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A B S T R A C T   

Various models have been developed to simulate rainfall interception by vegetation but their formulations and 
applications rely on a number of assumptions and parameter estimation procedures. The aim of this study is to 
examine the effect of different model assumptions and parameter derivation approaches on the performance of 
the Rutter, Gash and Liu interception models. The Rutter model, in contrast to the other two daily models, was 
applied both on an hourly and on a daily basis. Hourly data from a meteorological station, one automatic and 28 
manual throughfall gauges from a semi-arid Pinus brutia forest (Cyprus) for the period between 01/Jul/2016 and 
31/May/2020 were used for the analysis. We conducted a sensitivity analysis for the assessment of the model 
parameters and variables: canopy storage capacity (S), canopy cover fraction (c), the ratio of mean wet evap
oration rate to mean wet rainfall rate (Ēc/R̄) and potential evaporation (Eo). Three parameter derivation ap
proaches were tested: the widely used regression method and an automatic model parameterization procedure 
for optimization of S and c and for optimization of S (with c observed). The parameterized models were run with 
daily meteorological data and compared with long-term weekly throughfall data (2008–2019). The Gash and Liu 
models showed low sensitivity to Ēc/R̄. Test runs with different combinations of S, c and Ēc/R̄ revealed strong 
equifinality. The models showed high performance for both calibration and validation periods with Kling–Gupta 
Efficiency (KGE) above 0.90. Gash and Liu models with the automatic model parameterization procedures 
resulted in higher KGEs than with the regression method. The interception losses computed from the long-term 
application of the three models ranged between 18 and 20%. The models were all capable of capturing the 
inherently variable interception process. However, a representative time series of throughfall measurements is 
needed to parameterize the models.   

List of symbols  
Symbol Unit Description 
AC  Above canopy 
BC  Below canopy 
c  Canopy cover fraction (canopy covered area per unit 

ground area) =< 1.0 
Cc mm Water storage on the canopy covered area 
Cd  Mean drag coefficient 
d m Zero plane displacement height 
di % Relative change in interception output 
dj % Relative change of the input parameter 
Dc mm Drainage from the canopy covered area 
E mm Evaporation per unit ground area 

(continued on next column)  

(continued ) 

Ē mm h− 1 Mean evaporation rate under saturated conditions per unit 
ground area 

Ēc mm h− 1 Mean evaporation rate under saturated conditions from the 
canopy covered area 

Ē/R̄  Mean evaporation to mean rainfall ratio 
Ec mm Actual evaporation from the wet canopy covered area 
Eo mm Potential wet surface evaporation per unit ground area 
ETo mm Reference evapotranspiration per unit ground area 
hc m Average tree height 
I mm Rainfall interception per unit ground area 
IGash mm Rainfall interception computed with the Gash model 
Iinitial 

(continued on next page) 
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(continued ) 

% of 
rainfall 

Rainfall interception for the initial value of a selected input 
parameter 

ILiu mm Rainfall interception computed with the Liu model 
IRutter mm Rainfall interception computed with the Rutter model 
Itest % of 

rainfall 
Rainfall interception for the test value of a selected input 
parameter 

J  Input parameter value 
Jinitial  Initial input parameter value 
Jtest  Tested input parameter value 
k  von Karman’s constant (0.41) 
LAI  Leaf area index 
P mm Rainfall 
p  Gap fraction 
Pi mm Rainfall during events that saturate the canopy 
Pj mm Rainfall during events with insufficient rain to saturate the 

canopy 
Pn mm/day Average annual wet-day precipitation 
Ps mm Amount of water needed to saturate the canopy 
P<2 mm Rain day with less than 2 mm rain 
R̄ mm h− 1 Mean rainfall rate 
ra s m− 1 Bulk aerodynamic resistance 
RS  Relative sensitivity 
S mm Canopy storage capacity per unit ground area 
Sc mm Canopy storage capacity per unit area of canopy cover (S/c) 
TF mm Throughfall per unit ground area 
TFGash mm Throughfall computed with the Gash model 
TFLiu mm Throughfall computed with the Liu model 
TFRutter mm Throughfall computed with the Rutter model 
u m s− 1 Wind speed 
z m Reference height 
z0 m Roughness length of the canopy 
zc m Roughness length for a closed canopy 
γ kPa ◦C− 1 Psychometric constant 
Δ kPa ◦C− 1 Slope of saturation vapour pressure curve 
λ MJ kg− 1 Latent heat of vaporization of water 
ρa kg m − 3 Density of dry air   

1. Introduction 

The largest water balance component of the terrestrial rainfall 
redistribution is evapotranspiration, which can be separated in three 
distinct processes: transpiration through the stomata of plants, evapo
ration from the soil surface and evaporation from the rainfall intercepted 
by the plants’ surfaces (Kool et al., 2014). The vegetation type and 
meteorological conditions determine the amount of precipitation that 
will evaporate from the canopy surface (interception), flow to the 
ground via trunks or stems (stemflow) and fall to the ground between 
the various components of the vegetation (throughfall) (Crockford and 
Richardson, 2000). Observations show that rainfall interception is a 
highly variable hydrological process, ranging from 6% of the gross 
rainfall in savannahs to 45% of the gross rainfall in dense forests (Alavi 
et al., 2001; Carlyle-Moses and Gash, 2011; Llorens and Domingo, 2007; 
Pereira et al., 2009). 

Interception losses can be estimated by empirically deriving re
lationships between rainfall and throughfall (e.g., M. Eliades et al., 
2018; Shachnovich et al., 2008). However, these relationships cannot be 
applied in areas with different vegetation and meteorological condi
tions. A number of process-based rainfall interception models have been 
developed over the past few decades to overcome these limitations. The 
Rutter, Gash and Liu models are the rainfall interception models most 
commonly used in interception studies (Linhoss and Siegert, 2020, 2016; 
Návar, 2017). 

The Rutter model uses a running canopy water balance to compute 
throughfall (TF), evaporation (E) and changes in canopy water storage 
(Rutter et al., 1971). Adaptations and modifications of the canopy 
drainage and of the canopy and trunk evaporation components in the 
Rutter model were introduced by Valente et al. (1997) for a more real
istic representation of the rainfall interception process in sparse forests. 
The main disadvantage of the Rutter model is that it requires hourly (or 

higher resolution) meteorological data that are often not available. 
The Gash model is a simplification of the Rutter model with a pri

mary assumption that rainfall can be represented as a series of discrete 
storms, separated by intervals sufficiently long for the canopy and stems 
to dry completely (Gash, 1979). The Gash model as well as a number of 
other interception papers assumes that the ratio of the mean evaporation 
rate (Ē) to the mean rainfall rate (R̄) during saturated canopy conditions 
is constant (Gash, 1979; Návar, 2019). The original Gash model was 
corrected for a consistent formulation of the canopy cover fraction (c), 
and generally referred to as the revised version (Gash et al., 1995; 
Valente et al., 1997). The mean evaporation rate per unit ground area 
(Ē) used in the original model version is calculated as Ē = c Ēc in the 
revised version, where Ēc represents the mean evaporation rate from the 
canopy covered area. 

The Liu model (Liu, 1997) is also a simplification of the Rutter 
model, but differs in the derivation of the change of canopy storage. In 
the Liu model, the change of throughfall is assumed to be positively 
proportional to rainfall intensity, canopy dryness index and the time 
interval between two storms (Liu, 2001; 1997). The Liu model has been 
corrected by Carlyle-Moses and Price (2007) to improve the simulation 
of interception losses in sparse forests, because the gap fraction was not 
included in the evaporation component of the original formulation of 
the model (Liu, 2001). 

The revised versions of the Rutter, Gash and Liu models require the 
knowledge of two canopy-related parameters, the canopy storage ca
pacity (S) and the canopy cover fraction (c) (Muzylo et al., 2009). The 
canopy cover fraction (c) can be quantified with optical methods in the 
field (Carlyle-Moses and Price, 2007; Limousin et al., 2008). The canopy 
storage capacity (S) is, however, more difficult to measure. It can be 
determined by signal attenuation methods, such as microwave, gamma 
ray and cosmic ray attenuation but this has been done in a very small 
number of studies (e.g., Bouten et al., 1996). However, as pointed out by 
Friesen et al. (2015), measurements with these methods may include 
errors related to water contained within the living tissues of the plants. 
Also, S can be determined by measuring mass changes of foliage com
ponents or of whole trees, but these techniques are usually destructive 
and limited by the size of the sample (e.g., Licata et al., 2011; Llorens 
and Gallart, 2000). These models also represent stemflow, which is 
described by the trunk storage capacity (St) and a drainage partitioning 
coefficient (pd) (Valente et al., 1997). 

The most common method for the derivation of S and c is with 
regression-based approaches between rainfall and throughfall (Jackson, 
1975; Klaassen et al., 1998; Sadeghi et al., 2015). The ‘mean’ method, 
which is based on the least square fitting of data, has the advantage over 
other methods that it can provide estimates of all parameters of the Gash 
and Liu models (S, c and Ē/R̄). However, in many studies in sparse 
forests c was not considered during the derivation of S and Ē/R̄ (Sadeghi 
et al., 2015). The derivation of model parameters with the regression 
method depends on the discretization of time in storm events and dry 
intervals. The minimum duration of the dry interval should be sufficient 
to dry the vegetation. The selection of the time separation interval is 
often subjective; and durations in the literature vary from 2 h to 12 h 
(Hassan et al., 2017; Klaassen et al., 1998). The selection of a short storm 
event separation interval will result in more storms of short duration, 
thus mean rainfall and evaporation rates will be overestimated (van Dijk 
et al., 2015; Wallace and McJannet, 2008). Even though an event sep
aration interval is used for model parameter derivation, many studies 
subsequently compute interception losses on a daily basis (e.g., Hassan 
et al., 2017; Ghimire et al., 2017), following the assumption of Gash 
(1979) that the canopy is dry at the start of each daily rainfall event. 

The mean evaporation rate (Ē) and the mean rainfall rate (R̄) under 
saturated conditions can also be computed from hourly meteorological 
data. Gash (1979) selected a rainfall rate threshold (R̄sat) of 0.5 mm h− 1 

above which the canopy remains saturated. The author found that the Ē 
(0.19 mm h− 1) computed with this threshold was the same as the Ē 
derived from Bowen ratio measurements during saturated canopy 
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conditions at the same site by Stewart (1977). Gash (1979) also showed 
that Ē was not very sensitive to the selection of this threshold. A number 
of studies adopted this threshold value to compute the parameters Ē and 
R̄, but without testing its effect on interception losses (e.g., Fernandes 
et al., 2017; Schellekens et al., 1999). Recently, Návar (2019) devised an 
independent approach based on dripping equations to evaluate both Ē 
and R̄, using daily data of rainfall, throughfall and stemflow from 45 
interception case studies in Mexico. He found that Ē decreased with 
rainfall duration but increased as a function of R̄. 

Studies on the sensitivity of the Rutter, Gash and Liu models have 
found a higher sensitivity of the models to c than to S in Mediterranean 
pine and oak forests (Limousin et al., 2008; Llorens, 1997; Mużyło et al., 
2012; Valente et al., 1997). On the contrary, low sensitivity of the Gash 
model to c has been found for Robinia pseudoacacia in a semi-arid climate 
(Ma et al., 2020) and for Daphniphyllum macropodum in a subtropical, 
humid climate (Wei et al., 2020). As mentioned by van Dijk et al. (2015), 
several parameter sets of S and E may result in similar model responses, 
revealing collinearity. This is an important issue that needs further 
revision of methods to evaluate E (Návar, 2020; van Dijk et al., 2015). 
The term “equifinality” is used to describe these “non-unique” param
eter sets (Beven, 2012). We have found no studies that analysed the 
equifinality between the parameters of the Rutter, Gash and Liu models. 

The aim of this study is to investigate different parameter derivation 
approaches and model assumptions of three commonly used intercep
tion models (Rutter, Gash, Liu). We test the Rutter model both with 
hourly and daily data; which is the first application of the Rutter model 
with a daily time step in the current scientific literature. The specific 

objectives of this study are: (a) to examine the sensitivity of the rainfall 
interception models to changes of S, c and Eo or Ēc/R̄; (b) to analyse the 
effect of model assumptions related to the computation of evaporation, 
rainfall rate threshold and event separation interval; (c) to evaluate the 
effects of the following model parameter derivation approaches on the 
computed interception: i) rainfall-throughfall regression (regression) for 
the derivation of S, c and ̄Ec/R̄; ii) optimization of S and c (optimization-S, 
c) and iii) optimization of S with measured c (optimization-S); and (d) to 
compare the performances of the hourly and daily Rutter model and the 
daily Gash and Liu model. 

The model assumptions, sensitivity and parameter derivation were 
analysed with hourly meteorological, rainfall and throughfall data from 
an open, semi-arid Pinus brutia forest in Cyprus, for the period between 
13/Jul/2016 and 31/May/2020. The three model parameterization 
procedures were applied on a daily basis and their results were 
compared with an independent 12-year dataset (2008 – 2019) with 
weekly throughfall observations from the same site. 

2. Materials and methods 

2.1. Study area and data collection 

2.1.1. Study area description 
Our study was conducted in the Agia-Marina-Xyliatou forestry site 

from 01/Jan/2008 to 31/May/2020, within a fenced stand of P. brutia 
forest, on the northern foothills of the Troodos Mountains in Cyprus 
(Fig. 1, Supplementary material, Fig. S1). The study area is part of the 

Fig. 1. Map of the study site with the location of the Leaf Area Index (LAI) measurements at four different dates, the location of the trees and the manual, automatic 
and ICP Forests (International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests) throughfall gauges. 
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monitoring network of the International Co-operative Programme on 
Assessment and Monitoring of Air Pollution Effects on Forests (ICP 
Forests). The study site is homogenous regarding tree species and stand 
type and representative of the most important forest species of Cyprus 
(Department of Forests of Cyprus, 2006; Eliades et al., 2018b; Ferretti 
et al., 2010). The area is located in a water-limited environment and has 
a strongly sloping topography with very shallow soils and fractured 
bedrock (see Table 1). On average, 53% of the rain falls between 
December and February, while 4% falls between July and September 
(Camera et al., 2014). 

2.1.2. Meteorological data 
Meteorological data were provided by the Cyprus Department of 

Forests from an automatic meteorological station, which is currently 
maintained by the Cyprus Department of Meteorology. The station is 
located in an open area at the higher end of the study site (Fig. 1 and 2). 
Rainfall is measured with a tipping bucket rain gauge (15,189, Lam
brecht, Germany) with 0.1 mm/tip resolution, at a height of 1 m above 
the ground surface. Air temperature and relative air humidity are 
measured at a height of 2 m (DMA672, LSI Lastem, Italy). Solar radiation 
is measured by a pyranometer (W m − 2) (DPA153, LSI Lastem, Italy), at 
a height of 2 m, and wind speed is measured with a three-cup 
anemometer at a height of 10 m (LSI Lastem, Italy). The sensors are 
connected to a data logger, which records the data at 10-minute in
tervals. We acquired daily meteorological data for the period from 01/ 
Jan/2008 to 14/Nov/2014 and hourly meteorological data for the 
period from 15/Nov/2014 to 31/May/2020. Three manual rain gauges 
(CM1016, ClimeMET, UK) were placed inside the meteorological station 
on 26/Oct/2017. These gauges were generally measured between one or 
three days after rainfall and were used to check for missing data in the 
record of the automatic rain gauge (see Section 2.2.1). Evaporation from 
these rain gauges is limited by the close fit of the funnel on the receiver. 

2.1.3. Throughfall 
An automatic rain gauge (model 7857, Davis instruments, USA) with 

a funnel diameter of 16.5 cm and resolution of 0.2 mm/tip was installed 
under the tree canopy on 13/Jul/2016. (Fig. 2). Throughfall was 
recorded with a 5-minute interval with a netDL 500 data logger (OTT 
HydroMet, Germany). Throughfall was also measured with 28 manual 
rain gauges (CM1016, ClimeMET, UK), with a collector diameter of 10 
cm, which were placed randomly under the canopies of four trees 
(Fig. 2). These gauges were measured after each rainfall event. In 
addition, weekly throughfall data for the period between 01/Jan/2008 
and 26/Dec/2019, from 15 other manual gauges with an 18-cm 

diameter, maintained by the Department of Forest of Cyprus for the ICP 
Forests programme were used for the analysis. The selection of the lo
cations of the ICP Forests throughfall collectors was made using a 
combination of systematic and random distribution (Clarke et al., 2016). 
According to this combined approach, the plot area is divided in quad
rates of equal sizes and within each quadrate, the sample points are 
chosen randomly. A summary of the rain and throughfall measurements 
is presented in Table 2. Stemflow was measured with a flexible PVC 
tube, which was attached with silicon glue around the trunk of four 
selected trees at 1.6-m height. The upper part of the tube was cut off to 
create an open surface and capture the stemflow. The tube was con
nected to a manual rain gauge. Stemflow, observed between 
14/Nov/2014 and 31/Dec/2016, was less than 1% of the total rainfall 
(M. Eliades et al., 2018). Therefore, we excluded stemflow from the 
interception model applications. 

2.1.4. Leaf area index – Gap fraction 
Leaf Area Index (LAI) and canopy gap fraction (p) were measured 

with a plant canopy analyser (LAI-2200C, Li-Cor Bioscience, Lincoln, 
NE, USA). We used two LAI-2250 optical sensors, one for the above 
canopy measurements (AC) and one for the below canopy measurements 
(BC) to measure the attenuation of the radiation by the canopies. These 
sensors project the image of hemispheric view onto five detectors (rings) 
arranged to measure the brightness at different zenith angles (7◦, 23◦, 
38◦, 53◦, 68◦). The instrument calculates the gap fraction (p) as the 
interception of the blue light (320–490 nm) at the five zenith angles (θ) 
from the radiation readings (Rad) taken above canopy (AC) and below 
the canopy (BC). LAI was computed from p(θ) according to the pro
cedures of LI-COR Inc. (2017) as: 

LAI = 2
∫

π
2

0

− ln[p(θ)]cos(θ)sin(θ)dθ (1)  

where p(θ) is the gap probability (fraction) at zenith angle θ, computed 
as the fraction of the radiation measured below and above the canopy 
(Rad(BC)/Rad(AC)). 

The plant canopy analyser was used to measure the LAI for the po
tential evapotranspiration computation (see Section 2.2.3). The AC 
sensor was placed in the open area of the meteorological station, and set 
to automatic logging every 5 s. We placed the BC sensor next to the trunk 
and below the canopy (1.4-m height) of each of the four trees where the 
throughfall gauges were located. We took four measurements per tree, 
representing the four azimuthal directions, on 12/Dec/2019, 7/Feb/ 
2020 and 14/Feb/2020 during uniform overcast sky conditions. We 
masked the two outer rings of the sensor (53◦, 68◦), to prevent the sensor 
from seeing the foliage of neighbouring trees, according to the proced
ures of the LAI-2200C manual (LI-COR Inc., 2017). We used a 90◦ view 
cap to prevent the sensor from seeing the trunk of the tree. 

The plant canopy analyser was also used to determine the canopy 
cover fraction (c = 1-p) of the interception models (see Section 2.5.3). 
The optical sensor was placed over the funnels of the 28 throughfall 
gauges and the gap fraction p was recorded from the attenuation of 
diffuse sky radiation at an angle of 7◦ from zenith, similar to Limousin 
et al. (2008), on 12/Dec/2019, 7/Feb/2020, 14/Feb/2020 and 
24/Apr/2020 during uniform overcast sky conditions. On the same 
dates, we took 76, 74, 76 and 83 additional p measurements within the 
study site, to compute the canopy cover fraction of the entire plot 
(Fig. 1). We used the 180◦ view cap to remove the operator from the 
sensors view, without masking the outer rings. The measurement in
terval was approximately one BC reading every two meters. 

2.2. Field data analysis and computation of evapotranspiration 

2.2.1. Data quality check 
We performed a Shapiro–Wilk test to examine if the throughfall 

Table 1 
Characteristics of the Agia-Marina-Xyliatou forestry study site; the average 
annual reference evapotranspiration (ETo) and rainfall and the minimum and 
maximum values of rainfall and temperature for the period 1980 – 2010.  

Elevation (m) 620 − 655 

Mean slope (degrees) 25 
Aspect North 
Forest density (trees ha− 1) 200 
Tree species Pinus brutia 
Average tree height (m) 16 
Average tree age (years) 80 
Average soil depth (cm) 14 
Soil texture Sandy loam 
Bedrock Basaltic, andesitic and diabasic dykes / 

pillowed screens 
Average annual ETo (mm) 1263 
Average annual rainfall (mm) 425 
Minimum annual rainfall (mm) 169 (2007/2008) 
Maximum annual rainfall (mm) 670 (2001/2002) 
Monthly average daily max. 

temperature (C◦) 
34 (July) 

Monthly average daily min. 
temperature (C◦) 

4 (January)  
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totals of the 28 manual gauges and of the 15 ICP Forests gauges were 
normally distributed (α = 0.05). We subsequently computed the stan
dard error of the mean and the 95% confidence intervals of the 
throughfall totals of these two data sets, using the t-distribution. 

Rainfall data for the periods between 01/May/2017 and 30/Sep/ 
2017 and between 01/Jun/2018 and 21/Jun/2018 were missing 
because the automatic rain gauge was not working. Due to insufficient 
power supply there were a few more days with missing hourly rainfall 
data. Also, due to a failure of the automatic throughfall gauge, no 
throughfall data were recorded for the period between 04/Dec/2017 
and 12/May/2018. In addition, all events for which rainfall occurred at 
negative temperatures were excluded from the analysis, as ice formed at 
the funnel opening and blocked the readings. During our frequent field 
visits to the site, we noted the dates in which pine needles or fallen 
branches blocked the funnel openings. These events were also excluded. 

Fig. 2. Manual throughfall gauges placed around Pinus brutia trees (left) and the meteorological station at the Agia-Marina-Xyliatou forestry site (right).  

Fig. 3. The conceptual framework of the “sparse” Rutter model (c = canopy cover fraction, 1-c = ground area without canopy cover, P = rainfall, Eo = potential 
evaporation, Cc = water storage on the canopy surface, Sc = canopy storage capacity, Ec = actual evaporation from the wet canopy cover area, Dc = drainage from the 
canopy cover area, IRutter are the modelled interception losses and TFRutter is the modelled throughfall). 

Table 2 
Number (N) of meteorological stations, rain gauges (P) and throughfall gauges 
(TF), observation periods and measurement intervals.  

Observations N Period Interval 

Meteorology 1 01/Jan/2008 – 31/May/2020 Daily/Hourly* 
P (automatic) 1 01/Jan/2008 – 31/May/2020 Daily/Hourly* 
TF (ICP Forests) 15 01/Jan/2008 - 26/Dec/2019 Weekly 
P (manual) 3 26/Oct/2017 – 31/May/2020 After rain 
TF (manual) 28 14/Nov/2014 – 31/May/2020 After rain 
TF (automatic) 1 13/Jul/2016 – 31/May/2020 Hourly (from 5-min) 

*Hourly meteorological and rainfall measurements were available from 15 
November 2014. 
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For all the above missing days, we also removed any following rain days 
to ensure that we maintained the possible effects of wet canopy on the 
next day’s throughfall. For the days with missing meteorological data, 
the potential evaporation was estimated from the observations of pre
vious or following hours or days. Thus, we ensured the continuity of 
rainfall, interception and evaporation of the intercepted rain, before, 
during and after rainy days. The final record for the period between 01/ 
Jul/2016 and 31/May/2020 contains 1062 days of valid data. 

Similar to the hourly data, days with missing potential evaporation 
data in the long-term dataset (01/Jan/2008 and 26/Dec/2019) were 
estimated from the observations of previous or following days. We 
examined the quality of the long-term weekly throughfall data by 
comparing them with the hourly automated throughfall data for the 
period from 01/Jul/2016 to 26/Dec/2019. The two throughfall data
bases showed similar annual throughfall in 2018 and 2019 but large 
deviations in 2016 and 2017 (Supplementary material, Table S1 – Fig. 
S2). The data comparison indicated that during these years missing 
weekly throughfall data may have been recorded as zero. For example, 
for the week of 07/Sep/2016, the record showed 0 mm throughfall, 
while we had 12.0 mm rainfall and the throughfall derived from the 
hourly data was 10.9 mm. 

2.2.2. Hourly throughfall 
The hourly records from the automatic throughfall gauge were used 

to partition the event-based throughfall observations from the 28 
manual gauges into hourly throughfall. First we examined whether the 
automatic throughfall collector is representative of the average 
throughfall of the 28 manual throughfall gauges. This was done with an 
F-test and a t-test on a total of 126 throughfall events. The F-test indi
cated that the variances of the two populations are equal (p-value =
0.303) and the t-test results showed that the means of the two pop
ulations are equal (p-value = 0.381). Thus, the mean hourly throughfall 
(TFmean(i)) was computed as: 

TFmean (i) = TFauto (i)*
TFmanual(j)

∑n
i=1TFauto(j)

(2)  

where TFauto(i) is the throughfall measured by the automatic throughfall 
gauge at hour i, TFmanual(j) is the average throughfall of the 28 manual 
gauges measured for event j and ΣTFauto is the sum of the automatic 
throughfall measured for all the hours (n) of event j. We used the median 
instead of the average of the 28 manual gauges for 21 of 126 events 
where we had missing values from one or more of the 28 manual gauges. 
For the 105 events with no missing data, the mean TF of the 28 gauges 
averaged to11.6 mm and the median TF averaged to 11.8 mm. 

2.2.3. Evaporation from the wet canopy surface 
The potential wet surface evaporation per unit ground area 

(assuming a uniform “closed” canopy surface) was computed with the 
Penman-Monteith equation (Eo) with the canopy resistance (rs) set to 
zero: 

Eo =
1
λ

Δ (Rn) +
pacpD

ra

Δ + γ
(3)  

where Δ is the slope of saturation vapour pressure curve (kPa/ ◦C), Rn 
the net radiation (MJ/m2), pa is the density of dry air (kg m − 3), cp the 
specific heat of the air (J kg− 1 ◦C− 1), D the vapour pressure deficit (kPa), 
ra the bulk aerodynamic resistance between the leaf surfaces and the 
reference point (2 m above the top of the canopy), λ the latent heat of 
vaporization of water (MJ/kg) and γ is the psychometric constant (kPa/ 
◦C). The net radiation was computed according to the procedures of 
Allen et al. (1998). The aerodynamic resistance (ra) was computed as 
follows (Monteith, 1965): 

ra =

ln
{

(z− d)
z0

}2

k2u
(4)  

where k is von Karman’s constant (0.41), u (m s− 1) is the wind speed at 
height z (m), z is the reference height (m), d is the zero plane 
displacement height (m), and z0 is the roughness length of the canopy 
(m). The reference height was 2 m above the top of the tree canopy. 

The parameters z, d and z0 were computed according to the pro
cedures of Shuttleworth and Gurney (1990). The z0 was computed as: 

z0 = 0.3(hc − d) (5)  

where hc is the average tree height (m), measured with an analogue 
height metre (hc is 16 m). The zero plane displacement (d) was 
computed as: 

d = 1.1hcln
{

1+(CdLAI)0.25
}

(6)  

where LAI is the leaf area index (m2/m2) and Cd is the mean drag co
efficient for individual leaves. The drag coefficient was computed as: 

Cd =

[

− 1 + exp
(

0.909 − 3.03zc
hc

)]

4

4

(7)  

where zc is the roughness length for a closed canopy (m), defined as 
0.05hc. 

2.3. Model descriptions 

We used the revised versions of Rutter, Gash and Liu models to 
compute interception losses. In the revised versions of these models the 
canopy cover fraction (c) is assumed to be equal to one minus the gap 
fraction (1-p). The Rutter model is applied both on an hourly and daily 
basis. The Gash and Liu models were originally developed for the 
computation of interception losses on an event basis (Gash, 1979; Liu, 
2001). A time interval that will allow the canopy to dry completely after 
rainfall ceased should be used to separate the different rainfall events. 
However, we applied both models on a daily basis with the assumption 
that the canopy is dry at the start of each day (Gash, 1979; Liu, 2001). As 
noted in Section 2.1.3, because of the small fraction of stem flow 
observed in the study site (less than 1%), we did not explicitly model 
stem flow, thereby assuming that the trunks behave as an integral part of 
the canopy. 

2.3.1. Revised Rutter model 
We applied the revised (“sparse”) version of the Rutter rainfall 

interception model (Rutter et al., 1971), formulated by Valente et al. 
(1997). The Rutter model is a single-layer model, following the 
assumption that evaporation is one dimensional with no horizontal in
teractions (Rutter et al., 1971; Valente et al., 1997). 

We applied the simplified drainage function where any excess water 
above the canopy storage capacity is converted immediately into 
drainage and canopy drainage stops when the rainfall ceases (Valente 
et al., 1997). We used the hourly totals of P and Eo for the hourly model 
and the daily sums of the hourly totals for the daily model. For each time 
step (hour or day), the water balance of the canopy-covered area (c) is 
calculated as follows (Fig. 4): 

Cc(t) = Cc(t − 1) + P(t) − Dc(t) − Ec(t) (8)  

where Cc(t) and Cc (t-1) are the water storages on the canopy covered 
area (mm) at time t and time t-1, respectively, P(t) is the rainfall (mm) 
during time step t, Dc(t) is the canopy drainage from the canopy covered 
area (mm) during time step t, and Ec(t) is the actual evaporation from the 
wet canopy covered area (mm) during time step t, 
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Drainage is computed as: 

Dc(t) = MAX(Cc(t − 1)+P(t) − Sc, 0) (9)  

where Sc is the canopy storage capacity per unit area of cover (S/c) 
(mm), S is the canopy storage capacity per unit ground area (mm) and c 
is the canopy cover fraction. Ec is computed as: 

Ec(t) = MIN
(
(Cc(t − 1) + P(t) − Dc(t))

Sc
Eo(t), Cc(t − 1)+P(t) − Dc (t)

)

(10)  

where Eo(t) is the potential evaporation as computed with the Penman- 
Monteith equation (Eq. (3)).during time step t The fraction in front of Eo 
is the relative depth of the water storage on the canopy area (canopy 
wetness), which takes values between 0 and 1. Multiplication of Ec with 
c yields the canopy evaporation per unit ground area. The interception 
(IRutter (t)) and throughfall (TFRutter (t)) over the ground area during time 
step t are computed as: 

IRutter (t) = cEc(t) (11)  

TFRutter(t) = cDc(t) + (1 − c)P(t) (12) 

Van Dijk et al. (2015) questioned the validity of (Eq. (10)) because it 
would prevent the canopy from ever drying completely. Thus, if we 
assume, similarly to Van Dijk et al. (2015), that evaporation from the 
canopy is not a function of the amount of water on the canopy, Ec can 
also be computed as: 

Ec(t) = MIN(Eo(t), Cc(t − 1)+P(t) − Dc(t)) (13) 

We found small differences in the interception losses (0 - 2.9%) be
tween the two assumptions (Eq. (10) and Eq. (13)) for 400 different 

combinations of S and c (Supplementary material, Fig. S3). We applied 
(Eq. (13)) in the analysis henceforward. 

Note that in the above equations, during each time step, we first 
subtract the drainage and then the evaporation. If we would first sub
tract the evaporation and then the drainage, throughfall would be less 
than 0.5% lower for the hourly model and 11.0% lower for the daily 
model, when using the S and c optimized with the above equations 
(Supplementary material, Table S2). 

2.3.2. Revised Gash model 
The second model used in this study was the revised version of the 

Gash rainfall interception model (Gash et al., 1995). According to the 
model formulation there is no dripping (throughfall) from a partially 
wetted canopy and the canopy becomes saturated after rainfall exceeds 
the critical amount of rain (Ps). The interception loss by the Gash model 
(IGash) is computed as: 

IGash = c
∑m

j=1
Pj + c(nPs) + c

Ec

R

∑n

i=1
(Pi − Ps) (14)  

where Pj is the rainfall during m events with insufficient rain to saturate 
the canopy (P < Ps) (mm/event), Ps is the amount of water needed to 
saturate the canopy (mm), Pi is the rainfall during n events that saturate 
the canopy (P ≥ Ps) (mm/event), R̄ and Ēc are, respectively, the mean 
rainfall rate (mm h− 1) and mean evaporation rate from the wet canopy 
(mm h− 1) under saturated canopy conditions. All rainfall parameters are 
expressed, in the usual manner, over the ground area. 

The Gash model follows the same assumption as Rutter et al. (1971), 
i.e., evaporation during the wetting phase is linearly proportional to the 
water storage on the canopy (Eq. (10)). Assuming a constant rainfall rate 
and no drainage before saturation, Gash (1979) derived the following 

Fig. 4. The regression lines for rainfall events that do not fill (R1) and fill (R2) the canopy storage capacity (modified from Licata et al., 2011). At the crossing of the 
two lines P is equal to Ps and TF is equal to (1-c)Ps. The slope of the R1 line is equal to 1 - c and the negative intercept of the R2 line is equal to the canopy storage 
capacity (S). 
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analytical solution for the amount of water needed to saturate the 
canopy: 

Ps = −
R
Ec

(
S
c

)

ln
(

1 −
Ec

R

)

(15) 

Klaassen et al. (1998) noted that interception equations can be 
simplified, if we assume that evaporation is represented by a constant 
ratio between Ē and R̄ during rain, instead of as a function of the canopy 
water storage during wetting. He found minimal differences in S for the 
two approaches (S = 1.0 mm for the first, S = 1.06 mm for the last), for 
Ē/R̄ = 0.1. Thus, if we assume that canopy evaporation during the 
wetting phase is not a function of the depth of the water storage on the 
canopy, evaporation before and after canopy saturation will be the same 
(E = c Ēc/R̄ × P) and we obtain the following equation for Ps: 

Ps =
S

c
(

1 − Ec
R

) (16) 

The derivation of this equation is shown in Section 2.5.2. Eq. (16) 
makes the conceptualization of interception similar to that of the Rutter 
model with Eq.13. We found minor differences (less than 0.5%) in the 
computed interception between the two different equations (Eq.15 and 
Eq.16) (Supplementary material, Fig. S3). Hereafter, we used Eq. (16) 
for the analysis. A similar Ps assessment was made by Návar (2020) by 
breaking the I vs. P relationship to independently derive the rate of 
canopy wetting and the rate of evaporation during a storm. 

2.3.3. Revised Liu interception model 
The third model used in this study is the Liu interception model (Liu, 

1997). The model assumes that the canopy water storage increases 
exponentially (wetting process) until canopy storage capacity is 
reached, while drainage occurs even before reaching the canopy storage 
capacity (Liu, 2001, 1997). In the derivation of the model, the measure 
of the saturation of the canopy storage (1 – C/S), is described as the 
canopy dryness index (DI). Assuming that the canopy at the beginning of 
each rainfall event is dry (DI = 1 or C = 0), rainfall interception (ILiu) 
during a single storm can be computed as: 

ILiu = S
[

1 − exp
(

−
(1 − p)

S
P
)][

1 −
E

(1 − p)R

]

+
E
R

P (17)  

where P is the amount of rainfall during a storm event (mm/event). 
Carlyle-Moses and Price (2007) corrected the original Liu model as: 

ILiu = S
[
1 − exp

(
−

c
S

P
)][

1 −
Ec

R

]

+ c
Ec

R
P (18) 

Liu (2001, 1997) extracted the parameters c, S, Ē and R̄ from the 
literature to evaluate the model. 

2.4. Sensitivity analysis 

We examined the sensitivity of the models to S, c and Ēc/R̄ (Gash and 
Liu) or Eo (Rutter). The initial parameter values were set to 2 mm for S, 
0.5 for c and 0.02 for Ēc/R̄. For the Rutter model, we used the Eo time 
series computed from the meteorological observations as initial value. 
We changed the initial value of each parameter by ± 80%, using 20% 
intervals, while we kept the other parameters at their initial values. We 
computed the relative sensitivity (RS) as: 

RS = dI
/

dJ =
Itest − Iinitial

Iinitial

/
Jtest − Jinitial

Jinitial
(19)  

where dI is the relative change in the computed interception and dJ is 
the relative change in the input parameter, Iinitial is the interception loss 
(% of P) for the initial value of the input parameter (Jinitial) and Itest is the 
interception loss (% of P) for a selected input test parameter value (Jtest). 

We examined the equifinality of the Rutter, Gash and Liu models 
through 400 test runs with different combinations of the parameters S 
and c. The range of tested storage capacity (S) values was from 0.1 to 4.0 
mm with a 0.1 mm interval. The range of the canopy covered fraction (c) 
values was from 0.1 to 1 with a 0.1 interval. We used the computed Ēc/R̄ 
value for the Gash and Liu models, with R̄sat set to 0.5 mm h− 1 (see 
Section 2.5.1) and Eo from the observations for the Rutter model. We 
conducted another 400 test runs with different combinations of the 
parameters S and Ēc/R̄ to examine the equifinality of the Gash and Liu 
models under the conditions of an open forest (c = 0.7). The S values 
were the same as above and the range of the Ēc/R̄ values was from 0.01 
to 0.19 with a 0.02 interval. The rainfall and evaporation data for the 
period between 01/Jul/2016 and 31/May/2020 were used for the 
sensitivity and equifinality analyses. 

2.5. Model assumptions and parameter derivation procedures 

The ratio of the mean evaporation rate to the mean rainfall rate (Ēc/ 
R̄) can be computed from hourly Eo and P observations (Section 2.5.1) or 
from the regression method (Section 2.5.2). The parameters S and c are 
also derived with this method. Alternatively, the parameters S and c can 
be derived with optimization, as described in Section 2.5.3. 

2.5.1. Rainfall rate threshold 
Gash (1979) assumed that after canopy saturation, a rainfall rate 

threshold (R̄sat) of 0.5 mm h− 1 is needed to maintain saturated canopy 
conditions. Under this assumption, hourly values of Eo and P can be 
averaged for all hours with P > 0.5 mm h− 1, to estimate Ēc and R̄ for 
saturated canopy conditions. We tested a range of rainfall rate thresh
olds, from 0.1 to 1.4 mm h− 1, with a 0.1 mm h− 1 interval and examined 
the effect of differences in Ēc, R̄ and their ratio on interception. The R̄ 
and Ēc values were computed as the mean of the hourly P and Eo values, 
respectively, for the hours where P exceeds the rainfall rate threshold. 
The rainfall and evaporation data for the period between 01/Jul/2016 
and 31/May/2020 were used to test the different rainfall rate 
thresholds. 

2.5.2. Regression method 
Regression-based methods from the scatter plots of TF versus P are 

often used to extract the model parameters. According to Klaassen et al. 
(1998), the scatter plot of TF versus P can be divided into a wetting part 
and a saturated part. This method relies on the least square fitting of data 
and is generally referred to as the mean method. Two linear regression 
lines between throughfall and rainfall are plotted for rainfall events that 
do not (R1: P < Ps) and do (R2: P > Ps) saturate the canopy, as illustrated 
in Fig. 4. Before canopy saturation (P < Ps), interception losses consist of 
canopy storage filling and evaporation, whereas throughfall consists of 
the rain that falls through the canopy cover. Thus, R1 is given by: 

TF = (1 − c)P (20) 

And interception is the complement of the throughfall: 

I = cP (21) 

After saturation (P > Ps), interception losses consist of evaporation 
only. Because evaporation is assumed to be the same over the full 
rainfall event (i.e., not a function of saturation), the total interception 
for rainfall events (P > Ps) is given by: 

I =

(

c
Ec

R

)

P + S (22) 

Thus, throughfall, specified by R2, is equal to: 

TF =

(

1 − c
Ec

R

)

P − S (23) 

At the crossing of the two lines P is equal to Ps and we can derive Ps as 
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follows: 

(1 − c)Ps =

(

1 − c
Ec

R

)

Ps − S→Ps =
S

c
(

1 − Ec
R

) (24) 

The Ps equation is the same as presented in Eq. (16). The two 
regression lines can be determined by data fitting (e.g., least square 
fitting) of rainfall and throughfall observations, using several iterations 
with different values of Ps. Obviously, the derivation of the model 
parameter values with the regression method implies that evaporation 
before canopy saturation is not a function of the depth of water on the 
canopy. In contrast to the approach by Jackson (1975), who assumed 
that evaporation is negligible during the storm, we assume a constant 
evaporation rate during the entire rainfall event. 

We used the daily TF and P data from 01/Jul/2016 to 31/Dec/2018 
to derive the model c, S and Ēc/R̄. We tested a range of Ps values (0.5 – 4 
mm) with a trial and error approach, where we selected the Ps value that 
resulted in the average highest correlation (r2) of the two regression 
lines. We also tested the effect of the different rainfall event separation 
intervals (2 h, 6 h and 12 h) on the derivation of the model parameters S, 
c and Ēc/R̄. 

2.5.3. Automatic model parameterization 
We calibrated the Rutter, Gash and Liu models with the use of an 

automatic model parameterization procedure: (i) for the derivation of S 
and c (optimization-S,c) and (ii) for the derivation of S with c set equal to 
the value measured with the plant canopy analyser (optimization-S) 
(Table 3). We used the computed Ēc and R̄ values for the Gash and Liu 
models, with R̄sat set to 0.5 mm h− 1 (see Section 2.5.1). The Microsoft 
Excel Solver, set to nonlinear programming with the generalized 
reduced gradient method (Fylstra et al., 1998) was used for the opti
mization. The optimal parameter value set for each model was selected 
based on the highest Kling-Gupta efficiency (KGE), with a constraint of 
±10% for the percent bias (P.BIAS). The P.BIAS and KGE were computed 
as: 

P.BIAS =

∑n
i=1(T̂Fi − TFi)
∑n

i=1(TFi)
(25)  

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (α − 1)2

+ (β − 1)2
√

(26)  

where n is the number of observations, T̂Fi and TFi are the simulated and 
observed throughfalls (mm) for the time interval i (hourly or daily), 
respectively, r is the correlation coefficient between simulated and 
observed throughfall, α is the ratio between the means of the simulated 
and observed throughfall (bias ratio), and β is the ratio between the 
standard deviations of the simulated and observed throughfall. We also 
computed the sum of the absolute daily errors (SAE). These same model 
evaluation indices were also used to evaluate the performance of the 
regression method. 

We calibrated the models with the two above-mentioned automatic 

parameterization methods for the period between 01/Jul/2016 and 31/ 
Dec/2018 (571 days) and then validated them for the period between 
01/Jan/2019 and 31/May/2020 (491 days). To make the model eval
uation comparable, the performance criteria for the hourly Rutter model 
were computed on the daily totals. 

2.6. Long-term model application (2008 – 2019) 

We used the derived parameter values of S, c and Ēc/R̄ from the two 
automatic model parameterizations and from the regression method for 
the long-term model application. We examined the differences between 
the annual sums of the simulated daily throughfall of the daily Rutter, 
Gash and Liu models and the long-term weekly throughfall data, for the 
12 year period from 01/Jan/2008 to 26/Dec/2019. 

3. Results 

3.1. Meteorological data, throughfall and canopy characteristics 

The Shapiro-Wilk test showed that the throughfall totals of the 28 
manual gauges (p-value = 0.099) and of the 15 ICP Forests (p-value =
0.365) gauges were normally distributed. The total rainfall for the 
period from 01/Jul/2016 to 31/May/2020 was 2173.8 mm and the 
average throughfall from the 28 manual gauges was 1716.0 mm (79% of 
P). The standard error of the mean TF was 61.1 mm and the 95% con
fidence interval was 1716.0 ± 117.6 mm. This is equivalent to a margin 
of error of ±7%. This falls within the error range (5 – 10%) that was 
reported in previous studies (Holwerda et al., 2006a; Kimmins, 1973; 
Rodrigo and Àvila, 2001). Similarly, rainfall and average throughfall of 
the 15 ICP Forests gauges for the period from 01/Jan/2008 to 
26/Dec/2019 were 5147.8 and 3814.3 mm (74% of P), respectively. The 
standard error of the mean TF was 222.4 mm and the 95% confidence 
interval was 3814.3 ± 435.9 mm. This gives an error of ±11.4%, 
showing the larger uncertainty of this data set. 

Daily rainfall for the 2016 - 2020 observations is shown in Fig 5. 
After the exclusion of the days with missing data (see Section 2.2.1), 
rainfall was 667.8 mm during the period from 01/Jul/2016 to 31/Dec/ 
2018 (Calibration period) and 837.6 mm during the period from 01/ 
Jan/2019 to 31/May/2020 (Validation period). The number of rain days 
between 01/Jul/2016 and 31/Dec/2018 was 110 out of a total of 571 
days, while there were 118 rain days out of 491 days between 01/Jan/ 
2019 and 31/May/2020. The number of rain days with less than 2 mm 
rain (P<2) for the calibration period was 52 and amounted to 4.6% of the 
total rainfall, while for the validation period the number of P<2 days was 
45 and amounted to 3.2% of the total rainfall. The number of P<2 days 
for the 2008 – 2019 period was 409 (from a total of 910 rain days) and 
amounted to 5.5% of the total rainfall (Supplementary material, Fig. S5). 

The number of hours with rainfall intensities between 0.1 and 0.5 
mm h− 1 was 45% of the total number of hours with rain (1055), but the 
sum of the rainfall for these intensities was only 6% of the total of 1505 
mm (Fig. 6). The highest hourly rain was 45.0 mm h− 1 on 31/May/2018 
and 30.0 mm h− 1 on 03/April/2019 (Fig. 6). On 31/May/2018 we had 
also the highest daily rainfall of 70.7 mm. The highest consecutive 
rainfall was 37 h (83.1 mm), recorded between 14/Jan/2019 18:00 and 
16/Jan/2019 05:00. 

The average LAI, measured with the plant canopy analyser, for the 
four Pinus brutia trees was 2.38, ranging from 2.19 (12/Dec/2019) to 
2.60 (7/Feb/2020). The average canopy cover fraction (c) over the 
funnels of the 28 throughfall gauges was 0.69, ranging from 0.24 to 0.93 
(Supplementary material, Fig. S4). The c measured over the 28 
throughfall gauges was representative for the entire study area where 
the average, measured canopy cover fraction was 0.70. 

The average daily Eo for the wet days was 2.3 mm during the cali
bration period and 2.0 mm during the validation period. Similarly, the 
average daily Eo for the dry days was 4.2 mm during the calibration 
period and 4.5 mm during the validation period. 

Table 3 
The model input parameters (P = rainfall, Eo = evaporation, R̄ = mean rainfall 
rate, Ēc = mean evaporation rate, Ps = amount of water needed to saturate the 
canopy, S = storage capacity, c = canopy cover fraction) and their derivation 
procedures.  

Input Parameter Parameter derivation method Models 

P (mm) Measured (Section 2.1.2) Rutter, Gash, Liu 
Eo (mm) Computed (Section 2.2.3) Rutter 
R̄ (mm h− 1) Computed (Section 2.5.3) Gash, Liu 
Ēc (mm h− 1) Computed (Section 2.5.3) Gash, Liu 
S (mm) Optimization-S,c, Optimization-S Rutter, Gash, Liu 
c Optimization-S,c / measured (Section 2.1.4) Rutter, Gash, Liu 
Ps (mm) (Eq. (16)) Gash  
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3.2. Sensitivity analysis 

The results of the sensitivity analysis of the computed interception to 
changes of S, c and Ēc/R̄ or Eo for the 01/Jul/2016 and 31/May/2020 
period are shown in Fig. 7. The relative sensitivity of the Rutter model to 
Eo (− 47% to 18% changes in interception for ±80% change in Eo) was 
much higher than the relative sensitivity of the Gash and Liu models to 
Ēc/R̄ (− 4% to 4% changes in interception for ±80% change in ̄Ec/R̄). The 
evaporation values in all three models were derived from the hourly 
observations. However, the Gash and Liu model use a constant Ēc/R̄ 
throughout the model application period, whereas the Rutter model uses 
the actual observations (plus or minus the relative change for the 
sensitivity analysis). 

The changes in S within a ± 80% range showed that the Gash model 

was the most sensitive to S (− 68% to 43% change in interception losses) 
and the hourly Rutter model the least sensitive (− 57% to 33%). 
Conversely, for changes in c within a ± 80% range, the highest relative 
change in interception loss was found for the hourly Rutter model (–61% 
to 33%), and the smallest for the Gash model (− 56% to − 19%). 

The results of the different combinations of the parameters S and c, 
on the computed interception losses by the Rutter, Gash and Liu models 
are presented in Fig. 8. All models show equifinality, meaning that a 
range of combinations of the input parameters S and c will result in the 
same interception loss. Equifinality is especially strong at an intercep
tion of 9% of P which within our set-up can be obtained by 20 combi
nations of S and c with the Rutter model (both hourly and daily), 32 
combinations with the Gash model and 12 combinations with Liu model. 
Interception losses, obtained with a complete canopy cover (c = 1) and 

Fig. 5. Daily rainfall (mm d− 1) for the period between 01/Jul/2016 and 31/May/2020.  

Fig. 6. Rainfall amount (mm)(upper) and number of rainfall hours (N) (lower) for each rainfall intensity class. Blue bars denote the calibration period (01/Jul/2016 
– 31/Dec/2018) and orange bars denote the validation period (01/Jan/2019 – 31/May/2020). 
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canopy storage (S) of 2 mm, amount to 20%, 19%, 24% and 21% of P for 
the hourly Rutter and daily Rutter, Gash and Liu models, respectively. 
These modelled interception losses would increase to values of 28%, 
27%, 38% and 32% of P, respectively, for a canopy storage of 4 mm, 
which is, however, an unlikely high value for a semi-arid Mediterranean 
forest. Thus, the higher sensitivity to changes S of the Gash model, 
compared to the other three models, results in the highest modelled 
interception losses (38%) with a full canopy cover. 

The Gash and Liu models show also equifinality for different com
binations of the parameters S and Ēc/R̄ (Fig. 9). A rainfall interception of 
18% of P is modelled with 10 S-Ēc/R̄ combinations by the Gash model 
and with 15 S-Ēc/R̄ combinations by the Liu model. 

3.3. Model assumptions and parameter derivation procedures 

3.3.1. Rainfall rate threshold 
The effect of the different rainfall rate thresholds on the computed ̄Ec, 

R̄, and Ēc/R̄ for the period between 01/Jul/2016 and 31/May/2020 is 
presented in Fig. 10. Both Ēc and R̄ decreased with increasing rainfall 
rate threshold. The ̄Ec values ranged from 0.02 mm h− 1 for R̄sat of 1.4 mm 
h− 1 to 0.05 mm h− 1 for R̄sat of 0.1 mm h− 1. The R̄ values varied less, 
ranging from 1.1 to 1.4 mm h− 1. The resolution of the rainfall tipping 
bucket (0.1 mm) adds an uncertainty of ±0.1 mm to the results, because 
any rainfall less than 0.1 mm will remain on the tipping bucket and will 
either evaporate or become part of the next rainfall event. The ratio ̄Ec/R̄ 

Fig. 7. The relative change in interception loss (I) of the hourly (h) and daily (d) Rutter model, Gash and Liu models resulting from relative changes in S (a), c (b) and 
Ēc/R̄ and Eo for Rutter (c), from their initial values as shown in the graph. 

Fig. 8. The interception loss as a fraction of rainfall (I/P) of the hourly Rutter and of the daily Rutter, Gash and Liu models (01/Jul/2016 - 31/May/2020) with 
changing canopy cover fraction (c) and storage capacity (S). 
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was 0.02 for the default rainfall rate threshold value. A 40% increase in 
the R̄sat from the default value resulted in an 18% decrease in Ēc/R̄. 
Similarly, a 40% decrease from the default threshold resulted in a 19% 
increase in Ēc/R̄. According to the results in Section 3.2 (Fig. 7c), a 
change of 20% in ̄Ec/R̄ has negligible effect in interception losses (~1%). 
We used the 0.5 mm h− 1 R̄sat for the computation of Ēc and R̄ for the 
automatic model parameterization in Section 3.3.3. 

3.3.2. Regression method 
The best fit between the rainfall and throughfall data, as indicated by 

the highest average r2 of the two regression lines, was achieved for a Ps 
value of 4 mm for all event-based intervals and daily data of the 01/Jul/ 
2016 and 31/Dec/2018 period. The derived Ēc/R̄ was negative for all 

event separation intervals (− 0.05 - − 0.15), as well as for the daily data 
(− 0.14). This was caused by events or days where TF was greater than P, 
resulting in a slope of the R2 regression line above the 1:1 line. The 
observed daily TF was greater than P for 10 rain days (Fig. 11), with the 
maximum difference between TF and P observed on 09/Sep/2018 (4.7 
mm). Scatter plots showed no relations between the TF/P fractions of the 
28 manual TF gauges and the event rainfall, the number of gauges with 
TF>P, the wind speed, and the canopy fraction of the individual gauges 
(Supplementary material, Figs. S6 and S7). Thus, we considered the data 
to be representative. However, both P and TF observations could be 
affected by wind. 

Using only rain days with previous dry days, the regression resulted 
even in an ̄Ec/R̄ of − 0.3. Excluding the events or days where TF is greater 

Fig. 9. The interception loss (as a fraction of rainfall) of the Gash and Liu models (01/Jul/2016 - 31/May/2020) with changing canopy storage capacity (S) and mean 
evaporation to mean rainfall ratio (Ēc/R̄) and c equal to 0.7. 

Fig. 10. Change in mean evaporation rate (Ēc), mean rainfall rate (R̄), and their ratio (Ēc/R̄) with different rainfall rate thresholds (01/Jul/2016 - 31/May/2020).  
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than P resulted in a shift of the R2 line below the 1:1 line, which allowed 
the derivation of the Ēc/R̄ (Table 4). The regression-derived Ēc/R̄ (0.09) 
for daily events was higher than the computed Ēc/R̄ (0.03) in Section 
3.3.3. 

The selection of different event separation intervals clearly affected 
all parameter values, illustrating again the equifinality of the models. 
For the 2-hour event separation interval, the higher Ēc/R̄ value, which 
would increase interception, compared to the daily events, was coun
terbalanced with lower value of S, which would indeed reduce inter
ception, whereas the value of c was the same. However, for the 6-hour 
and 12-hour event separation intervals, the higher Ēc/R̄ values, 
compared to the daily events, were counterbalanced with lower values 
of both S and c, resulting in small differences in the computed I. 

3.3.3. Automatic model parameterization 
The observed interception losses were 18% of the rainfall for both 

the calibration and validation periods. The Rutter, Gash and Liu models 
showed high performance (KGE > 0.95) both for the calibration and 
validation period and both for optimization-S,c and optimization-S 
(Table 5). The regression method resulted in lower KGEs but still above 
0.90. However, the 840 days without rain (see Section 3.1) contributed 
to the high values of the KGEs. The selection of a parameter set from 
different event separation interval (Table 4) resulted in different KGE’s 

and P.BIAS in Gash and Liu models. For example, the parameter set from 
the 6 hour event separation interval leads to lower model performance 
(0.84 KGE for Gash model and 0.88 KGE for Liu model) and to higher P. 
BIAS (− 8.3% for Gash model and − 3.7% for Liu model) than the 
parameter set derived from daily data. 

The P.BIAS was slightly higher for the validation than for the cali
bration runs, but remained below 5% for all models and parameter 
derivation procedures. The sum of the absolute errors (SAE) showed also 
little difference between the models and parameterization procedures. 
The higher errors for the validation period, compared to the calibration 
period, can be related to the higher throughfall (26%). It could have 
been expected that fitting both S and c (optimization-S,c) would result in 
better calibration results and worse validation results, compared to the 
results obtained with only S fitted and c observed (optimization-S). 
However, the performance of the two automatic calibration procedures 
remained remarkably similar. 

The canopy cover fraction (c) derived from the optimization-S,c (0.79 
– 1.0) was higher than the observed c (0.69) for all models. The S ranged 
from 1.31 to 1.75 mm for the optimization-S,c method and from 1.38 to 
2.13 mm for the optimization-S method. The regression method resulted 
in a lower c than the optimization methods, which was balanced by a 
higher S and Ēc/R̄. 

The increase in S with the decrease in c is due to equifinality, as is 
also illustrated by the KGE values from 400 test runs with the same S and 
c combinations as used in Section 3.2 (Supplementary material, Fig. S8). 
The number of S-c combinations for which the model performance 
exceeded a KGE of 0.95 was 129 for hourly Rutter, 124 for daily Rutter, 
69 for Gash and 64 for Liu. The range of S values for which KGE was over 
0.95 was highest for the hourly Rutter model (1.0 - 4.0 mm) and smallest 
for the Gash model (1.0 - 2.6 mm). The c values for these runs ranged 
between 0.3 and 1 for the hourly Rutter and Gash models and between 
0.4 and 1 for the daily Rutter and Liu models. 

The models showed similar daily errors (modelled minus observed 
throughfall) (Fig. 12). The highest positive error with the optimization-S, 
c method during the calibration period occurred during 9.2 mm daily 
rain with 2.8 mm observed throughfall; the error ranged between 4.8 
mm (Liu) and 5.8 mm (daily Rutter). The highest negative error 
occurred during a 36.3 mm daily rain with 41.0 mm observed 
throughfall and ranged between –6.4 mm (daily Rutter) to − 7.0 mm 

Fig. 11. The regression lines for rainfall events (01/Jul/2016 - 31/Dec/2018) that do not fill (orange) and fill (blue) the canopy storage (S), for the daily events with 
(left) and without (right) TF > P events. 

Table 4 
The number of rainfall events (N) after the exclusion of TF > P events, canopy 
storage capacity (S), canopy cover fraction (c), ratio of wet canopy evaporation 
rate to rainfall rate (Ēc/R̄) for three event-based rainfall separation intervals and 
for the daily data (Daily), derived using two regression lines (R1,R2) for the 
period between 01/Jul/2016 and 31/Dec/2018 (throughfall 545 mm) and the 
computed throughfall with the Gash model (TFGash).  

Parameter 2 h 6 h 12 h Daily 

N 153 100 83 101 
S (mm) 1.61 1.23 1.50 1.95 
c 0.48 0.44 0.42 0.48 
Ēc/R̄ 0.15 0.32 0.12 0.09 
r2 of R1 0.75 0.85 0.84 0.70 
r2 of R2 0.94 0.94 0.96 0.94 
TFGash (mm) 518 497 540 520  
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(Liu). During validation the highest positive error ranged between 11.3 
(Liu) and 13.1 mm (Rutter hourly during 55.4 mm rain with 41.3 mm 
observed throughfall. The highest negative error ranged between − 17.2 
mm (Liu) to − 15.9 mm (Rutter hourly and daily) during 56 mm rain 
with 70.2 mm observed throughfall. Rainfall of these two validation 
events was similar but throughfall differed highly. Due to the relative 
small S (1.3 - 2.1 mm) and Ēc/R̄ (0.03) or Eo (2.3 mm on average) the 
modelled daily interception values were less than 4 mm, while the 
observed interception (I = P – TF) ranged from − 14.2 mm (TF > P) to 
14.1 mm. The possible reasons for these large differences between the 
observed P and TF are discussed in Section 4. 

The highest difference in the errors between the hourly and daily 
Rutter were observed during rainfall events that occur on consecutive 
days. For example, on 27/Feb/2019 we had 2.4 mm error for the hourly 
Rutter model with the optimization-S,c but only 0.9, 0.8 and 0.7 mm 
errors for the daily Rutter, Gash and Liu models, respectively,. Rainfall 
began on 26/Feb/2019 at 20:00 and ended on 27/Feb/2019 at 07:00. 
The water storage on the canopy (Cc) was zero at the end of day (26/ 
Feb/2019) for the daily Rutter but reached 1.69 mm for the hourly 
Rutter. This amount of water was added on the next day’s (27/Feb/ 

2019) water balance, thus the difference between the hourly and the 
daily Rutter models. 

3.4. Long-term model application (2008 – 2019) 

The average number of rain days per year for the period 2008 – 2019 
was 76 and the average annual P and Eo were 429 mm and 1457 mm, 
respectively (Supplementary material, Table S3). The observed I was, on 
average, 26% of P (Table 6) which is likely overestimated due to missing 
throughfall data (see Section 2.2.1). The computed interception losses 
were similar for all three models, both for optimization-S (18 – 19% of P) 
and for optimization-S,c (19 – 20% of P). The results are similar for the 
calibration and validation (Table 5), where we saw a slightly higher 
positive bias for throughfall, meaning lower interception, with optimi
zation-S than with optimization-S,c. The pattern is consistent between 
years, with interception losses either the same or 1 to 3% higher for 
optimization-S,c than for optimization-S, for the individual models. The 
highest differences in the interception losses between the Gash and Liu 
models were in 2008 and 2009 (2 – 3% difference in I). The results 
indicate that the difference in I is due to the different behaviour of the 

Table 5 
Measured rainfall (P) and throughfall (TF), model parameter values for the three models, the two optimization methods (optimization-S, optimization-S,c) and the 
regression method and the Kling-Gupta Efficiency (KGE), percent bias (P.BIAS) and sum of absolute error (SAE) for the calibration and validation periods (S = canopy 
storage capacity, c = canopy cover fraction, Ēc/R̄ = mean evaporation to mean rainfall ratio).   

Optimization-S Optimization-S,c Regression  
Rutter H Rutter D Gash Liu Rutter H Rutter D Gash Liu Gash Liu 

Calibration 01/07/2016 - 31/12/2018, P ¼ 667.8 mm, TF ¼ 544.9 mm 
S (mm) 1.85 2.13 1.38 1.58 1.49 1.75 1.31 1.38 1.95 1.95 
c 0.69 0.69 0.69 0.69 0.88 1.00 0.79 0.93 0.48 0.48 
Ēc/R̄   0.03 0.03   0.03 0.03 0.09 0.09 
TF (mm) 552 553 554 556 551 551 553 555 520 545 
P.BIAS 1.4 1.6 1.6 2.1 1.2 1.0 1.5 1.8 − 4.6 − 0.1 
KGE 0.960 0.962 0.955 0.949 0.961 0.970 0.956 0.950 0.901 0.923 
SAE (mm) 99 102 98 97 99 100 98 97 102 102 
Validation 01/01/2019 - 31/05/2020, P ¼ 837.6 mm, TF ¼ 686.5 mm 
TF (mm) 710 706 702 706 709 698 702 704 662 691 
P.BIAS 3.5 2.8 2.2 2.9 3.2 1.7 2.2 2.5 − 3.5 0.7 
KGE 0.957 0.963 0.969 0.962 0.959 0.972 0.969 0.964 0.932 0.950 
SAE (mm) 135 134 120 121 127 125 118 118 125 122  

Fig. 12. Error (modelled minus observed throughfall) versus rainfall for the Rutter (hourly and daily), Gash and Liu models, for the calibration (01/Jul/2016 - 31/ 
Dec/2018) and validation period (01/Jan/2019 - 31/May/2020), with the optimization-S,c parameter set. 
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two models for the small rainfall events (before reaching saturation), as 
in the years 2008 and 2009 we had the highest percent contribution 
(10%) of rain days less than 2 mm. On the contrary, the difference in I 
between the two models was 0–1% in the years with lowest percent 
contribution (3 - 4%) of rain days less than 2 mm. 

Higher interception losses (24% of P) were found for the Gash model 
with the use of the regression method derived parameters. On the con
trary, interception losses with the Liu model were the same (19% of P) 
for optimization-S, optimization-S,c and the regression method. Large 
deviations between modelled and observed throughfall were found for 
the years 2008 and 2015, most likely due to missing throughfall data 
(see Section 2.2.1). For example, weekly throughfall was reported as 0 
mm for a week with 37 mm rain on 22/May/2008 and for a week with 
45 mm rain on 08/Oct/2015. 

Relations between the observed P and the modelled I, showed a week 
correlation between the observed annual P and the modelled annual I for 
all three models (r2: 0.35 – 0.49). We found, however, a strong negative 

relation between the average wet-day rain (Pn) and the Rutter (r2 =

0.91), Gash (r2 = 0.87) and Liu (r2 = 0.90) modelled I. The Pn was 
computed as the total annual rainfall divided by the number of rain days 
(P > 0 mm). In 2010 we had the highest recorded daily rainfall (111.4 
mm), the highest Pn (8.5 mm/d) and the lowest modelledI (13 - 17%). In 
2009 we had the lowest Pn (3.7 mm/d) and the lowest modelled I (25 - 
31%). 

4. Discussion 

The values of the derived S, c, Ē and R̄ parameters that have been 
reported in other studies on pine trees are presented in Table 7. 
Computed Ē/R̄ from meteorological data and from regression based 
derived Ē/R̄ and were found in an equal number of studies. The 
computed Ēc/R̄ values for the different rainfall rate thresholds in our 
study were very small (0.01 to 0.04) and this fourfold increase has a 
small effect on the interception losses (~1% increase in I (% of P)). Gash 

Table 6 
Annual rainfall (P), annual average wet-day rain (Pn), annual rainfall for rain days less than 2 mm (P<2) and interception (I) from the weekly observations and 
modelled with the Rutter (IRutter), Gash (IGash) and Liu (ILiu) models, for the different parameter derivation methods. P<2 and I are expressed as a fraction of P.   

Observed  Optimization-S Optimization-S,c Regression 
Year P Pn P<2 I IRutter IGash ILiu IRutter IGash ILiu IGash ILiu  

mm mm/d           
2008 186 4.2 0.10 0.55 0.24 0.23 0.21 0.27 0.24 0.22 0.25 0.21 
2009 325 3.7 0.10 0.39 0.28 0.28 0.25 0.31 0.28 0.26 0.31 0.25 
2010 475 8.5 0.03 0.13 0.12 0.13 0.13 0.13 0.14 0.13 0.17 0.15 
2011 495 5.5 0.06 0.32 0.18 0.20 0.18 0.20 0.20 0.19 0.24 0.19 
2012 560 5.8 0.06 0.19 0.19 0.20 0.19 0.21 0.21 0.20 0.25 0.20 
2013 385 5.8 0.05 0.28 0.19 0.18 0.18 0.19 0.19 0.18 0.23 0.20 
2014 381 5.8 0.05 0.24 0.21 0.19 0.18 0.22 0.19 0.18 0.23 0.19 
2015 507 5.0 0.08 0.40 0.19 0.21 0.19 0.22 0.21 0.20 0.24 0.20 
2016 359 4.3 0.06 0.25 0.22 0.23 0.22 0.24 0.23 0.22 0.29 0.23 
2017 220 4.8 0.06 0.29 0.24 0.22 0.21 0.24 0.22 0.21 0.27 0.22 
2018 575 7.2 0.04 0.17 0.15 0.16 0.16 0.16 0.16 0.16 0.21 0.17 
2019 679 7.6 0.03 0.18 0.14 0.16 0.15 0.16 0.16 0.16 0.21 0.17 
Av. 429 5.7 0.06 0.26 0.18 0.19 0.18 0.20 0.19 0.19 0.24 0.19  

Table 7 
Rainfall interception modelling studies on pine trees, the species studied and their location, the average annual rainfall (P) and Interception (I), the models applied 
(Mod: Ru=Rutter, Ga = Gash, Li = Liu), the parameter derivation procedure (superscript: R = regression-based, L = literature, M = measured, O = optimized) and the 
parameter values used for the canopy storage capacity (S), canopy cover fraction (c), computed wet evaporation (Ē) and rainfall (R̄) rates and the ratio Ē/R̄.  

Study Species Location P 
(mm) 

I (% 
P) 

Mod S (mm) c Ē (mm 
h− 1) 

R̄ (mm 
h− 1) 

Ē/R̄* 

Rutter et al. (1971) P. nigra Southeast 
England  

34 - 
35 

Ru 0.9 - 1.0R 0.75R    

Gash (1979) P. sylvestris East England  27 Ga 0.8L 0.68 - 0.74L 0.19 1.38  
Bringfelt and Lindroth 

(1987) 
P. sylvestris Sweden   Ru 0.48L 0.41L    

Loustau et al. (1992) P. pinaster France 920 14 - 
22 

Ga 0.50 - 0.55R 0.40 - 0.45R   0.06 - 
0.11 

Lankreijer et al. (1993) P. pinaster France  13 Ga 0.26R 0.43R 0.19 1.26 0.09 
Gash et al. (1995) P. pinaster France  13 Ga 0.25R 0.45R 0.08 1.65  
Llorens (1997) P. sylvestris Spain  18 Ga 1.34L, R 0.78L, R 0.36 3.83 0.12 
Valente et al. (1997) P. pinaster Portugal 600 16 Ru, 

Ga 
0.41R 0.64M 0.32 1.74  

Bryant et al. (2005) P. palustris, P. taeda USA (Georgia) 830 18 - 
22 

Ga 0.98R 0.88M 0.1 2.03  

Carlyle-Moses and Price 
(2007) 

P. pseudostrobus (Mixed 
forest) 

Northeast 
Mexico 

635 16 Ga, Li 2.4R 0.5M   0.19 

Zhongjie et al. (2010) P. armandii China 592 14 Ga 2.86R 0.64R 0.17 1.99  
Licata et al. (2011) P. ponderosa Patagonia, 

Argentina 
800 34 - 

39 
Ga 0.71–2.70M, R 0.54 - 0.85R   0.01 - 

0.25 
Buttle and Farnsworth 

(2012) 
P. resinosa Ontario, Canada 950 12 - 

30 
Li 0.85 - 1.03◦ , R 0.52 - 0.80M   0.05 - 

0.14 
Ghimire et al. (2012) P. roxburghii Central Nepal 1487 17 Ga 0.67R 0.73R 0.34 2.46 0.14 
Návar (2013) P. pseudostrobus Mexico 640 18 Ga 1.03 R 0.74 M 0.76 11.87 0.09 
Sadeghi et al. (2015) P. eldarica Northern Iran 272 27 Ga 1.24R 0.62R   0.07 
Ma et al. (2019) P. tabuliformis China 580 24 Ga 1.38 − 1.43R 0.61 

− 0.63M, R 
0.03–0.06 0.82 - 

1.83 
0.11 - 
0.13 

*The ratio Ē/R̄ was derived with regression-based methods. 
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(1979) reported that an increase of 100% in the rainfall rate threshold 
resulted in a 15% decrease in Ē that led to 6% lower interception losses. 
However, the Ē/R̄ in their study was much higher (0.14). Similar low 
computed Ē values as in our study (0.01 – 0.05 mm h− 1) were found by 
Hörmann et al. (1996), for a beech forest in northern Germany. Ac
cording to the authors, the low Ē values are due to the considerable 
rainfall events that took place during night hours. We also found that 
43% of the total rainfall took place during the night hours. 

The regression-derived Ēc/R̄ value (0.09) is higher than the 
computed Ēc/R̄ (see Section 3.3.2 – 3.3.3), but it is within the range of 
the values reported in the literature (Table 7). The higher regression- 
derived Ē/R̄ compared to the computed Ē/R̄ has been reported by other 
studies too (Ghimire et al., 2012; Hassan et al., 2017; Holwerda et al., 
2012; Ghimire et al., 2017). According to Holwerda et al. (2012), 
possible reasons for the discrepancy between the computed and the 
regression-based Ē/R̄ are errors in TF measurements due to inadequate 
sampling design, the advection of sensible heat and the underestimation 
of the aerodynamic conductance. Previous studies have shown that the 
explicit use of fixed TF gauges, as done in our study, could result in an 
error of ~2% in throughfall measurements (Holwerda et al., 2006b; 
Lloyd and Marques, 1988). The computed Ē derived from the 
Penman-Monteith equation relies on the big leaf assumption, which 
abstracts the whole canopy into a one-layer source. This assumption is in 
conflict with the complex three dimensional structures of canopies (Luo 
et al., 2018). Also, the Penman-Monteith equation is valid for a large, 
uniform area, where evaporation can be considered a vertical process, 
thus advection is neglected (Valente et al., 1997). 

Ringgaard et al. (2014) found that Ē estimates based on eddy 
covariance energy balance data (ECEB) are more robust than ̄E estimates 
based on the Penman-Monteith equation. However. ECEB rates consist 
of evaporation from both canopy (Ec) and ground surface (Es), meaning 
that the assumption of Ec = E/c is only valid for zero Es. Thus, the ECEB 
method is restricted to forest canopies with sufficient cover and zero 
evaporation from soil (or ground vegetation) during rain (Ringgaard 
et al., 2014). Comparing observed winter and summer interception and 
Ē estimates with the use of the revised Gash model, these authors found 
that advection may reach up to 50% of the available energy for evapo
ration during summer. Návar (2020) suggested that the correct physical 
interpretation of the role of the advected sensible heat flux in inter
ception requires statistical equations that can be derived with data that 
include the measurement of I components across the full scope of 
common rainfall events in the forest of interest. The author found that in 
forests where advection of sensible heat flux is important, rainfall 
interception models in linear form redistribute ̄E over the duration of the 
storm. On the contrary, models in power fashion forecast large Ē values 
early in the storm and decline rapidly as the storm progresses. The en
ergy stored in the canopy and the early abatement appears to be more 
important in the latter process. 

In the majority of the studies in Table 7, the parameters S and c are 
derived from regression based methods, while model optimization was 
applied only in one study (Buttle and Farnsworth, 2012). However, 
these authors optimized S only, while the current study optimizes S and c 
at the same time. A large range of values were found by the direct and 
indirect methods used to estimate S in different pine forests, because this 
parameter is controlled by many aspects of canopy structure, such as the 
basal area, the canopy height and the surface properties of foliage or 
wood area index (Carlyle-Moses and Gash, 2011; Llorens and Gallart, 
2000). We found that an increase in the value of S with a parallel 
decrease in the value of c (or the opposite) results in the same model 
output, revealing equifinality between these parameters. Our results 
also confirm the findings of previous studies about equifinality between 
the parameters S and Ē/R̄ (Cisneros Vaca et al., 2018; van Dijk et al., 
2015). The use of plant canopy observations for the estimation of c will 
eliminate the issues of equifinality in the optimization process. Our 
observed LAI value (2.38) is similar to the LAI value (2.57) reported by 
Fyllas et al. (2008) for P. brutia trees on the island of Lesvos (Greece). 

The occurrence of events with more throughfall than rainfall con
strains the use of the regression-based method for the derivation of 
model parameter values. The negative values for interception that we 
found amongst the rainfall and throughfall observations have been re
ported for a wide range of forest types and climates (Crockford and 
Richardson, 2000). High spatial and temporal variability in TF, 
including higher TF than P, can be linked with high wind speeds, vari
able rainfall droplet sizes, changes in the canopy cover due to damage by 
strong winds or pests, air moisture condensation or dripping points as a 
result of the canopy architecture (Calder, 1996; David et al., 2006; 
Grunicke et al., 2020; Holwerda et al., 2010; Klaassen et al., 1998; Van 
Dijk and Bruijnzeel, 2001a, 2001b; Xiao et al., 2000). These events can 
be linked also with hail storms (Supplementary material, Fig. S9). The 
selection of daily data for which TF is lower than P allowed the deri
vation of model parameter values with the regression-based method. 
The exclusion of P〈 TF data implies that these data were not represen
tative. However, we did not find relations between average and 
maximum wind speeds or canopy cover of individual throughfall gauges 
and TF/P fractions in our data set that would indicate this. One would 
expect that a throughfall record with a sufficiently long time series and a 
large number of gauges would be representative, while it would include 
throughfall observations that are either higher or lower than the actual 
throughfall. Thus, the selective removal of TF 〉 P events for the model 
parameter derivation process could lead to an underestimation of 
throughfall and overestimation of interception. 

The Gash model was chosen in the majority of rainfall interception 
modelling studies on pine trees, while the Rutter was applied only in 
three studies and all of them published before the year 2000 (Table 7). A 
key drawback of the Rutter model is the requirement of high temporal 
resolution of the input data (Muzylo et al., 2009). The daily application 
of the Rutter model tested in this study resulted in high model perfor
mance (KGE > 0.95) and small P.BIAS (< 5%), similar to the Gash and 
Liu model. Thus, the daily Rutter model can be applied in areas where 
hourly data are not available. The main advantage of the daily Rutter 
model is that it relies on measured Eo values, while the Gash and Liu 
models use a single value of ̄E/R̄ for the model application. Even though, 
the regression-method derived parameters are often used for the appli
cation of the Liu model, we should highlight that in the formulation of 
this model, the storage component behaves exponentially until reaching 
saturation and not linearly, as assumed with the regression method. If 
we would have used our observed c, Ēc/R̄ and Eo and selected S values 
from studies conducted in similar climates and with trees with similar c, 
we could have picked either 0.41 (Valente et al., 1997) or 2.86 
(Zhongjie et al., 2010) from Table 7. For S equal to 0.41 mm, inter
ception losses were 5%, 8% and 7% of P for the daily Rutter, Gash and 
Liu model, respectively, whereas for S equal to 2.86 mm, interception 
losses were 20%, 29% and 24%. These results indicate the importance of 
throughfall measurements for interception model parameterization and 
seem to disagree with Limousin et al. (2008). These authors noted that S 
and Ē/R̄ values for a given tree species can be applied to other forests 
with the same species but different density, if measurements of c are 
made. On the contrary, Deguchi et al. (2006) reported that these pa
rameters are very sensitive to changes in canopy structure and meteo
rological conditions. 

A recently developed rainfall interception model named ‘NvMx’ 
(Návar, 2017) simplifies the estimation of forest interception by deriving 
separate parameters for throughfall and stemflow. The author showed 
that the mathematical functions of the rate of canopy storage and the 
rate of evaporation over time could take many forms depending on the 
forest, climate and rainfall conditions. Following up on these findings, 
Návar (2020, 2019) developed a method based on extended drip equa
tions that provides independent and unbiased estimates of interception, 
canopy storage capacity and evaporation, as a function of precipitation 
or as a function of rainfall duration. 

The interception losses observed in our study for the period 2016 – 
2020 (18% of P) were within the range of the interception losses (17 – 
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29% of P) reported for Pinus halepensis trees in the Mediterranean (del 
Campo et al., 2018; Llorens and Domingo, 2007; Qubaja et al., 2020). 
The long-term application of the three daily interception models showed 
that the modelled interception was highly correlated to Pn. In their study 
on rainfall interception by an isolated evergreen Quercus ilex in Portugal, 
David et al. (2006) found that interception losses depend mostly on the 
distribution of rainfall in time, rather than the duration or the amount of 
rainfall. Thus, climates with frequent small storms and high evaporation 
rates will have the largest interception losses. In the context of climate 
change, the projected higher evapotranspiration rates will enhance 
interception loss. However, recent climate projections for the drier parts 
of the Mediterranean region show a 25% increase of extreme rainfall 
events (Zittis et al., 2021), which is expected to reduce the fraction of the 
intercepted rainfall. 

5. Conclusion 

This paper examines different parameter derivation approaches and 
model assumptions for the application of the hourly and daily Rutter 
interception model and the daily Gash and Liu models. The main con
clusions drawn from this study are:  

• The canopy related parameters (S and c) of the Rutter, Gash and Liu 
models show high relative sensitivity but also strong equifinality.  

• Interception model parameters can be derived from throughfall data 
with the use of automatic optimization of S or both S and c, with 
evaporation derived from observations, as well as with the use of the 
regression method. We obtained low absolute P.BIAS (0.7%− 3.5%) 
and high KGE (0.93–0.97) for the validation period (491 days) for all 
three parameter derivation methods and all four interception 
models.  

• The derivation of model parameter values with the regression 
method is, however, not optimal, because it often involves a sub
jective selection of storm events and dry interval durations, which 
may result in different model parameter value sets. Selecting the 
parameter set from the 6 hour event separation interval leads to 
lower model performance (KGE < 0.90) and to higher P.BIAS 
(− 8.3% for Gash model and − 3.7% for Liu model) than the param
eter set derived from daily data.  

• Model applications with c derived from plant canopy observations 
and S values from similar environments selected from the literature 
resulted in a large range of interception values (5% - 29%) around 
the observed 18% interception.  

• A rainfall rate threshold of 0.5 mm h − 1 has been commonly used to 
represent saturated canopy conditions for the computation of Ēc and 
R̄. The use of different rainfall rate thresholds (0.1 – 1.4 mm h − 1) 
had a minor effect on the interception losses of the Gash and Liu 
models. We found less than 1% change in interception losses for the 
period 01/Jul/2016 – 31/05/2020 (1505 mm rain).  

• The application of the Rutter model with daily data, which we have 
not found in the literature, showed similar good performance as the 
hourly Rutter model and as the daily Gash and Liu models. 

• High quality throughfall measurements are essential for the param
eterization of rainfall interception models. Interception observed 
with 28 throughfall gauges during 2016–2020 was 18% of the 
rainfall. For the 2008–2019 period interception observed with 15 
throughfall gauges was 26%. Incidentally missing throughfall data 
may have contributed to the high observed interception losses for the 
2008 - 2019 period. The modelled interception for this twelve year 
period, obtained with the three daily models with the optimization-S, 
c parameter set, ranged between 19 and 20%. The modelled inter
ception ranged between 12% and 31% for individual years and was 
related to the average wet day rainfall (Pn). 

• Rainfall characteristics should be analysed to gain a better under
standing of the interception process. We found that days with 2 mm 
rain and more amounted to 96.2% of the total rainfall for the period 

2016 – 2020 and to 94.5% for the period 2008 – 2019, thus rainfall 
that saturate the canopy has a much higher effect on interception 
losses than small rainfall events that do not saturate the canopy. 

Rainfall interception is a temporal and spatial variable process. Even 
though the assumptions of a dry canopy at the start of each day and a 
constant evaporation-rainfall ratio, as used by the daily application of 
the Gash and Liu model, do not confirm the reality, these models gave a 
good fit of the daily throughfall observations in an open Mediterranean 
pine forests. This was however associated with the strong parameter 
equifinality of these models. The Rutter model, which keeps a running 
water balance, gives a better description of the interception process, and 
the daily Rutter model obtained similar performance as the hourly 
model. 
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