set of input data.

The benefit of the native tree realization is the temporal locality of the program, i.e., executing
a tree is a simple loop with a few lines of codes. However, the accesses to the nodes of the tree
do not have any spatial locality. The execution of a DT follows a unique path from the root to a
leaf, which are stored in memory addresses that are unfortunately arranged discontinuously, if no
attention is made. As a result, the cached data will not be further used, if the distance between each
node of the path is greater than the number of nodes that can be loaded into a cache set at once.

As for the if-else tree realization, since the thresholds and the values needed for a split node
of a tree are all hard-coded into the instructions, this avoids indirect memory accesses and has
a clear advantage of the reduction of the latency. Therefore, the if-else tree realization does not
suffer from missing data locality. However, without awareness of instruction-cache design, the
hard-coded instructions may just be loaded into the instruction-cache once and only used once, so
that the advantage of the temporal locality in the instruction-cache is completely abandoned.

There are three types of cache misses [23], namely compulsory, conflict, and capacity cache
misses, which might be induced by the aforementioned locality issues. The compulsory misses are
due to the first access to a memory block, which by definition is not in cache. The capacity misses

occur when some memory blocks are discarded from the cache due to the limited cache capacity,
i.e., the program working set is much larger than the cache capacity. The conflict misses occur in
set associative or direct mapped caches when several blocks are mapped to the same cache set.

To optimize the caching behavior, the above cache misses should be reduced as much as possi-
ble. Therefore, the realization of a DT should take the layout of the data (in the native tree), the
instructions of the branches (in the if-else trees), and the size of caches of the particular platform
of execution into consideration.

4 OPTIMIZATIONS OF DECISION TREE

So far we have introduced the two standard approaches for realization DTs. In this section, we
present how we optimize these two realizations. First, we discuss the downsides of each realization
regarding their caching behaviour. Afterwards, we present how to optimize the memory layout at
the application layer to benefit the underlying caching process.

4.1 Optimization of Native Tree

As shown in Listing 1 we can realize a DT by placing the nodes sequentially in an array and access
this array by using a simple while loop. We observe that half of the nodes in a tree are leaf nodes,
which only store a prediction value. The naive native realization, however, assumes the same data
type for each node, leading to unnecessary overhead. Second, considering the usage of DTs for
predicting classes, we notice that the data access pattern in the array is mostly non-sequential.
The distance between each accessed element becomes bigger when the depth of targeted nodes in

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 6, Article 68. Publication date: October 2022.
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the DT becomes greater. This phenomenon violates the spatial locality of the array and is harmful
for locality, which may result in high cache misses.

Reducing compulsory cache misses. Nodes are prefetched into the cache sequentially. If we can
reduce the amount of memory each node needs, we can fit more nodes into the cache and thus
reduce compulsory cache misses. For the native realization we recognize that a leaf node only
stores a prediction value, but does not use the pointer to its children, nor does it use the feature
index or the split-value. An efficient way to reduce the memory consumption is to remove all leaf
nodes from this array, and encode the prediction of leaves into the other fields. To achieve this, we
abandon the isLeaf and prediction field of the native solution, but store the prediction of the left
(right) child directly in the respective fields left (right) if the left (right) child is a leaf node. This
method only requires us to layout one array, but offers the same size-reduction as using two arrays.

Reducing capacity and conflict cache misses. As mentioned in Section 3, if no attention is paid,
the nodes stored in memory are arranged discontinuously. Thus, when a node is loaded into the
cache, the nearby nodes should be on the same path to reduce capacity and conflict cache misses.
A sensible way to exploit the data locality is to allocate as many nodes as possible on the same
path into the same cache set.

To do so, we propose the following approach, where τ denotes the cache set size: Let A be the
array in which we place all nodes of T . Furthermore, let C be the candidate list of nodes in T
which have not been placed in A yet and let S denote the nodes which should be placed in the
same cache set. For each node, we greedily choose that child, which has the highest probability
on the current path and try to place it in S. Once S contains τ − 1 elements (thus is full), we
append all nodes form S to the array A, reset S and continue with the next cache set. Algorithm 2
summarizes this method. When adding a new node to S, attention has to be paid, because there
are two types of nodes (Line 7):

• The current node is a split node. Then we pick the next node based on the children’s prob-
abilities and put the more probable child into S and the other child into the candidate
list C.
• The checked node is a leaf node, i.e., it is the end of the path: We pick up a sub-root with the

highest probability from the candidate list C as long as it is not empty. The traverse starts
again until S is full.

If the current S is full before finishing a traverse of a path (Line 14), two children should be put
back to the candidate list C (Line 16). A sub-root which has the highest probability should be
picked up from C for the next new set S. Once a set is finished, the nodes in it will be allocated
into the data array sequentially. To the end, the output of the algorithm is the data array with a
path-oriented layout, in which path-oriented sets are sequentially allocated into the array.

Please note that the proposed approaches in a) and b) both may be applied while realizing the
optimization for native trees. To do so, an additional field is required in the node structure that
indicates whether the prediction is embedded in the respective fields left(right). In Algorithm 2,
the leaf-node case can be skipped technically, whereas the split-node case has to consider this
additional field accordingly.

4.2 Optimization of If-Else Tree

As already mentioned, we can unroll the comparisons of a DT into conditional statements forming
an if-else structure (cf. Listing 2). As the entire tree is transformed into if-else blocks, the execution
features inherent locality compared to native trees, as only the code is accessed during inference.
However, the code size can still exceed the instruction cache and cause cache misses.
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ALGORITHM 2: Optimized native Tree
Input: Tree-nodes T , maximum nodes per set τ
Output: A data array A with the path-oriented layout

1: A = [ ]

2: C ← {0}
3: while C � ∅ do

4: i ← arg maxj ∈C{p (π (j ))}
5: C ← C \ {i}
6: S ← {i}
7: while |S| � τ do

8: if i is leaf-node and C � ∅ then

9: i ← arg maxj ∈C{p (π (j ))}
10: C ← C \ {i}
11: else

12: C ← C ∪ arg min{p (i → l (i )),p (i → r (i ))}
13: i ← arg max{p (i → l (i )),p (i → r (i ))}
14: if |S | = τ − 1 then

15: //this is the last node in S

16: C ← C ∪ {l (i ), r (i )}
17: end if

18: end if

19: S ← S ∪ {i}
20: end while

21: A.append(S)
22: end while

23: return A

Reducing compulsory cache misses. When an instruction cache miss takes place, several in-
structions are sequentially fetched into the instruction cache. When a branch is executed, these
prefetched instructions will possibly not be utilized. If we can increase the chance of actually us-
ing prefetched instructions, we can reduce the number of the compulsory cache misses. How-
ever, DTs are naturally composed of many branches. To reduce the possibility of branch exe-
cutions for tree T , we can traverse all its paths and swap the children of every node i when
p (i → l (i )) ≥ p (i → r (i )). By this way, we can decrease the possibility to branch out of the current
block, which in turn increases the utilization of prefetched code blocks.

Reducing capacity and conflict cache misses. The best case for exploiting the instruction-cache
fully is having all the instructions of the if-else tree loaded into the instruction-cache. However, if
the size of the instructions from the overall tree structure is greater than the size of the instruction-
cache, the cached instructions may be evicted out by loading other instructions due to the capacity
and conflict cache misses. Considering the usage of DTs, we can notice that keeping the instruc-
tions of those nodes utilized frequently in the instruction-cache can improve the utilization of the
cached instructions, resulting in better performance.

With the above idea, we can define a computation kernel containing those nodes which are used
most of time. For example, note that the root node of a tree is used in every case and thus it should
be kept inside the cache all the time. LetK denote the kernel and let s (i ) be a mapping function re-
turning the instruction size of node i . Our objective is to solve the following optimization problem:

K = arg max
⎧⎪⎨
⎪
⎩
p (T )

����
T ⊆ T s.t.

∑

i ∈T
s (i ) ≤ B

⎫⎪⎬
⎪
⎭

(1)
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ALGORITHM 3: Optimized if-else tree
Input: Tree T , Paths P = {π1, . . . ,πM }
Output: Kernel K , Label L

1: swapChildren(T )

2: P ← sortByProbabilities(P)
3: b ← 0

4: for π ∈ P do

5: for i ∈ π do

6: if b + s (i ) > B then

7: Add i to L
8: else

9: Add i to K
10: b ← b + s (i )
11: end if

12: end for

13: end for

where B is a given budget related to the size of the instruction-cache on the targeted architec-
ture. Given K , we can make sure, that these nodes are likely to remain in the cache, whereas the
remaining nodes L = P \ K may be evicted more often.

In order to solve Equation 1 we need to iterate over all possible subsets of T which might be
difficult for large trees. Thus, we propose a greedy approach in which we look at a complete path
from root to leaf node: First, we swap the children depending on their probabilities as already
explained in the former paragraph. Then, we sort all paths in the tree by their probability. After
that, we greedily add a node one by one into K until the accumulated size of the added nodes∑

i ∈T s (i ) is greater than the given budget B. The rest of nodes are all added into L. Algorithm 3
summarizes the presented approach.

Once the nodes are grouped intoK andL respectively, we can use goto statements to break the
sequential generation of if-else blocks: First, we generate if-else blocks for all nodes in K . Once
the left/right child of one of those nodes is in L, a goto statement is generated at the same position
to replace the original if-else statement. Then, the corresponding if-else statements of this node
and its children are all generated into a label block at the end. Listing 3 shows an example based
on Listing 2 by applying Algorithm 3.

5 VARIANCE-AWARE NODE SIZE ESTIMATION

In the previous section, s (·) as a mapping function returning the instruction size of nodes, has to
be designed as precise as possible, so that Algorithm 3 can group nodes into kernels efficiently.
However, the question remains how to estimate the instruction size s (·) of each node. In [9], we
count the number of generated instructions on the targeted architecture in an isolated example
and form a static look-up table for two different types of nodes. By doing so, in fact we take a strict
assumption that same type of nodes results in same code size. However, we should note that the
actual number of instructions may greatly differ depending on how aggressive the compilation
optimization is conducted.

To precisely capture the code size, first we analyze the possible variances from the disassembly,
which can be obtained from the executable binaries by utilizing objdump of the standard GNU
binary utilities. The considered families are x86-64 for Intel; ARMv7 and ARMv8 for ARM. We
narrow our attention on the optimization option O3, which enables all supported optimization,
and discuss the possible variances of generated nodes. Afterwards, we present how we automate
the estimation for the instruction size of tree nodes.
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Table 1. The Initial Size and Variance Thresholds for ARMv7 Processor

Type Initial size First threshold Second threshold Increase size
Int 8 31 1023 2
Short 10 4095 – 4
Char 8 31 4095 2
Float 24 255 – 4

1 b o o l p r e d i c t ( short const x [ 3 ] ) {

2 i f ( x [ 0 ] > 8 1 9 1 ) {

3 i f ( x [ 2 ] <= 5 1 2 ) {

4 return t r u e ;

5 } e l s e {

6 return f a l s e ;

7 }

8 } e l s e {

9 goto L a b e l 0 ;

10 }

11 L a b e l 0 :

12 {

13 i f ( x [ 1 ] <= 2 0 4 8 ) {

14 return t r u e ;

15 } e l s e {

16 return f a l s e ;

17 }

18 }

19 }

Listing 3. If-else structure in C++ with goto statements.

5.1 Variance Analysis of Compiler Optimization

Split Node. We recall that the split nodes of if-else trees are realized by if-else blocks, where a
feature of data is compared with a threshold. Given a split node, we analyze the potential variances
for Intel and ARM processors:

• For Intel, without optimizations, i.e., if option O0 is enabled, there are two possible variances
depending on the child of the split node. If both of the children are leaves, one compare-and-
move instruction (cmovlt or cmovge) will be generated. Otherwise, one compare instruction
(cmpl) and one jump instruction (jg or jle) will be generated. Depending on the value of
the compared feature index and the threshold, the size of the spilt node is ranged from 5 to
12 bytes. Moreover, an optimization will further take place when the child of the split node is
also a split node. If these two split nodes compare the same feature. Two sets of instructions
will be combined into one load instruction and one compare instruction.
• For ARMv7, the generated instructions may differ greatly in terms of length and types, since

the 16 bits thumb instruction set is involved. Figure 3 illustrates the estimation process. First,
the size of a split node depends on the data type, split value, feature, and the children of this
node. Without any optimization, the split node is formed by a load instruction (ldr), a com-
parison instruction (cmp), and a branch instruction (bgt.n or ble.n). The initial size of these
instructions is shown in Table 1. If the split value is larger than 255, a longer comparison
instruction will be generated. If the size of feature is larger than the first threshold, the load
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Fig. 3. Flowchart of ARMv7 node size estimation.

instruction is changed to a longer version. If the feature is larger than the second threshold,
the compiler uses an add instruction (add.w) to assist the load instruction. Finally, if the two
children of the split node are both leaf nodes, a 2 bytes if-then or if-then-equal instruction
(it or ite) will be associated with the generated instructions of leaf nodes, instead of the 4
bytes branch instruction.
• For ARMv8, the variance of generated instructions is rather simple, and each instruction is

always 4 bytes in our study. Usually a node consists of three instructions, load (ldr), compare
(cmp), and branch (b.gt or b.le). Interestingly, if the split value is exactly a power of two,
e.g., exactly equal to 212, a left-shift operation (lsl) will be embedded into the compare
instruction. When the split value is greater than 212, one additional move instruction (mov)
will be generated. Similarly, if the children of a split node are all leaves, a conditional set
instruction (cset) will be associated with the generated instructions of leaf nodes without a
branch instruction.

Leaf Node. We recall that a leaf node in the if-else tree is simply a return statement at the ap-
plication layer. Given a leaf node in the compilation, however, its size might still differ depending
upon the generated instructions.

• For Intel, if the return value is not 0, a move instruction (mov) will be generated to load the
return value into a register. Otherwise, an XOR instruction (xor) operating on a register
itself will be generated.
• For ARMv7, the estimation flow can also be found in Figure 3. If the sibling of the current

leaf node is not a leaf node, the generated instructions will be a move instruction (movgt
or movle) and a branch instruction (bx). If the return value is larger than 255, the size of
the move instruction is increased with 2 bytes. If the sibling is a leaf node, the generated
instruction is only one move instruction without a branch instruction, which is associated
with the if-then instruction mentioned previously.
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• For ARMv8, by default, a leaf node leads to one move instruction (mov) and one
unconditional-branch instruction (ret). However, the node type of its sibling determines
the possible optimization. If the sibling is a leaf node, the generated instruction is only
one unconditional-branch instruction, which is associated with a conditional-set instruction
(cset) from its parent split node. Moreover, the leaf nodes which return the same value might
be omitted technically by branching the corresponding split nodes to the same destination.

Overall, the aforementioned optimizations are automatically conducted by the compiler as long
as the condition is met. Hence, the node size estimation should be aware of the possible variances.
In the following section, we present how to estimate the node size in a node-wise manner and take
the possible variances into consideration.

5.2 Variance-Aware Estimation

To estimate the code size for each node precisely, we prepare a table containing the size of each
node for s(·) before the optimization of if-else tree. For each DT, we iterate and estimate over all
nodes sequentially according to their node types and contents, i.e., compared features and return
value, reflecting the corresponding optimization variances. The real content of each node is pre-
generated into a dummy function in C++ for the following analysis and automation. This node-
wise estimation simplifies the analysis by only considering the content of the checked node and
the type of its children without requiring further information.

1 _ _ a t t r i b u t e _ _ ( ( s e c t i o n ( " l e a f _ 5 " ) ) ) unsigned i n t t e s t 5 ( f l o a t const pX [ 1 1 ] ) {

2 return 2 ;

3 }

4 _ _ a t t r i b u t e _ _ ( ( s e c t i o n ( " l ea fEmpty " ) ) ) void emp ( i n t const pX [ 1 1 ] ) { }

Listing 4. Examples of dummy and targeted functions for a leaf node.

We employ objdump from the standard GNU binary utilities with flag “-h”, by which the size
of each session can be profiled. Each node is realized as one annotated function, by which a
self-defined section can be later recognized in the output of objdump and the corresponding in-
structions will be partitioned into. As we are interested in the increased size of each node for
Algorithm 3, instead of the size of the whole function, dummy split and leaf nodes are prepared
with empty functions, by which the size of instructions from the function frame can be captured
as well.

Listing 4 and 5 are the examples of targeted functions and a dummy functions for leaf and split
nodes, respectively. In Listing 4, the increased size of a leaf node is only contributed by a return
instruction “return 2;”. Therefore, during the calculation for possible variances, according to the
above analyses, the actual increased size contributed by this node can be obtained by subtracting
the size of dummy leaf node. Likewise, the increased size of a split node “split_0” can be obtained
by subtracting the size of a dummy split node from the calculated size of the targeted split node as
well. Please note that the optimization analyzed in Section 5.1 might also take place on the targeted
function of each single node. Therefore, the dummy function for split nodes contains a template of
a split node, i.e., an if-else statement with a non-zero return value, and the real content of targeted
split node is embedded in the if statement as a sub-level to ensure that the size estimation for each
node is not further affected by the compilation optimization.

Alternatively, a variance-estimation can also be achieved without involving objdump and
dummy functions to simplify the estimation procedure. For example, the possible generated in-
structions in ARMv7, can be identified earlier at the application layer with the flowchart shown
in Figure 3. Both approaches are provided in the developed framework. Eventually, the node size
s(·) for each tree node can be precisely derived and adopted in Algorithm 3. For the rest of the
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Table 2. Evaluation Systems

Intel Server ARM Server Intel

Embedded

ARM

Embedded

System Dell PowerEdge
R430

Gigabyte
R181-T90

Digital Loggers
Atomic PI

Hardkernel
Odroid C2

CPU Intel Xeon
E5-2650L v4

Cavium
ThunderX2 99xx

Intel Atom
x5-Z8350

Amlogic S905

Spped 2.5 GHz 2.5 GHz 1.92 GHz 1.54GHz
RAM 62 GB 251 GB 1.9 GB 1.7 GB
L1 (i/d) cache 32 kB/32 kB 1.8 MB/1.8 MB 32 kB/24 kB 32 kB/32 kB
L2 cache 256 kB 14 MB 1 MB 512 kB
L3 cache 36 MB 64 MB - -
Compiler

target

x86_64-linux-
gnu

aarch64-linux-
gnu

x86_64-linux-
gnu

aarch64-linux-
gnu

Compiler

version

gcc 8.3 gcc 9.3 gcc 8.3 gcc 9.3

1 _ _ a t t r i b u t e _ _ ( ( s e c t i o n ( " s p l i t _ 0 " ) ) ) unsigned i n t t e s t 0 ( f l o a t const pX [ 1 1 ] )

2 {

3 i f ( pX [ 0 ] <= 2 0 ) {

4 i f ( pX [ 7 ] <= 0 . 9 9 1 7 5 5 0 0 8 6 9 7 5 0 9 8 ) {

5 return 1 0 ;

6 }

7 e l s e return 4 0 ;

8 }

9 e l s e return 3 0 ;

10 }

11 _ _ a t t r i b u t e _ _ ( ( s e c t i o n ( " s p l i t E m p t y " ) ) ) unsigned i n t sp_emp ( f l o a t const pX [ 1 1 ] )

12 {

13 i f ( pX [ 0 ] <= 2 0 ) {

14 return 1 0 ;

15 }

16 e l s e return 3 0 ;

17 }

Listing 5. Examples of dummy and targeted functions for a split node.

paper, we only consider ARMv8 instruction set, so that we can compare the results of optimized
realizations on server-class and embedded systems with ARM processors.

6 EVALUATION

In order to evaluate the aforementioned optimizations for DTs, we generate various configurations
and compare them on different hardware platforms. We focus on both, the server domain and the
embedded systems domain. For both system classes, we consider Intel and ARM, which are the
two most common architectures nowadays.

Table 2 details the configuration of the four considered systems, which are compared throughout
this evaluation. Please note that the considered embedded systems not only feature smaller main
memory but also have lower clocking frequencies than the server-class systems. Furthermore, they
also lack an L3 cache memory. To minimize external noise, we execute inference of test datasets
one by one in single core execution in isolation on each system. We compile each experiment as a
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Table 3. Summary of Data Sets for Our Experiments
Based on UCI Data Sets [27]

Dataset # Examples # Features Accuracy

adult 8141 64 0.85 - 0.86
bank 10297 59 0.88 - 0.89
letter 5000 16 0.71 - 0.95
magic 4755 10 0.82 - 0.85
satlog 2000 36 0.87 - 0.91
sensorless 14628 48 0.90 - 0.99
spambase 1151 57 0.93 - 0.95
wine-quality 1625 11 0.57 - 0.70

self containing binary and execute it under architectural performance measurement with the perf
framework [20]. We extract the total number of L1 instruction cache misses6 and the total elapsed
time from each experiment and use them for comparison.

For our experiments we train random forests (RF) with a variable maximum tree depth and a
variable amount of trees. Table 3 shows the considered datasets from the UCI Machine Learning
Repository [27]. We limit our selection of datasets since we conduct evaluation on a broad land-
scape of test systems7. We train each RF configuration on each dataset and store the trained forests
as generic JSON files. For training, we use the CART algorithm with the Gini-Score criterion for
node-splitting and trained models through the sklearn package [35]. If the respective data-set
comes with a pre-computed train/test split we use this during training. Otherwise, we use 75% of
the data for training and 25% of the data for testing. The probability of each node is profiled during
training. In addition to the number of features and the number of examples during test-time, we
also report the range of accuracy. Please note that we do not perform any hyperparameter opti-
mization with respect to the classification accuracy, but report the accuracy here to validate our
tool-chain.

Subsequently, we import these JSON files into our optimization framework to generate a self-
containing C++ realization for each dataset and ensure that optimized trees retain their accuracy:

• naive: This naive native placement takes the trees as they are and places them as a native
tree in subsequent memory arrays in a breadth-first-search manner. Tree nodes are hereby
placed layer wise, regardless of any profiled probability.
• optnative: This optimized native tree realization removes isLeaf and prediction field

from the node structure, removes all leaf nodes from the node array, and encodes these leaf
contents into the respective split nodes. Afterwards, Algorithm 2 is employed to optimize
the memory layout of the native tree.
• stdifelse: This realization transforms the trained tree model into a standard realization of

an if-else tree, ignoring profiled probabilities from the training.
• optifelse: This realization employs Algorithm 3 for optimizing the memory layout of the

respective standard if-else tree. This includes the variance-aware estimation of node sizes
presented in Section 5.

6The ARM embedded system (Odroid C2 from Hardkernel) does not implement L1 icache miss counting in perf.
7Some datasets used in the baseline are omitted, since the corresponding models cannot be simply executed on resource

constrained embedded devices.
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Fig. 4. Accuracy for Intel processor. Fig. 5. Accuracy for ARMv8 processor.

Please note that, sklearn uses a probability-based majority vote, whereas we weigh all votes
equally. Thus, final predictions may differ, but we could not detect any significant change in the
final accuracy. Also note that, sklearn always produces floating-point split-values. For data-sets
with integer features (e.g., the letter dataset) this is rounded down towards the next integer to
circumvent the use of floating-point, which does not change the accuracy neither.

We note that the performance of our realization compared to sklearn might be of interest, since
sklearn is arguably one of the most-used machine learning library and thus well-known to many
practitioners. We found that our realization is on average 500 − 1500 times faster than sklearn.
However, we admit that this comparison is biased, because large parts of sklearn are written in
Python and optimized for batch execution instead of real-time inference. Therefore, we focus the
remaining evaluation on the analyzed realizations and optimizations.

6.1 Accuracy of Code Size Estimation

First, we evaluate the efficiency of the variance-aware estimation (VA) by comparing the es-
timated size of if-else trees with the static node size table as derived in [9] (Static), where the
estimated size is accumulated by the estimated size of each node. As a baseline, we consider the
actual code size reported by the objdump and normalize both estimated values with it to form
the accuracy metric.

Figure 4 and 5 show the estimation accuracy, i.e., the estimated size normalized with the actual
size, in box plots for given DTs in RFs, under two datasets, i.e., adult and bank, for Intel and ARMv8,
respectively. The median of those derived DTs from RF is colored red. The blue box represents
the interval from the first to the third quartile, while the black whiskers show the minimum and
maximum of all of the data.

As shown in Figure 4, we can see that VA is way more accurate than Static for Intel processor.
Specifically, under Bank dataset, Static may perform really worse (up to ≈ 5x), whereas the accu-
mulated size of VA is really close to the actual tree size. For ARMv8, VA also outperforms Static

as shown in Figure 5. Interestingly, Static performs closer to the actual code size for ARMv8, com-
paring to the derived results for Intel processor.

In general, we can conclude that VA outperforms Static regardless of targeted architectures.
We empirically show that using constant values statically for the mapping function s (·) is not
adequately accurate, which might consequently reduce the efficiency of if-else tree optimization,
i.e., Algorithm 3. For the rest of the evaluation, we always adopt VA for the mapping function s (·)
to maximize the efficiency of if-else tree optimization.

6.2 Budget Evaluation

Although the optifelse mapping algorithm profiles the size of single nodes precisely, the budgetB
used in Algorithm 3 remains a system dependent parameter for each kernel. This parameter cannot
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Table 4. Random Forest Model Sizes

Max. tree depth Number of trees x86_64-linux-gnu size aarch64-linux-gnu size

6 150 88 kB - 260kB 96 kB - 259 kB
8 150 185 kB - 758 kB 190 kB - 762 kB
10 150 294 kB - 1.64 MB 296 kB - 1.65 MB
12 150 388 kB - 2.71 MB 390 kB - 2.76 MB
14 150 474 kB - 3.71 MB 480 kB - 3.82 MB
16 150 548 kB - 4.47 MB 558 kB - 4.63 MB
18 150 603 kB - 4.91 MB 623 kB - 5.52 MB
20 150 640 kB - 6.22 MB 660 kB - 5.51 MB

15 5 9.73 kB - 87.1 kB 10.3 kB - 89.3 kB
15 10 63.2 kB - 501 kB 64.2 kB - 517 kB
15 25 128 kB - 1.00 MB 129 kB - 1.04 MB
15 50 252 kB - 2.04 MB 257 kB - 2.11 MB
15 100 379 kB - 3.09 MB 389 kB - 3.19 MB
15 150 511 kB - 4.17 MB 524 kB - 4.31 MB
15 200 648 kB - 5.15 MB 661 kB - 5.32 MB
15 400 775 kB - 6.20 MB 790 kB - 6.40 MB

directly be deferred from the system datasheet, since cache replacement policies and scheduling
decisions can have potential influence on the final behaviour of the caches. Therefore, we perform
a series of experiments with various budget sizes on all systems to experimentally determine the
appropriate budget size. We split the experiments into two sets, one where we fix the number of
trees within the ensemble to 150 and only increase the maximal depth of each single tree from
6 to 20. This set investigates the impact in tree shape and single tree size. In the second set, we fix
the maximum tree depth to 15 and increase the number of trees within the ensemble from 10 to 400.
This set increases the total model size, while keeping the shapes of single trees similar. To provide
intuition on the total model sizes of these parameter configurations, we report the real model size
for all tested configurations in Table 4. We acquire these numbers by scanning the total size of all
tree inference functions in the compiled binary files. We average this size over all tree optimization
strategies and report the smallest and biggest model each within all datasets. It can be seen that
for both sets we have configurations which at most use few kilobytes up to configurations, which
use few megabytes and therefore exceed the capacity of L1 Caches.

Figure 6 depicts the recorded amount of L1 instruction cache misses over various tree depth and
150 trees in the ensemble as a normalized value to the amount of L1 icache misses of the stdifelse

realization. Since the ARM embedded system does not implement counting of L1 icache misses
directly, we omit the discussion of the ARM embedded system here. The plotted points indicate the
mean value across all datasets, the vertical bars indicate the deviation, respectively. To account for
large variances across the different datasets we normalize the number of icache misses with respect
to stdifelse, e.g., a point at 0.5 means 50% of the L1 icache misses of the baseline. In addition to the
stdifelse realization, the optifelse realization with different budgets is included in the results. We
conduct the experiments on a wide range of budgets. In order to provide better clarity in the figures,
however, we only include three representative budget sizes for each systems, i.e., 128, 1024, and
16384. For the server-class systems, a budget size of 1024 achieves the best reduction of L1 icache
misses, especially for deeper trees, while for the embedded systems a budget size of 256 delivers a
good reduction, especially for smaller trees. In general, the budget size has a higher influence on
the server-class systems than on the embedded systems.
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Fig. 6. Budget evaluation for variable tree depth.

Moreover, when fixing the tree depth and varying only the number of trees within the ensemble
(Figure 7), similar results can be observed. For the server-class systems, similarly, a budget size of
1024 turns out to reduce L1 icache misses the most, for embedded systems only small differences in
the chosen budget size can be observed. However, 256 turns out to be a good choice again. For the
rest of the evaluation, therefore, 1024 and 256 are set as the budget size B for server-class systems
and embedded systems, respectively.

6.3 Execution Time Evaluation

The previous evaluation on the reduction of L1 instruction cache misses reveals that our proposed
optimized if-else tree placement reduces L1 icache misses by up to 40% already, compared to the
stdifelse realization. The improvement in terms of execution time, however, does not solely de-
pend on reduction in these L1 icache misses. Indeed, it is not obvious in which relation L1 icache
misses and execution time resides. To this end, we measure the allover elapsed time of our executed
experiments under different RF configurations. We stick to the experimentally determined budget
size of 1024 for server-class systems and 256 for embedded systems. As a baseline, we consider the
naive realization, since this is the simplest considerable realization. We compare this baseline to
the optnative realization, the stdifelse realization and our optifelse realization.

Figure 8 illustrates the reduction in execution time when keeping the number of trees fixed and
the maximal tree depth varying. It can be observed that for the server-class systems, the optimized
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Fig. 7. Budget evaluation for variable number of trees.

if-else tree realization clearly dominates the other realizations. The execution time can be reduced
by up to 75% in comparison to the naive realization, which makes a speedup of 4x. On the ARM
Server it can be observed that the optnative can achieve a better execution time in comparison to
optifelse, when it comes to deeper trees. The optifelse realization in this case, however, still saves
more execution time. For embedded systems, in contrast, the optifelse realization only saves more
execution time for rather small trees. For deeper trees, the optnative realization can achieve better
results as the optifelse realization, i.e., 3x speed up on average. It should, however, be noticed, that
the results of the optnative realization reside in the deviation band of the optifelse realization
for most configurations. Thus, this effect also depends on the considered dataset.

Considering the fixed tree depth and a variable number of trees (Figure 9), similar observations
can be made. For server-class systems the optimized if-else tree realization achieves the best re-
duction in terms of execution time. For embedded systems, however, this can be observed at most
for rather small models. The optnative and optifelse realizations achieve similar improvements
for bigger models here as well.

6.4 Discussion

The experiments and results highlight several interesting trends and insights. First of all, it can be
observed that the Intel and ARM CPU architecture confront similar trends for servers, and also
for embedded systems. The main difference in the systems we consider here is the presence of
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Fig. 8. Time evaluation for variable tree depth.

significant L3 cache for the server-class systems. The server-class systems are farther equipped
with fast DDR4 RAM, while the embedded systems load memory contents from low power mem-
ory when a cache miss occurs. The evaluation results reveal that the optifelse realization exploits
this additional potential on the server-class systems well and achieved a better performance im-
provement compared to the optnative realization.

Generally, it can be observed that the improvement in terms of elapsed time for server-class
systems follows different trends. Please note that even the biggest models entirely fit into the L3
cache on both of server-class systems. For the embedded systems, in contrast, it can be observed
that the optimization strategies improve the execution time further for bigger model sizes. These
bigger models do not fit into the L2 cache of both of embedded systems and thus expensive memory
accesses have to be performed, which are reduced by the presented optimization.

For the embedded systems, the optifelse realization cannot exploit hardware properties so far
and achieves comparable low, partially worse results than the optnative realization. This draws
the conclusion that the question of whether using optifelse or optnative is not necessarily an
architecture-dependent question, but rather a question of available system resources. For trees
with a small depth, for instance, if-else trees can be still better optimized on embedded systems
than native trees. Therefore, also the question of model size and model complexity needs to be
considered when choosing between if-else and native trees.

Another system dependent aspect, which has to be considered, is the choice of the appropriate
budget size for the optifelse realization. Our experiments report that the budget size can have
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Fig. 9. Time evaluation for variable number of trees.

a rather large influence on the reduction of L1 icache misses. If this size is not chosen carefully,
improvement in the execution time can be marginal. Thus, the budget size has to be profiled, to
achieve significant results, especially for smaller models.

7 RELATED WORK

The realization of a given DT ensemble has been studied in literature. For example, Van Essen
et al. present a comprehensive study of different architectures for realizing RFs on CPUs, FPGAs,
and GPUs [39]. Based on the CATE algorithm, Prenger et al. train an RF with DTs constrained
by a fixed height and show an effective pipelining approach for executing DTs on CPUs, FPGAs,
and GPUs [36]. Nakandaka et al. propose a framework, which compiles decision trees into tensor
operations in order to exploit parallelism [33].

Asadi et al. introduce different realization schemes of tree-based models in the context of
learning-to-rank tasks [1]. They mainly introduce the two different realization schemes: The first
one uses a while-loop to iterate over individual nodes of the tree (native tree), whereas the second
approach decomposes each tree into its if-else structure (if-else tree). For the first realization, the
authors also consider a continuous data-layout (i.e., an array of structs) to increase data locality
but do not directly optimize each realization. Also, note that the authors mainly consider gradient
boosted trees, at which the individual trees are usually “weak” in a sense, that they are comparably
small, as opposed to larger trees in RFs.
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In the context of ranking models, Lucchese et al. present the QuickScorer algorithm for gradient
boosted trees [12]. In this approach, the authors discard the tree structure but decompose each
tree into its comparisons. Then, they sort the comparisons of the entire ensemble according to the
feature value and perform them one after another instead of traverse trees in a classical sense. To
do so, they introduce a 2Δ dimensional bit vector, where Δ is the height of a tree in which the most

significant bit (MSB) signifies the prediction leaf node of that tree. This way, the algorithm can
reuse comparisons across all ensemble members while minimizing cache misses. Lucchese et al.
further enhance their method by adding vectorization over multiple examples for more efficient
batch-processing [31]. To mitigate the limitations of a fixed height, Ye et al. propose to use an
encoding scheme called epitome which they decode on-the-fly while also keeping the vectorization
over the examples [41]. We note that while these methods usually offer a tremendous speed-up,
they execute all possible comparisons in the entire ensemble in the worst case. Thus, they are
especially effective for large ensembles of smaller trees commonly produced by gradient boosting
algorithms. In a sense this approach is complementary to our approach which focuses on larger
trees as commonly found in random forests.

Kim et al. present a realization for binary search trees using vectorization units on Intel CPUs
and compare their realization against a GPU realization [24]. The authors provide insight on how
to tailor the realization to Intel CPUs by taking into account register sizes, cache sizes, and page
sizes. Their work is specialized for Intel CPUs and thus it is not directly applicable for different
CPU architectures. Lucchese et al. already have noticed that many nodes are seldom visited [29].
Buschjäger and Morik formalize this observation by estimating the probabilities of specific paths
during tree traversal [10]. Based on this probabilistic view of model execution, the authors consider
different realization schemes for tree traversal and theoretically analyze their execution time. Note,
however, that this model of computation remains at the software level and does not include the
memory layout.

Estimation of the program code size has been an effective approach for compiler optimizations.
Debray et al. [13] and Dreweke et al. [16] also demonstrate that the estimation of the code size
can also be used for the procedural abstraction techniques for code size reduction in the compiler
optimizations. Similar as in Section 5, Hakert et al. also annotate the observed sessions [21]. In
order to recognize the sessions for further memory access analyses, debug symbols are added
during compilation, whereas we annotate directly on each function representing each node at the
application layer.

Designing algorithms to be cache-aware and exploit the memory architecture is a widely studied
field, a summary of commonly used approaches is described by Kowarschik and Weiß [25]. The
general concept of benefiting locality of memory accesses has to be applied specifically for certain
algorithms, as presented in this paper.

8 CONCLUSION

Data collection has become ubiquitous, and a plenitude of resource-constrained devices are now
not only gathering but also processing data. Thus, the efficient application of pre-trained models
becomes increasingly important. Particularly, tree-ensembles have been widely used for many
real-time applications.

In this paper, we optimized the memory layout for two most common tree realizations, i.e.,
native and if-else trees, at the application layer. In a nutshell, we observe that the allocation of
nodes in the memory does not align with the assumption of using cache memories. Therefore, we
propose the cache-aware realizations and systematically create the memory-locality by following
the probabilistic view of DT execution.
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Since the properties of provided cache memories and the size of generated code may greatly dif-
fer depending on the underlying CPU architectures, our optimizations employ a few architecture-
dependent parameters to take their impacts into account. Towards this, we further develop an
automatic size estimation to capture possible variances induced by GNU architecture-dependent
compiler optimizations and estimate the size of tree nodes precisely.

Our evaluation compares the cache misses and the elapsed time after applying our optimizations
with the baseline naive tree realization over server-class and embedded systems for Intel and ARM
processors. The proposed optimization for if-else tree realizations indeed can reduce L1 instruction
cache misses. For the elapsed time, our optimizations achieve 75% reduction for server-class sys-
tems with optimized if-else trees, and 70% reduction for embedded systems with optimized native
trees.

Outlook: Although our optimizations can greatly reduce the elapsed time for two common DT
realizations, we have not yet automated the selection of parameters according to the size and com-
plexity of trained models. As can be observed from the evaluation, there are many parameters,
i.e., tree depth, number of trees in the ensemble, and budget, that can eventually result in various
speedups. The selection procedure for such parameters can be further automated in future work,
together with the optimization conducted offline. A more thoughtful co-design between applica-
tion and compiler should be further achieved to take more hardware dependent information into
account, and which would result in more efficient tree realizations eventually.
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