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Markov automata are a compositional modelling formalism with continuous stochastic time, discrete probabil-
ities, and nondeterministic choices. In this article, we present extensions to Modest, an expressive high-level
language with roots in process algebra, that allow large Markov automata models to be specified in a succinct,
modular way. We illustrate the advantages of Modest over alternative languages. Model checking Markov
automata models requires dedicated algorithms for time-bounded and long-run average reward properties.
We describe and evaluate the state-of-the-art algorithms implemented in the mcsta model checker of the
Modest Toolset. We find that mcsta improves the performance and scalability of Markov automata model
checking compared to earlier and alternative tools. We explain a partial-exploration approach based on the
BRTDP method designed to mitigate the state space explosion problem of model checking, and experimen-
tally evaluate its effectiveness. This problem can be avoided entirely by purely simulation-based techniques,
but the nondeterminism in Markov automata hinders their straightforward application. We explain how light-
weight scheduler sampling can make simulation possible, and provide a detailed evaluation of its usefulness
on several benchmarks using the Modest Toolset’s modes simulator.
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1 INTRODUCTION

Studying dependability and performance aspects of critical designs or implementations [6] re-
quires an adequate formal mathematical model that captures the core quantitative aspects of
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such systems. In particular, we need stochastic continuous time to model delays of which we only
know averages, e.g., the mean time to failure, discrete probabilistic choices to describe instanta-
neous uncertain decisions, as in, e.g., randomised algorithms, and nondeterminism to be able to
deal with underspecification, abstraction, unquantified uncertainty (e.g., adversarial inputs or con-
trol decisions), and concurrency. Markov automata (MA) [36, 38] extend the classical formalisms
of continuous-time Markov chains (CTMC) and discrete-time Markov decision processes

(MDP) [70] to encompass all three of these aspects. In contrast to continuous-time Markov deci-

sion processes (CTMDP), they are compositional: there is a natural parallel composition operator
for networks of MA that provides for both interleaved and synchronising transitions without the
need for ad-hoc operations to combine transition rates.

MA are the semantic basis for generalised stochastic Petri nets [37] and dynamic extensions of
fault trees [12, 61]. They have been applied to various problems including model-based testing [40]
and robot planning under uncertainty [4, 67]. Several publications studied algorithmic problems
related to the efficient analysis of MA [3, 21, 23–25, 43, 44, 55]. In this light, it is disappointing
that tool support for MA has thus far been rather brittle. The one dedicated tool for composi-
tional modelling with MA, Scoop [79], is unmaintained, as is the corresponding lower-level MA
model checker Imca [42]. The one other actively developed tool with comprehensive MA support
is Storm [34], which, however, lacks built-in support for high-level compositional modelling.

Using the mathematical formalism of MA directly to build complex models is cumbersome. For
their use to be practical, a higher-level modelling language is needed. Aside from a parallel com-
position operator, such languages typically provide variables over finite domains that can be used
in expressions to, e.g., enable or disable transitions. Their semantics is then an MA whose states
are the valuations of the variables, allowing to compactly describe very large MA. In this article,
we present recent extensions to Modest [10, 47], a high-level modelling language for stochastic
timed and hybrid systems, that add support for expressing MA models. Rooted in process algebra,
Modest provides various composition operators that allow large models to be assembled from
small, easy-to-understand components. In Section 3, we illustrate the use of Modest for MA, and
we compare its succinctness, expressivity, and readability with alternative languages.

MA models are built for the purpose of assessing quantitative properties of systems such as
safety (the probability to reach an unsafe state), reliability (doing so within a time bound), or
throughput (the long-run average amount of work completed per time unit). Probabilistic model
checking techniques [5] can be applied to MA to effectively compute or approximate such values.
While the computation of unbounded reachability probabilities and expected accumulated rewards
can be reduced to checking the MA’s embedded MDP, time-bounded probabilities and long-run

average rewards require dedicated algorithms. Section 4 is dedicated to the currently available
algorithms for model checking MA. We summarise their particular characteristics and notable
implementation considerations. To complement our extension of the Modest language with suit-
able analysis facilities, we have implemented the most promising of these algorithms in the mcsta

model checker of the Modest Toolset [49]. We use the MA models of the Quantitative Verifi-

cation Benchmark Set (QVBS) [53] to evaluate the performance of our implementation and of
the different algorithms. We compare the results with Imca and Storm.

For very large models, exhaustive model checking is currently limited by state space explosion.
In the areas of machine learning and probabilistic planning, approaches have been developed that
aim to only generate and store in memory those states that are actually necessary to obtain the
value of interest at the desired precision. We focus on these partial exploration techniques in Sec-
tion 5. A notable example is bounded real-time dynamic programming (BRTDP) [13]. It em-
ploys Monte Carlo simulation to guide the partial exploration, which for MA is combined with
model checking algorithms to compute value approximations. In some cases, BRTDP allows very
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Fig. 1. The MA family tree. Fig. 2. Example Markov automata.

large models to be checked with decent precision on only few states. In other cases, however, suf-
ficient precision cannot be reached without exploring nearly all states. We experimentally explore
the behaviour of the BRTDP approach on MA using all applicable MA models of the QVBS.

If we do not allow storing any more than a constant number of states, then we are in the realm
of “pure” statistical model checking (SMC) [56, 65, 80] where only the current and next state
during a simulation run are ever kept in memory. SMC fully avoids the state space explosion prob-
lem. Unfortunately, due to the presence of nondeterminism, MA are not directly amenable to SMC.
However, lightweight scheduler sampling (LSS) has been introduced to enable SMC for models
with nondeterminism [66], albeit without optimality guarantees, and lifted to MA for the approx-
imation of optimal unbounded reachability probabilities and expected accumulated rewards [31].
We explain the idea behind, and the limitations of, this approach in Section 6. It is implemented in
the Modest Toolset’s modes simulator [17]. Using all applicable MA models of the QVBS with
non-spurious nondeterminism (where nondeterminism being spurious means that any choices do
not affect the properties of interest, i.e., an equivalent fully stochastic model exists), we present an
extensive study of the efficiency of LSS for MA.

Previous work. This article extends upon our conference paper [22] presented at the 16th Inter-
national Conference on Quantitative Evaluation of Systems (QEST 2019). We have expanded expla-
nations throughout and incorporated a step-by-step introduction to modelling MA with Modest
in Section 3 extracted from the larger tutorial in Reference [51]. We consolidated the informa-
tion and experiments concerning probabilistic model checking in Section 4. We added two new
sections: Section 5 presents partial-exploration approaches as classically used in planning and ma-
chine learning, focusing on a variant of BRTDP. Section 6 highlights the simulation perspective
using LSS. Both of these sections include completely new experimental evaluations.

2 MARKOV AUTOMATA

The mathematical formalism of Markov automata [36, 38] provides nondeterministic choices as
in labelled transition systems (LTS, also known with small variations as finite automata or
Kripke structures, see, e.g., Reference [7]), discrete probabilistic decisions as in discrete-time

Markov chains (DTMC), and stochastic time as in CTMC. The relationships between these
and other formalisms are visualised in Figure 1. The combination of DTMC and LTS leads to
the model family of discrete-time Markov decision processes (MDP) [70] or probabilistic au-
tomata [76], where transitions of the form s a

−→ μ offer in state s a (nondeterministic) decision
option (or choice option) labelled by action a that is followed by a probabilistic decision of where
to jump according to probability distribution μ. The conceptually closest model in continuous time
is that of continuous-time MDP (CTMDP) [70], where action-labelled transitions are of the form
s a e with e mapping states to rates. Such a transition indicates that probability mass flows from
state s to state s ′ with rate e(s ′) provided action a is chosen in state s . Markov automata instead
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combine MDP and CTMC in an orthogonal manner by providing two types of transitions: s a
−−→ μ

as in MDP, and s λ s ′ as in CTMC. Choice of action and stochastic timing are thus intertwined
in CTMDP but separate in MA—thus the dashed line in Figure 1 from CTMDP to MA. We now
define Markov automata formally and describe their semantics.

Preliminaries. We write [a,b] for the real interval {x ∈ R | a ≤ x ≤ b}, (a,b) for the real
interval {x ∈ R | a < x < b}, and analogously for half-open intervals. Given a set S , its powerset
is 2S . A (discrete) probability distribution over S is a function μ : S → [0, 1] such that its support
spt(μ)

def
= {s ∈ S | μ(s) > 0} is countable and

∑
s ∈spt(μ) μ(s) = 1. We write Dist(S) for the set of all

probability distributions over S , and μ1 ⊗ μ2 is the product distribution of μ1 and μ2 defined by

(μ1 ⊗ μ2)(〈s1, s2〉) = μ1(s1) · μ2(s2).

We refer to discrete random choices as probabilistic and to continuous ones as stochastic. We write
{x1 	→ y1, . . . } to denote the function that maps each xi to yi , and if necessary in some context,
implicitly maps to 0 all x for which no explicit mapping is specified. Thus, we can, e.g., write
{s 	→ 1} for the Dirac distribution that assigns probability 1 to s .

2.1 Definition

We now mathematically define the formalism of Markov automata as tuples containing their states,
transitions, and all other relevant aspects.

Definition 2.1. A Markov automaton (MA) M is a tuple

M = 〈S, s0,A, P ,Q, rr, br〉,

where
— S is a finite set of states with initial state s0 ∈ S ,
— A is a finite set of actions,
— P : S → 2A×Dist(S ) is the probabilistic transition function,
— Q : S → 2Q×S is the Markovian transition function,
— rr : S → [0,∞) is the rate reward function, and
— br : S × Tr(M) × S → [0,∞) is the branch reward function.
The set of all transitions of M is Tr(M)

def
=

⋃
s ∈S P(s) ∪Q(s); it must be finite. We require that

br(〈s, tr, s ′〉) � 0 implies tr ∈ P(s)∪Q(s). We say that M is deadlock-free if ∀ s ∈ S : P(s)∪Q(s) � �.

We also write s a
−→P μ for 〈a, μ〉 ∈ P(s) and s λ

Q s ′ for 〈λ, s ′〉 ∈ Q(s), and omit the P and
Q subscripts if they are clear from the context. In s λ

Q s ′, we call λ the rate of the Markovian
transition. We refer to every element of spt(μ) as a branch of s a

−→P μ; a Markovian transition has
a single branch only (its target state). We define the exit rate of s ∈ S as E(s) =

∑
〈λ,s ′ 〉∈Q (s) λ.

Example 2.2. Figure 2 shows two MA M1 and M2 without rewards. We draw probabilistic transi-
tions as solid, Markovian ones as dashed lines. If a transition leads to a single target state, then we
omit the intermediate probabilistic branching node. Thus, for M1 = 〈S, s0,A, P ,Q, rr, br〉, we have
five states in S = {0, 1, 2, 3, 4}, the initial state being s0 = 0, two actions in A = {a, c}, two prob-
abilistic transitions in P = {0 	→ {〈a, {1 	→ 0.5, 2 	→ 0.5}〉, 〈c, {3 	→ 1}〉}}, and two Markovian
transitions in Q = {1 	→ {〈2, 4〉}, 3 	→ {〈2, 4〉}}, both with rate 2.

Intuitively, the semantics of an MA is that, in state s , (1) the probability to take Markovian transi-
tion s λ s ′ and move to state s ′ within t model time units is λ/E(s) · (1−e−E(s)·t ), i.e., the residence
time in s follows the exponential distribution with rate E(s) and the choice of transition is prob-
abilistic, weighted by the rates; and (2) at any point in time, a probabilistic transition s a

−→ μ can
be taken with the successor state being chosen according to μ. An MA thus resolves some choices
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probabilistically (the choice of successor state of a probabilistic transition, the choice among Mar-
kovian transitions) or stochastically (the choice of residence time), while other choices are left
open as nondeterministic (the timing of probabilistic transitions, and the choice among multiple
available probabilistic transitions). Due to the presence of nondeterminism, an MA itself does not
induce a probability measure over its possible behaviours. We refer the interested reader to, e.g.,
[55] for a complete formal definition of this semantics.

An MA without Markovian transitions is an MDP; it is a DTMC if in addition P maps each state
to a singleton set. An MA without probabilistic transitions is a CTMC.

2.2 Parallel Composition

The co-existence of action-labelled probabilistic transitions of the form s a
−−→ μ and of Markovian

transitions of the form s λ s ′ separates actions from timing. It enables parallel composition op-
erators with action synchronisation for MA without the need to prescribe an ad-hoc operation for
combining rates (as would be necessary to compose CTMC or CTMDP).

Definition 2.3. Given two MA

Mi = 〈Si , s0i
,Ai , Pi ,Qi , rri , bri 〉,

i ∈ {1, 2}, a finite set A of actions, and a synchronisation relation

sync ⊆ (A1 � {⊥}) × (A2 � {⊥}) ×A,

their parallel composition is

M1 ‖ M2
def
= 〈S1 × S2, 〈s01 , s02〉,A, P ,Q, rr, br〉,

where P is the smallest function that satisfies the inference rules

s1
a1−→P1 μ 〈a1,⊥,a〉 ∈ sync

〈s1, s2〉
a
−→P μ ⊗ {s2 	→ 1}

(prob1)
s2

a2−→P2 μ 〈⊥,a2,a〉 ∈ sync

〈s1, s2〉
a
−→P {s1 	→ 1} ⊗ μ

(prob2)

s1
a1−→P1 μ1 s2

a2−→P2 μ2 〈a1,a2,a〉 ∈ sync

〈s1, s2〉
a
−→P μ1 ⊗ μ2

(probsync),

Q is the smallest function that satisfies the inference rules

s1
λ

Q1 s
′
1

〈s1, s2〉
λ

Q 〈s ′1, s2〉
(mar1)

s2
λ

Q2 s
′
2

〈s1, s2〉
λ

Q 〈s1, s
′
2〉

(mar2),

and for all states 〈s1, s2〉, we have rr(〈s1, s2〉) = rr1(s1) + rr2(s2). Function br sums the values of
br1 and br2 for the combinations of branches in synchronisation (inference rule probsync), and
otherwise preserves the original branch rewards.

Rules prob1 and prob2 allow the individual MA to proceed independently of each other if al-
lowed by sync; rule probsync covers the case where both automata synchronise on a pair of actions
as determined by the sync relation. Rules mar1 and mar2 state that Markovian transitions are
always performed independently. An element of sync is a synchronisation vector ; we also write
〈a1,a2〉 	→ a for vector 〈a1,a2,a〉. This form of parallel composition can be generalised to more
than two automata in the straightforward way with longer synchronisation vectors. It is very
flexible, allowing, in particular, the traditional CCS-style binary and CSP-style multi-way synchro-
nisation patterns [57, 69] to be encoded. Originally established by Cadp [39], it is today used for
MA in the Jani format [18]. We refer to a general parallel composition of several MA as a network

of MA.
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Example 2.4. Figure 2 includes the parallel composition of the example MA M1 and M2, where
we write nm for state 〈n,m〉. The two automata synchronise on the shared actions a and c, i.e., we
have sync = {〈a, a〉 	→ a, 〈⊥, b〉 	→ b, 〈c, c〉 	→ c}.

2.3 Semantics

We defined MA as open systems [14]: probabilistic transitions can interact with, wait for, and be
blocked by other MA in parallel composition. For verification, we make the usual closed system

and maximal progress assumptions: probabilistic transitions face no further interference and take
place without delay. If multiple probabilistic transitions are available in a state, however, then the
choice between them remains nondeterministic. Since the probability that a Markovian transition
is taken in zero time is 0, the maximal progress assumption allows us to remove all Markovian
transitions from states that also have a probabilistic transition. In such closed MA, we can thus
distinguish between Markovian states (where P(s) = �) and probabilistic states (where Q(s) = �).
The behaviour of a closed, deadlock-free MA M is defined via its paths:

Definition 2.5. Let M be a closed, deadlock-free MA as above. A path π of M is an infinite se-
quence,

π = s0 t0 tr0 s1 . . . ∈ (S × [0,∞) × Tr(M))ω,

such that, for all i ∈ {0, . . . }, we have
— tri ∈ P(si ) ∪Q(si ),
— Q(si ) = � implies ti = 0,
— tri = 〈a, μ〉 ∈ P(si ) implies μ(si+1) > 0, and
— tri = 〈λ, s ′〉 ∈ Q(si ) implies s ′ = si+1.
Π(M) is the set of all paths of M . We write Πfin(M) for the set of all path prefixes πfin ending in

a state. The last state of πfin is denoted last(πfin). Let π≤j
def
= s0 t0 . . . sj . The duration dur(πfin) of a

path prefix is the sum of its residence times ti . A path’s reward is

rew(π )
def
=

∞∑
i=0

ti · rr(si ) + br(si , tri, si+1);

it may be ∞, and is defined analogously for prefixes (where it is always finite).

A path comprises states si , times ti spent in si , and transitions tri taken from si to si+1. It is
a resolution of all nondeterministic, probabilistic, and stochastic choices. To define a probability
measure, we resolve nondeterminism only:

Definition 2.6. Let M be a closed, deadlock-free MA as above. A (deterministic, history-
dependent) scheduler is a function

σ : Πfin(M) → Tr(M)

such that ∀πfin ∈ Πfin(M) : σ (πfin) ∈ P(last(πfin)) ∪ Q(last(πfin)). We write S(M) for the set of
all schedulers of M . A time-dependent scheduler is in S × R → Tr(M); a memoryless scheduler
is in S → Tr(M). Given a time bound b ∈ [0,∞), every time-dependent scheduler σt defines a
corresponding scheduler σ by

σ (πfin) = σt (〈last(πfin),b − dur(πfin)〉)

for all path prefixes πfin. Since it will be used for time-bounded properties (see below), its decisions
for negative values ofb−dur(πfin)—i.e., when the time bound has expired—are in practice irrelevant.
Every memoryless scheduler σml similarly defines a corresponding scheduler σ by

σ (πfin) = σml(last(πfin)).
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A randomised scheduler is a function

σrand : Πfin(M) → Dist(Tr(M))

such that ∀πfin ∈ Πfin(M) : spt(σ (πfin)) ⊆ tr ∈ P(last(πfin))∪Q(last(πfin)). Every scheduler σ defines
a corresponding randomised scheduler σr by, for all path prefixes πfin,

σr (πfin) = {σ (πfin) 	→ 1}.

Randomised schedulers are the most general type of schedulers; they choose a history-
dependent probability distribution over the available transitions in every state instead of determin-
istically picking one of the transitions. However, we define schedulers as deterministic by default,
since randomised schedulers are not needed for the types of properties we mainly consider in this
article (but rather for, e.g., multi-objective problems [71]). The only randomised scheduler we use
is the uniform scheduler σU , defined by

σU (πfin) =

{
tr 	→

1

|P(last(πfin)) ∪Q(last(πfin))|
| tr ∈ P(last(πfin)) ∪Q(last(πfin))

}
,

i.e., it is the randomised memoryless scheduler that resolves nondeterminism in a state s by uni-
formly at random selecting one of the transitions in P(s).

We note that CTMDP with “early” schedulers [73], which select one fixed action for every path
prefix, can be encoded as closed MA. Since actions and stochastic time are combined in CTMDP,
their schedulers could also choose different actions depending on how much time has elapsed in a
state (as long as a transition with their chosen action is not yet taken): these are the more general
“late” schedulers, which have no direct counterpart in MA.

2.4 Properties

If we “apply” a scheduler to an MA, then it removes all nondeterminism, and we are left with
a fully stochastic process whose paths can be measured and assigned probabilities according to
the rates and distributions in the (remaining) MA. Formally, these probability measures over sets
of measurable paths are built via cylinder sets; we refer the interested reader to, e.g., Reference
[55] for a fully formal definition. For all of the following types of properties, we are interested
in the maximum (supremum) and minimum (infimum) values when ranging over all schedulers
σ ∈ S(M):

Reachability probabilities: Given goal statesG ⊆ S , compute the probability of the set of paths
that include a state in G. Memoryless schedulers suffice to achieve optimal results (i.e., the
maximum and minimum probabilities).

Time-bounded reachability: Additionally restrict to paths where the duration of the prefix to
the first state in G is below a bound b ∈ [0,∞). Time-dependent schedulers suffice to obtain
the optimal values for time-bounded reachability properties.

Expected accumulated rewards: Compute the expected value of the random variable that as-
signs to π the value rew(πfin) with πfin being the shortest prefix of π with a state in G. If
measurable sets of paths exist that do not reach a state in G, then this value is not well-
defined. The standard definition, which we follow, is to consider such paths to have “infinite
reward”; as a consequence, the maximum (minimum) expected accumulated reward is ∞

if the minimum (maximum) probability to reach G is less than 1. Memoryless schedulers
suffice.

Long-run average rewards: Compute the expected value of the random variable that assigns to
path π the value limi→∞ rew(π≤i )/dur(π≤i ). Again, memoryless schedulers suffice to achieve
optimal values here.
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Example 2.7. Consider MA M1 ‖M2 of Figure 2 and the probability to
reach state 〈4, 4〉 within 1 time unit. In state 〈0, 1〉, we have to decide
whether to choose action a or b. The optimal decision depends on the
amount of time t that has passed in state 〈0, 0〉. In the plot on the right,
we show the probability of reaching state 〈4, 4〉 within the time limit (y-
axis) depending on the remaining time 1 − t (x-axis). The blue (initially
upper) line represents the reachability probability for the memoryless
scheduler that always chooses a and the red (initially lower) one is for
the scheduler that always takes action b. A time-dependent scheduler
can make better decisions than either of these two by determining the values of t for which a
results in a higher probability than b and vice-versa. The optimal scheduler thus chooses a if and
only if 1 − t ≤ 0.63 approximately.

2.5 Variables

We can extend MA with discrete variables: An MA with variables (MAV) is an MA like in Defini-
tion 2.1 that additionally contains a finite set of variables. We call its states locations, its transitions
edges, and their branches destinations. Every edge additionally has a guard and every destination
has a set of updates. A guard is a Boolean expression over the variables that determines whether
the edge is enabled, and a set of assignments modifies the values of the variables. Tools usually
work with the semantics of an MAV in terms of an MA: The MAV MV corresponds to the MA M
with states 〈�,v〉, each consisting of a location � of MV and a valuation v that assigns a value to
every variable. The transitions out of 〈�,v〉 are those edges out of � in MV whose guard is satisfied
in v . The target state of a branch of a transition is 〈�′,v ′〉 with �′ the target location in MV and
v ′ obtained by executing the destination’s assignments on v . Our parallel composition operator
extends to MA with variables by using the conjunction of guards and the union of assignments
for synchronising transitions. If we allow variables to be shared between MAV, then parallel com-
position does not distribute over semantics; we need to compose the MAV before converting them
to MA.

2.6 Our Tools for MA

The Modest Toolset [49] is a comprehensive suite of tools for quantitative modelling and verifi-
cation. Its primary input languages are Modest [10, 47], which we introduce in more detail in Sec-
tion 3 below, and the Jani model interchange format [18]. MA are supported in the toolset’s mosta,
moconv, mcsta, and modes tools. mosta visualises the symbolic semantics of models (i.e., of net-
works of MAV before and after parallel composition as shown throughout Section 3.1) and is useful
for model debugging. moconv transforms models between modelling languages (it can, e.g., con-
vert Modest to Jani) and performs syntactic rewriting and optimisations. mcsta is a fast [19, 46]
explicit-state model checker that can use secondary storage to alleviate state space explosion [50];
we present and evaluate its MA-specific algorithms in Sections 4.1 and 4.2 and its implementation
of BRTDP for partial exploration in Sections 5.1 and 5.2. modes [17] is a statistical model checker
with automated rare event simulation capabilities. It implements the lightweight scheduler sam-

pling approach (LSS) [66] for nondeterministic models, including MA [31]. We explain and study
LSS for MA in Section 6. The Modest Toolset is written in C#, works cross-platform on 64-bit
Linux, Mac OS, and Windows systems, and is freely available at modestchecker.net. All its tools
share a common infrastructure for parsing and syntactic transformations. mcsta and modes ad-
ditionally build on the same state space exploration engine that compiles models to bytecode at
runtime for memory efficiency and performance.
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3 MODELLING WITH MARKOV AUTOMATA

Tools for the automated analysis of MA like mcsta and modes need a syntax in which the model
and the properties of interest are specified. As noted in Section 1, such a modelling language needs
to provide a parallel composition operator (akin to the operator introduced in the previous section)
such that large MA can be built from small specifications, and will typically support modelling with
variables.

3.1 Modest for Markov Automata

Modest [10, 47] is the modelling and description language for stochastic timed systems. At its core,
it is a process algebra: it provides various operations such as parallel and sequential composition,
parameterised process definitions, process calls, and guards to flexibly construct complex models
out of small and reusable components. Its syntax, however, borrows heavily from commonly used
programming languages, and it provides high-level conveniences such as loops and an exception
handling mechanism. As such, Modest tends to be more verbose than classic process algebras
but also more readable and beginner-friendly. To specify complex behaviour in a succinct man-
ner, Modest provides variables of standard basic types (e.g., bool, int, or bounded int), arrays,
and user-defined recursive datatypes akin to functional programming languages. Its syntax for
expressions is aligned with C-like programming languages for ease of use.

Let us now introduce the Modest language syntax step-by-step by using it to model our example
MA shown in Figure 2, starting with M1. Modest models are structured into processes, with each
process consisting of declarations and a behaviour. The declarations introduce all named objects
like actions, variables, exceptions, nested processes, and so on, that are available for use in the
behaviour and inside nested processes. A process’ behaviour defines an MA with those variables.1

To model M1 as a Modest process, we thus start by declaring the actions and a Boolean variable
to later distinguish between states 1 and 2:

action a, c;
bool f = false; // to distinguish between states 1 and 2

The simplest behaviour in Modest is to perform a (previously declared) action:

a

Semantically, this behaviour represents the MA with variables shown above on the right, where
the one edge has guard expression true. Every location � is uniquely identified by a behaviour
such that the MA with � as its initial location is the semantics of the behaviour. The checkmark �
is a special behaviour called successful termination that is not part of the syntax of Modest, and
whose semantics is a state with no outgoing edges. It receives special treatment by several other
Modest constructs. Modest also contains a stop construct with the same semantics but without
the special treatment.

Initially, automaton M1 offers a choice between two probabilistic transitions. The alt construct
combines multiple behaviours into a nondeterministic choice between them, thus the initial choice
in M1 can be represented as follows:

alt {
:: a
:: c
}

1Actually, the semantics of Modest [47] is defined in terms of stochastic hybrid automata (SHA), of which MA are a
special case; we restrict to that case in this article.
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The semantic effect of the alt construct is simply to merge the initial states of the semantics of
its child behaviours, the start of each of which is indicated by ::. Note that both edges lead to the
same location here; this is because the semantics of both behaviours a and c end in the identical
location �.

Now, in M1, the transition labelled a actually has two branches. The branching of probabilistic
transitions can be represented in Modest with the palt construct. Since it does not create a new
transition, but only defines branches, it has to be prefixed by the transition’s action:

alt {
:: a palt {

:1: {= f = true =}
:1: {==}
}

:: c
}

Probabilities are specified as weights between colons :, i.e., the actual probability in the semantics
is calculated as the given weight divided by the sum of all weights in the palt construct. The
assignments for every branch are specified in {= =} blocks, and they are executed atomically, so,
e.g., the assignment block {= x = y, y = x =} performs an in-place swap of variables x and y. To
create an edge labelled a with a single destination and assignments u, we can omit the palt and
just write a {= u =}. Observe that, in the semantics of our example above, all destinations still lead
to the same location. However, the semantics of this MAV contains two states in location �: one
where f is true, which is the target of the branch for the uppermost destination, and one where it
is false. We will from now on omit true guards and empty assignment sets in MAV.

Continuing to model M1 in Modest, we now add the Markovian transitions to state 4. We need
two new constructs: for sequential composition, and for rates. First, the semantics of the sequential
composition construct P; Q , for two behaviours P and Q , is to first behave like P , and upon suc-
cessful termination of P (i.e., upon reaching location �), behave likeQ . We thus get the following:

alt {
:: a palt {

:1: {= f = true =}; stop
:1: {==}; tau
}

:: c; tau
}

tau is the predefined silent action, which does not take part in synchronisation (i.e., in a binary
parallel composition, it is governed by synchronisation vectors 〈τ ,⊥〉 	→ τ and 〈⊥,τ 〉 	→ τ and
cannot occur in any other vectors). To turn the τ -labelled probabilistic edge into a Markovian one,
we simply specify rates:

alt {
:: a palt {

:1: {= f = true =}; stop
:1: {==}; rate(2) tau
}

:: c; rate(2) tau
}

The rate construct is a recent addition to Modest with the specific purpose of allowing MA models
to be expressed in a convenient and natural way. Modest enforces the separation of probabilistic
and Markovian transitions by requiring edges for which a rate is specified to have action tau. If
this restriction is not met, then the model is recognised as a CTMDP.
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In the model above, the behaviour rate(2) tau occurs twice. We can eliminate this duplication
by moving it out of the alt construct. At this point, let us also introduce the when construct to
specify guards: instead of using stop to make the model deadlock in the upper destination, we use
f to cause the deadlock in the semantics of the MAV. The result is
alt {
:: a palt {

:1: {= f = true =}
:1: {==}
}

:: c
};
when(!f) rate(2) tau

The semantics of the MAV on the right above is almost isomorphic to M1; the difference is that
states 1 and 3 are merged, since they have the same behaviour.

In Figure 3, we show the full Modest model of the parallel composition of MA M1 and M2 of
Figure 2. It includes the model that we built for M1 above as the body of the named process M1.
Such processes can have parameters (specified between the parentheses in the declaration, not
shown here) and local variables. A process call like M1() behaves exactly like the behaviour of M1,
with all formal parameters taking the values of the actual arguments, and new variable instances
for all parameters and local variables to separate them from any other calls to M1. The semantics
of the parallel composition construct par is the n-ary parallel composition of its child behaviours,
with synchronisation vectors that implement CSP-style synchronisation for all actions declared
with the action keyword (in this model, that is the vectors given in Example 2.4), and as described
above for τ . The model also declares two properties, P_Min and P_Max, which ask for the probability
to reach state 〈4, 4〉—made observable via the global variable succ, which is of bounded integer
type2 with range {0, 1, 2}—within time bound B akin to Example 2.7. B is an open parameter for
which values can be specified at verification time.

We have now covered most of the basic constructs of Modest. There are many features not
used in this small model; we refer the interested reader to our extended tutorial on Modest for
MA [51], where we continue by tackling two different realistic case studies with Modest in a step-
by-step fashion. Additional Modest MA models are also part of the Quantitative Verification

Benchmark Set (QVBS) [53] at qcomp.org.

3.2 Alternative Modelling Languages

Modest is not the only modelling language for MA. We briefly contrast it to the currently available
alternative modelling languages with support for MA here.

State space files for Imca. The first MA-specific algorithms were implemented in the Imca
tool [42]. Its only input language is a text-based explicit state space format as illustrated for our
example of M1 ‖M2 in Figure 6. This is clearly not a useful modelling language, but a format to be
automatically generated by tools.

Guarded commands with Storm. The Storm model checker [34] provides many input languages,
with MA being supported through a state space format similar to Imca’s, via Jani, as the seman-
tics of generalised stochastic Petri nets [37] in GreatSPN format [1], and through an extension

2MA model checking requires finite state spaces; thus all variables must be bounded. Indicating the bounds in the types is
good practice to avoid accidentally creating infinite-state models and may improve performance, but it is not a requirement
for mcsta as long as only finitely many distinct values are ever assigned to the variables occurring in the model.
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Fig. 3. Modest model for M1 ‖M2.

Fig. 4. MAPA process algebra.

Fig. 5. Prism dialect supporting MA.

Fig. 6. Imca state space format.

of the Prism guarded command language. We show our example in the latter in Figure 5. This
is a very simple and small language that is easy to learn, however its only higher-level construct
to structure and compose models is the parallel composition of its modules, which uses CSP-style
synchronisation like Modest’s par construct. The Prism tool also provides finer-grained control
over synchronisation via the system-endsystem construct, but support for this feature is gener-
ally limited in other tools. The Prism language requires the modeller to explicitly encode a state
machine to structure control flow, and has limited support for code reuse (via module renam-
ing for behaviour and via formulas/labels for expressions). Overall, it makes a rather different
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tradeoff between the simplicity of the language and the ability to structure large models compared
to Modest.

Process algebra with Scoop. Mapa [79] is a dedicated process algebra for MA. It is supported by
Scoop [79], which can linearise, reduce, and finally export Mapa models to Imca for verification.
We show the example of M1 and M2 in Mapa in Figure 4. As a classic concise process algebra,
Mapa tends to be very succinct but also difficult to read. Mapa models can be much more flexibly
composed than Prism models, yet there is less syntactic structure than in Modest—although the
languages conceptually share many operators. Mapa notably has a predefined queue datatype, and
users can specify custom non-recursive datatypes.

Jani for tool interoperation. The Jani model interchange format [18] is designed to ease tool
development and interoperation. It is Json-based and thus human-debuggable, but not intended
as human-writeable. It represents networks of automata with variables symbolically. Since both the
Modest Toolset and Storm support Jani, it is possible to, e.g., build MA models in the Modest
language, export them to Jani with moconv, and then verify them with Storm. Likewise in the
other direction, we can, e.g., create a Petri net with GreatSPN, convert to Jani with Storm, and
analyse it with mcsta or modes. In this way, the most appropriate modelling language can be
combined with the best analysis method and tool for every specific scenario. The Json-based syntax
however is too verbose to display the example in Jani format in this article.

4 CHECKING MARKOV AUTOMATA

While the values for some classes of properties can be computed by means of algorithms originally
designed for MDP, others need dedicated MA-specific algorithms. We here give a brief overview
of the set of relevant algorithms implemented in the mcsta, Storm, and Imca tools followed by an
experimental performance comparison.

4.1 Model Checking Algorithms

To calculate the values of untimed and expected-time properties, we can directly reuse MDP model
checking algorithms. Whenever a property refers to time, e.g., by means of a time bound, however,
we need dedicated algorithms for MA.

4.1.1 Untimed and Expected-Reward Properties. Like for CTMC, properties that do not refer to
time, or only to expected times, can be computed on an MDP embedded in the Markov automaton.
These properties include unbounded as well as branch reward-bounded reachability probabilities
and expected accumulated rewards. For simplicity, we refer to all of these as “unbounded proper-
ties.” For a given closed, deadlock-free MA M = 〈S, s0,A, P ,Q, rr, br〉, the embedded MDP is

〈S, s0,A � {τ }, P ′, {s 	→ � | s ∈ S}, {s 	→ 0 | s ∈ S}, br ′〉,

with

P ′(s) =

{
{〈τ , {s ′ 	→

∑
〈λ,s′〉∈Q (s ) λ

E(s)
| s ′ ∈ S}〉} if P(s) = �,

P(s) otherwise,

and

br ′(〈s, tr, s ′〉) =

{
rr(s)+

∑
〈λ,s′〉∈Q (s ) λ ·br(〈s, tr,s ′ 〉)

E(s)
if P(s) = �,

br(〈s, tr, s ′〉) otherwise;

i.e., in every Markovian state, we replace all outgoing transitions by a single probabilistic transition
such that every branch corresponds to one of the original Markovian transitions with the rates
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interpreted as probability weights. The branch rewards are calculated based on the expected time
spent in each Markovian state as given by its exit rate.

The portfolio of algorithms for unbounded properties includes all the standard exhaustive model
checking algorithms designed for MDP [70], in particular, using linear programming (LP), policy
iteration, value iteration, interval iteration [8, 45], sound [72], and optimistic [52] value iteration.
Standard value iteration and many LP solver-based approaches are “unsound” in the sense that
they do not provide guarantees (such as ϵ-closeness to the true probability or value) on their
results, while interval iteration, sound value iteration, and optimistic value iteration do. To combat
the state space explosion problem of the exhaustive methods, the bounded real-time dynamic

programming (BRTDP) [68] approach can be used for probabilities [13]. It attempts to explore
only a small part of the state space that is sufficient to provide a lower and an upper bound on
the result that are close enough. Its efficiency both in terms of runtime and in terms of memory
reduction highly depends on the structure of the model; we study its behaviour on MA in more
detail in Section 5.

Tool support. mcsta implements value iteration, LP, interval iteration, sound value iteration, and
optimistic value iteration for expected rewards and unbounded reachability probabilities. It also
provides BRTDP as in Reference [3] where simulations with the uniform scheduler are used to
explore a part of the state space. After every batch of simulation runs, interval iteration is used
on the explored part of the state space to compute bounds. Storm implements value and policy
iteration, LP, interval iteration, sound value iteration, and a variant of BRTDP. It also provides
algorithms to compute exact (rational) solutions using exact arithmetic, but they are currently
limited to small models. Imca supports value iteration only.

4.1.2 Time-Bounded Reachability. Time-bounded properties pose one of the most challenging
problems in MA model checking. Several algorithms with rather different characteristics are cur-
rently available for approximating time-bounded reachability probabilities: The discretisation ap-
proach [43] discretises the time horizon into small intervals, such that the MA will likely perform
at most one Markovian transition within each interval. Unif+ was first presented for CTMDP [23]
and later extended to MA [41]. It is based on an approximation of the optimal time-bounded
reachability probability over timed schedulers by using untimed schedulers. The switch-step al-
gorithm [21] attempts to compute switching points: the points at which the optimal scheduler
changes the decision for at least one state, as illustrated in Example 2.7. Finally, the BRTDP idea
for time-bounded reachability properties on CTMDP [3] can be extended to MA straightforwardly:
the simulation phase performs CTMC-style simulation for Markovian states and MDP-style sim-
ulation over probabilistic states. Time progresses only over Markovian states and the simulation
stops whenever the time bound expires or a target state is reached. Resolution of nondeterminism
is performed via the uniform scheduler. The analysis phase can be performed by any of the other
algorithms for time-bounded analysis on MA. We will see in Section 5 that BRTDP works very
well for time-bounded properties on several models.

Tool support. mcsta implements Unif+ and switch-step while Storm supports Unif+ and the dis-
cretisation approach. Both provide sound implementations of these algorithms (i.e., they guarantee
ϵ-correct results). mcsta also implements a variant of BRTDP for MA as in Reference [3] that is
sound. Imca implements only discretisation and uses unsound techniques for certain subproblems.

4.1.3 Long-run Average Rewards. There exist two approaches for computing long-run average
rewards: one based on a reduction to a linear program [44], and a value iteration-based algo-
rithm [24] that approximates the reward up to a user-specified (and guaranteed) precision. In both
cases, first the long-run average reward is determined for each maximal end component, then the
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end components are collapsed, and the overall result is computed as an expected reward value on
the collapsed state space.

Tool support. mcsta and Storm implement both of the algorithms while Imca implements only
the linear programming-based approach.

4.1.4 Other Verification Problems. We briefly summarise other MA verification problems, name
the corresponding available algorithms, and mention where they are implemented.

Time-bounded expected rewards. extend the time-bounded reachability problem to rewards. The
property represents the expected accumulated reward until a time bound is reached. Algorithmic
support for this property is limited to the discretisation-based approach of Reference [44], which
is implemented in Imca.

Resource-bounded rewards. generalise both time-bounded reachability and time-bounded ex-
pected rewards. A resource-bounded reward property represents the expected accumulated reward
within a finite resource budget. The resource is formally represented by a second type of (branch
or rate) reward in the model. The only algorithm available to date is presented in Reference [55],
with no tool support.

Discounted rewards. Expected discounted reward properties ask for the expected total reward
where rewards collected at a certain time point are discounted with a value, depending on this
time point. For example, when dealing with income, discounted rewards allow to take inflation
into account. Iterative algorithms for computing and approximating the value exist, such as policy
and value iteration [25]. There is however no tool support so far.

Multi-objective tradeoffs. Multi-objective MA model checking allows finding a scheduler that is
optimal for several objectives, rather than only one. The only algorithm available to date and imple-
mented in Storm is presented in Reference [71]. It does not support the full range of properties, in
particular, excluding long-run average and discounted rewards. For the underlying time-bounded
analysis, it resorts to discretisation, which tends to not scale well (see Section 4.2).

4.2 Model Checking Performance Comparison

The Quantitative Verification Benchmark Set (QVBS) [53] currently contains 18 MA mod-
els, specified in Modest, in Storm’s extension of the Prism language for MA (cf. Section 3.2), as
GreatSPN Petri nets, and as fault trees in the Galileo format [78]. For every model, there is also a
Jani version. Most models have parameters (like B in our Modest example of Figure 3) that allow
them to be scaled up from small to huge state spaces. We use most of these models to compare the
performance and scalability of the model checking algorithms implemented in mcsta with Imca
and Storm. We select parameters that make for challenging, but not impossible-to-check, state
space sizes (up to a few millions of states). The models include variations of queueing systems, de-
pendability models, scheduling problems, and security case studies. We excluded those models that
only have spurious nondeterminism (i.e., those that are equivalent to a CTMC), and those that can
be fully checked in just a few seconds for all of the parameter valuations given in the QVBS. Due
to the absence of long-run average reward properties in most MA models of the benchmark set,
we added sensible long-run average properties to most of the Modest models (which are easy to
modify by hand, in contrast to Jani) to be able to do a meaningful performance comparison. They
are mainly steady-state probabilities (i.e., the special case of a rate reward of 1 in some states and of
0 in all others) or properties describing the long-run average costs of running the modelled system.

All experiments were conducted on two servers with Intel Core i7-4790 processors and 16 resp.
32 GB of RAM running 64-bit Ubuntu Linux 18.04. We used mcsta version 3.0.145, Storm version
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1.3.1, and Imca version 1.6 beta. We keep the default values for all command line arguments of the
tools unless we explicitly mention specific values. When we request a certain precision for results
(with sound methods), we request absolute, not relative, precision. We show all results as scatter
plots like the one below, with log-log axes. Every benchmark instance—a model, a valuation for
its parameters, and a property to check—results in one point in these plots. A point 〈x ,y〉 states
that the runtime of the tool noted on the x-axis on one instance was x seconds while the runtime
of the tool noted on the y-axis was y seconds. Thus points above the solid diagonal line indicate
instances where the x-tool was faster; it was more than ten times faster (slower) on points above
(below) the dotted line. We set the timeout to 30 min; a timeout is denoted by an “x” dot in the
plots.

4.2.1 mcsta and Imca. The plot on the right com-
pares the runtime of mcsta and Imca on time-bounded
(“tbr”), long-run average (“lra”), and unbounded proper-
ties (“unb”). The input of Imca is an explicit representa-
tion of a state space (cf. Section 3.2). Thus, before a model
can be analysed with Imca, the state space has to be fully
explored, transformed into this format, and saved to disk.
This takes additional time and memory. Models of a few
kB in Modest lead to Imca files of several GB. We use
mcsta to perform this transformation, which took up to
200 s on each of the benchmarks we selected for our ex-
periments. The runtime presented for Imca does not in-
clude the time to generate input models, but only the time
it takes to load them into memory and analyse them. For mcsta, we include the time for state space
exploration (from Modest or Jani input). For all experiments, we chose the best runtime among
all algorithms provided in each tool. For time-bounded properties, we set the precision to 10−3 and
10−6. The same holds for long-run properties for mcsta but not for Imca, since its command-line
interface does not support setting the precision for these properties. For unbounded properties, we
use the default parameters of both tools, including precision, since this again cannot be changed
for Imca.

We see that Imca performs far worse than mcsta. This is despite the fact that the considered
runtime does not include time for model generation and that its only algorithm for time-bounded
properties is unsound (with unsound methods tending to be faster than sound ones [72]), while
the one of mcsta is sound. The performance gap is likely due to Imca only implementing the
discretisation-based approach, which is known to be inefficient [21, 23], and not providing the
most recent model checking algorithms for any of the property types.

4.2.2 mcsta and Storm. Storm, like mcsta, implements multiple and current algorithms. We
thus present the results of this comparison in more detail. The runtimes for both tools include the
time for state space exploration and for the numeric computations.3

3In principle, once it has explored a state space, a model checker can compute the values for multiple properties on this
state space; mcsta indeed does so when asked to check multiple properties. The effort for state space exploration is then
distributed over several properties, and the time needed for numeric computations may become more prominent. However
not all tools support this, and due to the need to disable property-specific optimisations (such as cutting off all states
that are only reachable via goal states when analysing a reachability property), performance comparisons in quantitative
verification—such as those performed in the QComp competitions [19, 46]—typically keep to one property per run. We
follow the same approach in this article and compute the value for one property only in each tool execution.
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Fig. 7. Runtime of mcsta and Storm on time-bounded properties.

Time-bounded properties. Figure 7 summarises the comparison of time-bounded solvers in mcsta

and Storm. We again run experiments with precision values 10−3 and 10−6 and configure the tools
to produce sound results. In the top-left plot, we compare the best runtime for each tool among the
algorithms that it implements; in the bottom-left plot, we compare mcsta’s and Storm’s implemen-
tations of Unif+. In both comparisons, mcsta achieves better runtimes than Storm. In particular,
mcsta has no timeouts in the best-algorithm comparison. In the Unif+ comparison, mcsta and
Storm both time out in some cases, yet whenever mcsta times out on a model, Storm does so, too
(the “x” dot on the 45° line is actually a superposition of several such dots here). The two plots on
the right compare the runtime of the switch-step implementation in mcsta with Unif+ in both tools.
We do not compare to the discretisation algorithm for time-bounded properties implemented in
Storm due to the consistent reports [21, 23] of its inefficiency (which we confirmed in Section 4.2.1
with Imca). We observe that neither Unif+ nor switch-step dominates the other, no matter which
tool is used. This is because none of the two algorithms is strictly better than the other. Con-
sider the top-right plot: it compares switch-step and Unif+ in mcsta and confirms the results pre-
sented in Reference [21] that the algorithms are good in complementary scenarios. There are cases
where one of them times out while the other finishes quite quickly, and vice-versa. In particular,
Unif+ performs somewhat better when a lower precision is required. Overall, the individual algo-
rithms for time-bounded reachability in mcsta perform competitively, and especially when com-
bined in a portfolio approach (i.e., using the best for each model, which could be done by running
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Fig. 8. Runtime of mcsta and Storm on long-run average reward properties.

both concurrently on a multi-core system), offer better performance and scalability than Storm
overall.

Long-run average properties. Figure 8 summarises the comparison of algorithms for model check-
ing long-run average properties in mcsta and Storm. For value iteration-based algorithms (“VI”),
we run experiments on precision values 10−3 and 10−6, and use only sound variations. For the lin-
ear programming-based approaches (“LP”), we set mcsta and Storm to use linear programming
at all steps of the algorithm. The LP-based algorithms run with default parameters in both tools.
For the top-left plot, we again chose the best runtime over the two algorithms for each tool. The
LP-based approaches are not competitive: this can be seen from the three other plots. The bottom-
right plot shows that they run out of time on most of the benchmarks in both mcsta and Storm. In
contrast, the VI-based solutions in both tools terminate on the same benchmarks within the given
time bound, as can be seen from the bottom-left and top-right plots. The exact reason for this is
hard to extract. It may be possible that, when dealing with long-run properties, the LP-based ap-
proach itself is not as efficient as the one using VI, at least on existing benchmarks. Alternatively,
it may be that the underlying LP algorithms or their implementations are not efficient. Overall,
mcsta and Storm are roughly on par, albeit with mcsta having a few instances where it is signifi-
cantly faster. The overall similarity is likely due to the set of implemented algorithms being exactly
the same. We do notice, though, that specifically Storm’s LP method appears to work better than
mcsta’s.
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Unbounded properties. We finally add a small evaluation for unbounded
properties. They can be checked via standard MDP algorithms and are
thus not the focus of this article. An extensive evaluation of such prop-
erties for both mcsta and Storm was done for the QComp 2019 and
2020 tool competitions [19, 46]. The plot on the right confirms the
QComp results of the two tools being competitive with no absolute
winner.

5 VERIFICATION BY PARTIAL EXPLORATION

Whereas the algorithms evaluated in the previous section rely on a complete in-memory represen-
tation of the MA corresponding to a model, i.e., on an exhaustive state space exploration, various
techniques rooted in learning and probabilistic planning attempt to compute our values of interest
based on partially-explored state spaces only. Probabilistic planning, in particular, is very similar
to probabilistic model checking at its core. Its focus is however on finding (good or optimal) sched-
ulers in MDP instead of actually computing values, and probabilistic planning algorithms crucially
employ heuristics to try to avoid exploring the entire state space. Since we aim for sound results,
the heuristics-based BRTDP [68] technique is of particular interest: It computes both a lower and
an upper bound on the value—in the same way as interval iteration—while considering a sam-
pled subset of all states only. The underlying idea was recently transferred to the probabilistic
model checking setting [13], and adapted for use with time-bounded properties on CTMDP [3]. In
particular, BRTDP as proposed originally samples a random path through the model and then up-
dates values for the states visited on the path (“asynchronous backpropagation”). Transferring the
asynchronous approach to time-bounded properties on MA, however, would usually negate the
memory savings of partial exploration [3]. The adaptation for CTMDP thus still samples random
paths, but simply stores the (ever-growing) sub-CTMDP visited by all sampled paths. It then peri-
odically calls one of the algorithms of Section 4.1.2 on an overapproximating sub-CTMDP, where
all “boundary states”—the successors of states visited on paths that have not themselves been part
of a path yet—are treated like goal states, and on an underapproximating one, where the boundary
states are treated like non-goal deadlock states. The result is an interval bounding the actual value,
and the algorithm can terminate once this interval is small enough. We refer the interested reader
to Reference [3] for all technical details of this approach.

5.1 BRTDP for MA

We implement a straightforward adaptation of the BRTDP-based technique of Reference [3] for
MA in mcsta: to sample paths, we perform CTMC-style simulation for Markovian states, keeping
track of the time spent, and MDP-style simulation using the uniform scheduler to resolve nonde-
terminism for probabilistic states. The periodic analysis phase currently uses Unif+ with interval
iteration, but can easily be changed to use switch-step or other sound value iteration techniques
instead. We show the corresponding pseudocode as Algorithm 1. We use a pseudo-random num-

ber generator (PRNG) to simulate probabilistic choices and stochastic delays. We denote byU(μ)
the pseudo-random selection of a value from spt(μ) according to a value sampled using PRNG U

and the probabilities in μ ∈ Dist(S) for some given set S . We use the same notation to denote
the pseudo-random selection of a real number from a continuous probability distribution when
μ : R → [0, 1] characterises its cumulative distribution function. Our pseudocode is slightly sim-
plified compared to the actual implementation in mcsta; for example, we assume the MA to be
closed and deadlock-free as usual but also non-Zeno (so that the time bound or a goal state will
eventually be reached), and we assume s0 � G. For simplicity of presentation, we give a flat MA
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ALGORITHM 1: BRTDP adapted for time-bounded probabilities in MA as implemented in mcsta

Input: MA 〈S, s0,A, P ,Q, rr, br〉, goal set G ⊆ S , time bound b > 0, error ϵ > 0, PRNG Upr

1 Sdone := �, S? := {s0}, SG := � // fully explored, seen unknown, and seen goal states

2 [l ,u] = [0, 1] // current interval bounding the result

3 while u − l > 2 · ϵ do // continue until error bound is met

// Simulation phase

4 for i ∈ {1, . . . , 100} do // sample 100 random paths

5 s := s0, t := 0 // start a new path from the initial state

6 while s � G ∧ t < b do // end path on goal state or time bound

7 Sdone := Sdone ∪ {s} // successors of s will be fully explored below

8 if P(s) = � then // state with Markovian transitions only:

9 if ∀ s λ s ′ : s = s ′ then break // terminate if in self-loop state

10 S ′ :=
⋃

s
λ

s ′ {s
′}, S? := S? ∪ S ′ \G, SG := SG ∪ S ′ ∩G // store successor states

11 t := t +Upr({x 	→ 1 − e−E(s)·x | x ∈ [0,∞)}) // delay according to exit rate

12 s := Upr({s
′ 	→ λ

E(s)
| s λ s ′}) // random next state according to the rates

13 else // state with probabilistic transitions:

14 if ∀ s a−→ μ : μ = {s 	→ 1} then break // terminate if in self-loop state

15 S ′ :=
⋃

s
a−→μ spt(μ), S? := S? ∪ S ′ \G, SG := SG ∪ S ′ ∩G // store successor states

16 〈a, μ〉 := Upr({tr 	→ 1
|P (s) |

| tr ∈P(s)}) // pick transition uniformly at random

17 s := Upr(μ) // select random next state according to μ

// Analysis phase

18 S∗ := S? ∪ SG , P∗ := P |Sdone
, Q∗ := Q |Sdone

∪ {s 1 s | s ∈ S∗ \ Sdone} // stored sub-MA only

19 [l ,ul] := Unif+(〈S∗, s0,A, P∗,Q∗,�,�〉, SG ,b, ϵ) // lower bound: use known goal states

20 [lu,u] := Unif+(〈S∗, s0,A, P∗,Q∗,�,�〉, SG ∪(S? \ Sdone),b, ϵ) // upper bound: add unknowns

21 return [l ,u]

〈S, s0,A, P ,Q, rr, br〉 as input to the algorithm; however, an implementation will use a compact
executable representation of a network of MA with variables instead—else the desired memory
savings could obviously not be realised. In each simulation phase, we perform 100 runs (line 4);
this criterion may be replaced by more effective checks that ensure some amount of new states
being found. The approach works in the same way to approximate unbounded reachability prob-
abilities if we drop the time bound check and replace Unif+ by standard embedded-MDP analysis
algorithms for unbounded reachability. Note that it cannot work for expected-reward properties:
To exclude the infinity cases, we cannot have states whose successors are not yet fully explored,
since they might give rise to a path that avoids the goal with positive probability.

5.2 Performance and Scalability Comparison

BRTDP is useful in cases where the property under consideration does not require the full state
space to be explored to achieve results with specified precision. In fact, the explored state space
might be only a few percent of the full state space—but it may also be nearly the entire full state
space. The contribution of BRTDP in combating state space explosion as well as in improving
performance compared to exhaustive model checking as in Section 4.2 is thus highly dependent on
the structure of the model and the property at hand. We thus performed an extensive investigation
of its behaviour using all MA instances—combinations of a model, a valuation for its parameters
(cf. Section 4.2), and a property to check—from the QVBS that satisfy the following criteria:
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Fig. 9. Runtime and number of states stored in memory for BRTDP vs. exhaustive exploration.

— The property is an unbounded or time-bounded probabilistic reachability property; otherwise,
BRTDP cannot be applied.

— The instance can be solved using at least one of exhaustive Unif+ or BRTDP with ϵ = 10−3

within 5 min on our benchmark system.
This results in a list of 18 different models for a total of 188 instances. We then executed mcsta ver-
sion 3.1.75 on these instances on an Intel Core i7-4790 workstation (3.6–4.0 GHz, 4 cores) with 8 GB
of memory running 64-bit Ubuntu Linux 18.04, using a timeout of 10 min, in four configurations:
with exhaustive model checking and with BRTDP, in both cases using Unif+ and interval iteration,
in combination with ϵ = 10−3 and ϵ = 10−6 (absolute error, as in Algorithm 1). We repeated the
experiment three times for every instance and report the average of the results.

In Figure 9, we show scatter plots summarising the results of our experiments. Points below
the solid diagonal lines correspond to instances where BRTDP was faster or explored fewer states
than exhaustive model checking; the “TO” lines indicate timeouts and the “MO” lines indicate a tool
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running out of memory. Points on the x- or y-axis of the two plots on the left-hand side result from
instances where exhaustive model checking or BRTDP terminated in less than one second whereas
the other took longer to complete, respectively. In terms of runtime, we clearly see that BRTDP
is consistently slower to check unbounded reachability properties on these MA models compared
to performing an exhaustive exploration followed by the same Unif+ analysis in one go. This is
because BRTDP needs to explore relatively many states to obtain the desired level of precision on
these instances (as shown by the plots for the numbers of explored states on the right in Figure 9).
For time-bounded reachability properties with ϵ = 10−3, the situation is rather different: while both
methods encounter timeouts on distinct sets of instances, BRTDP solves more instances, and also
terminates much faster for many (with many pointy lying on the x-axis of the runtime plot and on
the timeout line for exhaustive exploration). Looking at the
number of states that need to be stored in memory, BRTDP
offers very considerable savings in many cases. Once we in-
crease the required precision to ϵ = 10−6, however, BRTDP
becomes much less competitive in terms of runtime overall,
though it still solves several instances where the exhaustive
approach ran out of time or memory. In the plot on the right,
we compare the number of states that BRTDP explores with
ϵ = 10−3 and ϵ = 10−6. We see three classes of instances
here: the ones where the number of explored states does
not increase significantly (on or near the solid diagonal line),
which are mainly the instances where BRTDP needs to ex-
plore (nearly) all states anyway and manages to do so; the ones where BRTDP with ϵ = 10−6

now times out (on the horizontal “TO” line); and most interestingly the set of instances that are
still solved, but need moderately to significantly more states. We looked at the output of mcsta as
BRTDP runs on some of the cases that turned difficult or impossible to solve with ϵ = 10−6, and
observed that its simulation-based heuristics sometimes takes a very long time to explore a suffi-
cient set of states; with this higher precision, states that are more unlikely to be reached suddenly
become relevant.

While the scatter plots make for an easy visual comparison, they do not show how BRTDP be-
haves very differently on different models. In particular, some models contribute many instances
(e.g., the dpm model with 36 instances resulting from 7 different parametrisations together with
5 properties) and others few (such as bitcoin-attack with a single instance); the former may then
dominate the scatter plots. We thus provide in Table 1 a different view of our experimental re-
sults, now grouped by model. Columns “P” are for instances with unbounded and columns “Pt”
with time-bounded reachability properties. We now see that, with ϵ = 10−3, BRTDP works ex-
tremely well on a small set of particular models with time-bounded properties: cabinets, ftpp,
hecs, mcs, and vgs. These are five of the seven models in our benchmark set that represent dy-
namic fault trees [35] (the other two being sf and sms). Exhaustive exploration performs much
worse, and in many cases fails entirely due to running out of time or memory, on these specific
models. As expected, once we increase precision to ϵ = 10−6, BRTDP no longer works as well
overall.

Overall, we find that BRTDP works very well for certain models, where it offers drastic reduc-
tions in memory usage and analysis runtime. By selecting all instances from the QVBS, we, in
particular, include several very small state spaces where exhaustive model checking “wins” just
by avoiding the overhead of having to perform simulations to obtain all the states. Nevertheless,
we scaled up parameters (as provided in the QVBS) as far as either method allowed, and thus
expect that we found most of the cases where BRTDP offers better scalability. We, in particular,
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Table 1. Number of Instances Solved Successfully and Solved Faster for BRTDP vs. Exhaustive Exploration

ϵ = 10−3 ϵ = 10−6

exhaustive BRTDP exhaustive BRTDP

solved faster solved faster solved faster solved faster

model P Pt P Pt P Pt P Pt P Pt P Pt P Pt P Pt

bitcoin-attack 1 1 1 0 1 1 1 0
breakdown-q. 8 8 8 0 8 8 4 0
cabinets 13 7 18 11 13 12 14 4
dpm 24 11 24 11 12 7 0 0 24 4 24 4 4 0 0 0
erlang 3 4 3 3 1 4 0 1 3 4 3 3 1 4 0 1
flexible-man. 6 4 6 2 6 6 4 0
ftpp 8 4 16 12 8 3 14 10

ftwc 2 2 2 2 2 2 0 0 2 2 2 2 2 2 0 0
hecs 3 1 28 27 3 2 17 15

jobs 3 3 2 0 3 3 2 0
mcs 5 2 8 6 5 5 2 0
polling-sys. 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0
readers-wr. 8 2 8 2 8 2 0 0 8 2 8 2 0 0 0 0
reentrant-q. 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 0
sf 9 8 9 1 9 9 4 0
sms 18 18 18 0 18 18 18 0
stream 4 4 4 3 1 4 0 1 4 4 4 4 1 4 0 0
vgs 0 0 2 2 0 0 1 1

sum 51 91 51 71 34 129 0 63 51 83 51 75 14 87 0 31

notice that it performs much better for time-bounded properties overall; such properties offer an
extra opportunity to truncate the state space early, since it usually takes more time to reach states
at greater transition distances from the initial state. When the time bound is small, BRTDP can
perform extremely well.

5.3 Other Partial-Exploration Approaches in Verification

Many partial-exploration heuristics for MDP have been developed in the probabilistic planning
and machine learning communities. In particular, labelled real-time dynamic programming

(LRTDP) [11] and Monte Carlo tree search (MCTS) [15] have recently seen applications and
tool implementations in the area of verification.

Modest FRET-π LRTDP (MFPL) [59] is an implementation of LRTDP that uses the input
language and model compilation infrastructure of the Modest Toolset. It supports the computa-
tion of unbounded minimum and maximum reachability probabilities and expected accumulated
rewards on MDP. To make LRTDP work for the general MDP problems considered in model check-
ing (where MDPs may, in particular, contain nontrivial end components), MFPL wraps it in FRET
iterations [60], using the FRET-π variant [77]. However, LRTDP only converges to the value of
interest from below, like standard value iteration; thus MFPL currently does not produce sound
results. The tool has achieved promising results in the recent QComp competitions [19, 46].
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MCTS combines a more systematic incremental unfolding of the state space into a search tree
with sampling of paths. The search tree construction makes MCTS consider less probable paths
earlier than BRTDP. It uses sampling to estimate the values of newly added states, and to guide
the search. MCTS has been used very successfully with MDP; it can thus naturally be applied
to untimed reachability in MA. We are not currently aware of a tool implementation support-
ing MA in this setting, though. Ashok et al. [2] recently showed that MCTS can be combined
with the ideas of BRTDP in various ways to obtain different “hybrid” algorithms that provide
sound results and perform better than BRTDP alone. MCTS does not apply directly to timed
MA settings like checking time-bounded reachability properties due to the need to consider non-
memoryless schedulers. MCTS has been extended to continuous-state settings with transitions
that can sample from continuous probability distributions [26]. In such a framework, the remain-
ing time t to the bound b could be encoded as a state variable. Whether approaches for very
general continuous settings work well for the very specific sub-case of MA has not yet been
investigated.

We also mention Uppaal Stratego [32], which explicitly synthesises a “good” scheduler before
using it for a standard Monte Carlo simulation (or statistical model checking, see the next section)
analysis. While it makes some use of symbolic data structures from timed automata model check-
ing to reduce memory usage, it needs to fully explore the symbolic state space and ultimately its
worst-case memory usage is linear in the number of states. Finally, the many classical memory-
efficient sampling approaches (e.g., [58]) address discounted models only.

6 SIMULATING MARKOV AUTOMATA

In contrast to partial exploration techniques, statistical model checking (SMC) [56, 65, 80] aims
to analyse formal models without storing any more than a constant number of states in memory. It
is, in essence, Monte Carlo simulation of formal models: using pseudo-random number generators,
we sample a large number n of simulation runs according to the probability distributions in the
model and use them to statistically estimate the value of a given property. Simulation only ever
needs two states in memory: the current state that we have reached on the path prefix sampled so
far and the next state that we compute based on the current one when we take a transition. For
illustration, let us consider a time-bounded reachability property with goal state set G and time
bound b ∈ [0,∞) on an MA M without nondeterminism, i.e., where |P(s)| ≤ 1 for all states s . We
again assume M to be deadlock-free and closed, and also require it to be non-Zeno, i.e., for every
cycle of only probabilistic transitions in the graph corresponding to M , the probability to remain
in that cycle forever must be zero. The runs we generate for such a property are then path prefixes
πfin1
, . . . ,πfinn

of two kinds: for each i ∈ {1, . . . ,n},
— either last(πfini

) ∈ G and dur(πfini
) ≤ b, i.e., we stop simulation when we reach a goal state:

then the run is “successful,” and we define ϕ(πfini
) = 1,

— or dur(πfini
) > b, i.e., we stop simulation when we exceed the time bound: then ϕ(πfini

) = 0.
In this setting, SMC terminates with probability 1, and p̂n =

1
n

∑n
i=1 ϕ(πfini

) is an unbiased esti-
mator of the actual time-bounded reachability probability p. Similar schemes can be set up for
the other types of properties. For unbounded probabilities and expected rewards, due to the ab-
sence of a time bound, we need a different criterion to stop unsuccessful simulation runs. There
are various methods to achieve this, ranging from requiring that every run eventually reaches a
goal state or a state whose only outgoing transitions are self-loops (which at first sight may be
a strong requirement—but it is satisfied by many formal models made for model checking), to
statistically detecting whether a run entered a bottom strongly connected component [27]. The
modes simulator currently implements the former, and can be configured to also detect longer
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deterministic loops. The choice of n depends on the desired statistical properties of p̂. For instance,
n can be determined such that a confidence interval constructed around p̂ with confidence δ will
have half-widthw . For a detailed description of statistical methods and especially hypothesis tests
for SMC, we refer the reader to Reference [74]. An overview of the methods implemented in modes

is given in Reference [17, Table 1].

6.1 SMC Challenges

SMC is attractive as an alternative to model checking, because it entirely avoids the state space ex-
plosion problem: it needs to keep at most two states—the current and next states on the simulation
run being generated—in memory at any time. However, it faces two challenges: rare events and
nondeterminism. A rare event is a behaviour of very low probability, e.g., a time-bounded reacha-
bility probability on the order of 10−9—which is rather common in models of highly reliable and
safety-critical systems. In such a case, a meaningful estimate needs to have a small relative error:
for a probability on the order of 10−9, the error—e.g., the width of the confidence interval—should
reasonably be on the order of 10−10. In a standard Monte Carlo approach, this would require in-
feasibly many simulation runs, with the number of runs required increasing roughly quadratically
as the desired error decreases. The field of rare event simulation [75] deals with this challenge,
and modes implements an automated variant of the importance splitting rare event simulation
approach [16]. We do not focus further on rare events in this article.

Nondeterminism, however, is a core feature of MA. As a simulation-based approach, SMC is
fundamentally incompatible with nondeterministic choices: they give rise to an optimisation prob-
lem, whereas SMC solves estimation problems. If we try to simulate a nondeterministic MA, then
we eventually reach a state s where s a1−→ s ′ and s a2−→ s ′′ with s ′ � s ′′. At that point, simulation
cannot continue, because we have no way to resolve the choice between the two transitions; we
would need a scheduler—in particular, an optimal scheduler that gives rise to the minimum or
maximum value that we are interested in. Many SMC tools appear to support nondeterministic
models, e.g., Prism [63] and Uppaal smc [33], but use a single implicit scheduler that makes all
choices randomly. Their results thus lie somewhere between the minimum and maximum. Such im-
plicit resolutions are known to undermine the trustworthiness of simulation studies [9, 62]. While
the partial exploration techniques investigated in Section 5 treat nondeterminism properly and
also use simulation (to guide the partial exploration), their worst-case memory usage is always
linear in the number of states; as we have seen with BRTDP in Section 5.2, they often still need to
explore nearly the full state space.

6.2 Lightweight Scheduler Sampling

First implemented in Plasma for MDP, lightweight scheduler sampling (LSS) [66] is currently
the only technique for SMC on nondeterministic models with undiscounted properties, as typi-
cally considered in formal verification, which preserves the constant memory usage feature that
makes SMC so useful. It approximates the optimal schedulers, i.e., those that realise the maximum
or minimum value for a property, in constant memory relative to the size of the state space by
identifying a scheduler with a single (32-bit) integer. The basic idea of LSS is as follows:

(1) Randomly selectm 32-bit integers. Each of them is a scheduler identifier σ .
(2) For each σ , perform standard SMC under the scheduler identified by σ .
(3) Return the maximum (or minimum) result and the corresponding σ .

During the simulation runs within step 2, when there is a choice between k transitions from state s ,
LSS concatenates the bit-vector representations of s and σ into s .σ , hashes the result into a single
(32-bit) number h = H(s .σ ), and picks the h mod k-th transition. The hash function H must be
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ALGORITHM 2: Simulation with lightweight scheduler sampling for MA

Input: MA 〈S, s0,A, P ,Q, rr, br〉, goal set G ⊆S , σ ∈Z32, H uniform deterministic, PRNG Upr

1 s := s0

2 while s � G do // break on goal state

3 if P(s) = � then // state with Markovian transitions only:

4 if ∀ s λ s ′ : s = s ′ then break // terminate if we are in a self-loop state

5 s := Upr({s
′ 	→ λ

E(s)
| s λ s ′}) // select random next state according to the rates

6 else // state with probabilistic transitions:

7 if ∀ s a−→ μ : μ = {s 	→ 1} then break // terminate if we are in a self-loop state

8 〈a, μ〉 := (H(σ .s) mod |P(s)|)-th element of P(s) // deterministically select a transition

9 s := Upr(μ) // select random next state according to μ

10 return s ∈ G

deterministic; then each σ defines a fixed memoryless scheduler. If H is also uniform (w.r.t. all
bits of s .σ ), then LSS uniformly samples among memoryless schedulers. We show as Algorithm 2
the pseudocode implementing the generation of a single simulation run as called n times in step 2,
for MA and unbounded probabilistic reachability properties, using the simplest stopping criterion
for termination of detecting self-loops. Note the similarities to the simulation part of Algorithm 1;
the crucial differences lies in the transition selection in line 8. We use a single PRNG Upr that we
assume to have been initialised with some user-specified or randomly obtained seed (usually based
on the current time).

Bounds, error accumulation, and efficiency. The results of LSS are lower bounds for maximum
and upper bounds for minimum property values up to a specified statistical error. They can thus
be used to, e.g., disprove the safety of a safety-critical system or prove schedulability of tasks under
real-time requirements, but not the opposite. The accumulation of statistical error introduced by
the repeated simulation experiments over m schedulers must also be accounted for, using, e.g.,
Šidák correction or the modified tests described in Reference [28].

The efficiency of LSS—how large an m we need to get a good approximation—depends on the
probability of sampling a near-optimal scheduler. Since we do not know a priori what makes a
scheduler optimal, we want to sample “uniformly” from the space of all schedulers. This at least
avoids actively biasing against “good” schedulers. More precisely, a uniformly random choice of σ
will result in a uniformly chosen (but fixed) resolution of all nondeterministic choices. Algorithm 2
achieves this naturally for MA and memoryless schedulers.

Two-phase and smart sampling. If, for fixed statistical parameters, SMC needs n runs on a DTMC
or CTMC, then LSS needs significantly more thanm ·n runs on an MA to avoid error accumulation.
The two-phase and smart sampling approaches implemented in modes can reduce this overhead.
The former’s first phase consists of performing n simulation runs for each of the m schedulers.
The scheduler that resulted in the maximum (or minimum) value is selected, and independently
evaluated once more with n runs to produce the final estimate. The first phase is a heuristic to
find a near-optimal scheduler before the second phase estimates the value under this scheduler
according to the required statistical parameters. Smart sampling [28] generalises this principle to
multiple phases: it is parameterised by the number of initial schedulersm =m0 and the per-phase
budget of simulation runs n0. In phase i , smart sampling performs � n0

mi
� simulation runs for each of

the mi schedulers, discards the “worst” half of the schedulers according to their current estimate,
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and moves to phase i + 1 with mi+1 = �mi

2 �. It can thus cover a large number of schedulers with
only ≈ log2(m) ·n0+n simulation runs in total. The two-phase approach, in contrast, always needs
(m + 1) · n runs. We use smart sampling for all experiments reported in Section 6.3.

LSS beyond unbounded properties. Where memoryless schedulers suffice, LSS can straightfor-
wardly be applied to MA as discussed above. For time-bounded properties, however, schedulers
achieve optimality only if taking into account the amount of time remaining until the time bound
is reached. A naive extension of LSS to such properties would be to input s .σ .t , where t is the
total time elapsed during the run so far, to H in line 8 of Algorithm 2. Since t has been obtained
by (a series of) sampling from exponential distributions, the probability to have the same value
for t when entering a state s after some Markovian transitions in different runs is zero. This
can make (near-)optimal schedulers, which need to make the same decision in s over intervals
of time (cf. Example 2.7), infeasibly rare. The underlying problem is that the number of critical
decisions is infinite, such that optimal schedulers have measure zero; this is the same problem
that hindered the application of LSS to probabilistic timed automata (PTA) [64] as previously
summarised in Reference [31]. To be effective, LSS needs the number of critical decisions to be
finite.

For PTA, the problem is solved by simulating the equivalent zone or region graphs [30, 54]. For
MA, we could similarly adapt the original discretisation approach from model checking (cf. Sec-
tion 4.1.2). However, for the error to be small, a fine discretisation is needed. For example, to achieve
an absolute error ≤ 0.01 for time bound b = 0.5 on an MA with maximum exit rate 3 requires a
discretisation step of δ = 0.0025 and thus the model to be “unfolded” 200 times. Then schedulers
face every nondeterministic choice up to 200 times. Even with a single binary choice in one state,
the probability of sampling an optimal scheduler (i.e., one that always makes the optimal choice)
is thus 0.5200—so again optimal schedulers are exceedingly rare. Adapting a uniformisation-based
technique like Unif+ equally faces several difficulties. For example, it does not provide an a priori

error bound. When used for model checking, the error is bounded by simultaneously computing
an over- and underapproximation of the (maximum) probability. However LSS intrinsically under-
approximates and introduces a statistical error. Further research into methods for effective LSS
with time-bounded properties on MA is thus needed, in particular, to investigate whether the new
switch-step algorithm could be suitably adapted. In the remainder of this article, we thus restrict
our LSS experiments to unbounded probabilities and expected rewards.

6.3 Scheduler Sampling Efficiency Evaluation

Experimental evaluations of SMC with LSS for MA have so far been few and severely limited:
In Reference [17], it was applied to four different parametrisations of a single model only, and
merelym = 20 schedulers were sampled for each. In Reference [31], two non-parametrised models
were studied, using m ∈ {100, 1000} for each. In this section, we thus present the—to the best of
our knowledge—first extensive experimental evaluation of the efficiency of LSS on MA. We use
all MA instances—combinations of a model, a valuation for its parameters (cf. Section 4.2), and a
property to check—from the QVBS that satisfy the following criteria:
— The property is an unbounded probabilistic reachability or expected accumulated reward prop-

erty; otherwise, LSS as currently implemented in modes cannot be applied.
— The instance can be model-checked with mcsta using Unif+ within 30 min on a machine with

8 GB of RAM, to produce a reference result to compare with the values delivered by LSS.
— For every property that asks for a maximum (minimum) value, we add the corresponding prop-

erty asking for the minimum (maximum) to the model if it was not already included. The
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Table 2. Lightweight Scheduler Sampling Results on MA Models

model params property value uniform lss-100 lss-1000 lss-10000 lss-100000

bitcoin-attack 20-6 T_MWinmin 3736.591 28486.08 (0) 8525.58 (0) 5943.85 (0) 5162.98 (0) 5106.35 (0)
T_MWinmax 234360.002 27565.80 (0) 234194.00 (5) 233168.97 (4) 228440.27 (4) — T/O —

breakdown-q 8 Min 0.028 0.10 (0) 0.08 (0) 0.05 (0) 0.04 (0) 0.03 (4)
Max 0.232 (0) 0.12 (0) 0.14 (0) 0.16 (0) 0.17 (0)

jobs 5-2 avgtimemin 0.759 0.83 (0) 0.81 (2) 0.79 (4) 0.75 (5) 0.77 (4)
avgtimemax 0.900 (1) 0.86 (3) 0.90 (5) 0.91 (4) 0.90 (5)

10-3 avgtimemin 0.991 1.10 (0) 1.09 (1) 1.07 (1) 1.06 (2) 1.05 (3)
avgtimemax 1.286 (0) 1.13 (0) 1.20 (0) 1.19 (0) 1.21 (1)

15-3 avgtimemin 1.348 1.55 (0) 1.55 (0) 1.52 (0) 1.51 (0) — T/O —
avgtimemax 1.952 (0) 1.61 (0) 1.65 (0) 1.71 (0) — T/O —

polling-sys 3-3-5 T_BothFullmin 10.959 477.52 (0) 20.79 (0) 16.51 (0) 14.93 (0) 13.21 (0)
T_BothFullmax 6297835.466 (0) 164.91 (0) 826.10 (0) 2492.17 (0) — T/O —

reentrant-q 3-3-3-5 T_BothFullmin 5.937 11.63 (0) 11.24 (0) 10.65 (0) 10.14 (0) 9.58 (0)
T_BothFullmax 27.326 (0) 12.43 (0) 14.08 (0) 15.33 (0) 15.71 (0)

stream 10 exp_buffertimemin 0.881 1.08 (0) 0.97 (1) 0.89 (5) 0.90 (5) 0.88 (5)
exp_buffertimemax 2.426 (0) 1.89 (2) 2.42 (5) 2.44 (5) 2.41 (5)
exp_restartsmin 0.024 1.27 (0) 0.22 (0) 0.05 (0) 0.04 (0) 0.04 (0)
exp_restartsmax 2.524 (0) 2.03 (0) 2.36 (2) 2.48 (5) 2.50 (5)
pr_underrunmin 0.025 0.65 (0) 0.12 (0) 0.10 (0) 0.03 (4) 0.03 (5)
pr_underrunmax 0.815 (0) 0.81 (5) 0.82 (5) 0.82 (5) 0.82 (5)

100 exp_buffertimemin 2.817 3.02 (1) 3.03 (0) 3.06 (0) 3.01 (1) 2.94 (3)
exp_buffertimemax 17.002 (0) 3.04 (0) 3.47 (0) 3.82 (0) 4.11 (0)
exp_restartsmin 0.057 5.13 (0) 3.62 (0) 2.07 (0) 1.61 (0) 1.48 (0)
exp_restartsmax 10.270 (0) 6.21 (0) 7.09 (0) 7.40 (0) 7.69 (0)
pr_underrunmin 0.095 0.89 (0) 0.70 (0) 0.45 (0) 0.39 (0) 0.37 (0)
pr_underrunmax 0.943 (1) 0.95 (5) 0.96 (5) 0.94 (5) 0.96 (5)

500 exp_buffertimemin 6.306 6.59 (5) 6.50 (4) 6.53 (4) 6.57 (3) 6.49 (4)
exp_buffertimemax 30.171 (0) 6.60 (0) 6.50 (0) 6.65 (0) 6.64 (0)
exp_restartsmin 0.029 12.07 (0) 11.31 (0) 8.54 (0) 8.10 (0) 6.93 (0)
exp_restartsmax 24.225 (0) 12.85 (0) 13.90 (0) 14.36 (0) 14.77 (0)
pr_underrunmin 0.203 0.95 (0) 0.92 (0) 0.74 (0) 0.70 (0) 0.69 (0)
pr_underrunmax 0.975 (5) 0.98 (5) 0.99 (5) 0.98 (5) 0.98 (5)

1000 exp_buffertimemin 8.920 9.04 (4) 9.24 (4) 9.17 (5) 9.22 (3) 9.07 (5)
exp_buffertimemax 33.200 (0) 9.13 (0) 9.18 (0) 9.28 (0) 9.22 (0)
exp_restartsmin 0.019 17.16 (0) 15.71 (0) 13.75 (0) 12.65 (0) 12.35 (0)
exp_restartsmax 34.678 (0) 18.24 (0) 19.23 (0) 19.57 (0) 19.82 (0)
pr_underrunmin 0.271 0.97 (0) 0.90 (0) 0.81 (0) 0.79 (0) 0.78 (0)
pr_underrunmax 0.982 (5) 0.98 (5) 0.98 (5) 0.98 (5) 0.98 (5)

relative difference between the maximum and the minimum must be greater than 10−1. This
ensures that we can separate the results when using a relative statistical error of 5 · 10−2 in our
experiments.

— The model must be such that, for every scheduler, the probability to eventually reach a goal
state or a non-goal self-loop state is 1. This is needed to guarantee termination with a simple
stopping criterion as in Algorithm 2.

The restriction to models that can be solved via model checking of course runs contrary to the
purpose of SMC, which is to analyse models where model checking fails due to state space ex-
plosion. However, we want to evaluate the efficiency of LSS, so we need the optimal values for
reference. All in all, the above criteria leave us with six different models for a total of 38 instances
as listed in the first three columns of Table 2. The values obtained by mcsta are given in column
“value.”
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We then performed SMC to obtain an estimate v̂ of the true value v , configuring the statistical
evaluation such that v̂ ∈ [2 · 10−2 · v, (1 + 2 · 10−2) · v] in 95 % of all experiments (i.e., we request
a relative error of 2 · 10−2 with 95 % “confidence”), for each model in five configurations. First, we
use the uniform randomised scheduler, which simply makes a uniform random selection among
the available transitions whenever it encounters a nondeterministic choice. This is similar to what
Prism and Uppaal smc do, and provides a baseline as to the behaviour of the “average” sched-
uler. We then use LSS with smart sampling and n0 ∈ {100, 1, 000, 10, 000, 100, 000}. For expected
rewards, modes then choosesm0 = n0; for reachability probabilities, it uses the scheme described
in Reference [28] to select an appropriate m0 depending on a first rough estimate of the probabil-
ity. Varying n0 and thusm allows us to observe how the values improve; ideally, as n0 grows, they
would approach the true values obtained by mcsta. All of these experiments were performed on
an Intel Core i7-4790 workstation (3.6–4.0 GHz, 4 cores) running 64-bit Ubuntu Linux 18.04 and
mcsta version 3.1.39. We used a timeout of 15 min. Runtimes scaled mostly linearly with n0. They
remained below one minute for n0 = 10, 000 for all instances except for those that were aborted
due to a timeout (indicated as “T/O”) for n0 = 100, 000. We do not focus on runtimes further, since
we are interested in LSS’ efficiency in terms of being able to find near-optimal schedulers with a
given m; in particular, we use instances that can be solved by exhaustive model checking, which
due to its error guarantees will in practice be preferable to LSS unless the model is too large to be
exhaustively (or sufficiently partially) explored.

Each experiment was repeated five times. We report the average results of these runs in Table 2.
Column “uniform” shows the result obtained by the uniform randomised scheduler. Since this
scheduler is the same for maximum and minimum values, we report the average of all 10 executions
under this scheduler, i.e., one value per pair of properties. The remaining columns “lss-n0” report
the results for LSS with per-phase budget n0. In parentheses, we note the number of experiments
(out of five) that delivered a result within the ±2 ·10−2 relative error bound w.r.t. the true value. For
the bitcoin-attack model, we see that LSS significantly improves upon the values obtained by the
uniform scheduler, actually reaching the true maximum value (up to the statistical error, i.e., the
estimate needs to be in approx. [229672.8, 239047.2]) already with n0 = 100 despite the uniform
result being far away. For the minimum value, the results noticeably improve up to n0 = 10,000,
but schedulers closer to the optimum appear to be too rare to be found by LSS. T_MWin is an
expected-time property, and notably simulation runs that achieve long durations as needed for
T_MWinmax take longer to generate, explaining the timeout for n0 = 100,000. On the breakdown-

queues model, the distribution of schedulers appears to be the other way—we manage to sample
schedulers close to the minimum value, but remain far from the maximum—and near-optimal
schedulers appear rarer as we need n0 = 100,000 to achieve some “successes” at least for property
Min. For the jobs model, we were able to use three different parameter valuations, with state space
sizes ranging from |S | = 117 for valuation 5-2 to 1.9 million for 15-3. On the latter, model checking
with mcsta took around 4 min. Here, we see that the number of critical nondeterministic choices
grows with the state space size, making it increasingly unlikely for LSS to find good schedulers as
the MA grows. It still manages to find, even for parameter valuation 15-3, schedulers whose values
are statistically significantly different, thus delivering a clear improvement over using the uniform
scheduler only. For the polling-system and reentrant-queues models, the results are similar. For
the stream model, the state space sizes range from 176 to 1.5 million across the four parameter
valuations. Again, LSS manages to deliver nontrivial intervals from minimum to maximum across
all instances, but does not find near-optimal schedulers on the larger instances except where the
uniform scheduler already achieves near-optimal results. In particular, the result of the uniform
scheduler approaches the minimum (maximum) value for the exp_buffertimemin (pr_underrunmax)
property as the model grows.

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 3, Article 14. Publication date: August 2021.



14:30 Y. Butkova et al.

Overall, LSS consistently manages to improve upon the naïve approach of using the uniform
scheduler only, but struggles to attain near-optimal probabilities on these models. In general, it
should work well if there are few critical decisions to make; the QVBS, however, appears to mostly
contain MA models where the number of critical decisions grows as the model is scaled up—aside
from several MA models where all nondeterminism was spurious, which are not interesting for
LSS in the first place.

7 CONCLUSION

We have presented a fully integrated toolchain to create and verify Markov automata models based
on the high-level compositional modelling language Modest in combination with the mcsta model
checker and the modes simulator of the Modest Toolset. Other tools of the Modest Toolset
complement the approach, such as the moconv tool that can export Modest models to Jani. We
have compared the performance of the dedicated MA model checking algorithms in mcsta with
Imca and Storm. We found mcsta to significantly outperform Imca, and to be faster than Storm in
many cases. The Jani support in both the Modest Toolset and Storm allows the user to choose
the most appropriate tool in every instance, thus mcsta and Storm ought to be seen as complemen-
tary tools for a common goal. Partial state space exploration, implemented in mcsta in a BRTDP-
based manner, can significantly reduce the time and memory needed to analyse an MA; however,
its effectiveness varies significantly with the structure of the MA and the property of interest that
we consider. We found that it works particularly well to approximate time-bounded reachability
probabilities. The scheduler sampling implementation in modes further complements the abilities
of mcsta where the latter fails due to state space explosion. It provides significantly more useful
results than other tools that have to rely on a single scheduler such as the uniform randomised
one, and can in this way, e.g., disprove safety or provide implementable strategies [29] where other
tools cannot. Still, it is important to keep its limitations, in particular, the inability to quantify the
optimality of the sampled scheduler and thus, e.g., prove safety, in mind. Overall, Markov automata
now have a user-friendly modelling language and efficient verification support in complementary
tools that are actively maintained.

DATA AVAILABILITY

The data generated in our experimental evaluation as well as instructions to replicate the experi-
ments are archived and available at DOI 10.4121/uuid:98d571be-cdd4-4e5a-a589-7c5b1320e569 [20]
for Section 4.2 and at DOI 10.4121/14182523 [48] for Sections 5.2 and 6.3.
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