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A B S T R A C T   

The extraction of urban structures such as buildings from very high-resolution (VHR) remote sensing imagery has 
improved dramatically, thanks to recent developments in deep multimodal fusion models. However, Due to the 
variety of colour intensities with complex textures of building objects in VHR images and the low quality of the 
digital surface model (DSM), it is challenging to develop the optimal cross-modal fusion network that takes 
advantage of these two modalities. This research presents an end-to-end cross-modal gated fusion network 
(CMGFNet) for extracting building footprints from VHR remote sensing images and DSMs data. The CMGFNet 
extracts multi-level features from RGB and DSM data by using two separate encoders. We offer two methods for 
fusing features in two modalities: Cross-modal and multi-level feature fusion. For cross-modal feature fusion, a 
gated fusion module (GFM) is proposed to combine two modalities efficiently. The multi-level feature fusion 
fuses the high-level features from deep layers with shallower low-level features through a top-down strategy. 
Furthermore, a residual-like depth-wise separable convolution (R-DSC) is introduced to enhance the performance 
of the up-sampling process and decrease the parameters and time complexity in the decoder section. Experi
mental results from challenging datasets show that the CMGFNet outperforms other state-of-the-art models. The 
efficacy of all significant elements is also confirmed by the extensive ablation study.   

1. Introduction 

Accurate extraction and identification of manufactured structures in 
urban environments, especially buildings, from very high-resolution 
(VHR) images obtained by aerial or satellite sensors are essential for a 
variety of applications, like 3D modeling, infrastructure planning, and 
urban expansion analysis (Freire et al., 2014; Hoeser and Kuenzer, 2020; 
Wu et al., 2018; Xu et al., 2019). Due to the easy access and cost- 
effectiveness of VHR images in recent years, the extraction and seg
mentation of building objects from these images have been considered 
by researchers (Osco et al., 2021). 

Before applying deep learning methods in the community of photo
grammetry and remote sensing, various traditional methods are classi
fied into two groups depending on the dimensions and availability of the 
dataset: 3D point cloud-based methods and 2D image-based methods. 
The first category of these algorithms exclusively employs 3D Lidar 
point clouds or DSM data to extract building objects. Methods that use 
these types of data include threshold height information (Weidner, 
1997), edge detection for 2D line extraction (Hermosilla et al., 2011), 

planes analyses in the 3D space (Hu et al., 2004), and using 3D templates 
(Hammoudi and Dornaika, 2010). Nevertheless, the disadvantage of 
these algorithms is that these data can have the limitation of texture and 
inaccurate boundary information, introducing errors to the building 
extraction task. In the second category, various methods for extracting 
buildings through 2D VHR images are presented. For instance, the 
method based on energy minimization function like active contour 
model-based (Ahmadi et al., 2010), the process based on image seg
mentation like graph theory (Sirmacek and Unsalan, 2009), the method 
based on graphical models like Markov Random Fields (MRFs) (Ngo 
et al., 2017), object-based method (Mohammadi and Samadzadegan, 
2020; Tomljenovic et al., 2016), morphological index-based method 
(Huang and Zhang, 2012) and traditional machine learning methods 
(Jiang et al., 2018; Ozdarici-Ok et al., 2015; Pacifici et al., 2009; Zhang 
et al., 2015). Although these methods have made significant advances in 
the extraction of building objects from 2D VHR images, achieving ac
curate results in the extraction of buildings objects using only RGB 
spectral channels is challenging for various reasons: 1- Unlike the images 
used in computer vision applications, VHR images include vast areas 
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that cause variation scale and dimensions of buildings. 2- The limited 
spectral properties of VHR images cause a great variety within the low 
inter-class, and extensive intra-class features in buildings object. 3- Ex
istence of shadows, noises, obstructions, geometric deformation, and 
height displacement of high buildings. Accordingly, to overcome the 
problems mentioned, due to the development of airborne light detection 
and ranging (LiDAR) technology and the advancement of Image-Dense- 
Matching (IDM) (Salach et al., 2018), traditional fusion methods in 
building extraction from VHR images have been developed to combine 
spectral and height information (Guan et al., 2013; Vetrivel et al., 2015), 
that have shown better building extraction results rather than using a 
single modality (Zhang et al., 2020a). 

Recently, most segmentation methods of VHR remote sensing images 
use deep convolutional neural networks (DCNNs), which are generally 
superior in performance to traditional methods and have attained state- 
of-the-art results in challenging datasets. Building extraction from VHR 
remote sensing images is similar to semantic segmentation task devel
oped in the computer vision community, and it is aimed to label the 
entire pixels of an image as building or non-building classes. Several 
recent studies have also applied DCNN-based techniques specifically to 
extract buildings automatically from remote sensing images (Feng et al., 
2020; Hosseinpoor and Samadzadegan, 2020; Ji et al., 2019; Ma et al., 
2020; Maggiori et al., 2017; Maltezos et al., 2019; Pan et al., 2019; Shao 
et al., 2020; Wu et al., 2018; Xu et al., 2018; Zhang et al., 2020b; Zhang 
and Wang, 2019). Most of the above research used the idea of fully 
convolutional networks (FCN) (Long et al., 2014) for segmentation. In 
FCN, fully connected layers of DCNNs are replaced by standard convo
lution layers. To reduce the trade-off between recognition and correct 
localization, (Maggiori et al., 2017) created a two-scale neuron module 
in an FCN. (Xu et al., 2018) merged the new DCNN based on FCN and 
guided filtering to further refine the extraction results of buildings. (Wu 
et al., 2018) proposed a multi-constraint FCN to perform end-to-end 
extraction of building from aerial images. (Zhang and Wang, 2019) 
proposed a network based on the combination of atrous convolution and 
dense connectivity to increase the receptive field. (Ma et al., 2020) 
proposed GMEDN, which uses a local and global encoder based on the 
VGG-16 network. In (Shao et al., 2020), The prediction and the residual 
refinement module are introduced. The prediction module introduces 

atrous convolution of different dilation rates to extract more global 
features. These advanced DCNNs, on the other hand, are typically 
limited to three-channel RGB images, which cannot be easily used for 
multimodal data. For more accurate and reliable building extraction, a 
comprehensive deep model integrating VHR and DSM data is required. 
As indicated in Fig. 1, most DCNN-based fusion algorithms may be 
categorized into three types, depending on where multiple modalities 
are fused (Zhang et al., 2021). 

Early or data-level fusion approaches (Fig. 1a) combine spectral in
formation such as red, green, blue, and near-infrared spectrum with 
structural information such as DSM as the input to a conventional 
unimodal or multimodal network. In (Nahhas et al., 2018) utilized 
object-based analysis with an autoencoder-based dimensionality 
reduction. The output features transform into high-level features by a 
DCNN, used to classify objects into buildings and background. Liu et al. 
(2020) developed a trainable enhanced U-Net model (Ronneberger 
et al., 2015) for building extraction that combines high spatial resolution 
unmanned aerial vehicle (UAV) Images with DSM. In (Huang et al., 
2019), the author introduced a gated residual refinement network 
(GRRNet), which concatenates raw data from different modalities into 
several channels. The encoder element of the GRRNet is composed of 
this modified residual network, and gated feature labeling (GFL) is 
employed to improve segmentation results. Data-level fusion methods 
produce incorrect or irrelevant features in network training because 
such methods may not efficiently utilize the complementary nature of 
the modalities. Also, it is impossible to initialize the proposed models 
with pre-trained DCNNs models in this method. 

In late or decision-level fusion methods (Fig. 1b), spectral and 
structural data are sent to the two different encoder-decoder network 
streams and predicted classes fused in the final stage (Marmanis et al., 
2018; Piramanayagam et al., 2018). This fusion method may provide 
more scalability and flexibility than the early fusion method. However, 
there is an inadequate cross-modal correlation between the corre
sponding features in the two streams. Middle or feature-level fusion 
methods (Fig. 1c) that spectral and structural information are sent to 
separate identical encoders for each modality, and the lateral features of 
two encoders are merged in the cross-modal using concatenation oper
ation or element-wise summation at different scales (Audebert et al., 

Fig. 1. Different methods for multimodal deep learning semantic segmentation. (a) Early fusion, (b) Late fusion, (c) Middle fusion. Where ‘+’ and ‘C’ represents the 
element-wise summation and concatenation operation, respectively. ‘T’ can denote each of ‘C’ or ‘+’. 
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2018; Piramanayagam et al., 2018; Sun et al., 2018; Xu et al., 2019; 
Zhang et al., 2020a; Zhang et al., 2017a). For instance, FuseNet (Haz
irbas et al., 2017) uses the SegNet (Badrinarayanan et al., 2017) archi
tecture to meaningfully segment RGB-D data by incorporating a cross 
fusion algorithm into the encoder section. (Piramanayagam et al., 2018) 
introduced a DCNN based on FCN-32 to merge features from multi- 
sensor for semantic segmentation tasks. The author combines two mo
dalities in the different convolutional layers. The results show that the 
early layer fusion, specifically after three layers achieves better results 
than a decision level fusion. (Zhang et al., 2017a) conducted a thorough 
analysis of the sensitivities and contributions of each layer in FCN, 
resulting in the creation of an optimal layer fusion architecture. 
(Audebert et al., 2018) applied two techniques for fusing multi-sensor 
features. In cross-modal fusion, they use the FuseNet model, and for 
late fusion, they use residual correction. (Zhang et al., 2020a) proposed 
a feature-level fusion network based on a hybrid attention-aware 
mechanism (HAFNet). They train both individual and cross-modal fea
tures using RGB image and DSM data. They also develop a multimodal 
attention-aware fusion block to solve the fusion problem of multiple 
modalities in the cross-modal stream (Att-MFBlock). In the field of 
computer vision, (Liu et al., 2020) presented an adaptive gated fusion 
generative adversarial network (GAN). The generator part of the 
network adopts two RGB and depth data encoder-decoder networks, and 
the RGB stream feature guides depth stream to achieve cross-modal 
fusion. The results of these previous studies show that the combina
tion of height information with DCNN models has improved the building 
extraction accuracy (Zhang et al., 2021). However, most of the previous 
feature-level fusion methods contain complex structures, and they are 
based primarily on the same and straightforward techniques of 
weighting the corresponding features from the RGB and DSM stream. 
Therefore, useful information in the DSM data is not thoroughly utilized. 
Furthermore, as an influential factor in extracting building objects, little 
attention has been paid to improving the encoder and decoder sections 
in recent fusion models. 

To overcome the problems mentioned in previous researches to 
extract complex buildings from VHR images, this research proposes a 
novel cross-modal gated fusion network (CMGFNet). The primary task of 
the proposed network is how to fuse RGB and DSM features in cross- 
modal conduction. Rather than a straightforward concatenation or a 
summation fusion with equivalent weights for different modalities, a 
gated fusion module (GFM) is introduced to adaptively learn the 
discriminative features by weighting each modality and removing 
irrelevant parts. On the other hand, many DCNNs offered for automatic 
building extraction are built on the encoder-decoder architecture. Due 
to the unique structure of this type of architecture, the features extracted 
in the deep layers (i.e., high-level features) have high semantic infor
mation but instead low spatial resolution. The features in the shallower 
layers (i.e., low-level features) have high spatial information and 
contain low semantic information of building features. The information 
on these features has been lost, owing to the up and down sampling 
process in the encoder-decoder networks. In this regard, the multi-level 
feature fusion is proposed, in which high-level features with high se
mantic definitions introduce into low-level features. Therefore, how to 
preserve semantic information in the primary layers for proper up- 
sampling is the second goal of this study. As a third goal, a new 
decoder block based on residual pyramidal blocks and depth-wise 
separable convolution are proposed. This block is called residual-like 
depth-wise separable convolution (R-DSC). R-DSC is used to up- 
sample the high-level semantic features of building objects in both 
RGB and cross-modal streams. The R-DSC architecture is critical for 
retaining, distributing, and decreasing the number of decoder parame
ters, so it is advantageous to improve the efficiency of building extrac
tion from VHR remote sensing images and DSM data. The following are 
the main contributions of this research:  

• In this paper, the cross-modal gated fusion network (CMGFNet) is 
presented as a method for end-to-end building extraction from VHR 
remote sensing images and DSM data.  

• Analysing how the proposed GFM, multi-level feature fusion, and R- 
DSC affect the refinement of multimodal data fusion and building 
extraction results.  

• Comparing the proposed CMGFNet with other state-of-the-art 
models in three public urban scenes. 

The remainder of this paper is organized as follows. The CMGFNet 
method is fully described in Section 2. Then the detail of the imple
mentation and ablation experiments are dedicated to Section 3. Finally, 
the discussion and conclusion of this paper are in Sections 4 and 5. 

2. Proposed method 

Fig. 2 shows the workflow for extracting buildings from VHR remote 
sensing images and LiDAR-derived DSM data using the cross-modal 
gated fusion network (CMGFNet) architecture. The proposed network 
is based on a gated fusion module (GFM) to fully use each modal feature 
from multimodal data. First, red (R), green (G), and blue (B) bands of 
VHR image and single-band DSM data are fed into the two separate 
network streams. Each stream takes the ResNet-34 network (He et al., 
2016) as the backbone network in the encoder part. Then, the lateral 
features of each ResNet-34 block are combined into the decoder stream 
and at least generate the RGB prediction map (Prgb), DSM prediction 
map (Pdsm), and fused prediction map (Pfusion). The decoder section is 
based on depth-wise separable convolution (DSC) and residual-like 
convolutional module to process deep prediction information. This 
decoder module is called R-DSC in the paper. First of all, the general 
architecture of the CMGFNet is presented, then the component shown in 
this architecture describes individually. 

2.1. Network architecture 

The CMGFNet adopts two separate streams of the encoder-decoder 
network. The architecture of ResNet-34 (He et al., 2016) is chosen for 
extracting deep features of the building in both encoder branches. The 
last fully connected layers of this architecture are discarded for dense 
pixel prediction. One of the advantages of the proposed model is using 
other networks similar to the ResNet-34 in the encoder section. Deep- 
residual networks have been demonstrated to reduce gradient degra
dation problems in model training (He et al., 2016) and are accurate for 
the localization of building features (Audebert et al., 2018). In the 
CMGFNet, RGB and DSM streams have the same network settings, 
except that the first convolutional block on the DSM branch has only one 
channel because the DSM input is presented as one channel. For the RGB 
stream, at the end of the encoder part, after the pooling layer, the feature 
is sent to the R-DSC module. The lateral output of the Resnet-34 model 
from the RGB stream is cascaded with the up-sampled result. Once 
again, these cascaded features are sent to the R-DSC module, and in the 
same way, the process continues. 

This process differs from the RGB decoder stream for DSM decoder 
streams. Since the features derived from the DSM stream are noisy and 
not clear enough, the feature of the RGB encoder is employed to take 
care of the DSM feature disadvantage. This is done by fusing lateral 
features from the RGB and DSM streams using the proposed GFM. The 
aim of the GFM is that it uses the representation of RGB and DSM fea
tures to understand which of the modalities should affect the prediction. 
In practice, the lateral features of RGB and DSM stream are used by the 
multi-level features fusion method. This method produces proper high- 
resolution semantic instruction by fusion of deeper layers with high- 
level features and shallower low-level features derived from the 
encoder part of the model. 
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2.2. Two-Stream feature extraction 

The CMGFNet utilizes two encoder-decoder networks to learn the 
deep representation of RGB and DSM features. In particular, the ResNet- 
34 structure is employed in the encoder parts. The ResNet-34 model first 
uses a convolution block with 7 × 7 kernels, followed by the four re
sidual blocks. In Fig. 2, the blocks of ResNet-34 are named Conv(p-l). P 
denotes the number of blocks, and l is equal to the number of residual 
convolution layers. Each residual convolution layer is composed of two 
convolutions with 3 × 3 kernels, and by using a skip connection, the 
input of the block is summed into the output feature. A pre-trained 
model on the ImageNet dataset is used to initialize the weights of the 
encoder component of the convolution operation. Let Ergb and Edsm 

denote side-output encoder features for both RGB and DSM streams. If 
the input RGB and DSM Image are all cropped and resized into W × H, 
the dimension for both Ei

rgb and Ei
dsm from the first to fifth convolution 

block (i ∈ {1, 2, 3, 4, 5}) are (w/2× h/2), (w/4× h/4), (w/8× h/8), 
(w/16× h/16), and (w/32 × h/32) respectively. The E6

rgb and E6
dsm are 

related to the pooling layer and have (w/64 × h/64) dimensions. For 
decoder stream, inspired by (Zhang et al., 2018), used to up-sample 
every input features map by cascading them with the fusion of high- 
level lateral encoder features through the skip network connection. In 
other words, the fusion of high-level lateral features could be enhanced 

by incorporating more concepts of building objects into low-level fea
tures (Liu et al., 2020). The following formula is provided with the 
multi-level feature fusion for the RGB encoder of the network. Let Dm

rgb 

denote the decoder of RGB stream, then we have: 

Dm
rgb =

⎧
⎪⎨

⎪⎩

(
rm

m+1Em+1
rgb + rm

m+2Em+2
rgb

)
©R − DSC

(
Dm+1

rgb

)
, m = 1,⋯4

(
rm

m+1Em+1
rgb

)
©R − DSC

(
Em+1

rgb

)
, m = 5

(1)  

where rn’
n , (n > n’), denote the weight of short connection from RGB 

side-output n to side-output n’, R-DSC(.) represents the processed 
feature by R-DSC module, and © indicates the feature concatenation 
operation. Concatenation operation combines high-level and low-level 
features and expands the feature channel space by allowing the subse
quent R-DSC module to learn additional features dependent on both 
features. Because the features produced from DSM encoders have little 
edge information, this work designs the straightforward method based 
on the GFM for fusing the lateral feature from the RGB encoder to the 
corresponding lateral feature of the DSM encoder. Similar to the RGB 
decoder, the multi-level feature fusion is used for both the RGB and DSM 
encoder feature before applying cross-modal fusion. Let Dm

dsm represent 
the decoder output of the cross-modal fusion, then the decoder feature of 
the DSM stream can be expressed mathematically as:  

Fig. 2. Illustration of the CMGFNet architecture.  
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where ln’
n , (n > n’), denote the weight of short connection from DSM 

side-output n to side-output n’, GFM (., .) represent the gated fusion 
module which takes two side-output feature and fuses them to obtain 
better feature representation. 

Finally, the prediction map of building extraction from the RGB and 
DSM streams is calculated according to the following equation: 

Prgb = sig
(

conv2
1×1D1

rgb

)
(3)  

Pdsm = sig
(
conv2

1×1D1
dsm

)
(4)  

where the Prgb, and the Pdsm, represent the RGB and DSM prediction map 
respectively, furthermore, the fused prediction map can be express as: 

Pfusion = sig
(

conv2
1×1(GFM(D1

rgb,D
1
dsm

)))
(5) 

convc
k×k(.) is applied to reduce the dimensions of the features chan

nels. ‘c’ represents the number of output channels, and convolution 
operation uses k × k kernel to obtain c-channel features. The sigmoid 
function for constructing a prediction map is denoted by sig (.). 

2.3. Gated fusion module (GFM) 

Unlike conventional methods for feature fusion in the cross-modal 
stream, which primarily are based on elementwise summation and 
concatenation operation, the proposed fusion module in this work is 
based on a gated fusion module (GFM). This module is influenced by 
(Arevalo et al., 2020) to calculate the utility of each corresponding 
lateral feature from RGB and DSM encoder and accumulates information 
accordingly. 

Fig. 3 illustrates the structure of the GFM; consider Frgb and Fdsm 

represent the output of the feature map on the RGB and DSM decoder, 
respectively. The number of feature channels for each modality is the 
same. First, the features are concatenated and produced fused feature 
map Ffusion. Then the convolution operation with 1 × 1 kernel, Wz, is 
used to calculate how modalities correlate with each other and decrease 
the dimension of the feature channels. At least, the sigmoid function is 
employed to obtain the weighed probability matrix, G. 

Ffusion = Wz
(
Frgb©Fdsm

)
(6)  

G = sig
(
Ffusion

)
(7)  

In Eq. (6), © denotes the feature concatenation operator, and in Eq. (7) 
sig (.) represents the sigmoid function. Let Grgb = G and Gdsm = 1-G 
represent the weighted gates of the RGB and DSM modalities. So the gate 
fusion map, Fgate-fusion, of the GFM is given by: 

Fgate− fusion =

(

frgb ⊗Grgb
)

©
(

fdsm ⊗Gdsm
)

=

((

frgb ⊗G
)

©
(

fdsm ⊗

(

1 − G
))) (8)  

where ⊗ denotes Hadamard product. the Eq. (8) demonstrates in a 
convex combination and each modality can have different weights. 

2.4. Residual depth-wise separable convolutional (R-DSC) 

This work proposes a residual depth-wise separable convolutional 
(R-DSC) module, which is based on residual connection unit (RCU) (He 
et al., 2016) and depth-wise separable convolutional (DSC) operation 
(Chollet, 2016) for the decoder section of the CMGFNet. Combining 
original and residual features be beneficial for the various networks in 
deep learning tasks. Different versions of the residual connection unit 
consisting of different configurations of convolution layers, rectified 
linear unit (ReLU) (Nair and Hinton, 2010), and batch normalization 
(BN) (Ioffe and Szegedy, 2015) have been proposed in recent years. 
Contrary to the original RCU presented in (He et al., 2016), this work 
uses the idea of pyramidal RCU (Han et al., 2016). The modification in 
the location of ReLU and BN is shown to improve the training models 
and achieve better results in the computer vision tasks. It performs the 
BN before the first standard 3 × 3 convolution layer, as shown in Fig. 4. 
After applying the up-sampling and residual function, the output feature 
has a higher spatial resolution, but the number of feature channels is 
lower than the input feature channel. As a result, it is not possible to use 
the residual connections directly for up-sampling features in the 
decoder. Therefore, the convolution operation with 1 × 1 kernel is 
applied to convert the input features to the desired number of channels 
and fuses its result by element-wise summation with the residual unit. 

In addition, the original standard convolutional layer is changed 
with depth-wise separable convolution to minimize the computation 
cost and parameters of the model. There are two types of convolutions in 
this process: depth-wise and point-wise convolutions, as shown in Fig. 5. 
The standard convolution is used for each channel of the input features 
in depth-wise convolution individually. In point-wise convolutions, a 
standard 1 × 1 convolution operation performs on the output feature 
map from the depth-wise convolution. 

The presented R-DSC is important from two points of view. From one 
side, by retaining more features in the pyramidal RCU, R-DSC enhances 
and keeps more original features. R-DSC is used to each step of the 
decoder network of both RGB and DSM stream to rebuttal information. 
The high-level feature of the encoder parts of the CMGFNet is processed 
by R-DSC, and the information is more maintains and passed to primary 
layers. Additionally, improved features at various scales improve the 
building extraction performance by increasing the diversity of original 
features. On the other hand, in pyramidal RCU, the standard convolution 
module is replaced with depth-wise separable convolution, which re
duces the number of parameters in our network. According to (Kaiser 
et al., 2017), the parameters and calculation cost of the depth-wise 
separable convolution perform (1/n+1/k2) times lesser than a stan
dard convolution. Where k denotes the kernel size of the depth-wise 
convolutions, and the number of output channels from the point-wise 
convolutions is given by n. 

2.5. Loss function 

In this research, the loss function for the CMGFNet model is divided 
into two components: the binary cross-entropy (BCE) loss (Lbce), and the 
dice loss (Ldice). It can be expressed as: 

Loss(p, p̂) = αLbce(p, p̂)+ βLdice(p, p̂) (9)  

p and p̂ denote the ground-truth map and prediction map, and the pa
rameters α and β represent the weight coefficients of Lbce and Ldice, 

Dm
dsm =

⎧
⎪⎨

⎪⎩

GFM
(

rm
m+1Em+1

rgb + rm
m+2Em+2

rgb , lm
m+1Em+1

dsm + lm
m+2Em+2

dsm

)
©R − DSC

(
Dm+1

dsm

)
, m = 1,⋯, 4

GFM
(

rm
m+1Em+1

rgb , lm
m+1Em+1

dsm

)
©R − DSC

(
Em+1

dsm

)
, m = 5

(2)   
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respectively, to show their importance. These parameters are set to 1 in 
this study. The purpose of this weighting is to ensure the equal role of 
each loss function in the process of network training. Now, each of these 
cost functions, Lbce and Ldice, will be examined. The difference between 
two probability distributions for a random variable is measured by the 
cross-entropy loss function (Ma, 2020). This loss function is commonly 
utilized in pixel-level segmentation and classification objectives. The 
RGB, DSM, and fused prediction maps are all monitored simultaneously 
to completely leverage the information of various modalities. Accord
ingly, Lbce consists of three separate parts. The BCE loss for RGB stream, 
The BCE loss for DSM stream, and The BCE loss for fused stream. 

Lbce(p, p̂) = Lrgb(p, p̂)+Ldsm(p, p̂)+Lfused(p, p̂) (10) 

For each loss function the BCE loss is defined as: 

Li(p, p̂) = − (plog(p̂i) + (1 − p)log(1 − p̂i)) (11) 

The subscript ‘i’ indicates a modality, which could be RGB, DSM, or 
final fused features. The number of background pixels in VHR remote 
sensing images is usually more than the number of building objects. As a 
result, while employing simply BCE loss in the training phase, there is a 
class-imbalanced problem in the building extraction task. To overcome 
this problem, another loss function based on dice coefficient in addition 
to the BCE loss function is used in equation 8. The well-known dice 
overlap coefficient is a metric used to determine the similarity between 
two images (Milletari et al., 2016). This coefficient was adopted as a 
regional loss function and outperform BCE loss in class-imbalanced 
problems. The calculation of Ldice is defined as follows: 

Ldice = 1 −
2
⃒
⃒p ∩ p̂fused

⃒
⃒+ ε

|p| +
⃒
⃒p̂fused

⃒
⃒+ ε

(12)  

where ŷfused denotes fused prediction map. Furthermore, ε is summed to 
the denominator and numerator to ensure that the loss function is not 
undefined in the edge case. 

3. Experiment 

3.1. Dataset 

Three datasets with high spatial resolution have been used to eval
uate the CMGFNet model in this research. An essential feature of these 
datasets is the availability of DSM data along with VHR images. Potsdam 
and Vaihingen datasets, which are provided by Commission II/4 of the 
ISPRS1. The third dataset2 is published by United States Geological 
Survey (USGS) and named the USGS dataset in this paper. Fig. 6 shows 
examples of images related to the training set of these datasets. 

3.1.1. Potsdam dataset 
The Potsdam dataset consists of 38 true orthophotos (TOP) with 

corresponding DSM patches. Both the TOP and the DSM have a spatial 
resolution of 5 cm and 6000 × 6000 pixels. These patches are presented 
in two modes, including red (R), green (G), blue (B) bands (Potsdam- 
RGB), and near-infrared (NIR), red (R), green (G) bands (Potsdam- 
IRRG). The original ground-truth contains six major land cover classes: 
impervious surface, buildings, low vegetation, trees, cars, and clutter. In 
this paper, the foreground and background classes are used to classify 
the building and the rest of the objects, respectively. According to the 
data provider, the training set consists of twenty-four patches, with the 
remaining patches serving as the test set. 

3.1.2. Vaihingen dataset 
In the Vaihingen dataset, each patch is cut from a sizeable TOP 

associated with the town of Vaihingen (Germany). The dimensions of 
the patches are not equal to each other and are approximately 2000 ×
2500 pixels in size, with a spatial resolution of 9 cm. Each patch contains 
only three bands (Vaihingen-IRRG): near-infrared (NIR), red (R), and 
green (G). In addition, a corresponding digital surface model is provided 
for each image patch. The classes in the ground-truth are the same as the 
Potsdam dataset. According to the data provider, sixteen patches from 
all patches are used as the training set and the remaining patches for the 
test. 

3.1.3. USGS dataset 
The USGS dataset includes high-resolution orthophotos with spatial 

resolutions ranging from 0.15 m to 0.3 m, LiDAR point clouds, and 
ground-truth building masks. Like research (Huang et al., 2019), four
teen orthophoto patches related to five cities are selected in the United 
States. The dimensions of the patches are 5000 × 5000 pixels, and it has 
near-infrared (NIR), red (R), green (G), and blue (B) bands. In this paper, 
only RGB bands (USGS-RGB) are used. DSM data is prepared from LiDAR 
points cloud with LasTools software in the ‘.CSV’ format by the data 
provider. Then, this height information in the ‘.CSV’ format is rasterized 
to the form of patches in the ‘.tiff’ format. Ground-truth data related to 
buildings are extracted and processed from Open Street Maps (OSM) 
service and are resampled to their original resolution. One patch from 
each city is selected as test data, and the remaining patches are used in 
network training. According to the report (Bradbury et al., 2016), the 
selected data from different cities have a spatial resolution of 30 cm with 
various changes in altitude information. This diversity is evident in the 
dimensions of buildings and their density in urban and non-urban en
vironments. Therefore, the USGS data are ideal for evaluating and un
derstanding the power of the proposed method. 

3.2. Evaluation metrics 

Deep learning models are typically evaluated for quality and per
formance by analyzing their performance in test data. In this paper, the 

Fig. 3. The structure of the Gated Fusion Module.  

1 http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam. 
html  

2 https://doi.org/10.6084/m9.figshare.3504413. 
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Fig. 4. Various types of decoder blocks. ‘BatchNorm’ denotes a BN layer, and The term ‘shortcut’ refers to a 1 × 1 convolution layer that converts the number of 
feature channels in the input to the desired number of channels. (a) Conventional decoder block without any RCU (CD). (b) Decoder block based on the original 
residual unit (RCUD), (c) Decoder block based on the original pre-activation RCU (pre-RCUD), (d) Decoder block based on the pre-activation RCU with a BN layer 
after the last convolution operation and removing the first ReLU (modified pre-RCUD), and (e) The proposed decoder block based on (d) witch traditional 
convolution layer replaced with depth-wise separable convolutional (R-DSC). 
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proposed network is evaluated using three popular metrics: overall ac
curacy (OA), F-score, and intersection over union (IoU). Typically, the 
overall accuracy, also known as pixel accuracy, is used to evaluate 
segmentation performance. This metric is the ratio of the number of 
successfully predicted pixels to the total pixels in all patches of the test 
datasets, and it is calculated as follows: 

OA =
TP + TN

TP + TN + FP + FN
(13) 

TP, TN, FP, and FN denote true-positive, true-negative, false- 
positive, and false-negative, respectively. The Precision measures the 
accuracy for the minority class (building object class) and focuses on the 
correct positive predictions out of all positive predictions. Unlike the 
Precision, the Recall gives an offer for missing positive predictions. F- 

Fig. 5. The architecture of depth-wise separable convolution. There are two phases to this procedure: separable and 1 × 1 convolution.  

Fig. 6. Examples for the training image sets, the corresponding DSM, and the ground-truth, respectively. The ground-truth of the Potsdam and Vaihingen challenge 
includes six categories, in which only the building objects are used in this research, and the rest are considered the background. 
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score offers the harmonic mean for both Precision and Recall: 

Precision =
TP

TP + FP
(14)  

Recall =
TP

TP + FN
(15)  

F − score =
2 × (Precision × Recall)

Precision + Recall
(16) 

The IoU, commonly known as the Jaccard index, is a metric that 
measures how much the ground-truth map and prediction result over
lap. IoU is defined as follows: 

IOU
(
P p,P gt

)
=

⃒
⃒P p ∩ P gt

⃒
⃒

⃒
⃒P p ∪ P gt

⃒
⃒

(17)  

P p represents the set of prediction pixels, P gt denotes the set of ground- 
truth pixels, and | ⋅ | represents the number of members in a set. ‘∪’ and 
‘∩’ indicate the union and intersection of two sets, respectively. 

The graph of Precision-Recall (PR) is presented to compare the 
output of binary segmentation in different state-of-the-art models. The 
PR curve depicts the trade-off between Precision and Recall rates, with 
varying thresholds of probability. The prediction map is binarized, with 
thresholds ranging from 0 to 1, and then compared to the associated 
ground-truth to determine Precision and Recall values. Better model 
performance is indicated by a larger area under the PR curve. 

3.3. Method implementation 

In this paper, The popular Pytorch framework is used in all experi
ments (Paszke et al., 2019) on a system with a single Tesla K80 GPU. 
Data augmentation techniques are instrumental in avoiding the over
fitting problem and are used to increase the training samples artificially 
when reading them from memory in each epoch. These methods include 
rotating input image, DSM and ground-truth randomly in the step of 90◦

both horizontal and vertical directions at 90◦ from 0◦ to 270◦, and then 
randomly flipped it vertically and horizontally, respectively. The 
training dataset is cropped to 640 × 640 pixels due to the original size of 
the input data and the limitation of GPU memory. The network training 
procedure uses about 80% of each dataset at random, while the network 
evaluation step uses the remaining 20%. AdaMax optimizer, known as a 
type of Adam optimizer (Kingma and Ba, 2014), with a weight decay of 
0.0009, an initial learning rate of 0.001, is used to train the network. A 
‘poly’ policy is used to optimize the learning rate of the networks. In this 

method, the initialized learning rate is multiplied by 
(

1 − iter
max− iter

)power

. 

In this experiment, the ‘power’ is set to 0.3, and the ‘max-iter’ can be 
computed by multiplying the number of epochs with whole batches in 
each dataset. The parameters of the pre-trained ResNet-34 network are 
used to configure for both the RGB and DSM encoder in the CMGFNet. 
The remaining parameters in the model are initialized using the methods 
described in (He et al., 2016). The training continues until validation 
loss converged and the best result of the parameter in each iteration is 
stored. The patches with 50 percent overlap are generated for each test 
in the inference phase without data augmentation. In addition, for the 
segmentation results, no post-processing is implemented. The final 
result is acquired by integrating all probability maps, and the mean 
values are used to generate the final prediction values. The BCE loss 
value in each of the training and validation stages is shown in Fig. 7 for 
three datasets. In each epoch, the entire dataset is run, and the training 
speed is about 3.07 s per batch. 

3.4. Ablation experiment 

The efficiency of the CMGFNet for building extraction is investigated 
in this section. We perform ablation experiments by removing and 
changing each critical component of the network independently. The 
CMGFNet is named ‘Model’ to make it easier distinguishing between the 
models that are compared to it. At First, the structure of cross-modal 
fusion is examined. Then the effect of different fusion methods in 

Fig. 7. Training and validation loss of the CMGFNet method.  
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cross-modal, multi-level feature fusion, the R-DSC module, and the 
combination of loss functions are investigated. Note that all settings and 
metadata for training and validation processes are fixed in all ablation 
experiments. 

3.4.1. Cross-modal fusion 
The CMGFNet is compared to two models with popular structures in 

this section to demonstrate the capability of cross-modal fusion. In the 
first comparison, The DSM stream is completely removed from the 
CMGFNet, and the new model is trained based only on RGB images. This 
model is denoted as ‘Model–DSM’. The purpose of this proceeding is to 
investigate the role of using DSM data in the final results of building 
extraction. In the second comparison, the model is trained based on two 
separate RGB and DSM streams without any feature-level fusion in cross- 
modal. Then the output feature from the last layer of each RGB and DSM 
stream is fused at the decision level. This model is denoted as ‘Mod
el–CM’, which is meant the CMGFNet model with no cross-modal fusion. 
The last model tested in this section is based on the original CMGFNet 
model (denoted as ‘Model’) that RGB and DSM features are fused in 
cross-modal with GFM block. 

The BCE loss is used in all experiments of the network structure to 
ensure equity. As shown in Table 1, the comparison between the third, 
fourth and fifth columns indicates that the ‘Model’ improve the result of 
F-score and IoU metrics in all three datasets significantly. The ‘Mod
el–DSM’ does not perform as well as the other models. This model does 
not consider the DSM feature, which helps analyze the building object 
against a complex context. The improvement in the IoU score of the 
‘Model’ compared with the ‘Model–DSM’ are 2.92% (Potsdam-RGB), 
3.25% (Vaihingen-IRRG), and 6.84% (USGS-RGB). The results in the 
USGS dataset are better improved than the Potsdam and Vaihingen 
dataset by using the DSM data. The reason for this is that the USGS 
dataset has a lower spatial resolution than the others, and smaller 
buildings are extracted with lower accuracy in ‘Model–DSM’. The 
comparison of ‘Model–CM’ and ‘Model’ reveals that the model employs 
a cross-modal fusion in the DSM decoder from the RGB encoder out
performs the model that does not utilize a cross-modal module. The 
improvement in the IoU score of ‘Model’ compared with ‘Model–CM’ are 
1.41% (Potsdam-RGB), 1.47% (Vaihingen-IRRG), and 2.1% (USGS- 
RGB). These encouraging results show that guiding the side-output 
feature from the RGB stream is essential. 

To better determine the practicality of the suggested strategy, the 
building extraction results of several methodologies are evaluated from 
qualitative perspectives. Fig. 8 shows the building extraction results of 
different methods for three datasets. The proposed ‘Model’ obtained the 
most visually consistent results when compared to the ground-truth 
building maps. The ‘Model’, compared with two other models, is 
robust for extracting buildings in various complex scenes, significantly 
when the height parameter of non-building objects influences the final 
results, as shown in Fig. 8. For instance, in the test image selected from 
the Vaihingen-IRRG dataset in the first row of Fig. 8, a sports field with a 
texture similar to the roof of buildings can be seen in the red square. In 
the ‘Model–DSM’ method, since the DSM data is not used, the model 
cannot distinguish the sports field from building objects only by relying 

on its texture information. Similar behaviours with the increase in the 
complexity and structure of buildings are observed in selected images 
from Potsdam and USGS datasets. This inability to detect the building 
from non-building objects is not seen in the other two methods in which 
DSM data are used. The proposed ‘Model’, on the other hand, out
performs the ‘Model–CM’ in terms of recognizing buildings and their 
boundary location. The reason for this is that in the ‘Model–CM’, due to 
the low quality of the DSM information, the generated features in the 
DSM stream without fusion of the side-output features from RGB stream 
do not provide convenient features for improving the extraction of 
buildings. Based on this experience, it can be understood the importance 
of using DSM information and fusion with an RGB feature in cross-modal 
to achieve a better model. Close-ups of the selected regions in the tested 
images are shown in Fig. 9. These highly detailed results indicate the 
high power of the CMGFNet method for extracting the building object 
from VHR remote sensing images. 

3.4.2. Effects of GFM on cross-modal fusion 
This section seeks to confirm the practicality of the proposed GFM in 

cross-modal fusion. Besides GFM, two traditional approaches are 
employed to investigate the fusion of RGB and DSM features in cross- 
modal based on element-wise summation and channel concatenation. 
The behaviour of these two operators is similar to each other. However, 
if the two modalities are not very closely related, concatenating might be 
appropriate. The sixth to eighth columns of Table 1 show the quantita
tive results of cross-modal fusion. The SUM and CAT subscriptions in the 
sixth and seventh column model names denote that the RGB and DSM 
feature fusion methods are based on element-wise summation and 
concatenation, respectively. The results show a significant boost in 
evaluation metrics if GFM is used in the proposed model. However, the 
results of the two models, ‘ModelSUM’ and ‘ModelCAT’, are slightly 
different from each other. 

For a deeper look at GFM actions, the colour information of the 
square part of the RGB image is hidden. This part includes building area 
and background information (Fig. 10c). The prediction maps are shown 
in Fig. 10d to Fig. 10g. In Fig. 10d, the prediction map is related to using 
the original image in the CMGFNet model. Fig. 10e and g represent the 
prediction maps of the ‘ModelSUM’ and ‘ModelCAT’, respectively. Since 
RGB information is not available in the hidden part, the fusion of DSM 
data in this part based on an element-wise summation and concatena
tion methods has not helped to distinguish building areas from the 
background. Fig. 10g represents the prediction map of the proposed 
method. The visual result shows the power of GFM to determine the 
building from the background. This module produces features that 
contain more discriminative information about building objects. In 
addition, the G matrix, according to Equation 6, which is considered the 
weight matrix, is shown in Fig. 10h. The weight matrix is related to the 
final GFM in the proposed method, and each element of it is averaged 
over the entire weight tensor. It can be concluded from the results that 
the weights in the RGB features are low just in the hidden area and high 
in the remainder of the area. On the contrary, for the hidden area, the 
weights for the DSM features are increased. Eventually, these weights 
are multiplied by the RGB features to decrease the contribution of the 

Table 1 
Evaluation metrics score (%) of ablation experiment for different models and losses.  

Datasets Metrics Model–DSM (lBCE)  Model–CM (lBCE)  Model–SC (lBCE)  ModelSUM (lBCE)  ModelCAT (lBCE)  Model (lBCE)  Model (lBCE+lDice)

Potsdam-RGB OA  97.48  97.89  98.22  98.18  98.21  98.24  98.36 
F-score  96.34  96.99  97.49  97.44  97.48  97.37  97.50 
IoU  89.76  91.27  92.66  92.51  92.63  92.68  92.80 

Vaihingen-IRRG OA  96.03  96.55  96.91  96.81  96.90  96.96  96.91 
F-score  94.57  95.26  95.78  95.64  95.71  95.84  95.96 
IoU  85.28  87.06  88.38  88.01  88.15  88.53  88.84 

USGS-RGB OA  94.97  95.86  96.26  95.97  96.07  96.27  96.32 
F-score  90.61  92.41  93.12  92.64  92.76  93.18  93.24 
IoU  72.95  77.69  79.55  78.55  78.67  79.79  79.96  
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Fig. 8. Selected images from each dataset and the results of building extraction produced by different models. (a) Original image with the corresponding label. (b) 
DSM. (c) Model–DSM. (d) Model–CM. (e) CMGFNet (proposed). TP, FP, and FN are marked in white, cyan, and pink, respectively. The red rectangles represent the 
selected regions for close analysis in Fig. 9. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Close-up views of results obtained using various models. The images and results in (a–e) are a subset of the regions highlighted in Fig. 8. (a) Original image 
with the corresponding label. (b) DSM. (c) Model–DSM. (d) Model–CM. (e) CMGFNet (proposed). TP, FP, and FN are marked in white, cyan, and pink, respectively. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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blank area. The proposed GFM has merged information from two mo
dalities according to the quality of functionality for each interested 
region. 

3.4.3. Effect of the multi-level feature fusion 
In this section, the effect of multi-level feature fusion in the proposed 

network is examined, and the improvement of the results is discussed. As 
mentioned in Section 3.2, the CMGFNet contains multi-level feature 
fusion, which high-level feature with low spatial resolution fused to the 
low-level feature with high spatial resolution in both RGB and DSM 
stream using the short connection (SC). To evaluate the performance of 

the multi-level feature fusion, short connections were removed from the 
original CMGFNet model. We denote this model as ‘Model–SC’. In 
addition, the prediction map is calculated at each stage of the decoder 
for the DSM stream. In Table 2, the comparison of evaluation metrics of 
the seventh and eighth columns shows the benefit of using these extra 
feature fusion in the CMGFNet. To investigate the effect of multi-level 
feature fusion, the prediction map of each DSM decoder is determined. 
In Fig. 11, two test images from the Vaihingen-IRRG dataset are shown. 
The prediction map is expressed by Pi, which i is related to the decoder 
number. The final prediction map denotes Pfusion. Columns (a) and (b) 
represents the prediction maps of the ‘Model–SC’ and the CMGFNet 

Fig. 10. Evaluation of the performance of GFM in the proposed method. (a) Original image; (b) DSM; (c) Image with the blank area. (d) Prediction map of the 
CMGFNet model on the original image. (e) Prediction map of ModelSUM when using the image with the blank area. (f) Prediction map of ModelCAT when using the 
image with the blank area. (g) Prediction map of the CMGFNet when using the image with the blank area. (h) The visualization of the GFM weight maps (G matrix) at 
the last layer. 
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model (‘Model’), respectively. The output result of columns (b) shows 
that prediction maps of the building contain more semantic information 
than in Columns (a), which do not incorporate the semantic information 
of the deeper layers. In other words, it can be concluded that adding 
more semantic information to low-level features could increase the 
performance of the proposed model and avoiding the loss of 
information. 

3.4.4. Effects of R-DSC module 
In this section, to evaluate the proposed R-DSC module, according to 

Fig. 4, the CMGFNet model is tested with different decoders. In terms of 
time complexity per epoch and IoU results, Fig. 12 compares the decoder 
parameters of standard convolution with depth-wise separable convo
lution for the Vaihingen-IRRG dataset. Experiments show that the 
CMGFNet model, which uses the R-DSC in decoder parts of RGB and 
DSM stream, is superior to the same models, which only use standard 
convolution. In addition, the comparison between different residual-like 
decoders shows that the modification in the location of ReLU and BN 
improves the training process and achieves better results in the building 
extraction task. More extensive semantic information about building 
objects from the deep convolutional blocks is addressed to the primary 
layer during the up-sampling action due to the modified pre-activation 
RCU. As shown in Table 2, the comparison between different decoder 
shows that the proposed R-DSC improve the building extraction result of 
F-score and IoU metrics in all three datasets. 

3.4.5. Different loss function 
The most basic loss for the CMGFNet is BCE loss, which is supervised 

on Prgb and Pfusion. Furthermore, to deal with the class-imbalance issue in 
segmentation of the building object, dice loss is utilized, which is su
pervised only on Pfusion. The CMGFNet model is trained in two modes, 
with and without dice loss, to see how adding Dice loss affected network 
training. In Table 1, the comparison between the eighth and ninth col
umns shows the effect of the combination of dice loss with BCE loss. The 
result obtained by combining BCE and dice losses as the loss function is 
superior in evaluation metrics. 

The BCE loss is a distribution-based loss. This category of loss func
tion works best when the data distribution between classes is equal. As 
mentioned above, the distribution of pixels involving building features is 
not the same as background pixels. This causes the network training 
process to get stuck into the local optimum if the learning rate parameter 
is fine-tuned. For this reason, using dice loss can help with this problem. 
Dice loss is based on Region-based loss functions. The goal of the dice 
loss function is to maximize the overlap regions or minimize the 
mismatch between the prediction map and the ground-truth. Thus, the 
combination of dice loss with BCE loss could better clarify the issue of 
class imbalance while improving the result of the building extraction. 

4. Discussion 

4.1. Comparisons with state-of-the-art single modal networks 

A variety of single modal DCNN models based exclusively on three- 
channel input images have been introduced in recent years. These 
models improved segmentation accuracy compared to traditional 
methods. However, one of the significant limitations of them is the 
impossibility of using additional modality during model training. In this 
section, four state-of-the-art FCN models, such as SegNet (Badrinar
ayanan et al., 2017), PSPNet (Noh et al., 2015), Res-Unet (Xu et al., 
2018), and Deeplapv3+ (Chen et al., 2018), were used to evaluate 
further the effectiveness of the RGB stream of the CMGFNet methods. 
These methods were chosen because they have all been shown to be 
effective in building extraction, and they are all open source and simple 
to use. RGB stream of the CMGFNet, similar to Section 3.4.1, is obtained 
by removing the DSM stream and is named ‘Model–DSM’. On the other 
hand, the Resnet-34 has been selected as the encoder in all networks to 
ensure fairness in the results. The experimental results are shown in 
Table 3. For all datasets, it can be seen that our method outperforms 
other methods in IoU. The number of parameters for each model is 
shown in the fourth column of Table 3. The lower number of training 
parameters of the proposed model is specifically related to the R-DSC 
block presented in this research. When compared to traditional methods, 
using depth-wise separable convolution reduces not only the number of 
training parameters but also the multiply-and-accumulates (MACs) of 
the model. It is important to indicate that the PSPNet has only one up- 
sampling operator with superficial convolution layer in the decoder 
part compared to other methods, hence its MACs are less than other 
models. In addition, the multi-level feature fusion and residual-like unit 
in the R-DSC block retain more features and have made the proposed 
method superior to other models. The P-R curves shown in Fig. 13, de
notes the Deeplapv3+ and ‘Model–DSM’ perform better in the building 
extraction has a high Precision and Recall rate. 

Fig. 14 shows the building extraction result of some test images. 
Visually, Deeplabv3+ and ‘Model–DSM’ methods have similar outputs, 
but the model suggested in this study differs significantly from Deep
labv3+ in terms of both the number of training parameters and the cost 
of computing time. As a result, it is more efficient to use the proposed 
method in multimodal structures. 

4.2. Comparison between different encoder networks 

As described in Section 3.1, the encoder part of the CMGFNet model 
can be easily replaced with other classification networks. Due to the 
limited GPU memory, several classification networks similar to ResNet- 
34, such as ShuffleNet_v2_x1_0 (Zhang et al., 2017b), VGG-16bn 
(Simonyan and Zisserman, 2014), and DenseNet-121 (Huang et al., 
2017), are compared as the primary encoder networks of the CMGFNet 
to show that the ability of proposed ResNet-based encoder. All of these 
networks have been initialized with ImageNet pre-trained weights. 
Table 4 shows the quantitative test results of the CMGFNet for three 
datasets using different encoders. In terms of IoU score, ResNet out
performs other encoders. In this comparison, the CMGFNet with 
ShuffleNet-based encoder has the lowest IoU score. This lightweight 
network uses a depth-wise separable convolution module and requires 
9.46 G multiply-and-accumulates (MACs) per image. The CMGFNet 
model with a VGG-based encoder has high MACs and computational 
times per image than the other encoders due to its complex CNN 
structure. The DenseNet network, similar to the ResNet network, uses 
the residual block in its architecture. The DenseNet network aims to 
decrease the parameters while increasing the number of layers. How
ever, due to the complex structure of dense connections between 
different blocks in this architecture, the computations are higher than 
the use of the ResNet network in the training and validation process. 

Table 2 
Evaluation metrics score (%) of ablation experiment for different decoders.  

Datasets Metrics Model 
þ CD 

Model 
þ

RCUD 

Model 
þ pre- 
RCUD 

Model þ
Modified 
pre-RCUD 

Model 
þ R- 
DSC 

Potsdam- 
RGB 

OA  97.76  97.98  98.14  98.17  98.36 
F-score  96.37  96.94  97.13  97.17  97.50 
IoU  90.82  91.2  92.53  92.61  92.80 

Vaihingen- 
IRRG 

OA  96.08  96.56  96.86  96.88  96.91 
F-score  94.80  95.07  95.59  95.68  95.96 
IoU  87.07  87.87  88.03  88.19  88.84 

USGS-RGB OA  95.48  95.86  96.02  96.17  96.32 
F-score  91.37  91.88  92.98  93.07  93.24 
IoU  78.51  78.68  79.73  79.84  79.96  
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4.3. Comparisons with state-of-the-art fusion networks 

for further evaluation of the proposed model, Three state-of-the-art 
deep-learning-based fusion models are compared to the CMGFNet, 
including FuseNet (Hazirbas et al., 2017), V-FuseNet (Audebert et al., 

2018), and HAFNet (Zhang et al., 2020a). Note that the encoder-decoder 
part of all these state-of-the-art networks is built on SegNet (Badrinar
ayanan et al., 2017), and all of them use VGG-16bn architecture in the 
encoder part. Then, to guarantee that the comparison result is fair, the 
encoder part of the CMGFNet changed from ResNet34 to VGG-16bn 

Fig. 11. The effect of multi-level feature fusion on different layers of prediction maps correspond to each DSM decoder. (a) Model–SC; (b) The CMGFNet model.  
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network. Also, the same training, validation, and testing sample is used 
to train and test for all models, and pre-trained coefficients are adopted 
to start training. 

Table 5 shows the quantitative experimental result of different 
models. In all three datasets, the CMGFNet model outperforms the other 
models in both IoU and F-score. As shown in Fig. 15, the P-R curve of the 
proposed method has a high Precision and Recall rate compared to other 
approaches. 

Fig. 16 shows the building extraction results of some selected 
buildings. The CMGFNet outperformed the other approaches. In the first 
to third rows of Fig. 16, the selected buildings have a regular geometric 
shape. The proposed method and other methods have a high ability to 
distinguish such buildings. However, the proposed method produced a 
few FN (pink) and FP (cyan) in building extraction results. On the other 
hand, visual results show, as the complexity of buildings is increased in 
VHR aerial images, the FuseNet, V-FuseNet, and HAFNet networks are 
unable to detect these types of buildings. These complexities include 
differences in the sizes and shape of buildings, hidden areas, and 
changes in lighting conditions and textures. For instance, in the fourth 
and fifth row of Fig. 16, the selected sample of the building has a large 
size with a complex shape. Because of the large size of the building, the 
type of material on the roof varies greatly, causing changes in texture on 
the building’s roof, particularly in VHR aerial images. However, the 
CMGFNet model has a higher ability than other methods to detect this 
type of building completely. In rows sixth and seventh of Fig. 16, the 
selected buildings have different shapes and scales. In these cases, the 
details in the building footprints are great, and the ground-truth of the 
data is not accurate. In addition, DSM data has a lot of ambiguity in the 
edge areas of buildings and does not help much in improving the 
extraction of building footprints. However, the results show that the 
CMGFNet accurately identified irregularly shaped buildings with 
different scales. 

4.4. Generalization ability and applicability of the proposed model 

The generalization ability of DCNNs-based methods is vital for 
automation, but its performance in remote sensing applications has been 
disappointing (Ji et al., 2019). This is because that a source dataset is 
significantly different from a target dataset. For instance, these differ
ences could include: differences in the building features of different 
areas, other combinations of color spectrums, different distribution of 
buildings in urban and non-urban areas, and differences in the spatial 
resolution of images. In this section, experiments on both transfer 
learning and fine tuning are evaluated further to examine the general
ization ability of the proposed CMGFNet. The CMGFNet was trained 
using the two modes of the Potsdam dataset (RGB and IRRG images), the 
Vaihingen-IRRG dataset, and the USGS-RGB dataset with a spatial res
olution of 0.05, 0.09, and 0.3 m/pixel respectively. The IoU score after 
60 epochs was obtained 92.80% and 92.73% for RGB and IRRG test 
images in the Potsdam dataset, 88.84% in Vaihingen-IRRG, and 79.96% 
in the USGS-RGB test image dataset, respectively. In transfer learning, 
the trained network was tested on the target datasets without consid
ering any augmentation on the spectral band. Table 6 illustrates the test 
results for several datasets. As shown in the third column of Table 6, 
when different dataset with similar color spectrums combination is 
tested, the CMGFNet obtained the high IoU score compared with the 
other variety of color spectrums of VHR images. Another point to 
consider is the spatial resolution of the data used in the transfer learning 
process. In the CMGFNet, the transfer learning performance on the 
Potsdam and Vaihingen datasets is better than the USGS dataset, likely 
owing to the ISPRS datasets’ more accurate image registration pro
cessing and higher image resolution. 

In the next stage of the experiments, a fine-tuned transfer learning 
technique is used. In this scenario, after the network weights are 
initialized by the parameters of the trained network, just half of the 

Fig. 12. (a) Comparison of the IoU Metric with the number of parameters at different decoders. The bar diagram illustrates the IoU on the Vaihingen-IRRG dataset. 
(b) Comparison of training time per batch and the number of parameters at different decoders. The line chart for both diagrams represent the number of parameters 
of different decoders. 

Table 3 
Comparison of different state-of-the-art single modal networks with proposed method.  

Model IoU(%) Params(M) MACs(G) Image/S 

Vaihingen-IRRG Potsdam-RGB USGS-RGB Train-mode Test-mode 

SegNet 84.64 88.60 68.85 29.44 151.11 1.43 0.246 
PSPNet 83.99 88.27 67.40 21.87 17.47 4.2 0.145 
Res-UNet 84.80 89.30 70.81 29.94 92.68 1.08 0.198 
DeepLabv3+ 85.06 89.61 71.54 26.01 341.73 0.83 0.301 
Model-DSM 85.28 89.76 72.95 21.84 51.84 2.38 0.178  
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Fig. 13. P-R Curves comparison of SegNet, PSPNet, Res-UNet, DeepLabv3þ, and Model-DSM.  

Fig. 14. Comparison of the proposed Model–DSM method and four state-of-the-art single-modality models. (a) Original input image. (b) The result of SegNet. (c) The 
result of PSPNet. (d) The result of Res-UNet. (e) The result of DeepLabv3+, and (f) the result of the proposed Model–DSM. The TP, FP and, FN are marked in white, 
cyan, and pink, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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target data was used for training in each new dataset. The IoU score for 
the same test image in each dataset, after 5 and 10 repetitions, is given in 
the sixth and seventh columns of Table 6. For instance, the IoU score 
after ten epochs of direct learning using the Potsdam-RGB dataset is 
calculated to be 84.26%. However, utilizing transfer learning with fine 
tuning of the model with the Potsdam-IRRG dataset, the training of the 
same dataset yielded a result value of 90.92% after only 10 epochs. In 
addition, fine tuning in a model that uses higher spatial resolution im
ages has a higher IoU, showing more convergence in repetition, and 
saves more computing time. Due to the result of the model’s 

generalization, using a pre-trained model in building extraction is an 
intelligent decision. 

However, essential factors should be considered about the applica
bility of the proposed model. Similar to other research in the field of 
deep multimodal data fusion, our method can be suffered from some 
challenges. In the following, we will review and propose a possible so
lution to overcome these issues in future research: 

Data diversity: The availability and cost of extracting the high- 
precision DSM from LIDAR data reduces the efficiency and usability of 
the deep multimodal method. As a result, the size of multimodal datasets 
is usually smaller than the size of VHR image datasets. In addition, the 
available datasets are usually recorded in limited urban areas, weather 
conditions, and sensor settings. Data augmentation via simulation is one 
way to get around these limitations. In other cases, DSM data can be 
obtained from cheaper methods. In recent years, DSM creation from 
VHR images is becoming more possible thanks to advancements in 
Image-Dense-Matching (IDM) and Structure-from-Motion (SfM) algo
rithms. In some circumstances, IDM algorithms are improving to enable 
finer-resolution DSM creation from unmanned aerial system (UAS) data, 
comparable to the level of airborne LiDAR (Salach et al., 2018). 
Increasing the efficiency of data labeling is another technique to over
come the limits of datasets generation. In some projects, it is relatively 
simple to collect DSM and VHR images when creating a multimodal 

Table 4 
Comparison of different encoder networks that adopted to the CMGFNet.  

Encoder type IoU(%) Params(M) MACs(G) Image /S 

Vaihingen-IRRG Potsdam-RGB USGS-RGB Train-mode Test-mode 

ShuffleNet_v2_x1_0  86.92  91.01  78.21  7.06  9.46  2.13  0.156 
VGG-16bn  88.32  92.18  79.69  30.06  259.41  1.01  0.294 
DensNet-121  88.39  92.43  79.74  16.13  123.77  1.28  0.201 
ResNet-34  88.53  92.80  79.96  43.68  98.14  1.58  0.197  

Table 5 
Evaluation metrics score (%) of FuseNet, V-FuseNet, HAFNet and the CMGFNet.  

Datasets Metrics FuseNet V-FuseNet HAFNet CMGFNet 

Potsdam-RGB OA  97.65  97.87  97.99  98.24 
F-score  96.57  96.89  97.12  97.41 
IoU  90.47  90.98  91.31  92.18 

Vaihingen-IRRG OA  96.17  96.34  96.42  96.7 
F-score  94.9  95.06  95.34  95.64 
IoU  86.89  87.06  87.53  88.32 

USGS-RGB OA  95.94  96.01  96.18  96.27 
F-score  92.02  92.41  92.88  93.18 
IoU  78.23  78.79  79.09  79.69  

Fig. 15. P-R Curves comparison of FuseNet, V-FuseNet, HAFNet and the CMGFNet.  
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training dataset for building extraction. However, it is very time- 
consuming and difficult to label them, especially when dealing with 
LiDAR-derived DSM data. Therefore, the use of optimal labeling 
methods such as transfer learning can overcome this problem. 

Data quality: Besides the size and diversity of the training dataset, 
data quality significantly affects the performance of a deep multimodal 
fusion methods. The quality of multimodal data is affected from two 
perspectives in building extraction tasks, the ground-truth errors and 
misalignment of DSM with VHR images. Deep multimodal networks are 
specifically robust for random ground-truth errors. However, the 

presence of a bias error in ground-truth can cause a significant error in 
the training and validation of the proposed model. When accruing and 
preparing training data, temporal and spatial misalignments between 
DSM and optical data may arise. This could result in significant mistakes 
in training datasets and reduce network performance. In this paper, we 
utilized DSM data which were rasterized from the LiDAR point cloud and 
align with VHR images by the data provider. In addition, to avoid un
certainty in the building extraction results, no change was made in the 
quality of the original dataset. 

Fig. 16. Comparison of the proposed method and three state-of-the-art models. (a) Original input image. (b) DSM. (c) The result of FuseNet. (d) The result of V- 
FuseNet. (e) The result of HAFNet, and (f) the result of the CMGFNet model. The TP, FP and, FN are marked in white, cyan, and pink, respectively. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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5. Conclusions 

The primary goal of this work is to extract the building object from 
VHR photogrammetry and remote sensing imagery. We propose a new 
end-to-end trainable cross-modal gated fusion deep network (CMGFNet) 
that fuse both VHR remote sensing images and DSM data. The encoder 
sections of the CMGFNet are built on a residual network for both RGB 
and DSM streams. The feature of the RGB encoder guides the learning of 
the DSM feature to obtain cross-modal feature fusion by the GFM 
module. On the other hand, the multi-level feature fusion can fuse the 
feature of high-level layers with low-level layers through a top-down 
strategy. The decoder sections use R-DSC to transmit and up-sample 
semantic information from the deep layer to the shallow layer. Three 
publicly available datasets consisting of VHR remote sensing images and 
corresponding DSM are used to evaluate the proposed method. These 
datasets include urban and non-urban areas with a great variety of 
buildings in size and shape. Experimental results from challenging 
datasets show that the CMGFNet surpasses other fusion-based methods, 
and the efficacy of all main elements is confirmed by the extensive 
ablation study. In the future, the quality improvements of DSM data will 
be considered in building extraction results. In addition, the single input 
channel DSM of the network will be developed to support other 
modalities. 
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