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ABSTRACT
Pubic transport is one of the most impacted sectors by the COVID-19 pandemic. Public trans-
port services have experienced a reduction in passenger demand. Notwithstanding this, the social
distancing regulations that require public transport service providers to operate under reduced pas-
senger loads stretch the available operational resources. As a consequence, there is an urgent
need for new public transport planning tools that can adapt the service supply to the passenger
demand. This study proposes a bi-level model for setting the frequencies of public transport lines
while accounting for the reduced vehicle capacities due to the pandemic. The upper-level model
is a mixed-integer quadratic programming model that sets the line frequencies while accounting
for the in-vehicle crowding, whereas the lower-level model is a nonlinear model that performs a
probabilistic user-equilibrium passenger assignment. We demonstrate the benefits of our approach
for two bus lines in Twente, the Netherlands, using smart card data from the early stages of the
pandemic.

Keywords: COVID-19; frequency settings; pandemic-imposed capacity; public transport.
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INTRODUCTION
Public transport is one of the most affected sectors by COVID-19 in the transportation ecosys-
tem. During the first wave of the pandemic, public transport service providers around the world
encountered a major reduction in passenger demand that was as much as 80%-90% in major cities
in China, Iran and the United States, and as much as 70%-85% in Europe and the United Kingdom
(1, 2). This initial ridership drop was a result of changes in travelers’ behavior, government reg-
ulations, and shifts in work practices, including home office (3–5). After the first pandemic wave
and the strict lockdowns implemented in countries around the world, there is an incessant alter-
ation between easing and tightening the travel restriction measures based on the transmission rates
of COVID-19. At a high level, we have two distinctively different phases in the public transport
sector, as described in the review studies of (6) and (7):

(1) the strict lockdown phase where travel is reduced to essential trips only;
(2) the easing phase where travel restrictions are revoked, but passengers should still com-

ply with social distancing rules when inside closed spaces - including public transport
vehicles.

In the strict lockdown phase, the passenger demand is drastically reduced and the public
transport service providers are heavily subsidized to continue offering a minimum level of service.
In the easing phase, the increase of travel demand poses a considerable challenge to public transport
service providers that need to comply with the pandemic-imposed capacity regulations without
having the appropriate resources. There are several examples where the public transport sector is
scrutinized as one sector that potentially leads to an increase of virus transmissions because public
transport service providers cannot ensure that the passenger loads inside vehicles remain below a
safe level (6, 8). In this study, we call the maximum in-vehicle passenger load that is allowed due
to the COVID-19 restrictions pandemic-imposed capacity. The pandemic-imposed capacity can
be significantly lower than the nominal capacity of a public transport vehicle and might lead to a
high number of unserved passengers who are not allowed to board public transport vehicles; thus,
resorting to private means of transportation (9, 10).

This study focuses explicitly on the ongoing easing phase of the lockdown where the public
transport travel demand increases and the available supply might not be enough to ensure that the
pandemic-imposed capacity is maintained during peak times of the day. Our approach introduces a
bi-level frequency setting and passenger assignment model that distributes the available vehicles to
public transport lines in an optimal way taking into consideration the pandemic-imposed capacity.

The remainder of this study is structured as follows: in section 2 we present the past lit-
erature and the contribution of the study. In section 3 we introduce our bi-level network-wide
frequency setting model that considers the pandemic-imposed capacity. In section 4 we introduce
our case study and we perform experiments using smart card data from two bus lines in Twente,
the Netherlands. Finally, section 5 concludes our work and provides future research directions.

LITERATURE REVIEW
Frequency setting models set the optimal service frequencies of public transport lines based on the
trade-off between the passenger-related costs (i.e., passenger waiting times and in-vehicle crowd-
ing) and the operational costs (i.e., number of vehicles and drivers needed to operate the service) -
see (11–15). Of particular interest are analytic approaches that determine the frequency of a single
service line based on capacity-related constraints, such as the maximum load point method (16). In
the maximum load point method, the frequency of a service line within a time period with homo-
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geneous passenger demand can be easily determined by dividing the total load of passengers at the
stop with the highest load by the capacity of the available vehicles. This results in a closed-form
expression and the optimal service frequency can be graphically determined by plotting the total
passenger load at each stop. Although the maximum load point method is intuitive and easy to use,
there are more comprehensive mathematical models in past literature that try to set the optimal
frequencies based on several criteria.

The works of (17, 18) consider several criteria, but focus solely on setting the frequency
of a single public transport line. Yu et al. (11) proposed a genetic algorithm metaheuristic to ap-
proximate the solution of the frequency setting problem considering the objective of minimizing
the total travel time of passengers subject to fleet size limitations. Sun and Szeto (19) introduced a
bi-level program to optimize fare and frequency settings. To solve their problem, they proposed a
sensitivity-based descent search solution method. Bertsimas et al. (20) focused also on the joint fre-
quency setting and pricing optimization problem. They developed formulations for minimizing the
system’s waiting time in multimodal networks while accounting for operator budget constraints,
capacity constraints, and passenger preferences.

Cipriani et al. (21) considered the joint problem of frequency setting and route design.
Because of the complexity of their problem formulation, they resorted to heuristics such as genetic
algorithms for finding a sub-optimal set of routes and line frequencies. Combining the route design
and frequency setting problems covers both the network design phase, which is part of strategic
planning, and the frequency setting phase, which belongs to tactical planning (22). Szeto and Wu
(12) and Szeto and Jiang (23) have also studied this problem with the use of a genetic algorithm in
the former study and an artificial bee colony metaheuristic in the latter study. A genetic algorithm
was also used by (24) and (25) that tackled the same problem. Finally, recent approaches have
tried to alter the pre-defined routes of public transport lines when setting the service frequencies
resulting in short-turning lines that may skip a number of stops (26–29).

Past studies have also considered the impact of passenger demand variations in the mathe-
matical formulation of the frequency setting problem. Gkiotsalitis and Cats (30) proposed a mathe-
matical model and a solution approach combining branch and bound with sequential quadratic pro-
gramming to solve the frequency setting problem in the case of travel time and passenger demand
uncertainty. Li et al. (31) considered also stochastic demand, travel times, and boarding/alighting
times by employing a metaheuristic to compute an approximate solution. The passenger demand
and dwell time variations were also considered in the work of (32).

Summarizing the relevant literature, it is evident that there are five broad categories rel-
evant to our problem: (i) analytic frequency setting methods for single lines, (ii) mathematical
programming frequency setting methods for single lines, (iii) frequency setting and fare/pricing
optimization approaches, (iv) frequency setting and network design approaches, and (v) stochastic
frequency setting approaches that consider the variations of travel times and passenger demand.
The closest prior arts to our work are past studies that belong to categories (ii) and (iii) since we
also propose a mathematical model for frequency setting while considering additional decision
variables from the passenger demand-side. In contrast to the approaches employed in (ii) and (iii),
our problem formulation does not focus solely on the trade-off between revenues and operational
costs but it also incorporates the pandemic-imposed capacity due to COVID-19. The specific con-
tributions of our study are as follows:

1. the development of a bi-level model that comprises of a scalable mixed-integer quadratic
programming model for the frequency setting problem that accounts for the pandemic-
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imposed capacity (upper-level), and a probabilistic nonlinear programming model for
the passenger assignment (lower-level);

2. the investigation of the improvement potential from the implementation of the proposed
approach in two bus lines in Twente, the Netherlands, using smart card data from the
pandemic era.

NETWORK-WIDE FREQUENCY SETTING MODEL THAT CONSIDERS PHYSICAL
DISTANCING
We model the network-wide frequency setting problem that considers social distancing as a bi-level
problem. The upper-level model determines the optimal network-wide line frequencies considering
social distancing by minimizing the vehicle deployment costs and the revenue losses due to un-
served passengers, and the lower-level model gives an equilibrium passenger demand distribution
across different lines by minimizing the expected total travel time of passengers. This interaction
game can be represented in a general form as the following bi-level programming problem:

(U0) min
x

F(x,y) (1)

s.t. G(x,y)≤ 0 (2)

where y = y(x) is implicitly defined by:

(L0) min
y

f (x,y)

s.t. g(x,y)≤ 0

The bi-level programming model consists of two sub-models: U0 which is defined as the
upper-level problem and L0 which is the lower level. F(x,y) is the objective function of the upper
level decision-maker (public transport service provider) that has x as a decision vector. G(x,y) is
the constraint set of the upper-level decision vector. In our case, this constraint set is the expected
hourly passenger demand Bt

l,r,sy at hour t for passengers of user group r that travel from the origin
stop s to the destination stop y using service line l. The values of Bt

l,r,sy are determined by solv-
ing the lower-level passenger assignment problem. f (x,y) is the objective function of lower-level
decision-makers (passengers), y is their decision vector (response function), and g(x,y) is the con-
straint set of the lower-level decision vector (in our case, this constraint set refers to the optimal
frequencies fl of each service line l that are determined by the upper-level model). This response
function connects the upper and lower-level decision variables by solving the models iteratively
until convergence (Fig.1).
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FIGURE 1 Process diagram of the bi-level network-wide frequency setting model embedding
a user equilibrium assignment model.

We proceed with presenting first the upper-level network-wide frequency setting model that
considers social distancing (section 3.1) followed by the lower-level passenger assignment model
(section 3.2).

Upper-level Model: Network-wide Frequency Setting
Let us consider a set of lines L = {1, ..., l, ..., |L|} operating in a public transport network (e.g.,
bus network). Each line l serves a number of bus stops Sl = {1,2, ..., |Sl|}. In the upper-level
problem, we set the frequencies of all service lines for a time period P which can be a morning
period, an afternoon period, or an evening period. Time period P is typically longer than one hour
because service lines do not change frequencies so often. A time period P typically consists of
multiple hourly sub-periods t ∈ P that operate under the same frequency but might exhibit different
passenger demand levels. In the upper-level model, we use as input the hourly passenger demand
Bt

l,r,sy for any origin-destination pair s,y of user group r that uses line l ∈ L for any hour t ∈ P. The
line-specific passenger demand Bt

l,r,sy for every hour t ∈ P is determined by solving the lower-level
passenger assignment problem described in section 3.2. Before introducing our nomenclature, we
list the main assumptions of our study:

(1) The passenger arrival rate is stable within each 1-hour period of the day. That is, passen-
ger arrivals at stations are uniformly distributed within each 1-hour period (a common
assumption used by the maximum load point method and (17, 33, 34)).

(2) Public transport service providers should offer at least a minimum level of service, e.g.,
one trip per hour, even if the passenger demand of a service line is very low due to
COVID-19.

Note that the focus of this study is on bus networks because our case study involves two
high-demand bus lines. The detailed nomenclature of the upper-level network-wide frequency
setting model that considers the pandemic-imposed capacity is presented in Table 1.
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TABLE 1 Nomenclature

Sets

L = 〈1, ..., l, ...|L|〉 set of public transport lines
R = 〈1, ...,r, ...|R|〉 set of user groups that use the public transport services (e.g., students, adults,

elderly)
Sl = 〈1,2, ..., |Sl |〉 ordered set of public transport stops served by line l ∈ L (note that a bi-directional

line is considered as a single line that continues its service in the opposite direction)
P = 〈1,2, ..., t, ...〉 set of hourly time periods t ∈ P that operate under the same frequency. The upper-

level model seeks to find the optimal line frequencies for time period P

Parameters

Bt
l,r,sy expected hourly passenger demand during hour t ∈ P of user group r ∈ R at stop s

for passengers whose destination is y and are willing to use line l
Tl round-trip travel time of line l ∈ L considering both directions in case of a bi-

directional line
kl pandemic-imposed capacity limit indicating the maximum allowed passenger load

inside each bus operating in line l
W cost of deploying an extra bus
Mr fare price per km traveled for user group r ∈ R
Fr fixed minimum fare when entering the bus for user group r ∈ R
dl,sy traveling distance between bus stops s and y of line l ∈ L
N number of available vehicles that can be allocated to all lines
hmin

l minimum headway of line l, where hmin
l > 0 to ensure that we do not deploy ex-

cessively many vehicles to line l resulting in bus bunching
hmax

l maximum possible headway of line l to ensure that the assigned vehicles to line l
offer a minimum level of service to passengers

Variables

xl number of vehicles assigned to line l ∈ L
hl time headway among successive vehicles of line l ∈ L
γ t

l,s in-vehicle passenger load of each vehicle serving line l during the t-th hour when
it departs from stop s

bt
l,r,sy hourly passenger demand of user group r between stops s and y of line l that can

be served by the vehicles of line l while conforming to the pandemic-imposed
capacity limits

bt
l,sy aggregated hourly passenger demand of all user groups between stops s and y of

line l that can be served by the vehicles of line l while conforming to the pandemic-
imposed capacity limits

b̃t
l,r,sy hourly passenger demand of user group r between stops s and y of line l that cannot

be accommodated by line l due to the pandemic-imposed capacity limit kl
fl service frequency of line l ∈ L

To derive the optimal allocation of vehicles to service lines, we use the following hierarchy
in the decision-making process:

(i) if the passenger demand does not exceed the pandemic-imposed capacity limits of vehi-
cles, then our objective is to reduce the number of assigned vehicles as much as possible.
This minimizes the operational costs while ensuring that a minimum level of service is
guaranteed. In this case, the minimum level of service is guaranteed by not allowing the
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line headways to exceed hmax
l , ∀l ∈ L.

(ii) if the passenger demand exceeds the pandemic-imposed capacity limit of at least one
service line, more vehicles will be assigned to the problematic line(s), provided that
there are enough additional vehicles in reserve.

(iii) if after assigning the entirety of available vehicles in an optimal way there are still un-
served passengers, then our objective is to reduce the number of unserved passengers and
the corresponding revenue losses for the public transport service provider.

Formally, to reduce the number of deployed vehicles as much as possible and mitigate the
operational costs according to objective (i), we would need to solve the following program:

(U1) min W ∑
l∈L

xl (3)

s.t. ∑
l∈L

xl ≤ N (4)

hlxl ≥ Tl, ∀l ∈ L (5)
hl ≤ hmax

l , ∀l ∈ L (6)

hl ≥ hmin
l , ∀l ∈ L (7)

Eq.(3) strives to minimize the total number of assigned vehicles to all lines l ∈ L. The
inequality constraint (4) ensures that we cannot deploy more vehicles to lines than the maximum
number of available vehicles, N. Constraint (5) ensures that the time headway of each line l ∈ L
should be at least greater than Tl/xl , where Tl is the round-trip travel time of line l and xl the number
of assigned vehicles to that line. Constraint (6) ensures that the planned headway of each line is
less than or equal to hmax

l to offer a minimum level of service by not letting passengers waiting at
stops for excessive periods of time. Finally, constraint (7) prohibits bunching by guaranteeing a
minimum headway among buses of the same line.

Note that formulation (U1) does not consider the passenger demand, the in-vehicle pas-
senger loads, and the pandemic-imposed vehicle capacities. According to objective (ii), our model
should be forced to use more vehicles when at least one service line does not meet its pandemic-
imposed capacity limit. For this, we use the additional constraints:

bt
l,r,sy = Bt

l,r,sy, ∀l ∈ L, ∀r ∈ R, ∀s ∈ Sl, ∀y ∈ Sl | y≥ s,∀t ∈ P (8)

bt
l,sy = ∑

r∈R
bl,r,sy, ∀l ∈ L, ∀s ∈ Sl, ∀y ∈ Sl | y≥ s,∀t ∈ P (9)

γ
t
l,1 = ∑

y∈Sl

bt
l,1yhl, ∀l ∈ L,∀t ∈ P (10)

γ
t
l,s = γ

t
l,s−1− ∑

y∈Sl
y<s

bt
l,yshl + ∑

y∈Sl
y>s

bt
l,syhl, ∀l ∈ L, ∀s ∈ Sl \{1},∀t ∈ P (11)

γ
t
l,s ≤ kl, ∀l ∈ L, ∀s ∈ Sl,∀t ∈ P (12)

Constraint (8) sets the hourly passenger demand of user group r between stops s and y of
line l that conforms with the pandemic-imposed capacity limit (bt

l,r,sy) equal to the expected hourly
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passenger demand, Bt
l,r,sy, that is computed by the lower-level passenger assignment model. As we

will later show, it might not be possible to serve all demand Bt
l,r,sy given the pandemic-imposed

capacity resulting in the subsequent amendment of constraint (8). Constraint (9) computes the
aggregated hourly demand from stop s to y of line l that conforms with the pandemic-imposed
capacity limit. Constraint (10) determines the in-vehicle passenger load when a vehicle departs
from the terminal. This is the number of passengers that board at stop 1 and will alight at any other
stop y within our 1-hour time period, bt

l,sy, multiplied by the time headway among successive trips,
hl , since we refer to the passenger load of individual vehicles. Similarly, the recursive equation (11)
determines the in-vehicle passenger load when a vehicle of line l departs from stop s ∈ Sl \ {1}.
This equation is the passenger flow conservation equation where the in-vehicle passenger load for
vehicles operating during the t-th hour is equal to the passenger load when departing from the
previous stop, γ t

l,s−1, minus the number of passengers that alight at stop s, ∑
y∈Sl
y<s

bt
l,yshl , plus the

number of passengers that board at stop s and will alight at any other stop y > s of line l. Note
that ∑y∈Sl

y<s
bt

l,yshl is the sum of the time headway multiplied by the hourly passenger demand that

enters line l at any stop y ∈ Sl | y < s and exits at stop s. Finally, constraint (12) requires that the
in-vehicle passenger load should not exceed the pandemic-imposed capacity at any stop.

The mathematical program in Eqs.(3)-(12) assigns vehicles xl to lines l ∈ L such that the
total number of deployed vehicles is minimized (objective i), whereas the in-vehicle passenger
load remains below the pandemic imposed capacity limit (objective ii). This mathematical pro-
gram, however, is not always feasible. Indeed, if the passenger demand values that are derived
by the lower-level passenger assignment model (Bt

l,r,sy) are high, then constraint (8) will lead to a
prohibitively high value of bt

l,r,sy that can result in the violation of the pandemic-imposed capacity
constraint (12). To ensure that the pandemic-imposed capacity constraint (12) is always satisfied,
we need to transform the mathematical program into a feasible one by relaxing constraint (8). To
this end, constraint (8) is substituted by:

bt
l,r,sy = Bt

l,r,sy− b̃t
l,r,sy ∀l ∈ L, ∀r ∈ R, ∀s ∈ Sl, ∀y ∈ Sl | y≥ s,∀t ∈ P (13)

where b̃t
l,r,sy≥ 0 is the unserved passenger demand of user group r that was willing to travel

from stop s to stop y of line l during hour t. This unserved passenger demand in constraint (13)
reduces the value of the actually served passenger demand, bt

l,r,sy, which becomes the portion of
the overall demand Bt

l,r,sy that can be served by line l without violating the pandemic-imposed
capacity constraint of Eq.(12). Constraint (13) has a prominent role in our mathematical program
because it ensures feasibility. However, it also indicates that the overall demand Bt

l,r,sy cannot
be always served. If one assumes that the unserved passengers are uniformly distributed across
all user groups following a first-come, first-served boarding process, then an additional constraint

bt
l,r,sy =

Bt
l,r,sy

∑
r∈R

Bt
l,r,sy

bt
l,sy should be added in case of b̃t

l,r,sy > 0 to ensure that each user group will have

the same number of unserved passengers.
Replacing constraint (12) by constraint (13) introduces an unserved passenger demand that

our mathematical program should keep to a minimum. This is part of objective (iii) which strives to
minimize the revenue losses because of unserved passenger demand. These revenue losses appear
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only in the case that assigning all available vehicles is not enough to maintain the passenger loads
below the pandemic-imposed capacity. To this end, we add a penalty to the objective function that
prioritizes the minimization of the revenue losses due to unserved demand over the operational
costs related to the number of assigned vehicles. The objective function presented in Eq.(3) is
therefore reformulated as:

min W ∑
l∈L

xl + ∑
t∈P

∑
l∈L

∑
r∈R

∑
s∈Sl

s 6=|Sl |

∑
y∈Sl
y>s

(Fr +Mrdl,sy)b̃t
l,r,sy (14)

where ∑t∈P ∑l∈L ∑r∈R ∑ s∈Sl
s 6=|Sl |

∑y∈Sl
y>s

(Frb̃t
l,r,sy +Mrdl,syb̃t

l,r,sy) is the penalty term indicating

the revenue losses because of the unserved passengers. In more detail, when a passenger enters
the vehicle he/she pays a fixed minimum fare Fr depending on his/her user group r and an addi-
tional fare Mrdl,sy depending on the distance traveled, dl,sy, until the passenger exits the vehicle.
If we have b̃t

l,r,sy unserved passengers of group r that were willing to travel from stop s to stop y
of line l, then the public transport service provider will lose a revenue of Frb̃t

l,r,sy from the fixed
fares collected when passengers enter the vehicle and Mrdl,syb̃t

l,r,sy from the additional fares that
depend on the distance that any unserved passengers would have traveled. Adding all the rev-
enue losses due to the unserved passengers of every user group r ∈ R traveling from any stop
s ∈ Sl | s 6= |Sl| to any stop y ∈ Sl | y > s of any line l ∈ L results in the total revenue losses of
∑t∈P ∑l∈L ∑r∈R ∑ s∈Sl

s 6=|Sl |
∑y∈Sl

y>s
(Frb̃t

l,r,sy +Mrdl,syb̃t
l,r,sy).

Summarizing our previous transformations, our mathematical program that assigns the op-
timal number of vehicles to each line in order to determine the service frequencies while consider-
ing the pandemic-imposed capacities is presented below:
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(U2) min W ∑
l∈L

xl + ∑
t∈P

∑
l∈L

∑
r∈R

∑
s∈Sl

s 6=|Sl |

∑
y∈Sl
y>s

(Fr +Mrdl,sy)b̃t
l,r,sy (15)

s.t. ∑
l∈L

xl ≤ N (16)

hlxl ≥ Tl, ∀l ∈ L (17)

hmin
l ≤ hl ≤ hmax

l , ∀l ∈ L (18)
γ

t
l,s ≤ kl, ∀l ∈ L, ∀s ∈ Sl,∀t ∈ P (19)

γ
t
l,1 = ∑

y∈Sl

bt
l,1yhl, ∀l ∈ L,∀t ∈ P (20)

γ
t
l,s = γ

t
l,s−1− ∑

y∈Sl
y<s

bt
l,yshl + ∑

y∈Sl
y>s

bt
l,syhl, ∀l ∈ L, ∀s ∈ Sl \{1},∀t ∈ P (21)

bt
l,r,sy = Bt

l,r,sy− b̃t
l,r,sy, ∀l ∈ L, ∀r ∈ R, ∀s ∈ Sl, ∀y ∈ Sl | y≥ s,∀t ∈ P (22)

bt
l,sy = ∑

r∈R
bt

l,r,sy, ∀l ∈ L, ∀s ∈ Sl, ∀y ∈ Sl | y≥ s,∀t ∈ P (23)

xl ∈ Z≥0, ∀l ∈ L (24)
hl ∈ R≥0, ∀l ∈ L (25)

Remark 1. Mathematical program (U2) is a mixed-integer quadratic program (MIQP) because its
objective function is linear and it has linear and quadratic constraints. The quadratic constraints
are constraints (20) and (21) related to the calculation in the in-vehicle passenger load at each stop.

Remark 2. To force our model to use additional vehicles when we have unserved demand, the im-
portance of the revenue losses term in our objective function should be greater than the importance
of the operational costs, W ∑l∈L xl . To achieve this, the weight factor W that indicates the cost of
deploying extra vehicles should be sufficiently small.

It is worth noting that program (U2) returns the optimal number of vehicles xl and head-
ways hl for each service line l ∈ L. From this, we can easily determine the optimal frequency of
each line as fl = 1/hl .

Lower-level Model: Passenger Assignment
The lower-level model considers the line frequencies fl = 1/hl ∀l ∈ L that are determined by the
upper-level model as fixed input. An additional input to the lower-level model is the hourly OD
matrix Ot

r,sy, ∀t ∈ P. For each hour t ∈ P, the lower-level model will determine the passenger
demand assignment to lines Bt

l,r,sy. The decision makers at the lower-level are the passengers and
their objective is to minimize their individual trip travel time (including the in-vehicle riding times
and the waiting times at stops, including when transferring). For the lower-level problem, we
consider an adapted version of the seminal passenger assignment model of (35).

Passenger trips are split into trip components that are represented by arcs a∈A in a network
G = (I,A). The trip components a ∈ A are not necessarily inter-station links. Trip components can
be boarding links, alighting links, walking links and in-vehicle traveling links. For instance, a
trip component can be a waiting time, a transfer time or a riding time when using a vehicle of a
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particular service line. In this network representation, i ∈ I are vertices that have incoming and
outgoing trip components (arcs). Note that we might have multiple vertices in the same physical
location because at that location there might be different travel options for a passenger that seeks
to arrive at his/her final destination. Let A+

i be the set of outgoing arcs from vertex i and A−i the
set of incoming arcs. Each arc a has a travel time ca ≥ 0. For arcs that represent a boarding or
alighting, ca = 0. In addition, arcs have frequencies fa ∈ [0,+∞] and waiting times wa ∈ [0,+∞].
Because each arc a is a trip component, it is associated with one, and only one, service line l. For
instance, if arc a is part of line l, then the frequency of this arc is fa = fl if arc a is related to the
boarding trip component to line l. If, however, arc a is an alighting or an in-vehicle riding arc, then
fa = +∞ and wa = 0 because passengers do not experience any waiting time when using this trip
component. To summarize, three types of trip components are considered:

• waiting for boarding trip component (ca = 0, fa > 0, wa > 0),
• in-vehicle riding trip component (ca > 0, fa =+∞, wa = 0),
• alighting trip component (ca = 0, fa =+∞, wa = 0).
Note that the alighting trip component has not travel cost and no waiting cost. The board-

ing trip component has waiting cost but no on-board travel cost, and the in-vehicle riding trip
component has an on-board travel cost but no waiting cost. It is also worth stressing again that the
frequency of a boarding trip component, fa, is equal to fl , where l is the corresponding line l to
arc a. That is, the fa values are a direct input from the upper-level model (parameters).

The passenger volume traversing vertex i is given by:

νi = ∑
a∈A−i

νa +gi ∀i ∈ I (26)

where gi is the demand in vertex i and νa is the passenger volume of arc a ∈ A−i . For
modeling purposes, let parameter µa,i = 1 if arc a is an outgoing arc of vertex i and µa,i = 0
otherwise. Let also λa,i = 1 if arc a is an incoming arc of vertex i and 0 otherwise. Then, the
probability Pa,i of using arc a among all outgoing arcs A+

i from vertex i is:

Pa,i :=
faµa,i

∑
a′∈A

fa′µa′,i
∀a ∈ A (27)

Note that Pa,i = 0 if a is not an outgoing arc of vertex i, because then µa,i = 0. This
probability dictates a probabilistic passenger assignment among different arcs with passengers
having a higher probability to use the arcs of lines with higher frequencies that will result in lower
waiting times. In particular, the vertex volume νi will be distributed to the outgoing arcs of vertex
i according to their arc probabilities, νa = Pa,iνi.

In addition, the expected combined waiting time ωi for passengers waiting at vertex i is:

ωi :=
θ

∑
a∈A

faµa,i
∀i ∈ I (28)

where θ ≥ 0 is equal to 0.5 the frequency for reliable high-frequency services where ser-
vices follow a regular arrival pattern and passengers are assumed to not coordinate their arrivals
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with the arrival times of vehicles and is equal to 1 for low-frequency and unreliable services. Note
that both the assignment probabilities Pa,i and the combined waiting times ωi have fixed values
because fa and µa,i are parameters in the lower-level model. In the assignment, the optimal strategy
for all travelers who are willing to reach destination q from any origin vertex is derived by solving
the following mathematical program. In this program, the only variables are νa ∀a ∈ A, which
denote the passenger volume at arc a, and wi ∀i ∈ I, which denote the total passenger waiting time
for all trips at vertex i.

(L1) min ∑
a∈A

caνa +∑
i∈I

wi (29)

∑
a∈A

µa,iνa−∑
a∈A

λa,iνa = gi ∀i ∈ I \{r} (30)

νaµa,i ≤ fawi ∀a ∈ A, i ∈ I (31)
νa ≥ 0 ∀a ∈ A (32)
νa ∈ R+ ∀a ∈ A, wi ∈ R+ ∀i ∈ I (33)

Program (L1) assigns passengers from all origins to destination q to minimize the total
travel times at the arcs and the waiting times at vertices. It is a linear program with |I| × |A|
variables (νa and wi). For in-vehicle riding and alighting arcs that have frequencies fa = +∞ we
set fa =M, where M is a very large positive number. This avoids multiplications by +∞. Constraint
(30) is the passenger flow conservation constraint which ensures that the outgoing flow from all
outgoing arcs from vertex i is equal to the incoming flow, ∑a∈A λa,iνa, plus the passenger demand,
gi, at vertex i. Constraint (31) ensures that the passenger volume νa in the outgoing arc a of vertex
i is lower than or equal to the frequency of that arc multiplied by the total waiting time for all trips
at vertex i. Note that if a is not an outgoing arc of vertex i constraint (31) is satisfied because the
left hand-side is equal to zero. Finally, constraint (32) ensures that the volume traversing an arc
cannot be negative.

Formulation (L1) assigns the passenger demand probabilistically to different paths, but it
does not consider the effect of in-vehicle congestion on the passengers’ path selection. This is a
shortcoming because passengers might perceive the in-vehicle travel times in crowded vehicles to
be higher compared to the ones in less crowded vehicles (36). To rectify this, let the arc travel
times ca be no longer constant, but continuous non-decreasing functions of the corresponding arc
flows ca(νa). By doing so, the assignment problem is no longer separable by destination node. As
a result, the optimal assignment strategies can be defined by Wardrop’s second principle, implying
that only strategies with minimal expected cost will be used by the travelers (37). To solve the
passenger assignment problem from all origins to all destinations q ∈ Q, we set first subsets of
vertices Iq ⊆ I that contain all vertices before destination q. We also set variables ν̃a,q and wi,q
indicating the flow in arc a from all passengers traveling to destination q and the waiting time
at vertex i for passengers traveling to destination q. Let also gi,q be the demand in vertex i for
passengers that travel to destination q ∈ Q. If c0

a is the fixed arc travel time without considering
any congestion, then the passenger assignment problem that considers in-vehicle crowding can be
cast as follows:
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(L2) min ∑
a∈A

c0
aνa + ∑

q∈Q
∑
i∈I

wi,q︸ ︷︷ ︸
actual travel cost

+ ∑
a∈A

c0
a

∫
νa

0
da(z)dz︸ ︷︷ ︸

perceived cost due to congestion

(34)

νa = ∑
q∈Q

ν̃a,q ∀a ∈ A (35)

∑
a∈A

ν̃a,qµa,i−∑
a∈A

ν̃a,qλa,i = gi,q ∀ i ∈ Iq,q ∈ Q (36)

ν̃a,qµa,i ≤ fawi,q ∀a ∈ A, i ∈ I,q ∈ Q (37)
ν̃a,q ≥ 0 ∀a ∈ A,q ∈ Q (38)
ν̃a,q ∈ R+ ∀a ∈ A,q ∈ Q, wi,q ∈ R+ ∀i ∈ I,q ∈ Q (39)

Note that now the objective function includes the nonlinear term of the additional per-
ceived travel cost due to congestion, where da(z) is a continuous non-decreasing function of the
corresponding arc flows. Spiess (38) proposed a series of conical volume-delay functions for pas-
senger assignment, although one of the most common ones is an adaptation of the Bureau of Public
Roads (BPR) function that will result in a

∫
νa
0 da(z)dz equal to:

∫
νa

0
da(z)dz =

(
νa

faγa

)β

(40)

where νa is the passenger volume of trip component a, γa is the nominal capacity of the
line that serves arc a, and β a BPR function parameter that typically takes values in the range
2≤ β ≤ 12 (see (38)). If one sets β = 2, the objective function has a quadratic form.

Remark 3. One additional important point is the inclusion of an additional waiting penalty for
passenger transfers, on top of the actual waiting time for the transfer. This penalty can be perceived
as extra discomfort due to transferring between lines. To model this, one could provide a frequency
penalty fa = ε , where 0 < ε < M, to alighting trip components because any alighting arc that does
not end up to the final destination of a passenger will force the passenger to use a subsequent
boarding arc to make a transfer.

Fig.2 provides the representation of the multi-line network used in (38) using the proposed
modeling convention. The left part of the figure presents the actual network with 4 lines and 4
stops. The right part of the network presents the network representation considering the boarding,
alighting, and in-vehicle running trip components. All alighting trip components have (c0

a, fa) =
(0,M) and they are presented with trimmed lines. The in-vehicle trip components have values
(c0

a,M), where c0
a > 0, and the boarding trip components have values (0, fa), where fa < M. The

frequencies are expressed in vehicles per minute (i.e. 1/6 is a frequency of 10 vehicles per hour).
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FIGURE 2 Network of Spiess and Florian (35). Left: The network with 4 lines and stops
A, X, Y and B. Right: Representation of the network where alighting trip components are
represented with trimmed lines and they all have travel times and frequencies (0,M).

The results of the lower-level model (L2) return the passenger demand matrix Bt
l,sy per

line for every hourly period t and they are used by the upper-level model (U2) to set the optimal
frequency. To summarize, the lower-level model (L2) and the upper-level model (U2) are solved
in an iterative manner until convergence, as previously described in Fig.1.

MODEL APPLICATION
Case study description
Our case study involves two bus lines in the Twente region in the Netherlands. Although our
approach is implemented for two bus lines, it can be implemented to an entire bus network without
loss of generality. The two bus lines are operated by Keolis Nederland, which is the public transport
service provider in Twente. The selected lines are line 62 and line 2 because they maintained
high passenger demand during the pandemic and are impacted by the pandemic-imposed capacity
resulting in unserved passengers. Bus line 62 connects the towns of Borculo and Denekamp. It is
a long line covering approximately 60 km per direction and serving 74 bus stops per direction (a
round-trip of line 62 serves S62 = {1,2, ...,148} bus stops). Bus line 2 is much shorter and operates
in the city of Enschede. It covers a distance of approximately 13 km and serves 40 bus stops per
direction (S2 = {1,2, ...,80} stops for a round-trip). They share a corridor with 7 transfer stops (14
if we consider both directions). The topology of bus lines 62 and 2 is illustrated in Fig.3.
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FIGURE 3 Topology of bus line 2 (top) and bus line 62 (bottom). Note that stops 2_18-2_19-
...-2_24 of line 2 and stops 62_40-62_41-...-62_46 of line 62 are at the same physical locations,
denoted as T1-T2-...-T7.

Using the convention from the passenger assignment model in section 3.2, the topology
of Fig.3 results in the network representation of Fig.4 when solving the lower-level passenger
assignment problem. In this representation, alighting trip components are represented by trimmed
lines. Boarding trip components and in-vehicle riding trip components are presented with solid
lines. In addition, the in-vehicle riding and boarding trip components are merged in vertices that
have only one incoming and one outgoing arc (that is, in vertices that do not permit transfers).
These merges are performed to simplify the network representation. Because of these merges, an
arc a, i.e., the arc that connects 2_1 and 2_2, will have a cost c0

a > 0 equal to the riding cost from
2_1 to 2_2, and a frequency fa equal to the frequency of line 2.

T1 T2

62_41

T7

2_18

62_1 62_2 62_40

2_2

Line 2

Line 62

2_19

62_46

2_24

62_74

2_402_1

62_47

2_25

FIGURE 4 Network representation of bus line 2 (top) and bus line 62 (bottom) following the
convention of the lower-level model.

Our experiments focus on the time period P from 8 am until 10 am on a Monday in March,
2020. This period is selected because it includes the morning peak hour from 8 am to 9 am,
which has a high passenger demand that might lead to unserved passengers due to the pandemic-
imposed capacity limit. During this 2-hour period, P = 〈1,2〉, the round-trip travel time of line 62
is T62 = 210 minutes and of line 2 is T2 = 86 minutes, considering a layover time of 10 minutes in
both cases.

The total number of available buses that can be assigned to these two lines is N = 16 and
all buses are of the same type with a nominal capacity of γa = 38 seated passengers. To ensure safe
distancing among passengers, we consider a pandemic-imposed capacity of kl = 15 passengers for
any bus operating in line 62 or 2.

Regarding the user types of passengers, in the Twente region there are six different cate-
gories: R = {anonymous travelers; adults; higher-education students; elderly (more than 65 years
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old); kids/teenagers; business card holders}. The fixed minimum fare for entering a bus, Fr, and
the fare price per km traveled varies for the different user types. The costs are summarized in Table
2 together with the demand share of each user type.

TABLE 2 Minimum fare price, Fr, and additional charging per km traveled, Mr, per user
type

Anonymous Adults Higher educa- Elderly Kids / Business
tion students Teenagers card holders

Fr (e) 0.98 0.98 0.33 0.33 1.10 0.78
Mr (e per km) 0.202 0.202 0.069 0.069 0.000 0.162
Demand share (%) 15% 24% 44.5% 1.2% 11.5% 3.8%

We note that anonymous users are users that do not have a specific smart card identification
and pay the maximum fare - similar to the fare paid by adults. In addition, students might travel
for free during certain times of the day and we have selected fare price estimates for the business
card holders because they can benefit from various subscription models.

To avoid bus bunching, the bus trips of each bus line should have a minimum time headway
of at least hmin

l = 1 minute. In addition, to ensure a minimum level of service regarding the pas-
senger waiting times at stops, the maximum allowed time headway of line 2 is hmax

2 = 15 minutes
and of line 62 is hmax

62 = 30 minutes. Note that the maximum time headway of line 62 is twice as
long because line 62 connects two towns and it is acceptable to operate under lower frequencies
compared to line 2 that serves the core of the city of Enschede, which is the most populous city in
the Twente region.

If we do not consider the pandemic-imposed capacity, line 62 can operate during the morn-
ing period with a time headway of h62 = 30 min, equivalent to a frequency of f62 = 2 vehicles
per hour, in order to minimize the operational costs while offering a minimum level of service. To
achieve this time headway, we need to assign x62 =

⌈
T62
h62

⌉
= 7 buses to line 62. In addition, line 2

can operate with a time headway of h2 = 15 min and frequency of f2 = 4 vehicles per hour, which
is achieved with the allocation of x2 =

⌈
T2
h2

⌉
= 6 buses. Note that the total number of buses as-

signed to lines 62 and 2 is 7+6=13, which is less than the total number of available buses, N = 16.
Given this service supply, we perform a passenger assignment using the lower-level model (L2) by
assuming β = 2. After assigning passengers to trip components, a ∈ A, Fig.5 presents the number
of unserved passengers per stop during the 8-9 am peak in case the pandemic-imposed capacity is
implemented for this set of service frequencies. Note that this level of service is considered as the
as-is (benchmark) scenario and its performance will be compared against the proposed solutions
of our approach. Note also that we present the peak hour from 8 am to 9 am because there are no
unserved passengers from 9 am to 10 am when adopting the suggested frequencies.
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FIGURE 5 Average in-vehicle passenger load from 8 am to 9 am when a bus departs from
a stop when line 62 operates with a frequency of f62 = 2 vehicles per hour and line 2 with a
frequency of f2 = 4 vehicles per hour.

From Fig.5 one can note that when catering for operational costs, the seated (nominal)
capacity of 38 passengers is sufficient. Notwithstanding this, the pandemic-imposed capacity of
15 passengers is violated with overcrowding for large parts of the routes, especially for buses
operating in line 62. In the next sub-section, we demonstrate how our proposed model can assign
the available buses to lines in an optimal way that caters for both the operational costs and the
pandemic-imposed capacity.

Frequency setting considering the pandemic-imposed capacity
In our case study we implement our lower-level passenger assignment model expressed in our
nonlinear program (L2). This model is programmed in Python and solved with Gurobi 9.0.3,
which is an optimization solver. The required input for the lower-level model is the frequency of
each service line and the OD matrix from 8 am until 9 am and from 9 am until 10 am. Its output is
the assignment of passenger trips Bt

l,r,sy for the 8-9 am time period and for the 9-10 am time period.
In addition, we implement our upper-level frequency setting model (U2) that accounts

for the pandemic-imposed capacity. This MIQP is programmed in Python and it is solved using
Gurobi 9.0.3, which can solve mixed-integer quadratically constrained problems. The outcome
of the solver is the optimal assignment of buses x62,x2 and the respective line frequencies f62, f2
for the time period 8 am to 10 am. This outcome is used from the lower-level model to conduct a
new passenger assignment until the results stabilize (see the bi-level optimization process in Fig.1).

To solve the upper-level model with Gurobi 9.0.3 for the planning period P, we tested in
a pre-calibration phase different values for the parameter W to ensure that meeting the pandemic-
imposed capacity is more important than reducing the number of deployed vehicles. After initial
experiments, we set the value of W to 0.001 because it satisfied this criterion for the data of our
case study.

Concerning the computation of an optimal solution, the lower-level LP model has only
continuous variables and is solved almost immediately, whereas the upper-level MIQP model has
two integer variables and is solved in, approximately, 1 second for the case of two lines. The
resulting optimal frequency setting solution for the time period 8 am - 10 am after implementing
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the bi-level optimization are:
• optimal frequencies: line 62 f62 = 2.86 veh per hour, line 2 f2 = 4 veh per hour.
• optimal number of buses: line 62 x62 = 10, line 2 x2 = 6.
• optimal headways: line 62 h62 = 21 min, line 2 h2 = 15 min.
The resulting passenger load at each stop when implementing our solution during the peak

hour 8-9 am is presented in Fig.6. Fig.6 offers a considerable improvement in terms of satisfying
the pandemic-imposed capacity compared to the results of the solution in Fig.5 that did not account
for the pandemic capacity. In more detail, it reduces the number of unserved passengers from 59
to 42 (29% decrease) during the 1-hour period from 8 am to 9 am. This improvement in terms
of unserved passengers requires the addition of 3 extra buses, but this extra operational cost is
justifiable given the reduction of the in-vehicle crowding levels.
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FIGURE 6 Average in-vehicle passenger load when a bus departs from a stop when line 62
operates with a headway of h62 = 21 minutes and line 2 with a headway of h2 = 15 minutes
for the peak hour 8-9 am.

One final note is that our solution’s results in Fig.6 cannot satisfy the passenger demand at
all stops during the 8 am - 9 am peak, resulting in unserved passengers. The line segment from
stop 20 until stop 40 of line 62 is especially problematic. The reason behind this is that even if we
deploy all N = 16 available buses, this is not sufficient to accommodate all passengers given the
pandemic-imposed capacity.

CONCLUSION
This study proposed a novel bi-level optimization model for setting the frequencies of public trans-
port lines based on the pandemic-imposed capacity limitations. The upper-level, mixed-integer
quadratic programming model developed in this study was applied to two high-demand bus lines
in Twente, the Netherlands. To produce the line-level passenger demand for the upper-model, a
lower-level probabilistic passenger assignment model was used following a nonlinear program-
ming formulation. Results from our analysis showed that our approach yields a service plan that
performs better than the benchmark service plan that sets the service frequencies without consid-
ering the COVID-19 restrictions resulting in 29% less unserved passengers. Our study is applied
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to two bus lines, but it can be implemented for an entire public transport network without loss of
generality.

In future research, one could expand our approach to consider larger networks with a mix-
ture of bus and train lines. In addition, similarly to the vast majority of past studies in frequency
settings, our approach assumes that the passenger demand is uniformly distributed across small
discretized time periods of 1 hour. Different tests can be implemented by reducing this time period
(e.g., considering 15 or 30-minute intervals of homogeneous passenger demand) to capture the
effect of demand peaks with a higher granularity.
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