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Abstract: This article describes the modification of UV-curable coatings with silicon aluminum
oxynitride (Sialon) and aluminum oxide (Alu C), which improve the hydrophobicity of the coating
surface and the scratch hardness. The contact angle is greater due to surface roughness being
enhanced with inorganic fillers. Improved scratch resistance results from the formation of a sliding
layer triggered by the diffusion of Sialon or alumina on the coating surface. One can observed an
increase in the surface hydrophobicity as well as in the scratch hardness (up to 100%) when small
amounts (5 wt.%) of the inorganic compounds are added. Imaging microscopies, i.e., SEM, OM,
and AFM (with nanoscopic Young’s modulus determination), revealed the good distribution of both
types of fillers in the studied matrix.

Keywords: aluminum oxide; Sialon; UV-curable coating; scratch hardness; hydrophobicity; AFM

1. Introduction

Photopolymerization (photochemically initiated polymerization) is a technique that is
used in various branches of industry (microelectronics, optoelectronics, dentistry, medicine,
3D printing, nail varnishes, adhesives, and protective coatings) [1–7]. It enables polymer-
ization to occur at room temperature within a very short amount of time. It only takes a
few seconds or a few minutes to finish a product [8–12]. Under the influence of ultraviolet
(UV) or visible light (VIS), the photoinitiator breaks down and forms active centres (free
radicals, ions), initiating polymerization [13–16]. The photopolymerization technique al-
lows products of various shapes (the process takes place only in areas exposed to light) to
be created using compositions that do not contain any volatile solvents, while the energy
consumption is low, and the process is highly controllable [7]. In fact, the reaction takes
place only during exposure to light (when the source of light is turned off, the initiation is
interrupted) [17].

The protective coating industry is one of the oldest and most common applications of
photopolymerization. Technical coatings are often used to enhance mechanical (i.e., hard-
ness or abrasion resistance), electrical, and thermal properties [18]. Varnish compositions
resulting from the polymerization of acrylic and styrene monomers are applied both to
metallic and wooden substrates. The adhesion of adhesives/coatings is influenced by the
following key factors: shape of the surface roughness, size of the roughened surface, and
the presence of impurities or voids. The photocurable compositions used in this branch
are composed of mixtures of acrylic polyesters with various multifunctional monomers
and fillers. Photopolymerized coatings are resistant to organic solvents, chemicals, heat,
and atmospheric factors [19]. They are used as coatings for cars, machines, and other
technical devices.
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The selection of the components to be used in a photocurable composition depends
on the expected properties of the finished product and its intended use [20]. This com-
position usually consists of the following basic components: a mixture of monomers (a
multifunctional telechelic oligomer or polymer and a low-molecular weight reactive dilu-
ent), an initiating system, and various additives, such as stabilisers, fillers, colouring agents
(pigments, dyes), anti-electrostatic compounds, adhesion promoters, etc.

The technology developments are noticed more often during the production of high-
quality varnishes [21]. These coatings can be modified with inorganic fillers. These are
inert substances that are added into the polymer matrix to improve its physicochemical
and mechanical properties. Fillers increase the material hardness, resistance to abrasion,
and the effect of various aggressive environments. They also improve the tensile strength
and reduce shrinkage during curing. Superhydrophobicity is a very important feature of
good varnish coatings. The contact angle of the surface of superhydrophobic products
is greater than 150◦; thus, they repel water from their surfaces [22]. There are also other
advantages. Varnishes are resistant to destructive moisture, and they do not become dirty
as quickly as other coatings do (drops of water immediately run off the surface and rinse
off impurities).

Contemporary trends in industrial development are oriented towards the production
of materials with better and often unique properties (e.g., surface and mechanical proper-
ties). Ecological aspects are simultaneously taken into account during the production of
these materials. In order to achieve this goal, scientific and industrial institutions need to
cooperate and only conduct not basic as well as application research. As photopolymer-
ization and inorganic particles have numerous advantages, in the near future, the market
for protective coatings may be dominated by photocurable varnishes and paints that have
been modified with a new generation of fillers.

Continuing our investigations on the preparation and properties of photocurable com-
posites containing a hybrid filler—Aerosil®COK 84 (Evonik Industries: Essen, Germany),
which is a mixture of fumed silica Aerosil®200 and highly dispersed aluminum oxide in a
5:1 ratio [8], we have now launched research concerning a special fillers: Sialon (silicon
aluminum oxynitride) and Alu C (aluminum oxide).

The name “Sialon” comes from the chemical symbols of the elements composing
this material (silicon, aluminum, oxynitride). Sialon is a relatively new type of material
that is able to combine the advantages of oxide ceramics with Al2O3 and anaerobics
(nitride) containing Si3N4. While many studies have investigated the formation of polymer
composites containing inorganic particles in a UV-induced process [23], there are no
detailed reports on the photocuring behaviour of systems containing Sialon. It is generally
known that the introduction of aluminum oxide into the composite significantly helps to
increase polymer hardness and wear resistance [24]. The chemical properties of Sialon
correspond to the chemically passive aluminium oxide (for example: high resistance to
oxidation at elevated temperature), so in this article, we aim to compare the influence of
both of these fillers.

Our article describes an attempt to modify photocurable varnish coatings with Sialon
and aluminum oxide (Alu C) and to assess its influence on the mechanical and physic-
ochemical properties of the input systems (materials without fillers) and the resulting
varnish coatings. Compared to other classical varnish production methods, photopoly-
merization significantly reduced the production time (from hours to minutes), eliminated
the low-boiling-point solvent that was not environmentally friendly, and reduced energy
consumption because the process took place at ambient temperature. The compositions
of the varnishes containing fillers and the production methods used to create the varnish
coatings tested onwood-based material or aluminium can be used in the furniture industry
(e.g., to produce and maintain furniture and parquets), in the paper industry (e.g., to
impregnate paper), and in the transport industry (e.g., to paint cars, ships, and aircrafts).
Our investigations allow us to compare the photocuring and physical behaviour of systems
filled with Sialon and aluminum oxide and can help to design formulations and conditions
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for industrial applications. Sialon and Alu C compounds are assumed to be potential for
used in the engineering of ceramic materials because of their excellent mechanical and
thermal properties [25,26]; these fillers can be used for UV-curable polyacrylate-based
composites for protective coatings, particularly in the woodworking industry. Light-cured
coatings containing Sialon and Alu C have significant advantages over conventional pro-
duction methods due to their broad properties, such as the material’s short curing time
and low space requirements. This is the best filler dispersion method that can be used for
varnish composition, and the process takes place in a solvent-free environment.

2. Experimental Section
2.1. Materials

The acrylate resin CN 3755 (difunctional acrylated amine synergist) was kindly do-
nated by Sartomer (Arkema Group, Exton, PA, USA). According to the supplier, the product
is meant for UV-curable coatings composed of wood and metal substrates. Additionally,
according to the manufacturer, it offers good adhesion, toughness, excellent resistance prop-
erties, low yellowing, and very low pigment bleeding. The reactive diluent 1,6-hexanediol
diacrylate (HDDA) and photoinitiator 2,2-dimethoxy-2-phenylacetophenone (Irgacure 651)
were purchased from Sigma-Aldrich (St. Louis, MO, USA). Aluminum oxide (AEROXIDE®

Alu C, Evonik Industries, Essen, Germany) is a fine-particulate, pure aluminium oxide
with a high specific surface area of 85–115 m2/g and an average primary particle size of
13 nm. These fillers were kindly donated by Evonik (Evonik Industries, Essen, Germany).
Sialon (Al6N6O2Si, 306.01 g/mol) was purchased from Sigma Aldrich (microsized particles,
St. Louis, MO, USA). The fillers were dried at 110 ◦C for 2 h before use.

2.2. Varnish Coating Formation Methodology
2.2.1. Preparation of Varnish Compositions

The varnish compositions were prepared in 20 mL vials. At the first stage of the
process, a composition consisting of CN 3755 resin and HDDA diluent was prepared at
a weight ratio of 70:30. The compositions were dispersed in an ultrasonic bath for 2 h.
Next, Sialon and Alu C were added at an adequate weight ratio to the resin and solvent,
i.e., 0–5%. The samples were homogenised in an ultrasonic bath for about 24 h. When the
filler reached a fine dispersion level in the resin, Irgacure 651 photoinitiator was added
to the mass of the resin and diluent at a weight ratio of 3%. The compositions were
dispersed in an ultrasonic bath for 2 h. Before the varnish compositions were applied onto
a wooden substrate, they were homogenised for one minute in an Ultra-Turrax T18 basic
homogeniser (IKA) equipped with a Rotor-Stator L004639 dispersing element. Due to the
high acceleration, the substances were exposed to strong cutting forces, and the resulting
turbulences enabled the optimal mixing of the composition.

2.2.2. Coating of Substrates

We used a wood-based substrate (MDF) as a model surface for coating. Figure 1 shows
the schematics of coating of substrate. Before coating, the surface was ground with 1000-
and 1200-grit sandpaper, cleaned, and covered with 0.5 mL of the formulation (Figure 1a).
The resulting pre-coating was cured during one pass under a UV lamp in a DYMAX UVC-5
Conveyor System (Dymax, Torrington, CT, USA) (duration: 3 s, belt speed: 7 m/min).
Then, the first 120-µm-thick layer of the liquid formulation was applied with a spiral
applicator, and it was photocured by three passes (3 × 10 s) under a UV lamp (belt speed:
1.4 m/min) with a 15-s pause after each pass. The first cured layer of the coating was
ground with 1200-grit sandpaper and cleaned with paper wetted with methanol. Finally,
the second layer (80 µm) was applied and cured under the same conditions as the first layer
(Figure 1b). The sample photographs of the unfilled varnish coatings and the coatings
containing: 5 wt.% Alu and 5 wt.% Sialon are shown in Figure 2.
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Figure 2. Photograph of unfilled varnish coatings and varnish coatings containing: 5 wt.% Alu C
and 5 wt.% Sialon (from left to right).

2.3. Measurements
2.3.1. Initial Varnish Composition Viscosity

The viscosity of the photocurable composition was measured by means of a Brookfield
RVDV-II + Pro cone/plate viscometer with a thermostat. Viscosity was measured at the
temperatures of 20, 25, 30, 40, and 50 ◦C and at various rotational cone speeds (10–200 rpm).
The resulting data were also used to calculate the activation energy of the varnish com-
positions. The activation energy was calculated according to the following formula [27]:
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2.3.2. Varnish Coating Resistance to Surface Scratching

Seven days after the varnish coatings had been applied, the scratch hardness was
measured. The hardness was measured at ambient temperature (about 25 ◦C), according
to PN- EN15186. Two plates from each series were scratched to obtain the correct results.
Measurements were made 20 mm from the edge of the plate. The distance between the
successive measurements was 5 mm. The scratch hardness test began by measuring the
load, then the width of the first visible surface scratch (FVS), and finally, the varnish
stripped off the substrate (SS). The varnished MDF plates were scratched with an IHD
indenter Ø 0.6 mm. The varnished plates were fixed in the frame of a Scratch Hardness
Tester Lineartester 249 (Erichsen). Next, the IHD indenter was fixed perpendicularly to the
plate. The indenter blade moved at a constant speed of 35 mm per second along a distance
of 10 cm on the surface of the sample. The load varied from 0 to 40 N at intervals of 0.5 N.
A total of 24 h after the surface had been scratched, the width of the scratch was measured
with a Motic SMZ-143 stereomicroscope coupled with a computer. The scratched plates
were coloured with a navy blue marker to facilitate reading with the Motic Images Plus 2.0
software. The scratch hardness of each sample was calculated according to the following
Formula (2) [28]:

Hs =
4·F·x
π·w2 (2)
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where:

Hs—Scratch hardness;
F—Indenter load;
w—Scratch width;
x—The parameter referring to the character of contact:
Purely elastic (x = 1);
Plastic (x = 2);
Viscoplastic or viscoelastic (1 < x < 2).
The parameter value x = 1 was assumed for the calculations.

2.3.3. Contact Angle of Varnish Coatings

In order to test the surface characteristics of the varnish coatings, 14 days after the
coatings had been applied, the contact angle was measured using a contact angle goniome-
ter (Contact Angle System OCA (Dataphysis, Filderstadt, Germany) at room temperature
(about 25 ◦C). Using an automatic pipette, 2 µm drops of water were placed on the surfaces.
A video of the drops was shot for about 2.5 min. The contact angle values were read 5, 60,
and 120 s after the drops were placed on the substrate.

2.3.4. Solvent-Resistance of Varnish Coatings

The resistance of the varnish coatings to the solvents was also tested according to
standard PN-EN ISO 2812-3. Balls made from a cotton and viscose blend (weighing about
0.05 g) were immersed in the following reagents: acetone, toluene, 3% sulphuric acid
solution, 5% sodium hydroxide solution, and 95% ethanol solution. After adequate wetting
with the solvents, the absorbent material was placed on the test plates and was covered
with the lids from weighing bottles for 2 h. After that time, the cotton wool was removed,
and the wet surfaces were wiped with dry cotton wool. After 24 h, the degree of damage
to the varnish coatings was assessed visually.

2.3.5. Microscopy Imaging

Prior microscopy imaging of the studied samples, both fillers, Sialon, and Alu C, was
characterized by scanning electron microscopy (SEM). Micrographs were acquired using
a JEOL JSM-7610F Plus SEM (JEOL Ltd., Tokyo, Japan) apparatus at a 1.5 kV operating
voltage and at a working distance of 8 mm. Thereafter, the bulk surface of the copolymers
and composites were exposed by fracturing at room temperature. Most of the acrylates
underwent a brittle fracture, thus exposing a smooth bulk surface. Such prepared speci-
mens were used for atomic force microscopy (AFM) imaging at ambient conditions using a
MultiMode 8 AFM instrument with a NanoScope V controller (Bruker, Santa Barbara, CA,
USA). Before AFM imaging, the specimens were inspected by means of optical microscopy
(OM) using an Olympus BX60 instrument (Olympus, Tokyo, Japan). The AFM was oper-
ated in the PeakForce Quantitative Nanomechanical Mapping mode (PF-QNM, Bruker,
Santa Barbara, CA, USA). Images and maps with the resolution of 512 × 512 pixels were
captured and further processed in the NanoScope Analysis software (version 2.0). The data
were collected following a sine wave sample-tip trajectory with a frequency of 2 kHz and
utilizing a peak force amplitude value of 150 nm. The ScanAsyst optimization in the user
interface (NanoScope software, version 9.7) was set to “off” to maintain the dedicated (and
constant) scanning parameters (scan rate, feedback loop, etc.) for each stiffness mapping.
Olympus OMCL-AC240TS (Olympus, Tokyo, Japan) cantilevers were chosen to perform
this study (nominal spring constant of 2 N/m and a nominal radius of 7 nm). The AFM
optical sensitivity (also so-called deflection sensitivity) was “reverse” calculated based on
the thermal tune method [29].
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The Young’s modulus was determined by employing the Derjaguin, Muller, and
Toporov (DMT) model of contact mechanics [30]: fitting the slope of the extended part of
force–distance curves was performed with the following Equation (3):

E = (FL − Fadh)
3
(
1 − ν2)

4
R− 1

2 (z − d)−
3
2 (3)

where:
FL—The applied maximum force (load);
Fadh—The adhesion force;
ν—The Poisson’s ratio;
R—The AFM tip radius;
z—The position of the AFM scanner;
d—The cantilever deflection.
For the Poisson’s ratio, the value of 0.45 was used, and it was assumed that the

matrix has elastomeric behaviour (high Poisson’s ratio), but it is gently limited by the
presence of inorganic filler particles. One should note that the elastic modulus values are
estimations, as the nominal spring constant and nominal tip radius values were taken for
the calculation. Further values needed to perform calculation, for instance, the adhesion
force, were extracted from the force–distance curves.

3. Test Results and Discussion

Both CN 3755 and HDDA are multifunctional monomers (containing two-acrylate
double bonds), and the polymerization reaction of multifunctional monomers results in
the formation of crosslinked polymer networks. The polymerization of multifunctional
monomers proceeds according to a general scheme of radical polymerization. There are, as
in other chain reactions, three basic steps: initiation (formation of the active site), propaga-
tion (chain growth), and termination (chain termination). However, the polymerization of
the multifunctional monomer is influenced by many factors, both chemical and physical,
and these factors influence the initiation rate of the radicals, macroradicals, and monomer
diffusion. In case of the polymerization of multifunctional monomers, immediate auto-
acceleration and the dominance of reactive diffusion as a termination mechanism may
occur as well as the inequal reactivity of any pending double bonds and microgel creation.

3.1. Viscosity Test

The viscosity of the composition is a very important parameter in the production
of varnishes and paints because it determines how they will be applied to the substrate.
Therefore, when preparing the composition of new varnishes with Sialon fillers it was
necessary to pay particular attention to the type of fillers and the amount of filler added so
as to obtain the adequate viscosity of the composition. The viscosity of the composition is
also of key importance to the course of polymerization. Resin CN 3755 is characterised by
very high viscosity (1400 mPa·s), so it was necessary to add the HDDA reactive diluent
(5 mPa·s). This also resulted in a thinner layer of varnish. The Sialon and Alu C were added
at a ratio of 0%, 3%, and 5% in relation to the weight of the monomer mixture. Viscosity
determines the adequate rate of diffusion processes. Therefore, the individual stages of
polymerization depend on viscosity to a greater or lesser extent.

The viscosity of a monomer/inorganic composition strongly depends on the tempera-
ture, type, and amount of fillers that have been added and it may also depend on the shear
rate. The viscosities of the compositions are shown in Figure 3a the CN 3755/HDDA/Sialon
composition (at 25 ◦C) and Figure 3b the CN 3755/HDDA/Alu C composition (at 25 ◦C).
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The 1.5 wt.% of the Sialon filler added to the varnishes (Figure 3a) slightly reduced
the viscosity of the composition. When larger amounts of Sialon (3 wt.% and 5 wt.%) were
added, the viscosity of the composition increased by 11% and 20% (at 25 ◦C), respectively,
compared to the viscosity of the compositions without the filler. As far as the varnish
compositions containing the Alu C filler are concerned (Figure 3b), the highest increase
in viscosity was observed when 1.5 wt.% of the filler was added. When larger amounts
of the filler were added, the viscosity decreased slightly. The viscosity of the composition
decreased after adding the Alu C because it weakened interactions between the resin
molecules. The best interactions between the filler and monomer were observed in the
composition containing 1.5 wt.% of Alu C and 5 wt.% of Sialon.

Figure 4a shows a comparison of the dependency between the viscosity of all of
the varnish compositions and the temperature at a cone rotational speed of 100 rpm.
Figure 4b shows the dependency between the viscosity activation energy Eη as the function
of the Sialon and Alu C content. As the shear rate increased within the range of its
small values, the viscosity also increased. Varnish dispersions are thickened by shearing.
This phenomenon can be explained by the formation of particle clusters that increase the
effective volume fraction of the filler in the suspension. The rheological behaviour of the
Sialon and Alu C dispersions could be associated with its most simple mechanism, i.e., the
increase in the system volume. This means that the larger particles of the powder are,
the more feasible the dilatancy effect is. This was observed when the microsilica were
dispersed in a mixture of mono- and diacrylate [31].
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The shear thickening mechanism can be explained by the fact that at rest, the filler
particles in the coating composition are highly packed. At low shear rates, the frictional
forces between the particles are low because the liquid between them acts as a “lubricant”.
As the shear rate increases, the particles are displaced, which results in an increase in
the distance between the particles and causes an increase in the grain space. The fluid is
therefore unable to fill the increased inter-grain space. The lubricating properties of the
fluid are therefore reduced. The friction between the particles increases, and hence, the
viscosity of the system increases. The shear thickening phenomenon can be explained as
expansion of the system volume, and it thus occurs through the dilatation phenomenon.

An increase in the temperature reduced the viscosity of the composition (Figure 4a)
due to the reduction of intermolecular interactions. In this case, these were mainly hydro-
gen bonds. The activation energy of the monomer mixture was 45.6 kJ/mol (Figure 4b).
When 1.5 wt.% of Alu C was added to the monomer mixture, the activation energy Eη

of the composition was slightly reduced. On the other hand, when a 1.5 wt.% of Sialon
was added, the activation energy was significantly reduced due to the disruption of the
hydrogen bond network in the mixture. When the filler content increased, the activation
energy did as well. This points to the greater influence of the interactions that take place in
the fillers (especially in Alu C) and between the monomer and fillers. We can suppose that
the varnish compositions containing Alu C have better properties because they reduced the
potential barrier that molecules have to overcome when they are in a high-viscosity liquid.

3.2. Scratch Hardness Test

When the varnishes were cured on the MDF substrate, transparent coatings were
formed. They were characterised in terms of their surface properties (water contact angle)
and mechanical properties (scratch hardness). Scratch hardness is a significant parameter
that characterises coatings. It was calculated according to Formula (2), the value of the
applied force (load), causing the first visible scratch (FVS) on the coating surface and the
scratch width. Using a stereoscopic microscope coupled with computer software, we were
able to read the width of the scratches once the varnish was scratched and the coating
was stripped off the substrate for the first time. The scratch hardness of the filler-modified
coatings was also calculated for the first coating stripping. This was possible due to the
larger weight, which allowed us to perform tests up to 40.5 N. The results of the scratch
hardness test are presented graphically in Figure 5. Compared to the unmodified system
CN 3755/HDDA (FVS = 45.0 MPa, SS = 55 MPa), the presence of fillers in the coatings
increased the scratch hardness both in the FVS and SS. The highest scratch hardness for the
FVS (about 95 MPa) was observed in the sample modified with 5 wt.% of Sialon. Compared
to the initial system, the scratch hardness of this sample increased by as much as 215%.
Alu C also resulted in a satisfactory increase in the scratch hardness. The results of the
scratch hardness tests showed that even small amounts of fillers (about 3–5 wt.%) modified
the properties considerably. At higher concentrations, the changes were less significant
(especially for the hardness at the first coating stripping). The varnishes that were based
on Sialon were more resistant to scratching and stripping than the coatings containing Alu
C (except the varnish containing 1.5 wt.% of Sialon).

3.3. Contact Angle Test

The hydrophilic or hydrophobic characteristic of the material’s surface can be evalu-
ated by measuring the water contact angle TW. In our study, we were able to evaluate the
changes in the hydrophobicity of the filler-modified varnish coatings using this parameter.
The resulting data are particularly important, as they provide the necessary information to
help us determine the usefulness of the varnishes.

All of the systems based on the MDF substrate underwent the contact angle test. The
coating was tested two weeks after it had been applied. Variation in the contact angle was
monitored for 2.5 min. The values of the changes that occurred in the contact angle were
read 5, 60, and 120 s after the drop had contacted the substrate. The resulting data were
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used in the diagram showing the dependency between the contact angle and filler content:
1.5, 3 and 5 wt.% in Figure 6 and on the photographs of water drops in Figure 7.
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beginning for the coatings containing: (a) no fillers; (b) 5 wt.% Sialon; and (c) 5 wt.% Alu C.

As can be seen (Figures 6 and 7), when the filler was added, the hydrophobic surface
properties of the coatings are slightly improved. After 5 s, the value of the contact angle
in the initial system was about 54◦. This means that the initial coating had hydrophilic
properties and was being well wetted with demineralised water. The greatest increase in
the contact angle (about 11%) was observed in the composites containing 5 wt.% Alu C.
We can suppose that larger amounts of the filler would increase the contact angle value.
The differences of the values of contact angles, which were obtained 60 and 120 s after the
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drop had made contact with the substrate, were able to be attributed to the evaporation
and the effect of gravitational and evaporative forces. As shown in Figure 9, the surface of
coatings containing inorganic fillers are characterized by a higher Young’s modulus. Lopes
and Bonaccurso in [32] show that water drops on soft surfaces evaporate faster than those
on hard surfaces, hence the differences in evaporation between samples containing Sialon
and Alu C and the unfilled varnish coating.

3.4. Solvent-Resistance Test of Varnish Coatings

The resistance of the varnish coatings to solvents was tested to determine the stability
of the products exposed to chemical reagents. The resistance of all of the varnish coatings
to selected solvents was tested. When the swabs were removed, the coatings were visually
inspected. During the analysis, the following features of the varnish surfaces were taken
into account: matting or gloss increased and trace of the drop edge. The occurrence of a
phenomenon such as increased gloss or matting of surfaces was marked as “+”, whereas
an absence of changes in surface properties was marked as “−“. Additional markings
describing the intensity of the drop edge trace (3 > 2 > 1) and the degree of surface matting
(��� > �� > � > 0) enabled a more accurate assessment of changes occurring on the
surface. The observations are listed in Table 1.

Table 1. The results of the test for the resistance of varnish coatings to solvents.

Sialon (wt.%) Alu C (wt.%)

0.0 1.5 3.0 5.0 1.5 3.0 5.0

NaOH

Surface matting +
2

+
2

+
2

+
2

+
2

+
2

+
2

Gloss increase − − − − − − −

Drop edge trace +
��

+
��

+
��

+
��

+
��

+
��

+
��

H2SO4

Surface matting − − − − − − −
Gloss increase − − − − − − −

Drop edge trace +
��

+
��

+
��

+
��

+
�

+
�

+
�

“+”, the occurrence of a phenomenon; “−” no occurrence of a phenomenon. Drop edge trace intensity (3—high; 2—medium; 1—low).
Degree of matting (���—high; ��—medium; �—low; 0—none).

The analysis of the results allows us to conclude that the varnishes made from CN
3755 resins and adequate fillers exhibited significant resistance to various solvents. The
properties of all of the samples changed after contact with a 5% sodium hydroxide solution
and a 3% sulphuric acid (VI) H2SO4 solution. The solvents caused a medium matting of the
surface of varnishes containing the Sialon filler. The amount of the filler had no effect on
the matting intensity. The observation of the traces left by the drop edges showed that the
area of damage caused by the solvents to the coatings containing Alu C was smaller, and
it did not change when the filler content in the coating increased. There were no surface
changes resulting from the contact of the varnishes with ethanol, toluene, or acetone.

The analysis of the data in Table 1, which refer to the varnish coatings with different
filler contents and types showed that the varnishes containing Alu C were more resistant
to various solvents than the products containing Sialon.

3.5. Microscopy Data and Analysis

On the one hand, the Sialon sample showed an unregularly shaped particle morphol-
ogy, with the particles displaying sharp edges (structural anisotropic) (Figure 8a). The size
of the particle ranged from submicron to several microns in size. On the other hand, the
Alu C shows a morphology comprising nano-sized rounded particles (Figure 8b). Both
types of the filler can be thoroughly incorporated in the studied matrix (see Figure 9).
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Figure 9. Cumulative OM and AFM images of the bulk surfaces (fractured specimens): unfilled,
filled with Sialon 5 wt.% and filled with Alu C 5 wt.% particles. White lines in the height images are
profiles of the cross-section analysis shown under them.

The fractured composition of the unfilled copolymer unveils a flat and homogeneous
surface, as shown in optical microscopy images (Figure 9). A line that is visible in the
OM image represents a crack propagation line (fractural direction). A 5 × 5 µm2 scan size
AFM topography can also be seen; cross-section analysis indicates that the amplitude of
the surface profile is only around 30 nm (calculated root mean square surface roughness
is 6.9 nm). Concerning the same area, the average value of AFM Young’s modulus was
calculated to be 153 MPa.

For the filled matrix, as evidenced by the OM and AFM, both fillers are well distributed
in the matrix. Optical microscopy images show many parallel crack propagation lines
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started/terminated at the Sialon aggregates. A small Sialon aggregate is visible in the AFM
height image. The particle contours are coequal to these shown in the SEM images (raw
particles, Figure 8). The Alu C fillers are not visible in the OM image; however, a multitude
of parallel crack propagation line coincide with their presence, which is confirmed by the
AFM Young’s modus mapping: bright spots are the aggregates of the Alu C filler.

All of the microscopy images show that both types of fillers can be decently dis-
persed in the studied matrix (limited effect of aggregation), thus improving its mechanical
properties, particularly the scratch hardness and resistance, as shown earlier.

4. Conclusions

The properties of commercial polymers can be changed by adding filler particles.
These treatments result in the formation of polymer composites. At present, the use of
Sialon particles used as additives has been gaining interest. In this study, varnishes made
from Sialon and Alu C- modified polyacrylate resins were prepared. They were subjected to
photopolymerization on a wood-based substrate (MDF), which resulted in the formation of
varnish coatings. The varnish compositions were tested for viscosity, and the coatings were
tested for scratch hardness and resistance to solvents. The contact angles were measured 5,
60, and 120 s after the drops made contact with the coating.

The addition of 5 wt.% of Alu C increased the contact angle of the samples based on
CN 3755 resin by about 11%. The Al2O3 particles tended to migrate towards the surface,
thus increasing its hydrophobicity. The use of fillers increased the hydrophobicity of the
varnish coatings. Consequently, products coated with the varnishes can be used for longer,
and it is easier to remove impurities from them. The coatings were highly resistant to
traditional solvents. Changes were only visible on the surface after a 5% sodium hydroxide
solution and 3% sulphuric acid (VI) H2SO4 solution made contact with the surface. The
varnishes containing Alu C and Sialon were more resistant to the solvents.

The modification of coatings with Sialon also improved their mechanical properties
(scratch hardness, scratch resistance). Compared to the initial system, the scratch hardness
of the composite containing 5 wt.% of Sialon increased by as much as 215%. The tests
showed that the addition of Sialon and Alu C particles to the varnish systems considerably
modified the properties of the coatings. The mechanical and surface properties of the
varnishes depend on the type and amount of filler added and on the method by which the
coatings are prepared. Both types of the filler are well distributed in the matrix, which was
confirmed by SEM, OM, and AFM analysis.
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