
2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 29 Nov. – 2 Dec. 2021, Lloret de Mar, Spain

Completely Automated CNN Architecture Design
Based on VGG Blocks for Fingerprinting

Localisation
Shreya Sinha

Pervasive Systems Group
Faculty of EEMCS
University of Twente

Enschede, The Netherlands
s.sinha-2@student.utwente.nl

Duc V. Le
Pervasive Systems Group

Faculty of EEMCS
University of Twente

Enschede, The Netherlands
v.d.le@utwente.nl

Abstract—WiFi fingerprinting using Convolutional Neural Net-
works (CNN) is one of the most promising techniques for
indoor localisation due to the extraordinary performance of CNN
in image classification. However, the performance of CNN is
architecture dependant, and thus an architecture that works well
in one case may not work in another, especially for the WiFi-
based localisation problems. Most of the solutions use an existing
hand-crafted architecture or a semi-automated CNN design for
fingerprinting, which requires significant CNN expertise and
time. Therefore, a satisfactory solution may not be guaranteed
as it is challenging to design numerous possible architectures. In
this work, we address this challenge by developing a framework
that completely automates the CNN architecture design process.
Our automated architectures based on VGG blocks have shown
superior performance compared to standard architectures such
as VGG-16. We further explore three different heuristics for
automation: Bayesian optimisation, Hyperband, and Random
Search and demonstrate their importance towards the automated
CNN architecture development for WiFi fingerprinting. Experi-
ments are conducted on real-world datasets and, a comparative
study between our automated architecture and other models is
presented. This work would, therefore, facilitate the CNN design
for indoor localisation.

Index Terms—WiFi Fingerprinting, Automated Convolutional
Neural Network, Bayesian optimisation, Hyperband, Random
Search

I. INTRODUCTION

Indoor localisation has always been important in various
sectors such as healthcare, security, or location-based services
[1]. Although the advent of Global Positioning System (GPS)
has made outdoor localisation a part of our everyday lives,
locating a person or device indoors remains an open challenge
as GPS does not usually work indoors.

This work is supported by the InSecTT project, https://www.insectt.eu/,
funded by the ECSEL Joint Undertaking (JU) under grant agreement No
876038. The JU receives support from the European Union’s Horizon 2020
research and innovation programme and Austria, Sweden, Spain, Italy, France,
Portugal, Ireland, Finland, Slovenia, Poland, Netherlands, Turkey. The docu-
ment reflects only the author’s view and the Commission is not responsible
for any use that may be made of the information it contains.

Among many of the solutions studied, WiFi-based is one of
the most attractive solutions for indoor localisation because:
it is easy to deploy and maintain, wireless LANs (WLANs)
are ubiquitous, and smartphones are nowadays WiFi-enabled
[2]. Among the various techniques, fingerprinting is a popular
one to identify the location of a user by characterising his
radio signal environment [3]. It is completed in two phases:
an offline phase and an online phase. In the offline or training
phase, a site survey is performed and Received Signal Strength
Indicator (RSSI) is calculated from all detected WiFi Access
Points (APs) at each known reference point. A radio map
is built consisting of vectors of RSSI values at their known
locations. This is followed by the online phase, where the user
collects RSSI measurements at their location. These measure-
ments are then matched with the radio map to determine the
user’s position with the aid of position estimation algorithms.

The potential of Convolutional Neural Networks (CNN)
to effectively model a radio map due to its ability to learn
complex relationships between RSSI and coordinates was
demonstrated in [4]. However, the performance of a CNN
model depends heavily on its architecture, which is a possible
combination of the number of layers, nodes, and associated
parameters. Although previous works could enumerate each
potential architecture and then train and validate it to choose
the best among them, a satisfactory solution may not be
optimal because it is difficult to counteract numerous possible
combinations. This is because the computational complexity
also increases greatly during runtime as the list of possible
hyperparameters that need to be tuned grows.

Moreover, designing the architecture requires expertise in
both its working and an understanding of the problem [5]. In
practical scenarios such as WiFi-based fingerprint localisation,
this is often more challenging. Even the popular hand-crafted
architectures, including VGGNet [6], whose performance has
been proven on many data types and applications [7], may still
not guarantee good accuracy for fingerprint localisation.

To this end, the development of completely automatic
CNN architectures for fingerprint localisation with promising978-1-6654-0402-0/21/$31.00 ©2021 IEEE

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

do
or

 P
os

iti
on

in
g

an
d

In
do

or
 N

av
ig

at
io

n
(I

PI
N

) |
 9

78
-1

-6
65

4-
04

02
-0

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IP
IN

51
15

6.
20

21
.9

66
26

42

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 18,2022 at 15:08:05 UTC from IEEE Xplore. Restrictions apply.

2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 29 Nov. – 2 Dec. 2021, Lloret de Mar, Spain

performance, constrained by limited computational resources,
is still in its infancy. In this work, an automated framework
based on the VGG block is developed, and the heuristic
computational paradigms, such as Bayesian optimisation [8],
Hyperband [9] and Random Search [10] are implemented
for optimisation. To evaluate the framework, we use publicly
available datasets such as Indoor Location, and Navigation
competition series on Kaggle [11], as well as the UJIIndoor-
Loc dataset [12]. The Kaggle dataset embodies WiFi sensor
data collected via crowdsourcing from a smartphone and the
UJIIndoorLoc dataset was created in 2013 with the help of
more than 20 different users collecting WiFi samples. The
results show that CNN models automatically designed by our
proposed framework, especially using the Bayesian optimi-
sation algorithm, can achieve high localisation accuracy and
outperform the standard VGG-16 [6]. The results also show
the significant difference in localisation performance between
the worst and the best models. A slight modification in the
CNN architecture would lead to a massive change in terms
of localisation accuracy. In other words, it is recommended to
use our fully automated CNN design for indoor localisation.

The main novel contributions of this work may be sum-
marised as follows.

• A framework is designed to automatically deliver a
promising CNN architecture for WiFi fingerprint lo-
calisation. The proposed framework assumes no prior
knowledge of the user about the CNN design process,
investigated dataset, and genetic algorithms.

• The CNN models, whose architecture is designed by
the proposed framework, are extensively evaluated with
several publicly available datasets.

The rest of this paper is organised as follows. Section II
discusses the related work regarding CNN localisation and
architecture optimisation. Section III provides background
information. The prerequisites for WiFi localisation are dis-
cussed in the following Section IV. The experimental setup is
discussed in Section V, followed by results in Section VI. The
conclusion is discussed in Section VII.

II. RELATED WORK

Numerous studies have addressed fingerprinting-based WiFi
localisation. Initially, machine learning algorithms (ML) such
as K-nearest neighbors (k-NN) [13], Support vector machine
(SVM), Random forests and, Decision trees [14] were ex-
plored. In [15], nine teams undertook the “Ubiqum Challenge”,
nine teams investigated different combinations of machine
learning algorithms to improve position accuracy. Their main
goal was to classify the floor a user was situated on and per-
form regression techniques to estimate longitude and latitude.
In [16], a comparative study is conducted between six different
types of ML algorithms to measure their performance over a
common dataset.

Since Deep Learning can solve a complex problem bet-
ter than standard machine learning, Deep-Neural-Network
(DNN)-based methods have also been studied [17]. The main
drawback of these methods is the poor accuracy they achieve

when the dataset is insufficient [18]. Reference [18] analyses
WiFi localisation using CNN, where the authors convert
RSSI vectors into 2-D images for multi-floor classification.
Similarly, CNN-LOC [19] generates input images using RSSI
from WiFi signals, which are then used to train a CNN model
to classify the user at one of the reference points. Tianqi Qu et
al. presented a similar approach using a modified CNN model
and an analysis of its performance compared to a regular CNN
architecture in [20].

Although the proposed CNN models could improve loca-
tion estimation, they are technically challenging and time-
consuming. Moreover, it requires expertise in both CNN theory
and understanding fingerprint localisation [5]. Moreover, an
exact CNN architecture such as VGG-16 [6] is unable or
ineffective to solve some problems. As a result, architecture
optimisation algorithms based on heuristic paradigms, such as
Random Search [10], Bayesian optimisation [8], and Hyper-
band [9], have been proposed. However, to our knowledge,
none of the previous works has proposed a fully automated
CNN architectural design for fingerprint localisation.

To this end, in this paper, we propose a framework that can
automate the CNN architectural design for fingerprinting lo-
calisation, which requires minimal effort and CNN knowledge.

III. BACKGROUND

In this section, we highlight the VGG-16 default CNN archi-
tecture and alternatives for fine-tuning the default architecture.

A. VGG-16

VGG-16 was first presented in [6]. The authors investigated
the impact of the depth of the CNN on its accuracy in large-
scale image recognition. They passed the input image to a
stack of convolutional layers (Conv2D), consisting of filters
responsible for extracting features from the previous layer.
Spatial pooling was performed by MaxPool layers, placed
after some, but not all, Conv2D layers. At the end of the
architecture, a stack of fully linked layers with different
dimensions is placed, the value of which depends on the
problem. A complete VGG-16 architecture is shown in Fig. 1.

Fig. 1: A complete VGG-16 architecture

B. Heuristic Algorithms

While CNNs are powerful tools, they still require further
tuning of their hyperparameters to obtain the best possible
architecture. Hyperparameter tuning is the process of find-
ing the right combination of hyperparameters, to maximize
the performance of the CNN. It can be computationally
intensive and time-consuming [21] and becomes even more
complicated as the network gets deeper. An example of a
popular tuning algorithm is Grid Search [22], which tries
all possible combinations of hyperparameters. However, this

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 18,2022 at 15:08:05 UTC from IEEE Xplore. Restrictions apply.

2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 29 Nov. – 2 Dec. 2021, Lloret de Mar, Spain

method can become difficult for larger networks and models.
As an alternative, several other algorithms such as Bayesian
optimisation, Hyperband and, Random Search have recently
come into play.

The Bayesian optimisation [8] approach uses Bayes theorem
to guide the search for detecting the minimum or maximum
of an objective function. It consists of two main components:
The objective function, which is modeled using a probabilistic
Bayesian probabilistic model, and an acquisition function,
which determines the samples to search next [8]. The proba-
bilistic model of the objective function, known as the surrogate
model, is a model trained on (hyperparameter, true objective
function value) pairs. After certain trials, the next choice of
hyperparameter is kept from the pair where the acquisition
function was maximized. These corresponding hyperparame-
ters are further used to test the surrogate model and update the
true objective function. This process of updating the surrogate
model continues until the maximum time, maximum iteration
is reached.

Random Search [10] bases its optimisation strategy on a
stochastic process. Therefore, unlike Bayesian optimisation, it
does not consider past evaluations. It is often compared to
Grid Search, but has been shown to outperform it [10]. Due
to its random nature, the performance of this technique often
depends on the number of trials performed.

Hyperband [9] is based on the principle of successive
halving, which works with N different configurations and
a budget ß. In each iteration, successive halving keeps the
best half of the configurations and discards the other half.
The process continues until a configuration is obtained. One
limitation of this process is deciding the number of samples
at the beginning. Hyperband solves this problem of ‘N v/s
ß’ by considering several possible values of N for a fixed ß,
essentially performing a grid search over practical values of
N [9].

IV. COMPLETELY AUTOMATED CNN DESIGN FOR
FINGERPRINTING LOCALISATION

In this section, we give an overview of our proposed
framework. The framework helps to understand the automated
end-to-end process of developing the CNN architecture for
WiFi localisation. For a deeper understanding, we present the
readers with the process of restructuring the data to create the
input images for the CNN model, our proposed CNN building
blocks, and finally the optimisation using the hyperparameter
tuning technique.

A. Overview

The framework for developing an automated CNN archi-
tecture is shown in Fig. 2. The initial data collection phase
is performed by recording WiFi scans using a smartphone.
The recorded data is preprocessed to create a radio map, that
serves as an input fingerprint database for WiFi localisation.
The third stage of our framework involves developing a
workflow for automating the CNN design process by finding
the best selection of hyperparameters. This stage consists

of two components, model build and model evaluation. The
model build function selects the number of VGG blocks to
design a new model each time it is called. All VGG blocks
are based on the specified CNN model structure. This new
model is passed to the heuristic algorithm tuner to compute the
specified objective. The algorithm measures the performance
of the model against a validation dataset. This process repeats
until the specified number of trials is reached or, in the case
of Hyperband, a single model remains. Each time during
the model creation and evaluation, a new model and set
of hyperparameters are selected. The model with the best
performance for the specified target is retrieved and used as
the final model for location prediction.

B. Data Preprocessing

In case of Kaggle dataset [11], the location information
for each WiFi scan in the form of ‘x’ and ‘y’ coordinates
is computed. A radio map is thus fabricated combining all the
required information. Suppose that during each scan, the user
receives RSSI values from neighbouring N APs, namely, the
data w = (r1, r2...., rN) is a 1-D vector of length N, where ri
denotes the RSSI value obtained from the AP i. Each data has
labels x ∈ {1,..,M} and y ∈ {1,..,M}. Consequently, for each
data value wj , we have the labels xj , yj . Note, that for training,
we know both the N RSSI values and the corresponding label
as (w1,x1,y1), but for prediction, we know the RSSI values for
w2 and want to estimate the corresponding labels. We insert a
value of -100 dBm for the APs if the corresponding AP was
not detected at a particular location. Also, if a label occurred
multiple times, we calculated the average RSSI values for each
AP.

Since CNN requires a 2-D array, the number of APs in the
1-D data should be a perfect square. We thus add some dummy
APs with a value of -100 dBm for all labels.

Similarly, UJIIndoorLoc dataset [12] also consists of vectors
of RSSI values with their corresponding latitude (x) and
longitude (y) information. We changed the value of 100 dBm,
which indicates that an AP was not detected at that particular
location, to -105 dBm. This was done to make it consistent
with rest of the RSSI readings. We further scale both datasets
by applying a standard scalar.

C. Model Backbone

In our study, we do not implement the entire original VGG-
16 architecture, but instead, try to find the optimal number of
VGG blocks needed. In VGG-16 [6], a VGG block consists
up of two Convolutional layers and one MaxPool layer. In our
proposed model backbone, we also add Batch Normalization
[23] after each convolutional layer to standardize the inputs
of each layer. This reduces the computation time for training
a model. The backbone of our framework also contains two
fully connected layers and an output layer, similar to VGG-
16. However, an additional dropout layer is added between two
fully connected dense layers to prevent overfitting. Overfitting
is a concept where the model is trained so well that it is no
longer able to generalise from training data to unseen data.

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 18,2022 at 15:08:05 UTC from IEEE Xplore. Restrictions apply.

2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 29 Nov. – 2 Dec. 2021, Lloret de Mar, Spain

Fig. 2: Overview of the WiFi fingerprinting localisation with hypertuned CNN architecture

D. Model Optimisation

For architecture optimisation, a custom CVTuner is de-
signed. The choice of heuristic optimisation algorithm, the
objective to be minimized, the max trials i.e the maximum
number of different architectures to try out, and the model
building function are passed as parameters to instantiate the
CVTuner. The model-building function, as presented in Algo-
rithm 1, is a user-defined function that takes an argument hp
from which one can sample hyperparameters within a specified
range. The model backbone is present in this function. The
details of the body of the CVTuner is further summarized in
Algorithm 2. Since we are dealing with a regression problem,
and the goal of the architecture is to predict both x and y
labels, we use mean square error (MSE) as the loss function.

Algorithm 1 Model Build function to tune the selected
hyperparameters in order to build the CNN architecture
1: procedure BUILD-MODEL(hp) . hp = hyperparameter
2: Model = Sequential Model
3: Model ← Add Layer (Input, Shape=(h,w, c))
4: for i = [1, n] do . n = number of maximum VGG units to tune
5: Model ← Add Layer (Convolutional 2D,
6: Number of filters = hp.Choose(64 / 128 / 256 / 512))
7: Model ← Add Layer (Batch Normalization)
8: Model ← Add Layer (Convolutional 2D,
9: Number of filters = hp.Choose(64 / 128 / 256 / 512))

10: Model ← Add Layer (Batch Normalization)
11: Model ← Add Layer (MaxPool2D)
12: Model ← Add Layer (Flatten)
13: Model ← Add Layer (Dense,
14: Units = hp.Int(min = 64, max = 512))
15: Model ← Add Layer (Dropout,
16: Rate = hp.Float(min 0, max 0.5))
17: Model ← Add Layer (Dense,
18: Units=2, Activation=‘linear’)
19: Learning rate = hp.choose(0.01 / 0.001 / 0.0001)
20: Model ← Compile(Loss function = Mean Squared Error
21: Optimizer = Adam (learning rate))
22: return Model

E. Hyperparameters

In the following, we discuss some of the hyperparameters
that we define in the CVTuner for optimisation.

Algorithm 2 Algorithm to perform K Fold cross validation
for each of model returned by the Model Build function, and
calculate their Validation and Test loss.
1: procedure RUN TRIAL(self, trial, x, y, args, kwargs)
2: Batch size ← hp.choose(8 / 16 / 24 / 32)
3: Epochs ← A constant value
4: CV Split← Split the Training data as train and val using K fold
5: Value losses = []
6: for train indices, value indices in CV do
7: X-train ← X[train index]
8: X-val ← X[val index]
9: Y-train ← Y[train index]

10: Y-val ← Y[val index]
11: Train Model ← Train, Val, Epochs and Batch size
12: Predict ← Label predictions of validation set X-val
13: Predict ← Inverse-transform(Predict)
14: Y-val ← Inverse-transform(Y-val)
15: ValueLosses ← Average (MeanSquareErrors
16: (Predict, Y-val))
17: TestPredictions ← Label predictions of test set X-test
18: TestPredictions ← Inverse-transform(TestPredictions)
19: MSETest ← MeanSquareErrors(TestPredictions, Y-test)
20: Save the model

• Batch Size: The performance of a CNN model is affected
by its batch size. A Larger batch size speeds up the
computations, but too large a batch size may result in
a poorly generalised model.

• Number of VGG Blocks: We also leave it up to the tuner
to determine the number of VGG blocks to tune. Too
many blocks can lead to overly complex architecture.
Fewer layers may yield inaccurate results.

• Filters in the Conv2D layer: The filter extracts the distinct
set of features from the input. Since an input may have
different features, we need n multiple filters to extract the
important features from the input.

• Dense Layer Units: The dense layer in a CNN is a fully
connected layer, and each neuron receives input from all
neurons in the previous layer. The units of the dense
layer define the form of the input that is passed to the
subsequent layer.

• Learning Rate: The learning rate is also an important
hyperparameter that controls how much a model must

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 18,2022 at 15:08:05 UTC from IEEE Xplore. Restrictions apply.

2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 29 Nov. – 2 Dec. 2021, Lloret de Mar, Spain

be changed in response to the estimated error obtained
each time the model’s weights are updated. If the learning
rate of an optimiser is set too low, training becomes a
tedious process. If it is too high, it can cause the model
to converge to a suboptimal solution.

• Rate of dropout Layer: Another method to prevent a
model from overfitting is to add a dropout layer. We add
a dropout layer between two dense ones in our model.
The rate of the dropout layer determines the percentage
of neurons that get deactivated in that particular layer,
thus affecting the performance of the architecture.

V. EXPERIMENTAL SETUP

In this section, we implement the previously described
framework to solve the indoor WiFi localisation challenge.
We discuss the dataset overview, and the techniques used to
evaluate the dataset for further analysis.

A. Dataset Description
The Kaggle data is provided by an indoor positioning

technology company XYZ10 in collaboration with Microsoft
Research. It consists of multiple traces of sensor data collected
from over 200 buildings. However, for our study, we consider
the data collected over two floors: F1 and F2, from the same
building. We run the regression over both floors separately. No
information is provided about the model of the smartphone or
the operating system running on the device. For this study,
we therefore assume that identical devices were used for data
collection. The UJIIndoorLoc dataset was created in 2013 and
covers three buildings of Universitat Jaume I. More than 20
different users helped to create the dataset, which can be used
for both floor classification, or latitude-longitude regression.
For our study, we consider the data collected on a particular
floor, of a particular building for regression.

B. Data Analysis and tuner configuration
For the Kaggle dataset, the values of M are 939 and 561

for F1 and F2, respectively. The value of M is 1137 for the
UJIIndoorLoc dataset. Therefore, we consider our dataset to
be scarce in terms of the input required for neural networks.
When an AP i is not detected at a particular location, we insert
a value of -100 for such missing cases in our Kaggle dataset,
and a value of -105 for the UJIIndoorLoc dataset. Finally,
we perform the standard scalar technique on the inputs before
restructuring them as 2D images for the CNN model.

The CNN positioning algorithm is performed by splitting
the datasets as train and test in the ratio of 80:20. We use the
same set of training and test data for all further experiments.
The training data is fed into our CVTuner, along with a
selection of heuristic algorithm to determine the best hyperpa-
rameters. The objective of the tuner is set to find the minimum
validation loss, which is computed by averaging out the loss
obtained after applying k-Fold Cross-Validation technique with
5 folds over the training data. We specify the number of
max trials, which represents the number of hyperparameter
combinations that will be tested by the heuristic algorithm as
150 due to time constraints.

VI. EXPERIMENTAL RESULTS

In the experiments, we study the performance of our
automated CNN architectures and compare it to the state-
of-the-art VGG-16 architecture. We also interest the readers
with the working of heuristic algorithms for an understanding
of the underlying process for model selection. This can be
crucial because although each of the algorithms have certain
limitations, they play an important role in automating the CNN
architecture.

A. Comparison of Accuracy

Through our framework we generate three automated CNN
models, each generated through Bayesian optimisation, Hy-
perband and Random Search. We compare the performance
of these against VGG-16 architecture, kNN and decision tree
regressor, as summarized in Table I. The main performance
criteria is the root mean square error of each of the architec-
ture. The root mean square error is used in regression models
to measure the differences obtained between the predicted
observations and the actual observations. As seen from Table
I, the Bayesian and Hyperband automated architectures both
perform better than Random Search in all the cases, with lower
RMSE values. This is no surprise as the Bayesian algorithm
works with underlying probabilistic models and Hyperband
optimises Random Search. While conducting the experiments
we observed that while Bayesian optimisation is also capable
of achieving such accuracy within 30 trials, this number in
one case was as high as 117 for Hyperband. Despite that, all
three heuristics performed better than the standard VGG-16
and other regression ML models. In addition, the depth of the
automated models is fewer than VGG-16, thereby making the
training process of models faster.

B. Comparison of Heuristic Algorithms

For all three datasets, we perform the hyperparameter tuning
using Bayesian optimisation a total of five times. The same
is carried out for the remaining two heuristics. For each
dataset, we plot the RMSE values returned by the heuristic
algorithms during one such experiment. As we perceive from
Figures Fig. 4a, Fig. 4b and Fig. 4c, initially the Bayesian
algorithm tries to find the best model for reaching the objective
function and eventually the set of best hyperparameters over
the model. Therefore, towards the end of each experiment, all
the trials have approximately similar performance. In contrast,
the Hyperband as shown in Figure Fig. 5a, Fig. 5b and
Fig. 5c and RandomSearch in Fig. 6a, Fig. 6b and Fig. 6c
executes random configurations, the only difference being that
Hyperband optimizes the RandomSearch method by limiting
the time spent on each configuration.

For a better understanding of the performances, we plot the
cumulative density function graph of all three heuristics for all
three datasets as shown in Fig. 3. As we notice, The RMSE for
approximately 90 percent of the trials in Bayesian optimisation
is similar and shows good performance. This is in contrast
with Hyperband and Random Search where 90 percent of the
performances also include high values of RMSE.

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 18,2022 at 15:08:05 UTC from IEEE Xplore. Restrictions apply.

2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 29 Nov. – 2 Dec. 2021, Lloret de Mar, Spain

TABLE I: Performance comparisons between the CNN architecture automatically designed by our framework and other models
on the Kaggle dataset Floor F1, Floor F2 and UJIIndoorLoc dataset Floor 0 Building 0

Model Architecture Kaggle [11] floor F1 RMSE Kaggle [11] floor F2 RMSE UJIIndoorLoc [12] RMSE
Decision Tree [14] 3.35 m 3.61 m 5.13 m

kNN [13] 1.80 1.82 m 4.22 m
VGG-16 [6] 22.41 m 17.29 m 27.96 m

CNN-Bayesian optimisation [8] 1.89 m 1.81 m 3.06 m
CNN-Hyperband [9] 1.97 m 1.69 m 2.93 m

CNN-Random Search [10] 2.31 m 1.76 m 3.05 m

(a) Kaggle Floor F1

(b) Kaggle Floor F2

(c) UJIIndoorLoc Floor F0

Fig. 3: CDF depicting the performance of all three heuristics
for each dataset

C. Comparison of the automated architectures

For a comparative study, we retrieve the best and poorest
architectures returned by each of the heuristic algorithms for
Kaggle Dataset F1. The best model corresponds to the model
with the lowest RMSE on the test data and the poorest model
corresponds to the model that achieved the maximum RMSE
value. The complete comparison of the architectures is shown
in the Table II. For all heuristics, the best generated CNN

architectures require only three VGG blocks; VGG-16, on
the other hand, has five VGG blocks. However, the location
estimation accuracy of the generated CNN architectures is
much higher than that of VGG-16.

From Table II, it can also be seen that the difference in
the number of neurons for each layer gives a significant
improvement in terms of location estimation accuracy, the
RMSE is approximately 2 m for the best models and 22 m
for the poorest models. The arrangement of neurons across
the layers also does not follow any particular pattern, such as
monotonically increasing, decreasing, or constant. Therefore,
it is challenging to craft the best CNN model for fingerprint
localization unless one has extensive knowledge about CNN
and invests a lot of effort.

VII. CONCLUSION

This paper proposed a completely automated CNN ar-
chitecture design based on VGG blocks for fingerprinting
localisation. We base our study on a publicly available dataset
uploaded on Kaggle as part of their Indoor Location and
Navigation competition series. The WiFi localisation is carried
out by generating a WiFi database and matching it against
a CNN positioning algorithm. The CNN models are auto-
matically designed by our proposed framework and, espe-
cially with the Bayesian optimisation algorithm, yield a high
localisation accuracy and outperform the standard VGG-16.
The significant dependence of a model’s performance on its
architecture is also shown by drafting a comparison between
the worst and the best model. This dependence proves that
a slight modification in the CNN architecture would lead to
a massive change in localisation accuracy. In other words,
we recommend adopting our fully automated CNN designing
framework for indoor localisation with WiFi fingerprinting.
Although the VGG blocks and the heuristics algorithms are
used in the proposed framework, the readers are not required
to have expertise in these when they are using the proposed
framework. It is straightforward to extend this framework with
other Neural Networks such as ResNet and DenseNet blocks.

REFERENCES

[1] R. Harle, “A Survey of Indoor Inertial Positioning Sys-
tems for Pedestrians,” IEEE Communications Surveys &
Tutorials, vol. 15, no. 3, pp. 1281–1293, 2013.

[2] L. Li, X. Guo, N. Ansari, and H. Li, “A Hybrid Finger-
print Quality Evaluation Model for WiFi Localization,”
IEEE Internet of Things Journal, vol. 6, pp. 9829–9840,

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 18,2022 at 15:08:05 UTC from IEEE Xplore. Restrictions apply.

2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 29 Nov. – 2 Dec. 2021, Lloret de Mar, Spain

(a) (b) (c)

Fig. 4: Search for the hyperparameters via Bayesian optimisation Algorithm: (a) Floor F1, (b) Floor F2 and (c) UJIIndoorLoc

(a) (b) (c)

Fig. 5: Search for the hyperparameters via Hyperband optimisation Algorithm: (a) Floor F1, (b) Floor F2 and (c) UJIIndoorLoc

(a) (b) (c)

Fig. 6: Search for the hyperparameters via Random Search Algorithm:(a) Floor F1, (b) Floor F2 and (c) UJIIndoorLoc

Dec. 2019. Conference Name: IEEE Internet of Things
Journal.

[3] C. Basri and A. El Khadimi, “Survey on indoor localiza-
tion system and recent advances of WIFI fingerprinting
technique,” in 2016 5th International Conference on Mul-
timedia Computing and Systems (ICMCS), (Marrakech,
Morocco), pp. 253–259, IEEE, Sept. 2016.

[4] X. Song, X. Fan, C. Xiang, Q. Ye, L. Liu, Z. Wang,

X. He, N. Yang, and G. Fang, “A novel convolutional
neural network based indoor localization framework with
wifi fingerprinting,” IEEE Access, vol. 7, pp. 110698–
110709, 2019.

[5] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Completely
Automated CNN Architecture Design Based on Blocks,”
IEEE Transactions on Neural Networks and Learning
Systems, vol. 31, pp. 1242–1254, Apr. 2020. Confer-

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 18,2022 at 15:08:05 UTC from IEEE Xplore. Restrictions apply.

2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 29 Nov. – 2 Dec. 2021, Lloret de Mar, Spain

TABLE II: Comparison of the hyperparameters returned for the best and the poorest architecture for Kaggle F1

Bayesian optimisation Hyperband optimisation Random Search
Architecture Best RMSE Poorest RMSE Best RMSE Poorest RMSE Best RMSE Poorest RMSE

(1.89 m) (22.41 m) (1.89 m) (22.38 m) (1.96 m) (22.49 m)
Batch Size 16 16 8 16 24 8

Learning Rate 0.001 0.001 0.0001 0.001 0.001 0.001
Number of VGG Blocks 3 3 3 3 3 3

VGG Block 1

Conv2D-128 Conv2D-64 Conv2D-64 Conv2D-512 Conv2D-128 Conv2D-512
BatchNorm BatchNorm BatchNorm BatchNorm BatchNorm BatchNorm
Conv2D-64 Conv2D-128 Conv2D-128 Conv2D-256 Conv2D-512 Conv2D-512
BatchNorm BatchNorm BatchNorm BatchNorm BatchNorm BatchNorm
MaxPool MaxPool MaxPool MaxPool MaxPool MaxPool

VGG Block 2

Conv2D-128 Conv2D-256 Conv2D-512 Conv2D-512 Conv2D-256 Conv2D-256
BatchNorm BatchNorm BatchNorm BatchNorm BatchNorm BatchNorm

Conv2D-512 Conv2D-256 Conv2D-128 Conv2D-128 Conv2D-64 Conv2D-64
BatchNorm BatchNorm BatchNorm BatchNorm BatchNorm BatchNorm
MaxPool MaxPool MaxPool MaxPool MaxPool MaxPool

VGG Block 3

Conv2D-64 Conv2D-128 Conv2D-256 Conv2D-256 Conv2D-512 Conv2D-128
BatchNorm BatchNorm BatchNorm BatchNorm BatchNorm BatchNorm

Conv2D-256 Conv2D-512 Conv2D-512 Conv2D-256 Conv2D-64 Conv2D-256
BatchNorm BatchNorm BatchNorm BatchNorm BatchNorm BatchNorm
MaxPool MaxPool MaxPool MaxPool MaxPool MaxPool

Fully Connected Layers
Dense-128 Dense-128 Dense-384 Dense-64 Dense-256 Dense-256

Dropout-0.0 Dropout-0.25 Dropout-0.0 Dropout-0.25 Dropout-0.0 Dropout-0.25
Dense-2 Dense-2 Dense-2 Dense-2 Dense-2 Dense-2

ence Name: IEEE Transactions on Neural Networks and
Learning Systems.

[6] K. Simonyan and A. Zisserman, “Very Deep Convo-
lutional Networks for Large-Scale Image Recognition,”
arXiv:1409.1556 [cs], Apr. 2015. arXiv: 1409.1556.

[7] A. Krishnaswamy Rangarajan and R. Purushothaman,
“Disease classification in eggplant using pre-trained
vgg16 and msvm,” Scientific Reports, vol. 10, p. 2322,
Feb 2020.

[8] J. Snoek, H. Larochelle, and R. P. Adams, “Practical
bayesian optimization of machine learning algorithms,”
2012.

[9] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and
A. Talwalkar, “Hyperband: A novel bandit-based ap-
proach to hyperparameter optimization,” 2018.

[10] J. Bergstra and Y. Bengio, “Random search for hyper-
parameter optimization,” Journal of Machine Learning
Research, vol. 13, no. 10, pp. 281–305, 2012.

[11] “The Kaggle Dataset the kaggle dataset for indoor local-
ization.” Accessed: 2021-05-30.

[12] D. Dua and C. Graff, “UCI machine learning repository,”
2017.

[13] O. Kramer, K-Nearest Neighbors, pp. 13–23. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013.

[14] Y.-Y. Song and Y. Lu, “Decision tree methods: ap-
plications for classification and prediction,” Shanghai
archives of psychiatry, vol. 27, pp. 130–135, Apr 2015.
26120265[pmid].

[15] J. Rojo, G. M. Mendoza-Silva, G. Ristow Cidral, J. La-
iapea, G. Parrello, A. Simó, L. Stupin, D. Minican,
M. Farrés, C. Corvalán, F. Unger, S. M. López, I. Soteras,
D. C. Bravo, and J. Torres-Sospedra, “Machine Learning
applied to Wi-Fi fingerprinting: The experiences of the
Ubiqum Challenge,” in 2019 International Conference on

Indoor Positioning and Indoor Navigation (IPIN), pp. 1–
8, Sept. 2019. ISSN: 2471-917X.

[16] K. Sabanci, E. Yigit, D. Ustun, A. Toktas, and M. Aslan,
“WiFi Based Indoor Localization: Application and Com-
parison of Machine Learning Algorithms,” pp. 246–251,
Sept. 2018.

[17] X. Wang, L. Gao, S. Mao, and S. Pandey, “CSI-based
Fingerprinting for Indoor Localization: A Deep Learning
Approach,” IEEE Transactions on Vehicular Technology,
pp. 1–1, 2016.

[18] J.-W. Jang and S.-N. Hong, “Indoor Localization with
WiFi Fingerprinting Using Convolutional Neural Net-
work,” in 2018 Tenth International Conference on Ubiq-
uitous and Future Networks (ICUFN), (Prague), pp. 753–
758, IEEE, July 2018.

[19] A. Mittal, S. Tiku, and S. Pasricha, “Adapting Convo-
lutional Neural Networks for Indoor Localization with
Smart Mobile Devices,” in Proceedings of the 2018 on
Great Lakes Symposium on VLSI, (Chicago IL USA),
pp. 117–122, ACM, May 2018.

[20] T. Qu, M. Li, and D. Liang, “Wireless indoor localization
using convolutional neural network,” Journal of Physics:
Conference Series, vol. 1633, p. 012125, Sept. 2020.

[21] L. Wu, G. Perin, and S. Picek, “I Choose You: Automated
Hyperparameter Tuning for Deep Learning-based Side-
channel Analysis,” p. 23.

[22] L. Yang and A. Shami, “On hyperparameter optimization
of machine learning algorithms: Theory and practice,”
Neurocomputing, vol. 415, p. 295–316, Nov 2020.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift,” 2015.

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 18,2022 at 15:08:05 UTC from IEEE Xplore. Restrictions apply.

