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Abstract— Objective: Most cardiac arrest patients who1

are successfully resuscitated are initially comatose due2

to hypoxic-ischemic brain injury. Quantitative electroen-3

cephalography (EEG) provides valuable prognostic infor-4

mation. However, prior approaches largely rely on snap-5

shots of the EEG, without taking advantage of temporal6

information. Methods: We present a recurrent deep neural7

network with the goal of capturing temporal dynamics from8

longitudinal EEG data to predict long-term neurological9

outcomes. We utilized a large international dataset of con-10

tinuous EEG recordings from 1,038 cardiac arrest patients11

from seven hospitals in Europe and the US. Poor outcome12
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was defined as a Cerebral Performance Category (CPC) 13

score of 3-5, and good outcome as CPC score 0-2 at 3 14

to 6-months after cardiac arrest. Model performance is 15

evaluated using 5-fold cross validation. Results: The pro- 16

posed approach provides predictions which improve over 17

time, beginning from an area under the receiver operating 18

characteristic curve (AUC-ROC) of 0.78 (95% CI: 0.72-0.81) 19

at 12 hours, and reaching 0.88 (95% CI: 0.85-0.91) by 66 h 20

after cardiac arrest. At 66 h, (sensitivity, specificity) points 21

of interest on the ROC curve for predicting poor outcomes 22

were (32,99)%, (55,95)%, and (62,90)%, (99,23)%, (95,47)%, 23

and (90,62)%; whereas for predicting good outcome, the 24

corresponding operating points were (17,99)%, (47,95)%, 25

(62,90)%, (99,19)%, (95,48)%, (70,90)%. Moreover, the model 26

provides predicted probabilities that closely match the ob- 27

served frequencies of good and poor outcomes (calibration 28

error 0.04). Conclusions and Significance: These findings 29

suggest that accounting for EEG trend information can 30

substantially improve prediction of neurologic outcomes 31

for patients with coma following cardiac arrest. 32

Index Terms— Cardiac Arrest, Coma, Deep Learning, 33

Electroencephalogram, Outcome Prediction 34

I. INTRODUCTION 35

CARDIAC arrest (CA) is the third leading cause of 36

death in the US, with more than 356,000 out-of-hospital 37

cardiac arrests (OHCA) annually [1]. Most patients surviv- 38

ing to hospital admission arrive in coma due to hypoxic- 39

ischemic brain injury, and some patients are treated with 40

targeted temperature management (TTM) to prevent further 41

brain injury [2]. Early and accurate prediction of neurologic 42

outcome is critical for clinical decision making and timely 43

interventions, and several guidelines have been proposed to 44

guide prognostication after cardiac arrest in recent decades. 45

[3], [4] Beyond clinical examination, several ancillary tests can 46

support outcome prediction. These include electroencephalo- 47

gram (EEG) monitoring, somatosensory evoked potentials, and 48

neuroimaging. [5]–[8] However, there is significant variability 49

between patient presentations and brain injury patterns, mak- 50

ing accurate prediction of outcomes challenging. 51

Recent literature has shown that early EEG patterns ob- 52

served over the first few days following post-cardiac arrest are 53

strongly associated with good or poor neurologic outcomes, 54

and that the strength of these associations for some features 55
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is time-dependent [9], [10]. For example, burst suppression,56

isoelectric patterns, and certain epileptiform patterns are asso-57

ciated with poor outcomes, with the strength of the association58

depending on the type and timing, and the strength of this59

association grows stronger 24 hours or later after cardiac60

arrest. [9], [11] The association between poor outcomes and61

burst suppression with identical bursts has been reported to62

be very strong [12], and isoelectric EEG patterns become63

strongly predictive of poor outcomes only when these persist64

12 hours or later after cardiac arrest. By contrast, a continuous65

EEG background with normal amplitude within 12 h and66

preserved EEG reactivity are associated with a high likelihood67

of favorable outcomes. [7], [9], [12]–[16] However, due to68

the high volume and heterogeneity of continuous EEG data,69

clinicians reviewing EEG data manually are unable to provide70

optimal prognostic information and visual EEG review can71

suffer from intra- and inter-observer variability [11], [17]–[19].72

Thus, despite widespread adoption of EEG monitoring in co-73

matose cardiac arrest patients, full EEG interpretation remains74

challenging. In contrast, quantitative analysis of continuous75

EEG offers automated reproducible measurements. [20]–[22]76

Although the EEG after cardiac arrest is dynamic, few77

studies have investigated the prognostic value of EEG trend78

information. If trends in EEG features carry important prog-79

nostic information, algorithms should be able to leverage these80

trends to make increasingly more accurate predictions with81

increasing duration of brain activity monitoring. However, pre-82

vious algorithms have had limited ability to leverage changes83

across consecutive hours of EEG monitoring. Most recent84

studies focus on the first 24 hours after cardiac arrest [9], [23],85

and most prior algorithms make predictions based on isolated86

time windows within this early period without integrating the87

evolution of the EEG across time. It is unclear whether long-88

term EEG dynamics can be leveraged to improve the accuracy89

of neurologic prognostication, and it is unclear how best to90

aggregate information across time both within and beyond the91

first 24 hours.92

Recent advances in machine learning (ML) can help deal93

with the challenges making predictors from complex data in94

healthcare settings [24]–[28]. ML approaches have been used95

to leverage EEG data to predict neurological outcomes in co-96

matose patients after cardiac arrest. [21], [29]–[31] However,97

the performance of some of these algorithms did not improve98

monotonically with increasing duration of observation, and in99

fact worsened in one study including data beyond 24 h [32].100

While one conclusion could be that EEG beyond the first101

24 hours does not add to discrimination between good and102

poor outcome groups, we hypothesize that prior approaches103

have not made optimal use of trend information. A previous104

study demonstrated that a simple time-sensitive model that105

leverages time-varying features outperforms baseline methods106

that are time-insensitive when evaluated on the same dataset107

[31]. More recently, deep neural networks, specifically con-108

volutional neural networks, were shown to perform best in109

outcome prediction at 12 and 24 hours after cardiac arrest110

[29]. However, these prior results have an important limitation111

in that the long-term trends in the EEG are not explicitly112

modeled. Deep neural networks with the ability to make use113

of long-term trends in EEG have not yet been explored. 114

In this study, we develop a deep learning model for neuro- 115

logic outcome prediction which leverages trend information 116

in continuous EEG data to improve outcome prediction in 117

patients with coma following cardiac arrest. The performance 118

of our proposed model is evaluated on a large multi-center 119

cardiac arrest EEG dataset (1,038 patients), with data from 120

seven hospitals in Europe and the US. We show that per- 121

formance of the proposed model exceeds that of other prior 122

new models when evaluated in our cohort. [20], [21], [31], 123

[32] Furthermore, we show how our models performance 124

continuously improves with increasing duration of observation, 125

well beyond the initial 24 hours of monitoring. 126

II. MATERIALS AND METHODS 127

A. Dataset 128

We developed deep learning models using the multi-center 129

cardiac arrest EEG dataset of the International Cardiac Arrest 130

EEG Consortium (ICARE) with 1,038 patients from seven 131

hospitals in Europe and the US (Fig. 1a). The seven hospi- 132

tals were Medisch Spectrum Twente (Enschede, Netherlands), 133

Rijnstate Hospital (Arnhem, Netherlands), Erasmus Hospital 134

(ULB, Brussels, Belgium), Brigham and Womens Hospital 135

(BWH, Boston MA, USA) , Beth Israel Deaconess Medical 136

Center (BIDMC, Boston, MA, USA), Massachusetts General 137

Hospital (MGH, Boston MA, USA), and Yale New Haven 138

Hospital (YNH, New Haven, CT, USA). The cardiac arrest 139

EEG monitoring protocols at participating institutions were 140

initiated during hypothermia and continued upon rewarming 141

for a total of approximately 48-72 hours. We developed an 142

international multicenter EEG dataset (ICARE, International 143

Cardiac Arrest EEG Consortium), to achieve a large and 144

diverse cohort [29], [31]. The ICARE dataset contains approx- 145

imately 58,000 hours of prospectively collected clinical EEG 146

data, patient demographic information, and medical informa- 147

tion from the time of admission up 6 months after cardiac 148

arrest. The study was based on a retrospective observational 149

cohort. The research protocol was approved by the Institutional 150

Review Boards of participating hospitals. Written informed 151

consent was not required for this retrospective study. 152

Neurologic outcomes were assessed using the Cerebral 153

Performance Category (CPC) scale (1-5) at 3 or 6 months after 154

hospital discharge after cardiac arrest [8], [33]. Good outcome 155

was defined as a CPC score of 1 or 2 (minimal to moderate 156

neurologic disability), and poor outcome was defined as a 157

CPC score of 3-5 (severe neurologic disability, persistent coma 158

or vegetative state, or death). Four institutions (MGH, BWH, 159

YNH, and BIDMC) assessed best CPC scores retrospectively 160

through chart review at 6 months and one (ULB) at 3 months. 161

In these institutions, CPC scores were not further reviewed 162

for patients who achieved a good outcome (CPC 1-2) or died 163

by hospital discharge [34]. Subjects discharged with a CPC 164

of 3-4 had additional chart reviews performed to evaluate 165

for recovery or worsening in CPC at 6 months from cardiac 166

arrest. Less than 2% of subjects included required this review. 167

Two institutions recorded CPC scores prospectively through 168

phone or in-person interview for surviving patients (Medisch 169
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TABLE I
PATIENT CHARACTERISTICS, GROUPED BY CPC SCORES.

CPC group CPC 1 CPC 2 CPC 3 CPC 4 CPC 5
Number of patients 303 70 31 17 617
Age (years) 57 (15) 56 (15) 66 (11) 54 (21) 62 (16)
Female gender (%) 29.04 24.29 35.48 47.06 32.25
Shockable rhythm (VFib/VT, %) 71 67 42 41 31
EEG start time (h) 17 (14) 16 (16) 16 (13) 20 (6) 20 (17)
EEG duration (h) 52 (33) 63 (44) 69 (51) 99 (60) 53 (40)
Out-of-hospital CA (N/A)* 232 (21) 50 (6) 17 (4) 14 (0) 439 (43)
TTM (N/A)* 261 (34) 61 (7) 26 (5) 11 (2) 514 (64)

VFib: ventricular fibrillation; VT: ventricular tachycardia; TTM: targeted temperature manage-
ment; EEG start time (h) is relative to time of cardiac arrest. All numbers related to age and
EEG expressed as mean (standard deviation). *For the number of out-of-hospital CA patients
and TTM, we didn’t have all information available from different hospitals.

Spectrum Twente and Rijnstate Hospital). 665 out of 1038170

patients (64%) had a poor outcome. Patient characteristics171

grouped by CPC scores are summarized in Table I.172

The inclusion criteria included non-traumatic cardiac arrest,173

age≥ 18 years, return of spontaneous circulation (ROSC),174

Glasgow Coma Scale score ≤ 8 on admission, and manage-175

ment with targeted temperature management (TTM). Exclu-176

sion criteria were acute cerebral hemorrhage or acute cerebral177

infarction. The TTM protocol starts as soon as possible after178

admission to the emergency room or intensive care unit in179

participating centers with external cooling pads. Goal temper-180

ature (32-34 ◦C or 36 ◦C) is maintained for 24 hours, and there181

is gradual rewarming at 0.25-0.5 ◦C to 37 ◦C. Neuromuscular182

blocking agents are used as needed for shivering for all par-183

ticipating centers with exception of the Massachusetts General184

Hospital, which utilizes neuromuscular blockade continuously185

throughout TTM. Sedation management during TTM is done186

at the treating clinicians discretion. Commonly used sedatives187

and standard dosing ranges are propofol (25-80 mcg/kg/h),188

midazolam (0.1 mg/kg/h), or fentanyl (25-200 mcg/h). Only189

one institution (ULB) used midazolam for sedation prefer-190

entially, with the remaining institutions using propofol. At191

participating institutions, recommendations about withdrawal192

of life-sustaining therapies are a collaborative effort between193

critical care and neurology teams, following structured proto-194

cols. Multimodal neurological prognostication involved serial195

neurological examinations with a combination of continuous196

EEG monitoring, head CT or brain MR imaging, neuron spe-197

cific enolase, and somatosensory evoked potentials as deemed198

necessary by the treating clinicians.199

B. Data Preprocessing and Feature Extraction200

EEGs were recorded routinely with 19 electrodes according201

to the international 10-20 system. Recorded EEGs were hetero-202

geneous across hospitals in terms of channel names, sampling203

rates, etc. The raw data were standardized by matching channel204

names, applying digital bandpass filters (0.5-30 Hz), and re-205

sampling to 100 Hz. EEGs were re-referenced to 18 bipolar206

channels (Fp1-F7, F7-T3, T3-T5, T5-O1, Fp2-F8, F8-T4, T4-207

T6, T6-O2, Fp1-F3, F3-C3, C3-P3, P3-O1, Fp2-F4, F4-C4,208

C4-P4, P4-O2, Fz-Cz, Cz-Pz). We chose bipolar referencing209

for three main reasons: 1) to reduce artifacts such as ECG,210

which can contaminate the common average reference; 2)211

because this montage is often found to be useful in clini- 212

cal practice; and 3) Previous quantitative EEG analysis and 213

modeling in cardiac arrest used bipolar channels [29], [32]. 214

We identified the following typical types of artifacts for each 215

5-s epoch: 1) abnormally high amplitude values above 500 µV ; 216

2) small standard deviation of the signal (< 0.2µV ) for more 217

than 2 s within the 4 second epoch; 3) overly fast amplitude 218

change with more than 900 µV within 0.1 s; 4) staircase-like 219

spectral patterns (commonly caused by ICU machines such 220

as cooling blankets or pumps). Clinical EEG recorded in the 221

intensive care environment often contains artifacts and noise. 222

Therefore, we developed a preprocessing pipeline to reduce 223

the influence of artifacts and noise. The steps of the pipeline 224

were as follows: 1) an artifact detection algorithm was used 225

to assign an artifact indicator (0/1) to each consecutive 5-s 226

EEG epoch (applied without overlap). 2) Signal quality was 227

calculated as the percentage of clean epochs within each 5- 228

min EEG segment. 3) The quality scores were then used as 229

weights to the EEG features from each segment and the weight 230

averaged features were used as the inputs to the models. 231

We extracted nine clinically interpretable EEG features 232

for each bipolar channel with a sliding 5-min time window 233

without overlapping: burst suppression ratio, Shannon entropy, 234

δ (0.5-4 Hz), θ (4-7 Hz), α (8-15 Hz), β (16-31 Hz) band 235

power, α/δ ratio, regularity, and spike frequency. The ex- 236

tracted features were averaged over all bipolar channels to 237

provide inputs to the machine learning models. The sequences 238

of EEG features at each 6-h time interval were used as inputs 239

of the time-dependent models. In cases of intermittent missing 240

data (periods when EEG monitoring was interrupted), missing 241

epochs were interpolated to values in the nearest available 242

epochs. 243

Burst suppression is an EEG pattern consisting of peri- 244

ods of depressed voltage alternating with periods of higher 245

voltage activity. The burst suppression ratio was calculated 246

as the percentage of time in the suppression within a 5- 247

minute interval using a recursive variance estimation approach 248

[35]. Epileptiform discharge detection was performed using 249

an automated detection algorithm, SpikeNet, described in our 250

previous work, and epileptiform discharge frequency (number 251

of discharges / 5 mins) was the feature utilized to represent 252

epileptiform discharges in our model. [36] Shannon entropy 253

measures signal complexity. Regularity is a measure used 254
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Fig. 1. Study framework. a, We used a large cardiac arrest EEG dataset (ICARE) from seven university-affiliated hospitals in Europe and the
US to develop and externally validate the generalization of our prediction models across centers. b, Illustration of the importance of evolution over
time with associations between EEG patterns and outcome after cardiac arrest. For example, a rapid transition from an isoelectric state to burst
suppression to continuous activity within 12 hours after cardiac arrest usually portends good outcome. EEG patterns present at any given time
might not consistently differentiate outcomes. Both the occurrence and the temporal dynamics of EEG patterns contribute to optimally predicting
neurologic outcome.

in prior work to separate burst suppression patterns from255

continuous patterns [20]. For calculating regularity, the EEG256

signal was smoothed with a moving average, and the data257

points of smoothed signals were sorted in descending order258

[20]. The normalized standard deviation of the sorted signal259

was calculated was a feature for regularity. δ, θ, α, β band260

power, and α/δ ratio were calculated using the short time261

Fourier transform with Hamming windows.262

C. Model Architecture263

Our approach views neurologic outcome prediction as a264

progressive goal, based on analysis of the evolution of brain265

states. The states are manifest by different characteristic EEG266

patterns (Fig. 1b). Prior work by us and others [31], [37] shows267

that some EEG patterns are strongly associated with a good268

or poor outcome when seen at any time, e.g., epileptiform269

patterns (e.g. generalized periodic discharges on a flat back-270

ground or burst suppression with identical bursts), while the271

prognostic significance of some intermediate EEG patterns is272

strongly time dependent, e.g., discontinuity in the EEG [31].273

We aimed to endow our outcome prediction model with the274

ability to capture long-term EEG dynamics to improve overall275

prediction performance. To achieve this, we developed a time-276

dependent deep learning model with bidirectional long-short277

time memory recurrent neural networks (Bi-LSTM).278

The input sequences for this model have two components279

that are concatenated: 1) a mean historical feature sequence:280

this is obtained by averaging the sequences of feature vectors281

from all prior 6-hour epochs. Each such sequence contains 72282

feature vectors (one from each consecutive 5-minute window),283

and averaging these sequences produces a single average284

sequence. Epochs with missing data were interpolated to285

values in the nearest available epochs prior to averaging. The 286

dimensions of this average sequence are 9 × 72 (9 features 287

in each feature vector × 72 consecutive 5-minute periods in 288

the 6-hour epoch). This average sequence of feature vectors 289

provides historical context for the network in which to evaluate 290

data from the current 6-hour window. 2) A current sequence: 291

the sequence of EEG feature vectors from the current 6-h 292

window. The dimensions of this sequence are also 9 × 72 (9 293

features in each vector × 72 consecutive 5-minute periods). 294

This arrangement is illustrated in Fig. 2b. 295

The Bi-LSTM learns temporal dependencies between time 296

steps in the EEG time series by forward and backward process- 297

ing (Fig. 2a). LSTM introduces multiple gating mechanisms to 298

address the vanishing gradient problem in the backpropagation 299

through time algorithm. The hyperparameters of the neural 300

network were tuned by cross-validation. The best network 301

architecture consisted of four Bi-LSTM layers, three dropout 302

layers, one fully connected layer, and a softmax layer (Fig. 303

2c). We used multilayered Bi-LSTMs, which mapped the input 304

time series into multiple hidden features. The last element of 305

the output sequence from the top-level Bi-LSTM layer was 306

used as the input for a fully connected layer. Dropout was used 307

during training to help avoid overfitting, and a softmax layer 308

was used to calculate the posterior probability of neurologic 309

outcome. Cross entropy was used as the loss function. Stochas- 310

tic gradient descent with momentum (SGDM) optimizer was 311

applied to train the deep neural networks. Training samples 312

for the neural network consisted of 6-h EEG time blocks. 313

The final stage of the neural network operating on each 6- 314

hour block (NOPM, neurologic outcome prediction module) 315

produces an estimate of the probability that the final neurologic 316

outcome will be poor. In order to leverage information in past 317

EEG time windows, we developed a sequence of Bi-LSTMs 318

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 20,2022 at 07:11:36 UTC from IEEE Xplore.  Restrictions apply. 



0018-9294 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2021.3139007, IEEE
Transactions on Biomedical Engineering

ZHENG et al.: PREDICTING NEUROLOGICAL OUTCOME FROM EEG DYNAMICS IN COMATOSE PATIENTS AFTER CARDIAC ARREST WITH DEEP LEARNING5

and averaged the output probabilities to arrive at the current319

predicted probability of a poor outcome (Fig. 2d).320

D. Baseline Comparison321

We compared the performance of our proposed model with322

state-of-the-art models on the same dataset. Previous studies323

found that a simpler convolutional architecture sometimes324

outperforms canonical recurrent networks, e.g., LSTM [38]. A325

recent study applied convolutional neural networks to outcome326

prediction and achieved better performance than previously327

reported predictors [29]. Therefore, we included a convo-328

lutional architecture called temporal convolutional network329

(TCN) for comparison [38]. TCN performs dilated causal330

convolution using multiple stacked convolutional layers. With331

dilated convolution, higher level convolutional layers have332

larger receptive fields. The TCN architecture also consists333

of multiple residual blocks, which allows layers to learn334

modifications to the identity mapping. [38] Another time-335

dependent model called a sequence of generalized linear336

models with Elastic Net regularization (SGLM with Elastic337

Net) was proposed recently [31]. This approach allows models338

operating at later time points later to consider both past339

and present features when making predictions. SGLM with340

Elastic Net can automatically select features based on ℓ1 and341

ℓ2 normalization. A conventional baseline classifier, Random342

Forest, was evaluated to show the performance of models343

without time dependency.344

E. Hyperparameter Tuning345

For Bi-LSTMs, we tuned the following hyperparameters:346

number of layers, number of neurons in each layer, maximal347

epochs. The ranges of numbers of layers and neurons were348

[1, 2, 3, 4] and [10, 20, 30, 40, 50], respectively. The349

maximal epochs were tuned in the range [50 100]. Training350

data were shuffled every epoch and early stopping was used.351

We used internal cross validation for hyperparameter tuning352

(training and validation sets). The best hyperparameters were353

determined based on the average performance in internal cross354

validation using an validation set (a subset of the training data).355

The hyperparameters in each fold were the same in internal356

cross validation. For TCNs, four residual blocks were used357

containing dilated causal convolution layers with each 170358

filters of size 15. The number of filters was tuned in the range359

[150, 250] with a step of 10. Filter size was tuned in the range360

[3, 15] with a step size (stride) of 2. The penalty parameter of361

SGLM with Elastic Net was tuned with the values of 0.5 and362

1. For Random Forest, the number of trees was tuned between363

20 and 90 with a step of 10. The best penalty parameter α in364

SGLM with Elastic Net was 1 and the best number of trees365

in Random Forest was 60.366

F. Performance Evaluation Metrics367

To quantify the stability of model performance, we used368

5-fold external cross validation and report average perfor-369

mance and 95% confidence intervals. We randomly partitioned370

available data into 5 folds, where 4 folds were used train371

model parameters (training and validation sets in internal cross 372

validation) and the remaining 1-fold was used for model 373

evaluation (test set). The split of training, validation, and 374

test sets was patient-independent within each of the 5 folds. 375

Data from the same patients were exclusively in either in the 376

training set or test set; no patient ever had data in both sets. The 377

area under the receiver operating characteristic curve (AUC- 378

ROC) and calibration error were used as evaluation metrics. 379

Calibration error compares predicted probabilities with the 380

observed event frequencies. The averages over five folds were 381

calculated for comparison. The 95% confidence intervals were 382

calculated using the approach of Hanley and McNeil [39], 383

[40]. Statistical significance was evaluated using t-test and p 384

values below 0.05 were considered as statistical significance. 385

We compared the sensitivity and specificity with a thresholded 386

score from the models (99%, 95%, and 90%). 387

Due to patient privacy in multiple hospitals, the data in 388

the study are not available to the publicity. The processing 389

pipeline and model implementations were based on standard 390

model libraries and scripts in Python and MATLAB. The 391

statistical analysis code used in the study is available from 392

the corresponding author on reasonable request. 393

III. RESULTS 394

A. Performance Evaluation 395

We compute all performance measures for each 6-h time 396

interval between 12-96 h after cardiac arrest. To quantify 397

the stability of these performance measures, we perform 5- 398

fold cross validation. The reported AUC-ROC and calibra- 399

tion errors are averages over the 5-folds, with accompanying 400

confidence intervals and standard deviations. We compared 401

performance of several state-of-the-art time dependent models 402

(Temporal Convolutional Network (TCN), Sequence of Gener- 403

alized Linear Models (SGLM) with Elastic net regularization) 404

and the baseline model (Random Forest). 405

Sequences of Bi-LSTMs outperformed the other models 406

(Fig. 3a). Sequences of Bi-LSTMs, Sequences of TCNs, and 407

SGLM with Elastic net were all able to leverage long term 408

temporal dependencies to improve predictions. The perfor- 409

mance of these three models increased approximately mono- 410

tonically with time. The other two models with short-term 411

time dependencies (independent Bi-LSTMs and TCNs) and 412

Random Forest achieved better performance in two time- 413

ranges: approximately 24-42 h and 66-78 h after cardiac arrest. 414

The look-back strategy implemented in the Bi-LSTMs model 415

was able to effectively leverage historical predictions and 416

provide a trajectory of outcome risk for individual patients. 417

Performance of the various models was similar early after 418

cardiac arrest (before 18 h), while performance of the Bi- 419

LSTM model moderately increased to 0.87 (95% confidence 420

interval, 95% CI: 0.84-0.89, standard deviation, std: 0.03) at 42 421

h and reached its maximum value of 0.88 (95% CI: 0.85-0.91, 422

std: 0.03) at 66 h. The AUC improvement of the sequence of 423

Bi-LSTM model at 66h compared to Bi-LSTM, sequences of 424

TCNs, TCN, SGLM with Elastic net, and Random Forest was 425

0.03*, 0.02, 0.08*, 0.02, and 0.07*; where ‘* indicates passing 426

a test of statistical significance (p < 0.05, t-test). 427
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Fig. 2. Model architecture of a sequence of Bi-LSTMs. a, Dependencies between time steps in the EEG sequences were learned by a Bidirectional
LSTM. b, A time-dependent deep learning model was developed that takes as input 6-h sequences of past mean and current EEG feature values.
The outputs of hidden states in the last Bi-LSTM block were used for prediction. In cases of intermittent missing data (periods when EEG monitoring
was interrupted), missing epochs (shaded blocks) were interpolated to values in the nearest available epochs. c, The best network architecture of
individual 6-h time blocks consists of four Bi-LSTM layers, three dropout layers, one fully connected layer, and one softmax layer. The neural network
was called a neurologic outcome prediction module (NOPM). d, To leverage the output probabilities of Bi-LSTMs at different time blocks and obtain
more stable and robust predictions, we averaged the output probabilities of a sequence of Bi-LSTMs until now as the final prediction probabilities.

Although predictions made by the model are probabilities,428

it is customary to compare these to thresholds and report429

the statistical performance of the resulting binary predictions.430

Doing this, performance of the model at 66 h was as follows.431

For predicting poor outcomes, at specificity thresholds of 99%,432

95%, and 90%, the models sensitivity was 32%, 55%, and433

62%, respectively; whereas at sensitivity thresholds of 99%,434

95%, and 90%, specificity was 23%, 47%, and 62%. For435

predicting good outcomes, at specificity thresholds of 99%,436

95%, and 90%, sensitivity was 17%, 47%, and 62%; whereas437

at sensitivity thresholds of 99%, 95%, and 90%, specificity438

was 19%, 48%, and 70%.439

The improvement of all models with increasing time pro-440

vides evidence that leveraging long-term time dynamics of441

EEG signals provides improved ability to predict neurologic442

outcome. Sequences of Bi-LSTMs, Sequences of TCNs, and443

SGLM with Elastic net had consistent improvement in per-444

formance with more observations (from mean AUC of 0.78,445

0.77, and 0.75 at 12 h to mean AUC of 0.88, 0.86, and 0.87446

at 66 h, respectively). The improvement of the three models447

was statistically significant (p < 0.01, t-test).448

It should be noted that the numbers of patients with available449

EEG data varied over time (Fig. 3b). The numbers of patients 450

increased initially and decreased later, reaching a maximal 451

value of 826 during the time period 24-30 h. The ROC curves 452

at different times are shown in Fig. 3c. 453

B. Calibration Risk 454

Model calibration was evaluated by comparing the predicted 455

probability of a poor outcome with the proportion of patients 456

who had a poor outcome. We compared calibration curves 457

at different time intervals and calculated calibration errors to 458

quantify performance (Fig. 3d). Calibration error was defined 459

as the absolute deviation from the diagonal line, which rep- 460

resents perfect calibration (lack of systematic errors of over- 461

or under-prediction). Model calibration improved from 12 h 462

to 60 h and deteriorated after 60 h. Calibration error at 66 h 463

was 0.04. Our proposed model was well calibrated, with good 464

agreement between the observed proportions of poor outcomes 465

and predicted probabilities of poor outcomes. 466

C. Subgroup Analysis 467

Having investigated overall performance on the whole co- 468

hort, we next investigated prediction performance in individual 469
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Fig. 3. Model performance of different models in outcome prediction. a, Mean AUC values of different models within each 6-hour time interval.
Sequences of Bi-LSTMs (red line) performed best, exhibiting consistent improvement in performance with more observations (from mean AUC of
0.7814 at 12 h to mean AUC of 0.8815 at 66 h). b, Numbers of patients with EEG available with respect to time after cardiac arrest. c, Mean ROC
curves at different time intervals (12-48 h, 60-96 h, and 66 h). Shaded areas indicate the standard errors in 5-fold cross validation. d, Calibration
curves at different time intervals (12-48 h, 60-96 h, and 66 h). The numbers are calibration errors (deviations from the diagonals).

patients and CPC groups. Fig. 4a makes evident qualitatively470

(in a colormap) that the sequence of Bi-LSTM prediction471

probabilities over time in all individual patients. For some472

patients identified initially as having a low predicted proba-473

bility of a good outcome, the predicted probability of a good474

outcome increases progressively as additional observations475

come in over time, and in general, predicted probabilities are476

more accurate at later time points. These results support our477

starting hypothesis, that leveraging long term EEG dynamics478

can improve prediction performance of neurologic prognosti- 479

cation models. While model predictions generally agree well 480

with observed outcomes, in keeping with the probabilistic 481

framework, the models predictions are not infallible. Poor 482

outcomes occasionally occur despite confident predictions of 483

a good outcome, and vice versa (Fig. 4a). 484

Next, we grouped outcome prediction probabilities by CPC 485

scores (Fig. 4b). The mean predicted probability of poor 486

outcome within each CPC group was consistent with the 487
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Fig. 4. Prediction probabilities of poor outcome over time for individual patients and individual CPC groups. a, Individual prediction probabilities
of poor outcome can change over time. Each row shows the output probabilities from our model for one patient over consecutive 6h blocks, the
darker the color, the higher the predicted probability of poor outcome. Patients in each outcome group are sorted based on the mean prediction
probabilities. Generally, the group with poor outcomes has substantially higher predicted probabilities of poor outcomes. b, Predicted probabilities
over time, grouped by final CPC scores. A CPC score of 1 denotes good recovery while CPC score of 5 denotes death. The overall mean predicted
probabilities were consistent with the expected order of CPC scores.
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Fig. 5. Model performance of out-of-hospital cardiac arrest and in-
hospital cardiac arrest over time.

ordinal ordering of CPC scores. The CPC 5 group had the488

highest mean prediction probabilities, while the CPC 1 group489

had the lowest mean prediction probabilities of poor outcomes.490

The mean prediction probabilities of the CPC 1-5 groups were491

0.41, 0.42, 0.61, 0.71, and 0.78, respectively. There was a large492

probability gap between the group with good outcomes (CPC493

1-2) and the group with poor outcomes (CPC 3-5).494

For subgroup analysis, we evaluated the model performance495

for patients with out-of-hospital cardiac arrest and in-hospital496

cardiac arrest, respectively, after five-fold cross validation (Fig.497

5). Most patients in our dataset were patients with out-of-498

hospital cardiac arrest: 761 patients (73%) had out-of-hospital499

cardiac arrest, 203 (20%) in-hospital cardiac arrest, and 74500

patients (7%) did not have that data available. Overall, the501

performance of the out-of-hospital cohort were better than 502

those of the in-hospital cohort. The performance of the in- 503

hospital cohort were similar over the time intervals after CA 504

while those of out-hospital cohort increased moderately over 505

time and reached a best AUC of 90% [88%, 93%] at 66 hours 506

after CA. 507

We last investigated whether model performance varied 508

across patients cared for at different institutions. Model per- 509

formance varied between institutions (Table II). Notably, out- 510

comes were most predictable early (0-24 hours) on within the 511

two Dutch hospitals (UTW, RIJ), reaching an AUC of 89% by 512

24 hours, whereas outcome predictability reached only AUC 513

of 66% within the Belgian hospital (ULB). 514

D. Visualization 515

The modeling framework was inspired by actual clinical 516

decision making, which considers current EEG information 517

in context with historical information to predict neurologic 518

outcome. Model performance on five typical cases is illustrated 519

in Fig. 6, each with a different CPC score. The mean spec- 520

trograms and corresponding EEG snapshots are shown. From 521

the figure, we see that the prediction probabilities follow the 522

rank order of neurologic outcomes (CPC scores). 523

The first two patients with good outcomes (CPC 1 and 2) 524

had continuous EEG patterns with normal amplitudes during 525

recovery. Early improvements to continuous EEG patterns 526

usually indicate a good outcome. Their spectrograms demon- 527

strate improving power in low frequency bands. Prediction 528

probabilities of poor outcomes were consistently low for both 529

patients over time. The patient with CPC 3 had isoelectric 530

EEG early at 12-24 h after cardiac arrest. Early isoelectric 531

EEG had an intermediate probability of a poor outcome. 532

However, prolongation of the isoelectric pattern increased the 533
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TABLE II
MODEL PERFORMANCE FOR INDIVIDUAL INSTITUTIONS (AUC, 95% CONFIDENCE INTERVALS)

Time Interval 12 h 18 h 24 h 30 h 36 h
BIDMC 0.68 [0.50,0.85] 0.74 [0.61,0.87] 0.80 [0.69,0.90] 0.81 [0.72,0.91] 0.83 [0.75,0.92]
BWH 0.82 [0.69,0.95] 0.75 [0.63,0.86] 0.73 [0.63,0.82] 0.76 [0.67,0.85] 0.71 [0.62,0.80]
MGH 0.77 [0.59,0.94] 0.80 [0.70,0.91] 0.88 [0.81,0.95] 0.90 [0.84,0.96] 0.88 [0.81,0.94]
ULB 0.62 [0.48,0.76] 0.64 [0.52,0.76] 0.66 [0.56,0.76] 0.71 [0.61,0.80] 0.75 [0.66,0.85]
UTW+RS 0.82 [0.76,0.87] 0.85 [0.81,0.90] 0.89 [0.85,0.92] 0.89 [0.86,0.93] 0.90 [0.87,0.94]
YNH 0.59 [0.41,0.77] 0.81 [0.70,0.92] 0.87 [0.78,0.95] 0.90 [0.83,0.97] 0.93 [0.87,0.98]
Time Interval 42 h 48 h 54 h 60 h 66 h
BIDMC 0.82 [0.73,0.92] 0.82 [0.72,0.91] 0.85 [0.76,0.94] 0.85 [0.76,0.94] 0.85 [0.74,0.95]
BWH 0.74 [0.65,0.83] 0.73 [0.64,0.83] 0.76 [0.67,0.85] 0.73 [0.64,0.83] 0.73 [0.63,0.83]
MGH 0.88 [0.82,0.94] 0.84 [0.77,0.91] 0.87 [0.80,0.93] 0.89 [0.83,0.95] 0.93 [0.88,0.98]
ULB 0.77 [0.67,0.87] 0.69 [0.56,0.81] 0.63 [0.46,0.80] 0.61 [0.42,0.80] 0.66 [0.47,0.84]
UTW+RS 0.91 [0.87,0.94] 0.91 [0.87,0.94] 0.91 [0.87,0.95] 0.91 [0.87,0.95] 0.91 [0.87,0.95]
YNH 0.92 [0.86,0.98] 0.91 [0.85,0.97] 0.91 [0.85,0.98] 0.94 [0.88,0.99] 0.95 [0.89,1.00]
Time Interval 72 h 78 h 84 h 90 h 96 h
BIDMC 0.86 [0.76,0.96] 0.85 [0.73,0.96] 0.89 [0.78,1.00] 0.88 [0.76,1.00] 0.86 [0.71,1.00]
BWH 0.71 [0.59,0.83] 0.77 [0.66,0.89] 0.81 [0.70,0.92] 0.79 [0.67,0.92] 0.70 [0.54,0.86]
MGH 0.90 [0.83,0.96] 0.92 [0.86,0.98] 0.92 [0.86,0.99] 0.93 [0.86,1.00] 0.92 [0.84,1.00]
ULB 0.63 [0.42,0.83] 0.60 [0.40,0.80] 0.56 [0.34,0.78] 0.54 [0.32,0.76] 0.46 [0.22,0.70]
UTW+RS 0.91 [0.86,0.95] 0.91 [0.86,0.96] 0.89 [0.83,0.95] 0.88 [0.81,0.95] 0.85 [0.76,0.94]
YNH 0.94 [0.88,1.00] 0.90 [0.80,0.99] 0.95 [0.87,1.00] 0.94 [0.87,1.00] 0.94 [0.85,1.00]

BIDMC: Beth Israel Deaconess Medical Center, BWH: Brigham and Womens Hospital, MGH: Massachusetts
General Hospital, ULB: Erasmus Hospital, Universit Libre de Bruxelles, UTW: Medisch Spectrum Twente, and
Rijnstate Hospital, University of Twente, YNH: Yale New Haven Hospital.

probability of a poor outcome (from 32.77% at 12 h to534

48.03% at 24 h). Later the EEG evolved to have more and535

more epileptiform discharges (generalized periodic discharges)536

and the patient experienced seizures. With continuation of537

unfavorable EEG patterns throughout the first 72 hours, the538

prediction probability of a poor outcome from our model539

reached 81.56% by 72 hours. The patient with CPC 4 had540

a high burst-suppression ratio with epileptiform discharges541

lasting for more than 12 hours. The evolution of the EEG to542

continuous patterns occurred late (e.g., after 48 h). Therefore,543

the output probabilities of a poor outcome were relatively high544

over time. The EEG of the patient with the worst outcome545

(CPC 5) showed persistent voltage suppression (last row of546

Fig. 6). This patient had a high burst-suppression ratio with547

highly epileptiform bursts. The prediction probabilities for548

this patient were high throughout the entire course of EEG549

monitoring (over 95%).550

IV. DISCUSSION551

Our results demonstrate that a deep learning model that552

leverages EEG dynamics can provide accurate neurologic553

outcome predictions post-cardiac arrest that become more554

accurate as time passes. Our time-sensitive models accuracy555

continued to increase as additional EEG data was included,556

reaching maximum predictive accuracy at 66 hours (AUC557

0.88). The model was well calibrated, with observed pro-558

portions of poor outcomes closely matching predicted prob-559

abilities. Further, outcome probabilities mapped closely onto560

observed outcome categories, following the rank order of561

CPC scores. These individual-level outcome probabilities of562

the model are suitable for risk stratification for neurologic563

outcome prediction after cardiac arrest. Additional relevant564

features of this study is its size, with more than 1,000565

prospectively collected cases, and the inclusion of patients566

from seven different hospitals from three countries (United567

States, Netherlands, and Belgium). 568

This work builds on several prior studies using quantita- 569

tive analysis of EEG data to predict neurologic outcome in 570

postanoxic coma. Most prior studies have used time-insensitive 571

models, which make predictions based on EEG data available 572

from specific epochs, e.g. 0-12 hours, 12-24 hours. [20], [21], 573

[29], [31], [32] Partial exceptions are the Cerebral Recovery 574

Index (CRI) models, of which there have been three versions 575

[20], [21], [32], all from studies performed in the Netherlands. 576

The first utilized 109 patients from 1 hospital; the second, 577

238 patients from two hospitals (UTW, RS); the third, from 578

551 patients from the same two hospitals (a subset of the I- 579

CARE cohort in the present study). Unlike most prior work, 580

the three CRI studies investigate prediction performance over 581

time. Maximal AUC was achieved in the original CRI paper 582

at 18 h (0.94) using a hand-crafted parametric model with 5 583

QEEG features [20]; at 12 h (0.92) in the second CRI using 584

random forest model employing 9 QEEG features [21]; and 585

at 12 h (0.94) in the third CRI employing 44 features in a 586

random forest model, supplemented with a feature selection 587

procedure (LASSO regression) [32]. In contrast to the present 588

work, none of the three CRI models attempted to leverage 589

temporal trends to improve prediction performance over time. 590

In more recent work [29], the CRI authors utilized data 591

from 895 patients from 5 Dutch hospitals, to train a convo- 592

lutional neural network (CNN) to predict neurologic outcome 593

at two time points (12 and 24 hours). The authors also tried 594

concatenating EEG inputs from 12 and 24 hours. Maximal 595

performance on the validation set was achieved at 12 hours 596

(AUC 0.92); though performance for the model that combined 597

information from 12 and 24 hour was essentially the same 598

(AUC 0.91). However, the authors did not explicitly investigate 599

the prognostic value of EEG trends and did not attempt to 600

leverage the full temporal evolution of the EEG; it is possible 601

that even better performance could have been achieved by 602
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Fig. 6. Model performance on sample patients. Each row illustrates the mean multi-taper spectrogram and EEG waveforms in multiple time blocks.
At the bottom of each spectrogram, prediction probabilities of the model for the corresponding EEG segments are shown. The time length of EEG
snapshots was 10 s while the spectrograms spanning a 5-min time window are shown. Generally, continuous EEGs had low prediction probabilities
of poor outcomes while burst-suppression patterns and epileptiform discharges produced high prediction probabilities of poor outcomes.

leveraging temporal trends. One recent study that did explicitly603

attempt to construct a time-sensitive model utilized data from604

438 patients from four US hospitals, to train a sequence605

of Generalized Linear Models (SGLM) with 52 QEEG fea-606

tures as input (with elastic net feature selection). [31] The607

time-sensitive SGLM model demonstrated monotonically im-608

proving prediction over time, by making use of a memory609

bank of progressively more EEG feature vectors from prior610

epochs, and achieved a maximal AUC of 0.83 by 72 hours.611

The predictive performance of individual features recorded612

at different time points changed over time, indicating that613

the discriminative power of EEG data is both time-dependent614

and feature-specific. On the same data set, the time-sensitive615

model performed better than a random forest model based on616

the second CRI model (AUC 0.83 vs. 0.74, respectively). In617

addition to measuring performance by AUC, the SGLM paper618

also introduced the concept of model calibration (how well the619

predicted probability of good or poor outcome agrees with the 620

observed frequency of outcomes) as a key indicator of model 621

performance, arguing that such probabilistic information is 622

more relevant to clinical decision making than simple binary 623

predictions (with accompanying measures of sensitivity and 624

specificity). The SGLM model was shown to have excellent 625

calibration across the initial 72 hours of EEG monitoring, 626

superior to several time-insensitive approaches [31]. 627

In the current study, we utilized data from 1038 patients 628

from 7 hospitals in 3 countries, the largest and most diverse 629

dataset assembled to date to develop machine learning models 630

to predict neurologic outcome in postanoxic coma. We directly 631

compared a wide variety machine learning models on the 632

same data, including several of the prior best performing 633

models (e.g. random forest and SGLM), in addition to several 634

new model types. Best performance was achieved by a time- 635

sensitive model Bi-LSTM model, which showed monotoni- 636
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cally increasing performance up to 66 hours. The Bi-LSTM637

model performed slightly better than the time-sensitive elastic638

net model (AUC 0.88 vs. 0.86, respectively). In addition, the639

Bi-LSTM model was superior to other state-of-the-art machine640

learning models (sequence of TCN and Random Forests).641

It is important to note that model prediction statistics (e.g.642

AUC values) cannot be directly compared across prior studies.643

Important differences between studies include: 1) The current644

data set is larger; 2) the current data set is more heterogeneous,645

coming from seven hospitals and three different countries.646

Indeed, our data suggest that predictability of neurologic647

outcome likely varies substantially between centers, thus648

between-center heterogeneity may be consequential. Possible649

reasons for differential predictability include differences in650

patient characteristics, care practices, and decision-making651

regarding withdrawal of care. Careful future study of this issue652

is warranted. 3) Model training and validation strategies differ653

across studies. 4) Model evaluation practices differed across654

studies. An important feature of the original elastic net study655

and the current Bi-LSTM model lacking in prior studies is the656

emphasis on model calibration. Calibration provides a measure657

of a models ability to provide clinically relevant probabilistic658

estimates of risk, which can be done at the individual patient-659

level and across all predicted probabilities, without artificially660

imposing pre-specified binary thresholds.661

Our study has several important limitations. 1), As seen in662

Fig. 4a, prediction is not perfect; there exist cases where model663

fails to make the correct prediction consistently throughout664

EEG monitoring. It is possible that calibrating the general-665

purpose model developed herein to characteristics of individ-666

ual patients could further improve prediction performance. 2),667

Our model utilized only EEG information. Baseline patient and668

treatment characteristics are also associated with outcome after669

cardiac arrest, e.g., location of arrest, first recorded rhythm,670

time from 911 call to sustained restoration of circulation,671

and method of induced hypothermia/targeted temperature man-672

agement. Incorporating a wider array of information might673

further improve outcome predictability. However, not all of674

these clinical variables were available due to different data675

collection protocols in different centers. 3), In the present676

study we focused on nine clinically interpretable EEG features.677

We did not include all features known to be associated with678

poor outcomes. For example, as mentioned above, we did not679

quantify similarity between bursts in burst suppression. Sim-680

ilarly, although we included information about the frequency681

of epileptiform discharges and background amplitude, we did682

not explicitly account for the periodicity of discharges, nor683

did we explicitly construct a feature which looked for the684

conjunction of generalized periodic discharges and a flat or685

low voltage background, another pattern strongly associated686

with poor outcomes. [9], [11] It is possible that including687

information about such features more explicitly would further688

improve model performance. 4), It is possible that additional689

‘data driven’ features, beyond those described in the literature,690

might further improve model performance. Some prior EEG691

studies (outside the field of cardiac arrest prognostication)692

have developed hybrid deep neural networks which combine693

convolutional neural networks (CNN) and recurrent neural694

networks (RNN) for EEG time series, where EEG features 695

are automatically learned from raw waveforms with CNN and 696

time dependencies between are modeled with RNN models. 697

Such hybrid network architectures (CNN-RNN) have been 698

validated in some time series applications [41], [42], and this 699

is a promising future direction for our work. 5), Treating 700

physicians were not blinded to EEG results in the present 701

study, and thus may have used these results for decision 702

making regarding continuation of life-sustaining treatment. 703

Therefore, we could not exclude the risk of self-fulfilling 704

prophecies introducing model prediction bias. 6), The EEG 705

data were collected at different clinical sites, not as part 706

of a single unified study. Therefore, we have evaluated the 707

model performance on the data from independent studies. 708

But the generalization of the proposed model should be 709

further evaluated on more heterogeneous patient cohorts from 710

different clinical centers. 7), The proportion of patients with 711

good outcome was comparable to other studies in the literature 712

[29], [31]. 713

Use of sedatives is common in comatose cardiac arrest 714

patients, however, the effect of sedatives on neurological 715

outcomes have not been quantified, e.g., whether propofol is 716

beneficial or harmful in patients with cell and organ injury 717

after resuscitation from cardiac arrest is unknown. [43] Use 718

of sedatives might have affected the EEG signals used in 719

our prediction models and might impact the generalizability 720

of the study results. [44] Recent studies suggest that the 721

influence of sedatives on EEG patterns does not significantly 722

affect neurological prognostication performance. [37], [45], 723

[46] Nevertheless, usage and dosing of sedative drugs varies 724

across sites, and the effects of propofol and other sedatives 725

in individual critically ill patients varies, thus further inves- 726

tigation of individual-level effects and effect variation across 727

medical centers remains an important topic for investigation. 728

In the past few decades, neurologic prognostication after 729

cardiac arrest has progressed towards a multimodal paradigm 730

based on integrating information from the clinical examination 731

(e.g. the pupillary light and corneal reflex) with information 732

from other modalities, e.g. somatosensory evoked potential, 733

brain imaging [47]–[50]. Given that different modalities have 734

strengths and weaknesses, multimodality assessments may 735

provide more reliable neurologic prognostication by combin- 736

ing clinical evidence from multiple complementary informa- 737

tion sources [7], [51], [52]. Future work on developing more 738

robust multimodal outcome prediction models should focus on 739

well-designed deep learning models that integrate rich, large- 740

scale healthcare data [24], [53], [54] from various institutions 741

to encompass wider practice variations and a broader range of 742

patient phenotypes to improve model performance. 743

V. CONCLUSION 744

In conclusion, we developed a time-sensitive deep learning 745

model for neurological outcome prediction in coma patients 746

after CA with sequences of Bi-LSTMs, which can learn 747

the long-term EEG dynamics during the progressive course 748

of coma recovery. Model performance was evaluated on a 749

large, multicenter, international cohort, and the model showed 750
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excellent agreement between its probabilistic predictions and751

the observed rate of good and poor neurologic outcomes. Our752

results demonstrate that time-sensitive deep neural networks753

can extract valuable information from the EEG in patients with754

coma following cardiac arrest, to provide accurate predictions755

about the potential recovery of neurologic function.756
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