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Abstract—Multi-omics clustering methods are used for the
stratification of patients into sub-groups of similar molecular
characteristics. In recent years, a wide range of methods has
been developed for this purpose. However, due to the high
diversity of cancer-related data, a single method may not perform
sufficiently well in all cases. Here, we propose a comprehensive
framework for multi-omics hierarchical ensemble clustering. We
provide a flexible environment that allows to build hierarchical
clustering ensembles suitable for the available data and research
goals. Survival analyses for data from The Cancer Genome Atlas
(TCGA) indicate that our proposed ensembles provide more
robust, and thus more reliable results than the state-of-the-art.
We have implemented our architecture within the R-package
HC-fused, which is freely available on Github.

Index Terms—multi-omics, integrative clustering, ensemble
clustering, disease subtyping, software optimization.

I. INTRODUCTION

Integrative analyses of high-throughput molecular data con-
tribute to a better understanding of disease-specific variations
across patients. They allow for a comprehensive view on the
disease, and enable their study on a system level.

In the last years, multi-omics clustering approaches were de-
veloped for the detection of disease subtypes. These methods
group patients into sub-groups with similar biological charac-
teristics. Newly diagnosed patients are classified into one of
these sub-groups, therefore facilitating a more precise treat-
ment. Multi-omics clustering approaches are typically utilized
on gene expression (mRNA), DNA methylation, and micro-
RNA data for the same set of patients. The corresponding data
sets are frequently retrieved from The Cancer Genome Atlas
(TCGA) database (https://cancergenome.nih.gov/), which rep-
resents one of the largest collections of multi-omics data sets.
The ultimate goal of multi-omics analysis is to uncover the
underlying biological processes causing and progressing the
disease, allowing medical doctors to intervene timely, and to
adopt medical treatment accordingly.

Individual clustering algorithms impose a particular struc-
ture onto the data, which can lead to different clustering results
for the same data. Choosing a clustering algorithm for a given
problem is not straightforward since clustering algorithms do
not exhibit consistent behavior for different problems [1]. In
this work we build upon and extend the R-package HC-fused
[2] that can be used for integrative hierarchical clustering of
multi-omics data sets. HC-fused long execution time, however,
hinders the efficient analysis of a large number of patients. We

∗Corresponding author: Bastian Pfeifer (bastian.pfeifer@medunigraz.at).

present a substantially accelerated implementation of the HC-
fused data fusion algorithm, which allows us to build com-
plex hierarchical ensemble architectures for improved disease
subtype discovery. Ensemble clustering, also called consensus
clustering, combines multiple clustering models to produce a
better result than that of individual clustering algorithms in
terms of consistency, robustness, and quality [1].

The remaining of the paper is organized as follows. Section
2 provides background on integrative clustering. Section 3
discusses related work and sets our contribution in context.
Section 4 introduces the proposed ensemble clustering ap-
proach. Section 5 reports on the results we obtained based
on TCGA multi-omics cancer data sets. Section 6 discusses
the presented work. Finally, we conclude with section 7.

II. BACKGROUND

There are two types of integrative clustering approaches
depending on the concerned data type, horizontal and vertical.
Horizontal integration is the aggregation of same-type data,
while vertical integration entails the analysis of heterogeneous
omics data from the same group of patients [3]. A major
problem that arises in vertical integration is that, when data
sets are highly diverse with respect to their probabilistic
distributions, simply concatenating them and applying single-
omics methods is highly likely to bias the results. Another
issue arises when the number of features differs across the
data sets, resulting in more importance being assigned to a
specific single-omics input over the others. Another classifica-
tion of integrative clustering, based on when data integration
takes places, distinguishes between early, intermediate, and
late-integration approaches. Early-integration approaches first
concatenate the data sets and then perform the data analysis.
In intermediate integration methods, data of different types are
first fused into a single view that is subsequently clustered
to obtain the final cluster assignments. In late-integration
methods, each omics data set is initially analyzed, and then
the obtained information of interest is concatenated to a global
view.

III. RELATED WORK

A wide range of multi-omics clustering methods has been
developed in the last years [4][5][6][2][7]. Most of them
are based on standard clustering methods such as kmeans,
hierarchical agglomerative clustering, and spectral clustering.
However, they substantially differ in the way they perform
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data integration. One popular example of a fusion algorithm
is called Similarity Network Fusion (SNF) [4]. For each omics,
it models the similarity between patients as a network and then
fuses these networks via an interchanging diffusion process.
Spectral clustering is applied to the fused network to infer
the final cluster assignments. A method that builds upon
SNF is called Neighborhood-based Multi-Omics clustering
(NEMO) and was recently introduced in [6]. The presented
work provides solutions to partial data and implements a novel
eigen-gap method [8] to obtain the optimal number of clusters.
Another method is called PINSPlus [5]. Its authors suggest to
systematically add noise to the data (via perturbation), and
to infer the best number of clusters based on the stability
against this noise. When the best k (number of clusters) is
detected, binary matrices are formulated reflecting the cluster
solutions for each single omic. A final agreement matrix is
derived by counting the number of times two patients appear
in the same cluster. This agreement matrix is then clustered by
standard methods, such as kmeans or hierarchical clustering.
An advanced approach to calculate this agreement matrix was
recently developed within the R-package HC-fused [2].

In the present work, we provide a flexible and versatile
framework for building ensembles based on hierarchical ag-
glomerative clustering algorithms, implemented within the R-
packgage HC-fused. We argue that different cancer types may
consist of a high degree of pattern variability, and a single
clustering method might not capture them all. Ensembles of
clustering methods have the potential to provide more robust
solutions. To the best of the authors’ knowledge, this is the
first work that explores the potential of ensemble clustering
for the detection of disease subtypes. For the purpose of
demonstration, four ensemble methods were used to analyze
survival-related TCGA data sets. When the outcomes were
compared with the state-of-the-art, the ensembles showed
superior and more robust results.

IV. THE NEW APPROACH

We propose a versatile and flexible framework for multi-
omics integrative ensemble clustering. An overview of our
framework is given in Figure 1. First, the multi-omics data
sets are clustered using two different hierarchical clustering
algorithms, lets say HC1 and HC2. This is done for each
single-omics separately, resulting in omics-specific cluster
solutions. These cluster solutions are represented as a network
and their corresponding adjacency matrices are fused via the
HC-fused algorithm (see Fig. 1). The obtained fusion simi-
larity matrices are again clustered using the same hierarchical
clustering methods (HC1 and HC2). The obtained networks
are integrated to a single fusion similarity matrix. Finally,
this similarity matrix is clustered by these two hierarchical
algorithms (HC1 and HC2) and the consensus is calculated.

At this very last step, however, we do not expect the
two clustering solutions to be much different, since the last
fused similarity matrix already contains the consensus signals
from both clustering algorithms. However, in our experiments
we observed that slight differences can occur. Therefore we
propose an algorithm that groups samples into one cluster in

case the two algorithms (HC1 and HC2) agree on the cluster
assignment. In case there is no consensus about the assign-
ment, e.g only one of the clustering methods has grouped two
samples into one cluster, the proposed algorithm will define a
new cluster.

Here, we focus on the agglomerative hierarchical cluster-
ing algorithms as implemented within the R-package fast-
cluster [9]. The fastcluster package provides efficient imple-
mentations of eight different hierarchical clustering methods,
namely single-linkage and complete-linkage clustering, an
unweighted pair-group method using arithmetic averages (UP-
GMA) [10], a weighted pair-group method using arithmetic
averages (WPGMA) [10] clustering, a weighted pair-group
method using centroids (WPGMC) [11], an unweighted pair-
group method using centroids (UPGMC) [10] clustering, and
clustering based on Ward’s minimum variance [12][13]. We
have further developed the R-package HC-fused and now
allow for building ensembles of any combination from the
aforementioned clustering methods. We have studied four dif-
ferent hierarchical clustering ensembles; UPGMA-WPGMA,
WPGMC-UPGMC, ward.D-ward.D2, and the combination of
single linkage and complete linkage clustering. These are
combinations of related clustering methods, but with different
concepts to fuse two data points or clusters into a single one.
There is no strategy to explore which method would work best
on a specific data fusion problem. As a consequence different
clustering ensembles should be taken into consideration. Here,
our motivation was to consider well-established concepts.

Optimized hierarchical data fusion

To yield a practical implementation of our proposed en-
semble framework, we initially improved runtime performance
of the HC-fused fusion implementation. HC-fused is written
in R, which is an interpreted language (the interpretation of
R expressions takes place at runtime). This leads to longer
execution times compared to compiled languages like C and
C++. Therefore, to overcome the aforementioned disadvantage
of the R language and to improve time efficiency, the HC-
fused fusion algorithm was rewritten in C++. This conversion
provides the benefit of having expressions converted by the
C++ compiler directly into machine code prior to execution,
thus reducing the overall execution time. To combine the
capabilities of both the R language and C++, with R used
for the front-end within the HC-fused package and C++ used
for the backend (optimized C++ kernel), the interface between
the two implementations was realized with the Rcpp library
[14] that generates wrappers for the C++ functions and data
structures to facilitate their use in R. Thereafter, a series of
optimizations was applied to reduce execution times. These
optimizations included (a) code reorganization, (b) removal
of loop-invariant computations, (c) reduction of the function-
call overhead in the inner-most for-loops, (d) optimization of
data exchanges between the R and C++ implementations, (e)
memory layout transformations for the better exploitation of
spatial and temporal locality, and (f) dynamic pre-allocation of
memory and improved internal memory management. During
the development phase of the optimized version of HC-fused,

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 20,2022 at 12:59:42 UTC from IEEE Xplore.  Restrictions apply. 



722

INTEGRATIVE ENSEMBLE CLUSTERING WITH HC-FUSED 3

Fig. 1. Ensemble architecture for integrative hierarchical clustering. Shown is an illustrative example of an ensemble framework based on hierarchical
clustering and data fusion algorithms. Initially, each single-omics is clustered by two different clustering methods, HC1 and HC2. HC1 and HC2 are two
hierarchical clustering algorithms, which are implemented within the R-package fastcluster. The obtained cluster solutions are represented in networks and
corresponding adjacency matrices. They are integrated via the HC-fused hierarchical network fusion algorithm, until a single fused matrix is obtained. The
final fusion matrix is clustered by the HC1 and HC2 algorithms, and the cluster assignments are finally combined to one cluster solution.

two datasets were used for verifying functional correctness and
assessment of performance. The first and smaller one consisted
of 105 patients with mRNA and Methylation omics data,
whereas the second and larger one comprised 849 patients and
three types of omics: mRNA, Methylation, and miRNA. The
final measurements showed an overall improvement of 784
times and 3384 times faster execution than the initial HC-
fused R implementation, leading to better scalability of the
optimized implementation for increased numbers of patients
and of omics.

V. RESULTS

We applied our proposed ensemble methods to four different
cancer types, namely glioblastoma multiforme (GBM), kidney
renal clear cell carcinoma (KIRC), liver hepatocellular carci-
noma (LIHC), and sarcoma (SARC)). Our methodology was
utilized on multi-omics data sets, including gene expression
data (mRNA), DNA methylation, and micro-RNA for the same
set of patients. The corresponding data were retrieved from
http://acgt.cs.tau.ac.il/multi omic benchmark, a data reposi-
tory which was recently proposed as a convenient benchmark
for multi-omics clustering approaches [15]. Our data were
preprocessed as follows: patients and features with more than
20% missing values were removed, and the remaining missing
values were imputed with k-nearest neighbor imputation. In
the methylation data, we selected those 5000 features with

TABLE I
TCGA CANCER DATA SETS.

Cancer type Patients mRNA Methylation micro-RNA
GBM 538 12042 5000 534
KIRC 606 20531 5000 1046
LIHC 423 20531 5000 1046
SARC 265 20531 5000 1046

Displayed are the total numbers of features of each omics data set.

maximal variance in each data set. All features were then
normalized to have zero mean and standard deviation one.
The sizes of the data sets are shown in Table I. In a first
investigation we clustered the multi-omics data sets with eight
different agglomerative clustering methods, as implemented
within the R-package fastcluster. The best number of clusters
was determined by the silhouette coefficient (SIL), and the
cluster solutions were integrated with the HC-fused fusion
algorithm. In all cases, we set the number of HC-fused fusion
iterations to 30. The maximal possible number of clusters
was fixed at 10. We randomly sampled 30 times 100 patients
from the data pool, performed survival analyses on these sub-
samples, and calculated the Cox log-rank tests for each of the
30 runs. The obtained p-values are displayed in Figure 2.

We observed that the performance varies across algorithms
and cancer types. However, there is a strong indication that
ensembles perform better than or equally good as each single
member of the ensembles. The ward.D2 method, for instance,
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does not perform well on the LIHC data set, whereas the
ward.D alternative produces significant results. Notably, the
ensemble, combining both methods, is not negatively affected
by the rather low performing ward.D algorithm. The same
observation can be reported for the GBM cancer type. The
performance of single linkage clustering is low, while the com-
plete linkage alternative provides substantially better results.
The combination of both, however, is not negatively affected
by the former. These first insights suggest that ensembles
stabilize the outcomes. Interestingly, hierarchical clustering
based on ward.D seems to be specifically suited for LIHC
cancer (see Fig. 2). All other hierarchical approaches do not
produce significant p-values.

Furthermore, we compared our ensemble architectures with
the state-of-the-art methods SNF (Similarity Network Fusion)
[4], PINSplus [5], and NEMO [6]. For SNF, we set the
number of neighbors for the k-nearest neighbor network to
20. We specified the α hyperparameter with 0.5. The number
of diffusion iterations was fixed at 10. These values are
within the range the authors of these R-packages suggest, and
had performed best for the analyzed data set. To determine
the number of clusters, we utilized the method based on
rotation cost. In case of NEMO, we used the same number
of neighbors for network generation. The number of clusters
was determined by the eigen-gap method. For the PINSplus
methodology, we set the maximal possible clusters to 10 and
applied the perturbation method to infer the best number of
clusters. The number of iterations was set to a minimum of
20 (default value). We utilized hierarchical clustering to obtain
the final cluster solutions.

Our proposed ensemble framework provides the best per-
forming method in three out of four cases, when the median
Cox log-rank p-values are the criterion (see Table 2 and
Figure 3). The combination of single and complete linkage
clustering works best for the KIRC and the SARC data set,
while the ensemble approach based on the ward algorithms
is best for LIHC. In all cases, a significant p-value (for
α = 0.05 significance level) can be reported. A closer look
at Table 2, however, suggests that the ward.D ensemble is
the most stable one across all studied ensembles. Overall, at
least one cancer type causes the other ensembles to produce
highly non-significant results. The SNF method outperforms
our proposed ensembles on the GBM data set. The mcquitty-
average ensemble also provides a significant p-value in that
case, but the p-value is slightly larger in comparison with SNF.
Notably, the ensemble methods are the only ones which even
provide significant results when a 0.01 significance level is
assumed (see Table II).

We also compared the methods under consideration with
respect to their computational efficiency (Table 3). The results
are based on the KIRC data set for which we sampled 30
times 100 patients from the data pool. NEMO is the fastest
algorithm. The second fastest algorithm is SNF. SNF and
NEMO employ similar clustering techniques and its similar
execution times are as expected. Our accelerated version
of HC-fused outperforms the PINSplus approach. Even our
proposed ensembles, which require far more fusion iterations
and clustering, are faster than the PINSplus algorithm. The

UPGMC-WPGMC and the ward.D-ward.D2 ensembles are the
fastest ensemble clustering methods. For purpose of compar-
ison, the original R-implementation of HC-fused takes about
30 minutes to terminate.

VI. DISCUSSION

In this work, we proposed integrative hierarchical ensemble
clustering for improved disease subtype discovery. We have
further developed the R-package HC-fused, which now allows
for building ensembles of arbitrary complexity. We compared
the performance of four different ensemble architectures with
the state-of-the-art methods SNF, NEMO, and PINSplus. We
evaluated these methods based on four different cancer types.
There is clear indication that our approach improves on the
stability of obtained results. Furthermore, the best clustering
solution was produced by one of our ensembles in three out
of four cases. From the obtained results one can conclude that
there might not be a single multi-omics clustering algorithm
appropriate for all cancer types. Here we are providing a
framework that allows a researcher to engineer combinations
of hierarchical clustering methods to meet cancer-specific data
demands. Overall, we believe that a general class such as hier-
archical clustering can providing more flexibility with respect
to ensembles, thus contributing to a better understanding of
the genomic diversity across cancer types.

We observed that the SNF and NEMO algorithms are
computational slightly faster than HC-fused. It should be
noted, however, that the HC-fused fusion algorithm requires
multiple runs on the exact same input matrices, and thus
this process is specifically suited for multi-core execution. In
contrast, the diffusion process implemented within SNF and
NEMO is rather challenging to parallelize because employed
similarity estimates depend on previous iterations. Moreover,
the calculation of the best number of clusters within HC-fused
is currently also executed sequentially, yet another option for
optimization in a multi-core environment.

VII. CONCLUSION

We have developed an efficient ensemble framework for in-
tegrative clustering. An updated version of the R-package HC-
fused is available from GitHub (https://github.com/pievos101/
HC-fused). It includes a substantially improved code via C++
implementations and provides an easy-to-use function for
ensemble building We plan to further develop the HC-fused
package in various directions. Currently, the best number of
clusters is inferred by the silhouette coefficient. Future work
will evaluate a wide range of alternatives to determine an
optimal number of clusters. For instance, we will interface
the HC-fused program with the R-package Nbclust [16]. It
provides 30 indices for the optimal number of clusters. Future
work will also include the application of our approach to
other data such as LinkedOmics (http://linkedomics.org [17]).
Eventually, we will enable our algorithm to work with mixed
input data, so that relevant clinical observations in the form
of categorical data can be incorporated.
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Fig. 2. TCGA results obtained from integrative hierarchical ensemble clustering. Boxplots of the p-values (on a negative log10 scale) are displayed for the
four different cancer types (GBM, KIRC, LIHC, and SARC). The results of the ensemble approaches are highlighted in blue. The red line refers to α = 0.05
significance level.

TABLE II
SURVIVAL ANALYSES OF TCGA CANCER DATA.

ward.D1- single- UPGMC- UPGMA-
Cancer type Patients SNF PINSplus NEMO ward.D2 complete WPGMC WPGMA
GBM 538 0.0113 0.0614 0.0159 0.0668 0.0601 0.5767 0.0448
KIRC 606 0.0434 0.3098 0.3337 0.0629 0.0006 0.0031 0.0150
LIHC 423 0.5471 0.3785 0.1845 0.0190 0.4446 0.5945 0.4252
SARC 265 0.0161 0.0511 0.0856 0.0160 0.0001 0.0062 0.0007

Display of the median Cox log-rank p-values. The best performing method for each cancer type is highlighted in bold.

TABLE III
COMPUTATIONAL DEMAND.

ward.D1- single- UPGMC- UPGMA-
Cancer type Patients SNF PINSplus NEMO HC-fused ward.D2 complete WPGMC WPGMA
KIRC 606 49.35 162.60 45.84 86.23 131.20 137.70 129 143

The elapsed time of the applied methods is shown in seconds.
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Fig. 3. TCGA results obtained from integrative hierarchical ensemble clustering. Boxplots of the p-values (on a negative log10 scale) are displayed for the four
different cancer types (GBM, KIRC, LIHC, and SARC). Results for the ensemble approaches are highlighted in blue and compared with the state-of-the-art
methods SNF, PINSplus, and NEMO. The red line refers to the α = 0.05 significance level.
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