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1. INTRODUCTION

In the past two decades, there has been an increasing inter-
est in addressing the control and simulation of distributed
parameter systems using the port-Hamiltonian formalism
(Rashad et al., 2020). Unlike the standard Hamiltonian
formalism, port-Hamiltonian theory is able to incorporate
non-conservative dynamical systems and allows for non-
zero energy exchange through the boundary of a spatial
domain. The theory is therefore an ideal framework for
the development of simulation and model-based control
tools for distributed parameter systems (Duindam et al.,
2009). A unique feature of the port-Hamiltonian modeling
approach is that it represents a complex physical system as
a network of interconnected subsystems which explicates
the topology of energy exchanges within the system.

Advanced applications of the port-Hamiltonian theory for
distributed systems, however, additionally require to cast
the port-Hamiltonian theory of distributed systems in a
differential geometric language that combines conceptual
rigour with technical flexibility. The theoretical study and
simulation of robotic birds flying in air (Califano et al.,
2021a) provides one striking example. Both the conceptual
and technical advantages of a differential geometric formu-
lation are related to the coordinate-independence of this
language. Indeed, its use was an essential ingredient for
the development of distributed port-Hamiltonian theory
in the foundational work of van der Schaft and Maschke
(2002).

� This work was supported by the PortWings project funded by the
European Research Council [Grant Agreement No. 787675].

Precisely the same conceptual and technical advantages
propelled differential geometry in general, and exterior
differential calculus in particular, to a method of choice
at the research frontier of general relativity and particle
physics about three decades ago. While exterior differential
calculus is also at the heart of celebrated foundational
work on geometric fluid and solid mechanics (Marsden
et al., 1984; Marsden and Hughes, 1994), computational
methods and engineering applications still largely cling to
a vector calculus formulation and its severe limitations
(Rashad et al., 2020). In our previous works (Rashad
et al., 2021a,b; Califano et al., 2021b), we demonstrated
how exterior calculus can be employed to derive port-
Hamiltonian models for compressible and incompressible
Euler and Navier Stokes equations from first principles.

In this paper, we show how the vector calculus coun-
terparts of our previous exterior calculus-based models
can be derived. As a representative for the wide range
of port-Hamiltonian models in (Rashad et al., 2021a,b;
Califano et al., 2021b) we focus in this paper on the port-
Hamiltonian modeling of incompressible viscous flow only.
More explicitly, the contributions of this paper are:

• Provide the different coordinate-free views of model-
ing fluid dynamical systems in the port-Hamiltonian
framework using exterior and vector calculus and
show how to change between both representations.

• Highlight the mathematical elegance of exterior calcu-
lus compared to vector calculus and coordinate-based
expressions.

• Present the exterior calculus-based model for incom-
pressible Navier Stokes in a pedagogical minimalis-
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tic manner, without burdening the reader with the
technical details in (Rashad et al., 2021a,b; Califano
et al., 2021b). Thus, we aim to make the subject more
accessible to experts focused on simulation or control.

The rest of the paper is organized as follows: In Sec.2,
we present the coordinate-free and coordinate-dependent
descriptions of fluid flow on a general (possibly curved,
as the surface of Earth) domain. Then we present the
port-Hamiltonian model for incompressible Navier-Stokes
equations using exterior calculus in Sec. 3 and using vector
calculus in Sec. 4, and we conclude in Sec. 5.

2. COORDINATE-FREE AND
COORDINATE-DEPENDENT DESCRIPTIONS

The spatial domain in which a non-relativistic fluid flows is
represented mathematically by an n-dimensional compact
manifold M , possibly including a boundary ∂M . For most
engineering applications, one considers, of course, either
dimension n = 2 or n = 3. We denote the space of smooth
functions by C∞(M), the vector space of smooth vector
fields by X(M), and the module of smooth differential
k-forms by Ωk(M). The manifold is equipped with a
Riemannian metric g : X(M)× X(M) → C∞(M) which
induces a volume form µvol ∈ Ωn(M), a Hodge star
operator � : Ωk(M) → Ωn−k(M) and the Levi-Civita
covariant derivative ∇. Furthermore, the metric-induced
isomorphism � : X(M) → Ω1(M) and its inverse � :
Ω1(M) → X(M) allow identifying vector-fields with one-
forms. For any u ∈ X(M), α ∈ Ω1(M), we have that
�(u) := g(u, ·) and g(�(α), u) = α(u).

The coordinate-based description of the fluid flow can be
achieved by introducing coordinate maps ϕq : U → Rn,
which assign an n-tuple of real numbers (q1, · · · , qn) to
each physical point p of sufficiently many regions U ⊆ M
such that together they cover the entire fluid domain.
In every thus constituted chart (U,ϕq), we can use the
chart-induced basis vectors ∂/∂xi and basis covectors dxi

(in each case i = 1, . . . , n) to express any vector field
u ∈ X(M) and any k-form α ∈ Ωk(M) on the respective
chart domains U as

u = ui ∂

∂qi
, α = αi1···ikdq

i1 ∧ · · · ∧ dqik ,

with the Einstein convention to sum over repeated indices
being used here and in the remainder of this article. The
duality relation dqj( ∂

∂qi ) = δji , where δji the Kronecker

delta symbol.

The Riemannian metric g and the induced volume form
µvol can be expressed on a chart domain U as

g = gijdq
i ⊗ dqj , µvol =

√
gdq1 ∧ · · · ∧ dqn,

where
√
g is a convenient short hand for the scalar density√

det(gij) constructed from the components gij of the
metric tensor.

The fluid state is described fully by the Eulerian velocity
vector field v ∈ X(M) and the mass density function
ρ ∈ C∞(M). Using the manifold’s Riemannian metric
structure, we can alternatively describe the fluid’s velocity
using the one-form ṽ := �(v) ∈ Ω1(M) and the fluid’s
mass density by the mass top-form µ := ρµvol = �ρ ∈
Ωn(M). The state variables (v, ρ) will be referred to as

Cartesian Cylindrical Spherical

qi (x, y, z) (r, θ, z) (r, θ, φ)
hi (1, 1, 1) (1, r, 1) (1, r, r sin(θ))
vi (vx, vy , vz) (vr, vθ, vz) (vr, vθ, vφ)
ṽi (vx, vy , vz) (vr, r2vθ, vz) (vr, r2vθ, r2 sin2(θ)vφ)
µvol dx ∧ dy ∧ dz rdr ∧ dθ ∧ dz r2 sin(θ)dr ∧ dθ ∧ dφ

Table 1. Coordinate expressions for several
coordinate maps on M = R3

the contravariant states while (ṽ, µ) will be referred to as
the covariant states. In local coordinates, we have that

v = vi
∂

∂qi
, ṽ = gijv

jdqi.

The kinetic co-energy/energy 1 of the fluid in the spatial
domain M can be represented using either (v, ρ) or (ṽ, µ),
which in local coordinates amounts to

E∗
k =

∫

M

1
2ρg(v, v)µvol =

∫

M

1
2 (�µ)ṽ ∧ �ṽ

=

∫

M

1
2ρgijv

ivj
√
gdq1 ∧ · · · ∧ dqn︸ ︷︷ ︸

µvol

. (1)

Finally, we conclude with some remarks on the use
of coordinate-based expressions in practical applications.
First, the abstract coordinate-free treatment presented
above allows for a global description and analysis of fluid
flow on curved surfaces. Second, even in Euclidean flat
space Rn it is still superior to coordinate-based treatments
because it allows performing calculus in an arbitrary co-
ordinate system adapted to the problem at hand.

In such general coordinate-system, the chart induced basis
vectors ( ∂

∂qi )p ∈ TpM or covectors (dqi)p ∈ T ∗
pM are

in general not the same at different points, not of unit
length and not mutually orthogonal. In the most general
case, the (symmetric) metric tensor has 1

2n(n + 1) inde-
pendent components in n dimensions. Consequently, the
coordinate expressions of the different mathematical ob-
jects and operators might differ significantly across differ-
ent coordinate-systems, while the coordinate-independent
expressions keep their simple and invariant form.

In the more special (and popular) case of orthogonal non-
unitary coordinate-systems (e.g. cylindrical or spherical
coordinates in R3), the metric tensor components and
volume form’s density simplify to:

gij = h2
i δij ,

√
g =

(
n∏

i=1

hi

)
,

where δij ≡ δji while hi ∈ C∞(M) are often referred to

as the Lamé coefficients defined by hi(p) := ‖( ∂
∂qi )p‖.

Note that in the above expression the indices of hi, δij ,

and δji do not correspond to tensor components but are
merely definitions of symbols. Thus, there is no implicit
summation over the indices. An example of the difference
in expressions between Cartesian, cylindrical and spherical
coordinates is shown in Table 1.

1 We will not further discriminate between energy, which is a
function of thermodynamically extensive variables (momenta) and
the corresponding co-energy, which is a function of intensive variables
(velocities).

3. EXTERIOR CALCULUS PORT-HAMILTONIAN
MODEL

In this section, we present the port-Hamiltonian model for
incompressible viscous fluid flow using exterior calculus
where all variables will be differential forms that are ei-
ther scalar-valued, vector-valued or covector-valued. With
reference to Fig. 1, the port-Hamiltonian model consists of
a network of energetic subsystems, interconnected to each
other by a pair of dual variables, that are called effort
and flow variables and together are called a port. For each
port, the intrinsic duality pairing between an effort and
a flow corresponds to the power exchanged between the
two subsystems connected via this port. Furthermore, the
port-Hamiltonian model has open ports that characterize
the power exchange between the port-Hamiltonian model
and the external world.

In what follows, we present an overview of each individual
subsystem leaving out many technical details in Rashad
et al. (2021a,b); Califano et al. (2021b). For the reader’s
convenience, Table 2 summarizes all effort and flow vari-
ables of the port-Hamiltonian model.

3.1 Energy storage subsystem

The energy storage subsystem, represented graphically by
C in Fig. 1, is defined by the manifold of the covariant
state variables x := (ṽ, µ) ∈ Ω1(M) × Ωn(M) and the
Hamiltonian functional

Hk(ṽ, µ) =

∫

M

1
2 (�µ)ṽ ∧ �ṽ,

which represents the kinetic energy of the fluid. The flow
variables of the storage subsystem are given by the rate
of change of the state variables ẋ := ( ˙̃v, µ̇) while their
corresponding effort variables are given by the variational
derivative of Hk with respect to x:

δṽHk = ρ � ṽ ∈ Ωn−1(M), δµHk = 1
2 ιv ṽ ∈ Ω0(M),

where ιv : Ωk(M) → Ωk−1(M) denotes the interior
product. Note that ιv ṽ = ṽ(v) = g(v, v).

In local coordinates, we have that ιv ṽ = ṽ(v) = ṽjv
j =

gijv
ivj , whereas the n− 1 form �ṽ has the form

�ṽ =

{√
gεijv

idqj , (n = 2)
1
2

√
gεijkv

idqj ∧ dqk, (n = 3)

Fig. 1. Bond Graph model for the port-Hamiltonian model
for Navier Stokes’ equations with open boundary
ports

Variable Description

ẋ ∈ Ω1(M)× Ωn(M) rate of change of state variables

δxHk ∈ Ωn−1(M)× Ω0(M) co-energy variables

p ∈ Ω0(M) static pressure function

e∂p ∈ Ω0(∂M) boundary effort due to pressure

f∂p ∈ Ωn−1(∂M) boundary flow due to pressure

er ∈ Ω1(M)⊗ Ωn−1(M) distributed effort due to viscosity

fr ∈ X(M)⊗ Ω1(M) distributed flow due to viscosity

e∂r ∈ Ω1(M)⊗ Ωn−1(∂M) boundary effort due to viscosity

f∂r ∈ X(M)⊗ Ω0(∂M) boundary flow due to viscosity

Table 2. Port variables of the port-Hamiltonian
model in exterior calculus form

where εijk ∈ C∞(M) denote the Levi-Civita symbols. The
duality pairing between the efforts (δṽHk, δµHk) and flows

( ˙̃v, µ̇) is given mathematically by the integral of the wedge
product and corresponds physically to the rate of change
of kinetic energy stored:

Ḣk =

∫

M

˙̃v ∧ δṽHk + µ̇ ∧ δµHk,

=

∫

M

(
ρgijv

iv̇j + 1
2gijv

ivj ρ̇
)
µvol. (2)

3.2 Energy dissipation subsystem

The energy dissipation subsystem, represented graphically
by R in Fig. 1, corresponds to the internal energy dissipa-
tion or resistance that occurs within the spatial domain
due to shear viscosity only, considering the hypothesis of
incompressible fluid.

In the exterior calculus representation of the port-
Hamiltonian model, the flow variable fr is chosen to be
the velocity gradient ∇v ∈ X(M) ⊗ Ω1(M) which is the
vector-valued one-form, corresponding to the covariant
derivative operator ∇(·)v : X(M) → X(M), defined for
any u ∈ X(M) by ∇v(u) := ∇uv. In local coordinates, we
have that

∇v = (∂iv
j + Γj

kiv
k)

∂

∂qj
⊗ dqi,

where Γi
kj ∈ C∞(M) denote the Christoffel symbols

defined by

Γi
kj =

1
2g

jm(∂kgmi + ∂igmk − ∂mgki),

where gjm ∈ C∞(M) denote the local components of the
inverse metric tensor. In the case of Cartesian coordinates,
we have that every Γi

kj = 0 and thus the components
of the velocity gradient ∇v take the more common form
(∇v)ji = (∂iv

j). For cylindrical coordinates, one has that
Γr
θθ = −r,Γθ

rθ = Γθ
θr = 1/r, while all other Christoffel

symbols are zero.

The effort variable er is chosen to be the covector-valued
n − 1 form Tκ ∈ Ω1(M) ⊗ Ωn−1(M) corresponding to
the Cauchy shear stress. This stress describes the force
on surface elements in a fluid flow due to shear viscosity.
Note that for the class of incompressible fluid flows that
we consider, the bulk viscosity does not play a role at
all. The covector-valued form er = Tκ is related to the
true Cauchy stress (0, 2) tensor field σ ∈ T 0

2 (M) by the
relation(Califano et al., 2021b)
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In what follows, we present an overview of each individual
subsystem leaving out many technical details in Rashad
et al. (2021a,b); Califano et al. (2021b). For the reader’s
convenience, Table 2 summarizes all effort and flow vari-
ables of the port-Hamiltonian model.

3.1 Energy storage subsystem

The energy storage subsystem, represented graphically by
C in Fig. 1, is defined by the manifold of the covariant
state variables x := (ṽ, µ) ∈ Ω1(M) × Ωn(M) and the
Hamiltonian functional

Hk(ṽ, µ) =

∫

M

1
2 (�µ)ṽ ∧ �ṽ,

which represents the kinetic energy of the fluid. The flow
variables of the storage subsystem are given by the rate
of change of the state variables ẋ := ( ˙̃v, µ̇) while their
corresponding effort variables are given by the variational
derivative of Hk with respect to x:

δṽHk = ρ � ṽ ∈ Ωn−1(M), δµHk = 1
2 ιv ṽ ∈ Ω0(M),

where ιv : Ωk(M) → Ωk−1(M) denotes the interior
product. Note that ιv ṽ = ṽ(v) = g(v, v).

In local coordinates, we have that ιv ṽ = ṽ(v) = ṽjv
j =

gijv
ivj , whereas the n− 1 form �ṽ has the form

�ṽ =

{√
gεijv

idqj , (n = 2)
1
2

√
gεijkv

idqj ∧ dqk, (n = 3)

Fig. 1. Bond Graph model for the port-Hamiltonian model
for Navier Stokes’ equations with open boundary
ports

Variable Description

ẋ ∈ Ω1(M)× Ωn(M) rate of change of state variables

δxHk ∈ Ωn−1(M)× Ω0(M) co-energy variables

p ∈ Ω0(M) static pressure function

e∂p ∈ Ω0(∂M) boundary effort due to pressure

f∂p ∈ Ωn−1(∂M) boundary flow due to pressure

er ∈ Ω1(M)⊗ Ωn−1(M) distributed effort due to viscosity

fr ∈ X(M)⊗ Ω1(M) distributed flow due to viscosity

e∂r ∈ Ω1(M)⊗ Ωn−1(∂M) boundary effort due to viscosity

f∂r ∈ X(M)⊗ Ω0(∂M) boundary flow due to viscosity

Table 2. Port variables of the port-Hamiltonian
model in exterior calculus form

where εijk ∈ C∞(M) denote the Levi-Civita symbols. The
duality pairing between the efforts (δṽHk, δµHk) and flows

( ˙̃v, µ̇) is given mathematically by the integral of the wedge
product and corresponds physically to the rate of change
of kinetic energy stored:

Ḣk =

∫

M

˙̃v ∧ δṽHk + µ̇ ∧ δµHk,

=

∫

M

(
ρgijv

iv̇j + 1
2gijv

ivj ρ̇
)
µvol. (2)

3.2 Energy dissipation subsystem

The energy dissipation subsystem, represented graphically
by R in Fig. 1, corresponds to the internal energy dissipa-
tion or resistance that occurs within the spatial domain
due to shear viscosity only, considering the hypothesis of
incompressible fluid.

In the exterior calculus representation of the port-
Hamiltonian model, the flow variable fr is chosen to be
the velocity gradient ∇v ∈ X(M) ⊗ Ω1(M) which is the
vector-valued one-form, corresponding to the covariant
derivative operator ∇(·)v : X(M) → X(M), defined for
any u ∈ X(M) by ∇v(u) := ∇uv. In local coordinates, we
have that

∇v = (∂iv
j + Γj

kiv
k)

∂

∂qj
⊗ dqi,

where Γi
kj ∈ C∞(M) denote the Christoffel symbols

defined by

Γi
kj =

1
2g

jm(∂kgmi + ∂igmk − ∂mgki),

where gjm ∈ C∞(M) denote the local components of the
inverse metric tensor. In the case of Cartesian coordinates,
we have that every Γi

kj = 0 and thus the components
of the velocity gradient ∇v take the more common form
(∇v)ji = (∂iv

j). For cylindrical coordinates, one has that
Γr
θθ = −r,Γθ

rθ = Γθ
θr = 1/r, while all other Christoffel

symbols are zero.

The effort variable er is chosen to be the covector-valued
n − 1 form Tκ ∈ Ω1(M) ⊗ Ωn−1(M) corresponding to
the Cauchy shear stress. This stress describes the force
on surface elements in a fluid flow due to shear viscosity.
Note that for the class of incompressible fluid flows that
we consider, the bulk viscosity does not play a role at
all. The covector-valued form er = Tκ is related to the
true Cauchy stress (0, 2) tensor field σ ∈ T 0

2 (M) by the
relation(Califano et al., 2021b)
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Tκ = �2σ, (3)

where �2 denotes the Hodge star operator applied to the
second leg of σ considered as a covector-valued 1-form. We
denote by T p

q (M) the space of (p, q) tensor fields on M .

In local coordinates we have that σ = σij dq
i ⊗ dqj and

Tκ =

{(√
gεabg

ajσij

)
dqi ⊗ dqb, (n = 2)(

1
2

√
gεabcg

ajσij

)
dqi ⊗ dqb ∧ dqc. (n = 3)

For the motivation behind representing the Cauchy-stress
geometrically as a covector-valued n − 1 form, the reader
is referred to (Frankel, 2004, Appendix A).

For incompressible flow, the Cauchy stress tensor σ is
assumed to depend on the velocity gradient ∇v and not
directly on the fluid’s velocity v, considering that v is a
relative quantity depending on the observer. Furthermore,
σ is assumed to be symmetric due to the balance of
angular momentum. Consequently, σ depends only on the
symmetric part of the velocity gradient (Marsden and
Hughes, 1994). In the Riemannian geometric setting, this
symmetric part is encoded by the Lie derivative of the
metric Lvg ∈ T 0

2 (M). In local coordinates, we have that

Lvg = (∇iṽj +∇j ṽi)dq
i ⊗ dqj .

where ṽi = gijv
j . In Cartesian coordinates, the compo-

nents of Lvg reduce to the more common expression

(Lvg)ij = ∂i(δjkv
k) + ∂j(δikv

k).

Therefore, the Lie derivative of the metric extends the
concept of the rate-of-strain tensor to general (curvilinear)
coordinates and curved spatial manifolds (Gilbert and
Vanneste, 2019).

The relation between Lvg and ∇v can be derived using
the property ∇ṽ = (∇v)�1 and the identity (Gilbert and
Vanneste, 2019):

2∇ṽ = Lvg︸︷︷︸
sym.

− dṽ︸︷︷︸
skew-sym.

,

where all terms above are considered as covector-valued
one-forms. Note that the term dṽ ∈ Ω2(M) can be
associated to a covector-valued one-forms by means of the
identification Ω2(M) = Ω1(M) ⊗ Ω1(M). Consequently,
we have that

sym(∇v) := 1
2 (Lvg)

�1 . (4)

It is also important to note that the identity above holds
for the induced Levi-Civita connection by the metric.

With the above construction, the geometric version of
Stokes’ stress constitutive relation for incompressible vis-
cous fluid on a general Riemannian manifold is given by

σ = κLvg, (5)

where κ ∈ C∞(M) is the dynamic viscosity function which
in general depends on the mass density and pressure of
the fluid. In terms of the chosen effort and flow variables,
er = Tκ and fr = ∇v, the aforementioned constitutive
relation takes the form

er = Rκ(fr), Rκ := 2κ �2 ◦
1 ◦ sym,

as depicted in Fig. 1.

The duality pairing between er and fr is given by∫

M

er∧̇fr ≥ 0, (6)

where ∧̇ : Ω1(M)⊗ Ωp(M)× X(M)⊗ Ωq(M) → Ωp+q(M)
denotes the dot wedge product (Califano et al., 2021b).
The non-decreasing property of (6) implies that energy al-
ways goes towards the R element in Fig.1 which represents
the irreversible transfer of energy to the thermal domain.
This property will become clear later when we present the
alternative vector calculus expression of (6).

3.3 Open ports

The port-Hamiltonian model in Fig. 1 has three open
ports, two of which are boundary ports while one is a
distributed port. The distributed port (p,0) ∈ Ω0(M) ×
Ωn(M) has the zero top form (0 := 0 · µvol) as its flow
variable, while its effort variable is the static pressure
function p of the fluid within the spatial domain. It is
straightforward to see that the power flowing through the
port (p,0) is zero. This reflects the fact that, for incom-
pressible flow, the pressure acts as a Lagrange multiplier
that enforces the incompressibility constraint of the fluid
and does not have the same thermodynamic nature as in
compressible flow (Rashad et al., 2021b).

The two boundary ports (e∂p, f∂p) and (e∂r, f∂r) represent
the energy supplied to the fluid dynamical system through
the boundary ∂M of the spatial domain. The first port
corresponds to the power flow due to (total) pressure while
the second one is due to viscosity. The duality pairings
between the effort and flow variables of the two ports are
given by ∫

∂M

e∂p ∧ f∂p,

∫

∂M

e∂r∧̇f∂r. (7)

The aforementioned boundary port variables correspond
to the boundary conditions of the partial differential
equations (PDEs) represented by the port-Hamiltonian
model.

3.4 Stokes Dirac structure DNS

The mathematical object used to interconnect the pre-
viously mentioned subsystems of the port-Hamiltonian
model of Navier-Stokes equations is the Stokes-Dirac
structureDNS. This key structure is the infinite-dimensional
subspace of the port-space corresponding to the five ports
(δxHk, ẋ), (er, fr), (p,0), (e∂p, f∂p), and (e∂r, f∂r) that en-
codes the power balance:

−
∫

M

ẋ∧δxHk+p·0−er∧̇fr+
∫

∂M

e∂p∧f∂p+e∂r∧̇f∂r = 0,

which equivalently can be expressed as

Ḣk = −
∫

M

er∧̇fr +
∫

∂M

e∂p ∧ f∂p + e∂r∧̇f∂r, (8)

which states that the rate of kinetic energy stored is equal
to the sum of the internal dissipated power due to viscosity
and the external supplied power via the boundary ∂M due
to pressure and shear stress forces.

The equations of the Stokes-Dirac structure DNS are given
by(Califano et al., 2021b)

(
∂tṽ
∂tµ

)
=− J

(
δṽHk

δµHk

)
+

(
− 1

�µ
dp+

1

�µ
�2 d∇er

0

)
, (9)

0 =d ◦ 1

�µ
(δṽHk), (10)

fr =∇ ◦ � ◦ � ◦ 1

�µ
(δṽHk), (11)

e∂p =i∗( 12 (�µ)ιv ṽ + p), f∂p = −i∗(
1

�µ
δṽHk), (12)

e∂r =i∗2(er), f∂r = i∗2(� ◦ �(δṽHk)), (13)

where J : Ωn−1(M)× Ω0(M) → Ω1(M)× Ωn(M) denotes
the skew-symmetric Lie-Poisson operator given by

J

(
δṽHk

δµHk

)
=

( 1

∗µ
ι�◦�(·)dṽ d

d 0

)(
δṽHk

δµHk

)
,

while d∇ : Ω1(M)⊗ Ωn−1(M) → Ω1(M)⊗ Ωn(M) de-
notes the exterior covariant derivative operator, i∗ denotes
the pullback of the inclusion map i : ∂M → M , and i∗2
denotes the pullback action of a two-point tensor. It is
important to note that the exterior covariant derivative
is the formal adjoint of the covariant derivative which
implies that the overall interconnection operator is skew-
symmetric (Califano et al., 2021b).

3.5 Corresponding partial-differential equations

In order to explicitly write the PDEs and their corre-
sponding boundary conditions represented by the port-
Hamiltonian model (9-13) we proceed as follows. First
we replace the expressions for δṽHk, δµHk in Sec. 3.1 and
er, fr in Sec. 3.2. Second, we use the following identity
(valid for incompressible flow)

�2d∇Tκ = κ �2 d∇ �2 Lvg = κ∆Rṽ,

where ∆R : Ω1(M) → Ω1(M) is the Ricci Laplacian
operator related to the Hodge Laplacian operator ∆ :=
�d � d + d � d� by the Weitzenböck identity:

∆Rṽ = ∆ṽ +Ric(v) = �d � dṽ +Ric(v),

where Ric : X(M) → Ω1(M) is the Ricci tensor field and
d � ṽ = 0 due to incompressibility.

Therefore, we can rewrite (9-11) as the PDEs:

∂tṽ =− 1
2dιv ṽ − ιvdṽ −

dp

ρ
+

κ∆Rṽ

ρ
, (14)

∂t(�ρ) =− d(ρ � ṽ), (15)

0 =d � ṽ. (16)

In local coordinates, the PDEs (14-16) are expressed as

∂tṽi = − 1
2∂i(ṽkv

k)− vj∂j(ṽi)−
1

ρ
∂ip+

κ

ρ
(∆ṽi +Ri),

∂t(ρµvol) = − 1
√
g
∂j(

√
gρvj)µvol,

0 = ∂i(
√
gvi),

where ∆ṽi, Ri ∈ C∞(M) denote the local components of
the one-forms ∆ṽ and Ric(v) given by

∆ṽi :=
√
ggam∂m

(
1
√
g
∂a(gijv

j)

)
,

Ri := ∇j∇iv
j −∇i∇jv

j .

Note the fact that we are considering incompressible
non-homogeneous fluid flow (i.e. ∂tρ �= 0). In case of
homogeneous flow, (15) and (16) would degenerate to the
same equation. The boundary conditions associated to the
PDEs (14-16) are given by

e∂p =i∗(ptot), f∂p = −i∗(�ṽ) (17)

e∂r =i∗2(Tκ), f∂r = i∗2(v), (18)

which have the following physical interpretations.

First, the boundary effort e∂p is the total pressure function
at the boundary, i.e. e∂p = i∗(ptot) := ptot ◦ i ∈ C∞(∂M),
where

ptot :=
1
2ριv ṽ + p ∈ C∞(M),

is defined as the sum of the dynamic and static pressures.
Second, the boundary flow f∂p corresponds to the normal
component of the vector field v at ∂M which can be seen
from the identity:

i∗(�ṽ) = i∗(ιvµvol) = i∗(g(v, n))µ∂M
vol , (19)

where n denotes the (outward) normal vector field to ∂M
and µ∂M

vol ∈ Ωn−1(∂M) is the induced volume form on
∂M . Thus, the power supplied to the fluid through the
boundary port (e∂p, f∂p) is given by∫

∂M

e∂p ∧ f∂p = −
∫

∂M

ptot · gijvinjµ∂M
vol .

The minus sign above is due to the choice of n as the
outward normal vector field such that fluid flowing out of
M results in a decrease in kinetic energy as seen from (8).

Third, the boundary effort e∂r = i∗2(Tκ) is the pullback of
the second leg of Tκ which corresponds to the pullback of
the n− 1 form part of it. Following the same reasoning of
(19), we have that

i∗2(Tκ) = i∗2(�2σ) = i∗(σ(n, ·))µ∂M
vol .

Whereas, the boundary flow f∂r = i∗2(v) represents the
vector field v evaluated at the boundary ∂M .

Finally, the power supplied to the fluid through the bound-
ary port (e∂r, f∂r) is given by∫

∂M

e∂r∧̇f∂r =

∫

∂M

σijn
ivjµ∂M

vol .

4. VECTOR CALCULUS PORT-HAMILTONIAN
MODEL

Now we turn attention to the vector calculus formulation
of the incompressible viscous flow port-Hamiltonian model
presented in the previous section. In contrast to the
exterior calculus formulation, the state- and port-variables
will be now either functions, vector-fields or second-rank
tensor fields as summarized in Table 3.

Following the same line of thought of the previous section,
we present the vector-calculus formulation of the individ-
ual subsystems next.

Distributed ports
ẋ, δxHk p er, fr

X(M)× C∞(M) C∞(M) T 0
2 (M)

Boundary ports
e∂p, f∂p e∂r f∂r

C∞(∂M) T 00
01 (∂M) T 01

00 (∂M)

Table 3. Port variables of the port-Hamiltonian
model in vector calculus form
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dp+
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0

)
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�µ
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�µ
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�µ
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where J : Ωn−1(M)× Ω0(M) → Ω1(M)× Ωn(M) denotes
the skew-symmetric Lie-Poisson operator given by

J

(
δṽHk

δµHk

)
=

( 1

∗µ
ι�◦�(·)dṽ d

d 0

)(
δṽHk

δµHk

)
,

while d∇ : Ω1(M)⊗ Ωn−1(M) → Ω1(M)⊗ Ωn(M) de-
notes the exterior covariant derivative operator, i∗ denotes
the pullback of the inclusion map i : ∂M → M , and i∗2
denotes the pullback action of a two-point tensor. It is
important to note that the exterior covariant derivative
is the formal adjoint of the covariant derivative which
implies that the overall interconnection operator is skew-
symmetric (Califano et al., 2021b).

3.5 Corresponding partial-differential equations

In order to explicitly write the PDEs and their corre-
sponding boundary conditions represented by the port-
Hamiltonian model (9-13) we proceed as follows. First
we replace the expressions for δṽHk, δµHk in Sec. 3.1 and
er, fr in Sec. 3.2. Second, we use the following identity
(valid for incompressible flow)

�2d∇Tκ = κ �2 d∇ �2 Lvg = κ∆Rṽ,

where ∆R : Ω1(M) → Ω1(M) is the Ricci Laplacian
operator related to the Hodge Laplacian operator ∆ :=
�d � d + d � d� by the Weitzenböck identity:

∆Rṽ = ∆ṽ +Ric(v) = �d � dṽ +Ric(v),

where Ric : X(M) → Ω1(M) is the Ricci tensor field and
d � ṽ = 0 due to incompressibility.

Therefore, we can rewrite (9-11) as the PDEs:

∂tṽ =− 1
2dιv ṽ − ιvdṽ −

dp

ρ
+

κ∆Rṽ

ρ
, (14)

∂t(�ρ) =− d(ρ � ṽ), (15)

0 =d � ṽ. (16)

In local coordinates, the PDEs (14-16) are expressed as

∂tṽi = − 1
2∂i(ṽkv

k)− vj∂j(ṽi)−
1

ρ
∂ip+

κ

ρ
(∆ṽi +Ri),

∂t(ρµvol) = − 1
√
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∂j(

√
gρvj)µvol,

0 = ∂i(
√
gvi),

where ∆ṽi, Ri ∈ C∞(M) denote the local components of
the one-forms ∆ṽ and Ric(v) given by

∆ṽi :=
√
ggam∂m

(
1
√
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∂a(gijv

j)

)
,

Ri := ∇j∇iv
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Note the fact that we are considering incompressible
non-homogeneous fluid flow (i.e. ∂tρ �= 0). In case of
homogeneous flow, (15) and (16) would degenerate to the
same equation. The boundary conditions associated to the
PDEs (14-16) are given by

e∂p =i∗(ptot), f∂p = −i∗(�ṽ) (17)

e∂r =i∗2(Tκ), f∂r = i∗2(v), (18)

which have the following physical interpretations.

First, the boundary effort e∂p is the total pressure function
at the boundary, i.e. e∂p = i∗(ptot) := ptot ◦ i ∈ C∞(∂M),
where

ptot :=
1
2ριv ṽ + p ∈ C∞(M),

is defined as the sum of the dynamic and static pressures.
Second, the boundary flow f∂p corresponds to the normal
component of the vector field v at ∂M which can be seen
from the identity:

i∗(�ṽ) = i∗(ιvµvol) = i∗(g(v, n))µ∂M
vol , (19)

where n denotes the (outward) normal vector field to ∂M
and µ∂M

vol ∈ Ωn−1(∂M) is the induced volume form on
∂M . Thus, the power supplied to the fluid through the
boundary port (e∂p, f∂p) is given by∫

∂M

e∂p ∧ f∂p = −
∫

∂M

ptot · gijvinjµ∂M
vol .

The minus sign above is due to the choice of n as the
outward normal vector field such that fluid flowing out of
M results in a decrease in kinetic energy as seen from (8).

Third, the boundary effort e∂r = i∗2(Tκ) is the pullback of
the second leg of Tκ which corresponds to the pullback of
the n− 1 form part of it. Following the same reasoning of
(19), we have that

i∗2(Tκ) = i∗2(�2σ) = i∗(σ(n, ·))µ∂M
vol .

Whereas, the boundary flow f∂r = i∗2(v) represents the
vector field v evaluated at the boundary ∂M .

Finally, the power supplied to the fluid through the bound-
ary port (e∂r, f∂r) is given by∫

∂M

e∂r∧̇f∂r =

∫

∂M

σijn
ivjµ∂M

vol .

4. VECTOR CALCULUS PORT-HAMILTONIAN
MODEL

Now we turn attention to the vector calculus formulation
of the incompressible viscous flow port-Hamiltonian model
presented in the previous section. In contrast to the
exterior calculus formulation, the state- and port-variables
will be now either functions, vector-fields or second-rank
tensor fields as summarized in Table 3.

Following the same line of thought of the previous section,
we present the vector-calculus formulation of the individ-
ual subsystems next.

Distributed ports
ẋ, δxHk p er, fr

X(M)× C∞(M) C∞(M) T 0
2 (M)

Boundary ports
e∂p, f∂p e∂r f∂r

C∞(∂M) T 00
01 (∂M) T 01

00 (∂M)

Table 3. Port variables of the port-Hamiltonian
model in vector calculus form
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4.1 Energy storage subsystem

The state of the energy storage subsystem will consist
now of the contra-variant variables x := (v, ρ) ∈ X(M) ×
C∞(M) which are related to their differential-form coun-
terparts by

v = �(ṽ), ρ = �µ. (20)

In terms of the states (v, ρ), the Hamiltonian kinetic
energy functional takes the form

Hk(v, ρ) =

∫

M

1
2ρg(v, v)µvol.

The flow variables are given by (v̇, ρ̇) while their cor-
responding effort variables are (δvHk, δρHk) ∈ X(M) ×
C∞(M) which are related to their differential-form coun-
terparts by

δvHk = � ◦ �(δṽHk) = ρv, δρHk = δµHk = 1
2g(v, v)

(21)
The rate of change of kinetic energy in terms of the new
port-variables is then given by

Ḣk =

∫

M

(g(δvHk, v̇) + δρHk · ρ̇)µvol

4.2 Energy dissipation subsystem

The flow and effort variables of the energy dissipation
subsystem will be now given by the symmetric (0,2) tensor
fields:

fr = 1
2Lvg ∈ T 0

2 (M), er = 2σ ∈ T 0
2 (M), (22)

with the constitutive relation between them given by (5)
i.e.

er = Rκ(fr), Rκ = κ.

The effort and flow tensor fields er, fr are related to their
differential-form counterparts by (3) and (4), respectively.
Furthermore, their duality pairing is given by∫

M

〈〈er, fr〉〉µvol =

∫

M

1
2κ〈〈Lvg,Lvg〉〉µvol ≥ 0, (23)

where 〈〈·, ·〉〉 : T 0
2 (M)× T 0

2 (M) → C∞(M) denotes the
contraction of tensors defined using the metric as

〈〈σ, σ̃〉〉 := gaigbjσabσ̃ij , ∀σ, σ̃ ∈ T 0
2 (M).

Note that the duality pairing (23) is equivalent to (6)
where the non-decreasing property is straightforward to
assert in (23).

4.3 Open ports

With respect to the two boundary ports of the port-
Hamiltonian model, both port-variables of (e∂p, f∂p) are
now both smooth functions on ∂M with their duality
pairing given by ∫

∂M

e∂p · f∂pµ∂M
vol ,

with µ∂M
vol being the induced volume form on ∂M .

Whereas the other boundary port-variables (e∂r, f∂r) need
to be represented by two-point tensor fields over the
inclusion map i : ∂M → M (Marsden and Hughes, 1994,
Chapter 1). More precisely, the boundary flow f∂r assigns

to each point m ∈ ∂M a two point tensor of type

(
0 1
0 0

)

over i. Thus, f∂r(m) ∈ Ti(m)M is a tangent vector to M
assigned to m ∈ ∂M . Similarly, the boundary effort e∂r

assigns a two point tensor of type

(
0 0
0 1

)
over i to each

point m ∈ ∂M given by the 1-form e∂r(m) ∈ T ∗
i(m)M . The

duality pairing between e∂r and f∂r is given by∫

∂M

e∂r(f∂r)µ
∂M
vol ,

where e∂r(f∂r) ∈ C∞(∂M) denotes the contraction of the
two dual tensor fields. We denote by T pr

qs (∂M) the space

of two-point

(
p q
r s

)
tensor fields over the inclusion map

i : ∂M → M .

4.4 Stokes Dirac structure DNS

In terms of vector calculus notation, the new Stokes Dirac
structure, connecting the aforementioned subsystems, can
be derived from its exterior calculus counterpart in (9-
13) as follows. First, we apply � to both sides of the first
equation in (9) and apply � to both sides of the second
equation in (9) as well as (10). Then using (3,4,20,21), we
can write the equations of the Stokes-Dirac structure as

(
∂tv
∂tρ

)
=− J

(
δvHk

δρHk

)
+

(
−1

ρ
grad(p) +

1

ρ
div(er)

0

)
,

(24)

0 =− div(
1

ρ
δvHk) (25)

fr =sym ◦ grad(1
ρ
δvHk) (26)

e∂p =ptot ◦ i, f∂p = −g(v, n) ◦ i (27)

e∂r =i∗(σ(n, ·)), f∂r = v ◦ i (28)

with the skew-symmetric operator J : X(M)× C∞(M) →
X(M)× C∞(M) given by

J

(
δvHk

δρHk

)
=

(1

ρ
Sv grad

div 0

)(
δvHk

δρHk

)
,

where we used the following operators:

grad(f) :=(df)�, grad :C∞(M)→ X(M)

div(v) := � d � ṽ, div :X(M) → C∞(M)

Sv(u) :=(ιudṽ)
�, Sv :X(M) → X(M)

div(σ) :=(�2d∇ �2 σ)
� div :T 0

2 (M) → X(M)

grad(v) :=�1 ◦ ∇ grad :X(M) → T 0
2 (M)

with grad denoting the gradient operator of scalar fields,
div and grad denoting the divergence and gradient opera-
tors of vector fields, while div denotes the divergence op-
erator of second rank tensor fields. Note that sym◦grad(·)
and div(·) are formal adjoint operators which implies the
skew-symmetry of the overall interconnection operator. In
local coordinates, we have that

grad(f) = gij∂if
∂

∂qj
, div(v) =

1
√
g
∂i(

√
gvi),

div(σ) = gmk
(
∂iσim − Γk

iiσkm − Γk
imσik

) ∂

∂qk
,

grad(v) = (∂iṽj − Γk
jiṽk)dq

j ⊗ dqi.

Whereas, the skew-symmetric operator Sv is defined as the
(1,1) tensor field, or equivalently the vector-valued one-
form, with local expression

Sv = gmj∂i(gjkv
k)

∂

∂qm
⊗ dqi.

For the special case M = R3, we have that

Sv(δvHk) = curl(v)× δvHk, curl : X(M) → X(M),

where × denotes the cross-product of vector fields and
curl(v) := (�dṽ)� denotes the curl operator. Note that the
identification of the action of Sv with the cross-products
of vector fields is a generalization of the action of skew-
symmetric matrices on R3 with the cross-products of
three-dimensional vectors. Furthermore, the operator Sv

is valid for any n-dimensional manifold unlike the use of
the curl operator which is valid for n = 3 only.

Finally, the power balance encoded by the Stokes-Dirac
structure (24-28) is given by

Ḣk = −
∫

M

〈〈er, fr〉〉µvol +

∫

∂M

[e∂p · f∂p + e∂r(f∂r)]µ
∂M
vol ,

which is equivalent to (8) and the PDEs corresponding to
(24-28) can be derived similar to Sec. 3.5.

5. CONCLUSION

In this paper, we presented the port-Hamiltonian model
of incompressible viscous flow on a general Riemannian
manifold using both exterior calculus, vector calculus
and their respective coordinate-based expressions. While
both representations of the port-Hamiltonian model in
(9-13) and (24-28) are coordinate-free, equivalent, and
valid for general arbitrary coordinate systems, the former
representation using exterior calculus can be argued to be
more elegant due to the minimal number of operators used.
Furthermore, in the exterior calculus version one can see a
clear separation between topological and metric operators.

An advantage of the presented work is that it acts as a
guide for computational engineers and researchers focused
more on simulation and control. However, we hope with
this paper to increase the interest of such researchers,
more proficient in vector calculus than exterior calculus, in
developing structure-preserving discretization techniques
that mirror the continuous exterior calculus operators to
the discrete case. The interested reader can refer to Šešlija
et al. (2012, 2014); Nitschke et al. (2017); Jagad et al.
(2021) for this active area of research. Future work includes
simulation of the presented model using techniques that
preserve the pH structure of the system and comparing
the results to other techniques e.g. Mohamed et al. (2016).
Another possible direction is extending the fluid model to
magneto-hydrodynamic systems e.g. Siuka et al. (2010).
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curl(v) := (�dṽ)� denotes the curl operator. Note that the
identification of the action of Sv with the cross-products
of vector fields is a generalization of the action of skew-
symmetric matrices on R3 with the cross-products of
three-dimensional vectors. Furthermore, the operator Sv

is valid for any n-dimensional manifold unlike the use of
the curl operator which is valid for n = 3 only.

Finally, the power balance encoded by the Stokes-Dirac
structure (24-28) is given by
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Šešlija, M., van der Schaft, A., and Scherpen, J.M. (2012).
Discrete exterior geometry approach to structure-
preserving discretization of distributed-parameter port-
Hamiltonian systems. Journal of Geometry and Physics,
62(6), 1509–1531.

Siuka, A., Schöberl, M., and Schlacher, K. (2010). Hamil-
tonian evolution equations of inductionless magnetohy-
drodynamics. In Proceedings of the 19th International
Symposium on Mathematical Theory of Networks and
Systems–MTNS, volume 5.

van der Schaft, A. and Maschke, B.M. (2002). Hamilto-
nian formulation of distributed-parameter systems with
boundary energy flow. Journal of Geometry and physics,
42(1-2), 166–194.


