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Abstract—Large code refactoring projects can consist of hun-
dreds of refactoring rules that are applied iteratively to make
code easier to maintain. Visualising the refactoring process
can help engineers and stakeholders understand how chains of
refactorings were applied and to gain more confidence in the
produced result. An apparently suitable existing visualisation
using log-based behavioural differencing suffers from scalability
issues when applied to industrial-size cases. We propose an
adapted visualisation tool that highlights those parts that really
changed in-between iterations of a large refactoring process and
collapses those parts that remain stable. We show that our
alternative visualisation scales well on large logs of a process
with many possible refactoring chains, of which significant parts
are shared. Consequently, it allows engineers and stakeholders to
quickly answer relevant questions about what happened during
the refactoring process.

Index Terms—Differencing, Visualisation, Logs, Refactoring,
COBOL, Scalability, Industrial

I. INTRODUCTION

The discipline of differencing, i.e. analysing changes be-

tween two versions of an artefact, is arguably well known

to anyone working in computer science. To obtain such a

difference, various techniques can be used on different kinds

of inputs. In our context of migrating large codebases to a

more maintainable version, we are interested in visualising

differences between variants of a refactoring process. For

this, we explored the technique of log-based behavioural
differencing, which extracts behavioural information from logs

produced by a process, to then allow for visual inspection of

the differences between two variants of that process. We used

the algorithm and naı̈ve visualisation proposed by Goldstein

et al. [15], and applied it to an industrial refactoring project

and use case from the company Raincode Labs.

Raincode Labs is an independent compiler company that

provides services for migration and modernisation of legacy

systems. To help Raincode engineers compare two variants of

a refactoring process that are configured differently, we applied

Goldstein’s algorithm and visualisation to their logs. The goal

of the visualisation is to provide insights on the effects of

changing the configuration, by highlighting the differences

between the two execution logs. We found that while this naı̈ve

visualisation works well on small examples, it suffers from

scalability issues that make it unsuitable to apply on the actual

logs of an industrial refactoring project. This is due to the large

size of the graphs encountered (up to hundreds of nodes) and

to their specific nature of often extremely long linear chains

of nodes (which are of less interest to the engineers).

On the positive side, the nature of these graphs provides

interesting opportunities for compressing the relevant infor-

mation contained in them. We therefore set out to optimise

the visualisation tool so that it better fits the nature and size

of the graphs, by collapsing less important points (such as the

long chains), using colours to highlight key differences, and

using line and node sizes to indicate the importance of certain

nodes and edges. This paper presents the result of our efforts.

More specifically, the project kind to which we apply our

visualisation is called PACBASE migration [28]. PACBASE is

an aging fourth generation language [38] that allows engineers

to use concise macros to generate COBOL code instead of

developing in COBOL directly. PACBASE support having

ended in 2015, reliance on PACBASE has turned into a

liability for companies. Ideally the language would be retired,

and companies could maintain the generated COBOL code.

Yet, the COBOL code generated by PACBASE is arguably

not readable by humans, and rewriting it from scratch is not

feasible in practice. Raincode’s PACBASE migration refac-

tors PACBASE-generated COBOL code to human-readable

COBOL using a set of refactoring rules that is applies iter-

atively on the codebase (more on this in Section IV).

The exact set of refactoring rules to apply to a COBOL

portfolio is a configuration that has to be determined in collab-

oration with the customer. This task is difficult: there are 140

rules available in total, and understanding their exact effects

and interactions requires expert knowledge that the customer

does not have. We see this difficulty as an opportunity for a

differencing tool to show how a change in the configuration

influences the overall refactoring. To help Raincode engineers

in guiding the customer through the rule-selection phase of

the refactoring project, we developed such a tool to visualise

the influence of activating or deactivating a refactoring rule.

We validated this new visualisation tool by applying it

to an actual PACBASE migration project and verifying that

the produced visualisation indeed highlights the things we
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intend it to, that it remains sufficiently small to be human

readable, and that the algorithm is sufficiently fast to calculate

the visualisation. Finally, we performed a user study with

Raincode engineers to collect feedback on the suitability of

the tool and ideas for future improvements.

To summarise, the main contributions of this paper are:

• the analysis and use of the log-based behavioural dif-
ferencing algorithm of Goldstein et al. [15] and the

highlighting of some of its limitations when applied to

log files of a specific nature;

• an improvement of the visualisation proposed by Gold-

stein et al., by post-processing the output of their log

differencing algorithm to improve the readability of the

visualisation;

• an identification of an industrial scenario of refactoring

large COBOL codebases where this visualisation can

significantly improve practitioners productivity;

• a validation of the visualisation on such an industrial

scenario with industrial practitioners.

The paper is structured as follows. Section II presents the

log-based differencing algorithm of Goldstein et al. and its vi-

sualisation. Section III discusses the limitations of the existing

algorithm and visualisation when applied to our industrial use

case and introduces our improved visualisation. Section IV

validates the work by showing the new visualisation tool

at work and by analysing its adequacy and performance.

Section V discusses related work and Section VI concludes

the paper and presents avenues for future improvements.

II. EXISTING ALGORITHM AND VISUALISATION

In this section we present Goldstein et al.’s work on

log-based behavioural differencing [15] and comment on its

relevance to our industrial use case, before explaining the

algorithm in more detail and showing its results.

A. Motivation

Since Raincode engineers wish to help their customers

understand why they should or should not pick a certain

refactoring rule, we want to offer a tool that supports the

analysis of different variants of the refactoring process, in

order to gain more insights on what and why changes occur

when activating or deactivating a rule. While many tools exist

to compare versions of code artifacts, we want to focus on

understanding the evolution of the migration itself through its

logs.

With that in mind, we took interest in Goldstein et al.’s

log-based behavioural differencing algorithm [15]. The goal

of this algorithm is to highlight changes in two (consecutive)

executions of a process. If p1 and p2 are two log files

representing a process, the result of the differencing algorithm

applied to p1 and p2 answers the following questions:

• What step(s), if any, happened in p1 but not in p2?

• What step(s), if any, happened in p2 but not in p1?

• What step(s) are common to p1 and p2?

• How has the execution of p2 changed with respect to p1,

i.e. are some steps present in p1 happening more or less

often in p2?

The goal of this algorithm is to provide a clear represen-

tation of the changes between two executions and to identify

some of those changes as symptoms of issues or bugs. To

support the idea of finding problem-inducing changes, the first

execution p1 is assumed to be a known normal, stable or bug-

free version; while p2 has not yet been cleared as correct and

needs to be analyzed.

For example, in the context of analysing the use of an online

store, p1 could represent an old version of the website, while

p2 would represent a new version with more modern features.

The goal of the differencing algorithm is then to highlight what

new paths the client is following. This could then be analysed

to find out if the navigation is still clear.

The proposed approach takes textual log messages repre-

senting the behaviour of p1 and p2 and turns each into a

Finite-State Automaton (FSA). The two resulting automata are

then compared with the differencing algorithm, and changes

are highlighted using a visual representation.

In our industrial setting, we apply this algorithm to visualise

differences in how and when refactoring rules were applied

before (p1) and after (p2) a change to the rule set, thus giving

insights in how or why a change affected the refactored files.

B. Log-based behavioural differencing

The first step of Goldstein et al.’s method is to extract FSA

models from the logs. This is done in two phases: normalising

the logs and extracting relevant information from them.

The content of logs can vary immensely from one process to

another: they can contain debug messages, errors, timestamps,

hardware information, etc. It is important to think carefully

about what exactly we want to visualise. Differentiating

relevant information from uninteresting information requires

expertise and manual effort.

Reconsider the previous example of logs from an online

store. They can contain debug messages, information about

the clients (language preference, country, . . . ) and navigation

details such as the pages and products visited. Each log line

has a timestamp. We want to analyse the flow of the website

to see what pages or products are visited most by clients, if

clients get stuck anywhere because of a bad design, as well as

make sure that page loading times are within expected limits.

Reaching this goal is possible by using only the part of the

logs that contain the timestamps and the page visits, while

dropping the rest of the data to ensure having the simplest

possible model. Figure 1 shows a truncated example of the

normalised log files obtained this way.

FSA models are then extracted from these normalised logs

using the kTails [8] algorithm1. Many tools applying this

algorithm already exist, and Goldstein et al. chose Perfume [6]

for its relatively concise output. The tool takes a normalised

1A detailed discussion of what kTails is and why it was chosen can be
found in Goldstein et al.’s paper [15] .
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Creditentials Page 13:53:37.281
LoggedIn Homepage 13:54:27.841
Search Page 13:55:02.182
AddItem Page 13:55:57.283
...
Checkout Page 14:15:29.724
Logout Page 14:16::37.528

(a) Log file p1

Creditentials Page 10:32:02.356
PswReset Page 10:33:05.628
LoggedIn Homepage 10:35:18.724
Search Page 10:35:02.827
AddItem Page 10:36:03.924
...
Logout Page 10:50:12.656

(b) Log file p2

Fig. 1: Log files for two executions of the shopping process,

example from [15]

log as input, and calculates the corresponding Finite State

Automaton, outputting it to a file in the standard .dot format

accepted by Graphviz [18]. The file representing a FSA is

simply a list of node IDs and their labels, followed by a list

of edges between those nodes, which allows one to easily

recreate a graph representing the extracted behaviour.

Figure 2 shows a graphical example of such a FSA for each

of the two logs of our shopping cart example. The first word

on each log line is used as node ID, subsequent lines represent

transitions from one node to a next one, and the timestamps

are used to calculate the time required to perform a transition.

If this time varies, minimum and maximum values are shown

using brackets. This execution time can be seen on the edges,

before the semicolon. After the semicolon we see the transition

probability, i.e. the probability to go from the start node to the

target node the edge points to.

(a) FSA for log file p1 (b) FSA for log file p2

Fig. 2: FSA graph representation of both logs to compare

Once both FSA models have been calculated, we can

compute the difference between them. The idea is as follows:

we want to keep all nodes from both models (marked either as

common, added or removed), but not all edges, since otherwise

most of them would be duplicated. We do keep all edges from

the second model, to highlight how things changed, while

keeping only some from the first model. All edges are still

adorned with the metadata, edited to show the evolution in

execution time and transition probabilities.

We now describe a simplified version of the algorithm

used to compute the difference between two FSA models,

redirecting to Goldstein et al. [15] for details. First, the

common paths starting from the initial node and ending at the

terminal node are computed. A path is common between two

models if all of its nodes have the exact same label. Common
nodes are defined as those having the same label and being

part of at least one common path. There is also a special case:

a node is considered common if it has a label that is unique

to its model and happens in both compared models. In our

online store example, all nodes labels are unique for each

model (no nodes are duplicated), but the nodes PwdReset
and Checkout are not present in both models, and therefore

not common. Added nodes are nodes that are present in the

second model and not common, while removed nodes are

present in the first model but not in the set of common nodes.

The diff contains all the common, added and removed nodes,

along with all the edges from the second model, and the edges

from the first model that connect the removed nodes to the rest

of the graph.

C. Visualisation

The last step is to generate the visualisation. As shown

in Figure 3, Goldstein et al.’s visualisation stays relatively

close to the Graphviz images of the input FSA models. Nodes

are differentiated by their border style: common nodes have

solid borders, removed nodes have a dashed border and added

nodes a double solid border. The edge label keeps the same

structure with the execution time, a semicolon and then the

transition probability; however, it now shows the evolution of

these values denoted by an arrow from the old value to the

new one. Consider for example the edge from node AddItem

to Search, we can see that the execution time went from 5

in p1 to a value ranging between 4 and 7 in p2, and that the

transition probability increased from 0.1 to 0.8.

III. APPLICATION OF THE ALGORITHM TO OUR

INDUSTRIAL CASE

A. Direct application

To apply the algorithm described in Section II to our

industrial setting, the first step is to decide what to extract

from the available logs. Since we are interested in modeling

and understanding the refactoring process itself, we filter out

any errors or warnings from the logs, and from the other log

lines we simply keep the name of the refactoring rule that got

triggered. We discard the idea of keeping track of the transition

times, since an analysis of the time needed for a refactoring is
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Fig. 3: Result of log differencing for the shopping process

something that is already available internally at Raincode but

very rarely used in practice.

To create the FSAs, we followed the method of Goldstein et

al. and found a tool based on the kTails algorithm. By 2021,

Perfume has become abandoned and impossible to run, so we

used a substitute called Synoptic [7], created by the same team.

With our FSA models generated, we then reimplemented the

model differencing algorithm described in the previous section

using Pharo [4], [27]. The latter choice was mainly motivated

by its companion visualisation framework Roassal [3], [5].

Concerning visualisation, we stayed relatively close to what

was proposed in Goldstein et al.’s original paper (as shown

in Figure 3), with nodes representing rules linked together

by arrows representing the probability to execute one rule

after the next one. We use colour rather than line style to

differentiate the status of the nodes, following the usual colour

code of red/orange/green for a removed/modified/added rule

execution, respectively. To ease readability, we visualise prob-

ability changes with line thickness. This removes cluttering

text from the view while allowing for seeing the exact value

of the probability via mouse hover.

The visualisation resulting from this implementation is

shown in Figure 4. In order to be able to show all the nodes on

a single image, thus giving an overall impression of the total

size of the resulting graph, we used a force-based layout2.

This layout differs from the linear layout used by Goldstein

et al. which is arguably more readable as it follows a natural

top-to-bottom reading path, but would not scale up to these

size of graphs as it would not fit on a single page or screen.

Note that, while this paper is focused on our PACBASE mi-

gration use case, any process (industrial or not) that produces

logs and needs to be analysed can benefit from the application

of this technique. Seeing exactly how the execution is evolv-

ing when given different outputs or different configurations

2The Roassal visualisation framework is sufficiently versatile to try several
other layouts, but none was entirely satisfactory due to the graph size.

Fig. 4: First differencing output for one program

could be useful in the contexts of finding bugs, maintaining,

optimising or understanding the inner working of said process.

B. Limitations of the visualisation

It becomes clear from looking at Figure 4, that our data

seems to be of a different nature than what was presented by

Goldstein et al. [15]. First, due to the iterative nature of the

refactoring process, our graphs are sparsely connected, with

very few or very small cycles. They are also considerably

larger than the ones depicted by Goldstein et al. With a subset

of the 140 available refactoring rules that can be triggered

multiple times, even when simplified into an automaton, our

average output graph contains around 120 nodes.

While the nature of our graphs was not an obstacle to the

execution of the algorithm in terms of processing time, their

size made them overwhelming and hard to interpret visually,

forcing a user to scroll through a zoomed-in version and thus

quickly lose the bigger picture.

When analysing the nature of the graphs produced for our

industrial case, to see how they could be improved, we made

two important observations. First, our graphs are extremely

linear, often displaying long chains of nodes connected by a

single edge with a transition probability of 1, or several edges

with no changes in the transition probabilities, e.g, as shown

in Figure 5. Again, this is caused by the iterative step-by-

step nature of the refactoring process: all rules were created

with this process in mind, refactoring the code by a small step

every time one rule is applied. In some cases the previous rule

prepares the code for a next rule, which means that we can

expect to see sets of rules being applied in a specific order.

While this is an interesting finding, those fine-grained rules

do not provide a high-level understanding of what changed in

4
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Fig. 5: A chain of nodes with no changes in the transition

probabilities

the overall migration yet they take up most of the space on

the graph.

The second peculiarity we noticed is that changes often

tend to happen in clusters. We identified two kinds of such

clusters. Either a (few) new rule(s) are triggered or a (few) old

one(s) are not appearing anymore, after which the execution

trace returns back to its mostly linear nature, as shown as an

example in Figure 6a. The second kind of change, like the

one depicted in Figure 6b, is more complex. It presents itself

as a cluster of highly connected nodes with mostly transition

probability changes, along with a few added or removed nodes

and edges, after which the graph again goes back to its linear

execution as described previously. In both cases, these clusters

are precisely the kind of structures we would like to be

highlighted when looking at our visualisation.

C. Adapting the visualisation

Based on these observations, we decided to address the read-

ability issue by creating a merge algorithm to apply after the

computation of the original differencing algorithm. The merge

will collapse long ‘unimportant’ chains into single nodes,

causing more interesting clusters of changes (as described

above) to become more prominently present. The algorithm

is quite simple, and applied iteratively throughout the graph

until there are no valid nodes left to merge. Two linked nodes

are merged if they fit the following criteria:

• Both nodes are common (neither added or removed, i.e.

not in green or red);

• No transition edge from or to those nodes is added or

removed;

• No transition edge to or from those nodes has seen

a probability change between the two variants of the

process (i.e. in orange).

Since we are using graphs, the merge algorithm can be

defined recursively as follows:

merge(graph){
do {

// Keep track of whether or not we merged
beingMerged = false
// Keep track of visited nodes
visitedNodes = new Array()
// Start at the top
mergeRec(graph.initialNode(), visitedNodes)

} while(beingMerged)
}

mergeRec(currentNode, visitedNodes){
// Merge anything that we can in the current node

Fig. 6: Two types of clustered changes

(a) An old rule being removed, then return to previous execution

(b) Cluster of modifications concerning the removal of GO TOs

foreach(child : currentNode.children()){
if(canMerge(currentNode, child)){

mergeNodes(currentNode, child)
beingMerged = true

}
}
//Add the current node to the visited ones
visitedNodes.add(currentNode)
foreach(child : currentNode.children()){

if(child not in visitedNodes){
//Recursively go through each unexplored node
mergeRec(child, visitedNode)

}
}

}

The merge conditions ensure that no key insight will be

hidden from the user when looking at the resulting graph,

while minimising the amount of information shown at once.

For example, all nodes in Figure 5 would be collapsed into one

single merged node, while only the two last nodes of Figure 6a

would be merged, leaving the Simplifying perform thru node

visible because it is has two incoming links: one removed and

the other added.

Recall the initial example of Figure 3: our algorithm would

not merge a single node in that graph, since each node is either

connected to an added or removed node, or one of its edges

has seen a probability change.

We decided to differentiate the merged nodes visually by

showing them in gray rather than the white for the other

common nodes. As label, we simply give them a number

describing how many nodes were collapsed into them, and

show that label inside the node rather than under it. Finally, a

merged node’s size is proportional to the amount of nodes it

contains, enabling a more “at-a-glance” analysis.

Our merging algorithm helped us shrink the graph from

an average of 120 to 30 nodes (more in-depths metrics are
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presented in Section IV). As described, only plain white

unchanged nodes were merged, and they still appear if they

are linked to a change, allowing a user to look for the context

or result of a modification. If needed, a merged node’s internal

details can still be inspected in a new window when clicking

on it. As an example, the result of our merging algorithm on

the graph of Figure 4 can be seen in Figure 7.

IV. VALIDATION

In this section we first detail the process of a migration

project at Raincode. We then present a few metrics regarding

the results produced by our visualisation tool. Second, we

analyse the execution time of the model creation and the

differencing and merge algorithms. Third, we discuss the size

of the input logs and graphs and compare the size of the

resulting graphs, for both the original and merged graphs.

Fourth, we present how we validated our visualisation tool

with two Raincode engineers involved in PACBASE migration

projects, and analyse the results of this user study.

A. Migration projects at Raincode

A detailed description of the different steps of a PACBASE

migration project is given by Deknop and al. [11]. The

migration is performed by iteratively applying a set of rules,

each refactoring the code just a bit, until none can be applied

and the code is fully transformed

Even though Raincode has a basic “one size fits all” con-

figuration of rules, their customers often prefer a personalised

experience. The first step of a migration project is thus to pick

and choose the exact set of refactoring rules that will be used

to transform their code. The engineers present the different

rules to the customer, who can choose to activate them or not.

Since a plain description of a rule is often too abstract for

the customer, a small portion (around 30) of the customer’s

programs is used as an example on which the effect of the rules

is demonstrated. The chosen set of rules is applied to these

programs, and the output is presented to the customer so that

they can verify if the refactored results fit their company’s

standards. A few iterations of this may occur, adding and

removing rules until the customer is fully satisfied.

Once the set of rules has been chosen, a second prelim-

inary step starts: the customer has to be convinced that the

refactoring process is safe and will not introduce any bug. For

this, Raincode creates an illustrative subset of the refactored

files so that all the rules that got triggered during the complete

process are represented. Note that some rules selected by the

customer might not have been triggered at all, simply because

their preconditions were never met. The customer then tests

these files thoroughly to ensure that the refactoring rules did

not break anything.

After this, the project enters the main refactoring phase

where all artifacts to be transformed are sent to Raincode,

pre-analysed and processed. This phase takes on average two

weeks and is concluded by a delivery. During this time,

the customer may keep using PACBASE to edit some of

the files that are being refactored. When receiving the trans-

formed codebase, the customer would then want the additional

changes they made in parallel to be integrated as well.

This triggers a new phase of the migration project, called a

redelivery. The customer sends to Raincode the new versions

of the files that have been edited so that they can be refactored

as well. Again, the files are pre-analysed, processed and sent

over. This last step is repeated as many times as needed.

B. Use of the visualisation tool during the migration process

We identified two steps in the migration project where we

believed that our visualisation tool would be useful: during the

very first rule-selection step, as well as during redelivery. We

expand only on the first use case here for brevity.

The goal of this first step is for the customer to tailor the

refactoring rules to their preference and company’s coding

style. When presented with all the rules, they will consider

some rules as absolutely necessary while feeling less strong

about others. It is the role of Raincode’s engineers to help

guide the customer’s choices. However, while a rule’s draw-

backs or benefits can be clear by looking at it in isolation, it

is harder to assess the impact of a rule in the context of a full

migration, when combined with many other rules.

The refactoring process being iterative in nature, the execu-

tion of a rule A might be a precondition for a rule B to be fired.

Deactivating rule A could thus essentially deactivate rule B as

well: even though it is still in the chosen set, it might never get

triggered during the process. While the relationships between

some rules are fairly clear, even for Raincode engineers it is

impossible to predict all interactions between all 140 rules.

This can be problematic if a customer really wants a specific

rule to be executed, without realising that changes to other

rules might affect it, thus failing to understand why the rule

is no longer executed.

This is where our visualisation tool comes in: the idea is to

take the logs of two variants of the process on the small set of

programs, each variant using a slightly modified set of selected

rules. Armed with the diff graphs along with the knowledge

of what changed in the rule-set between the two variants, the

customer can better visualise the possible effect of the changes

made to the rule-set. For example, it would be directly visible

if the removal of one rule had an impact that was bigger than

expected. With this knowledge, the customer can then make a

more informed decision about what modifications to make next

to the set of selected rules. The tool helps Raincode engineers

in their guidance by giving them a more visual support, but

also because it can provide them with concrete examples of

why a rule should be left activated (or not) when it has a high

impact on other rules or even on the entire migration process.

C. Metrics

Since Raincode did not have an ongoing migration project

at the time of writing, we had little or no data from the

rule selection step available. Therefore, the metrics of our

algorithm shown in this section were applied to the redelivery

step instead.
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Fig. 7: Adapted visualisation after merging nodes, for the same input as Figure 4

Goldstein et al. stated that the creation of the .dot FSA

models is the most time-consuming step of their algorithm.

With normalised logs (see Section II) containing hundreds of

nodes, Synoptic can take hours to generate the corresponding

models on an Intel i7-9750H processor with 16GB of RAM,

requiring around 20 hours to compute the models for both

versions of 39 migration logs of an example redelivery. Note

that this model-generation step would require companies to

have a server that can run the script outside of office hours

for more efficiency (Raincode does have suitable machines).

Once the models have been created, the time required to

obtain the diff graph is minimal: on the same processor,

calculating output graphs for our example redelivery of 39

files takes only 0.77 second, with only an additional 0.58

second needed to apply the merge algorithm, increasing the

total execution time to 1.35 second in that case.

Regarding scalability, the model-creation step could become

a bottleneck because its execution time and memory consump-

tion grows superlinear with input size. With our biggest log of

almost 800 lines, we need 12 out of the 16 GB of memory of

the machine we used. Therefore, to scale up even more than

what we have now (which was sufficient for the industrial case

at hand), we would need to create a more efficient model-

creation tool, instead of reusing the existing solution.

In terms of size, the transformation to FSA models already

shrinks the logs quite a bit: we go from an average of 282

lines (see Table I) to only 119 nodes in our input graphs.

Log lines Graph nodes
Mean 282 119
Min 72 61
Max 779 198

TABLE I: Size of inputs (logs and graphs) for all 39 programs

Applying the differencing algorithm to show information

from both variants of the process increases the amount of

nodes by just a bit, from an average of 119 to one of 123. As

illustrated by Figure 4, this amount of nodes is overwhelming

to be visually analyzed. The second column of Table II shows

the improvements gained by the merge algorithm.

Full graphs Merged graphs
Mean 123 33
Min 74 1
Max 201 80

TABLE II: Graph size in nodes

Merging reduces the average amount of nodes by around

75%, resulting in much more readable graphs. The minimum

graph size consisting of a single merged node is also an inter-

esting find. In fact, this file slipped through the first analysis

of the engineers: it was refactored even though it had not

changed. This explains the single merged node representing

no changes.

D. Interview with the engineers

Given the size and style of the company, only two persons

are working on PACBASE migration at Raincode. One of them

is more customer-oriented, having as main responsibility to

assist in sales and to accompany customers in the first step

of selecting the refactoring rules. The second person is more

technical and the main developer of the entire refactoring

process. For our validation, we interviewed both engineers,

resulting in varying answers due to their different focus and

background. In the remainder of the text, we will refer to them

as participants PC and PT respectively, for customer- and

technical-oriented. In what follows we will first present our

validation methodology, then discuss the different points on

which both engineers agreed, followed by the ones on which

they have a diverging opinion.
1) Interview set-up: Since we had only two engineers avail-

able for our study, we conducted a semi-structured interview

with each of them individually (a full interview taking around

45 minutes).3 Before the interview, they received a one-page

manual describing each component in our visualisation tool

3Due to restrictions imposed by the COVID-19 pandemic, we necessarily
had to conduct the interviews virtually using screen sharing.
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and its meaning. The engineers could refer to this manual at

any time during the meeting. During the interview, we first

showed them our tool and let them explore it for a bit (PC : 6

minutes; PT : 5 minutes), while answering any questions they

had regarding the use of the tool or the inputs it takes. Once

they got situated, we asked them to give us their interpretation

of the graphs they were shown. We then had a semi-structured

discussion with them, driven by a set of guiding questions that

we prepared beforehand. We included some open questions to

provide them the space to present us their own suggestions

along with their opinions. Our accompanying repository [12]

contains the manual that we presented to the engineers, our

list of guiding questions to structure the interviews, along with

our analysis of the reactions and answers of the engineers.
2) Methodology: To structure the presentation of our re-

sults, we took inspiration from the work of Sillito et al. [29]. In

addition to examining the participants’ remarks and answers to

our questions, we also analysed the questions they were asking

themselves while thinking out loud. We wanted to study not

only their opinions on the tool, but also how well our tool

supports the actions they had to perform for the tasks we gave

them. We classified these questions in four categories:

• Questions about the domain (input, output, inner repre-

sentation of data in the tool);

• Questions about tool usage (often the starting point of a

series of concrete actions they undertook to answer that

question, without requiring further help from us);

• Questions about the meaning of a visual component (they

either asked us directly or used the one page manual to

look for the response);

• Questions leading to ideas for future work (when they

asked if some feature would be possible to implement).

We adopted this question-oriented format for three reasons.

First, we wanted to get as much feedback as possible from

our two users, hence the open questions. Second, we wanted

to highlight the strong and weak points of our tool: what

part of the interface is so intuitive that it does not raise any

questions? What part is less easy to understand (gives rise

to more questions) and would thus require improvement of

the tool or better training? Finally, to validate if our merging

algorithm is an improvement over the non-merged graphs we

asked them direct questions about this aspect.
3) Results of the study: Due to space considerations, we

cannot include all results of the study in this text. We refer

to the file InterviewCommonQuestions.csv in our

accompanying repository [12] for all questions highlighted in

the following descriptions. We limit ourselves to presenting

the most significant items here.
a) Domain: There were only a few questions in this

category, yet they were quite specific and common to both

participants. Both of them asked: “What does this tool take as
input?” and “Can a node be repeated in the graph?”

b) Tool usage: Since we asked the engineers to think

aloud while exploring the tool, questions regarding tool usage

were the most common. This category of questions showed

us that the most performed actions were moving nodes and

zooming into the graphs. Every time any of our engineers

opened a new graph, their first reaction was to zoom in,

then sometimes move nodes. Those actions were translated

by questions like “How can I see/arrange this better?”
c) Meaning: The second-most frequent category of ques-

tions was about the meaning of specific visual components.

Two questions were common to both participants: “Can you
clarify the meaning of the orange/gray nodes?”

d) Future work: Both participants provided concrete

ideas about where in the migration process they would apply

our tool, gave a few suggestions about our layouts, and

presented at least one proposal for new features.

e) Open questions: For the open questions we asked our

participants, we were mostly interested in knowing whether

they perceived our merged graphs as more useful than the full

graphs. For this, the participants were requested to open a

non-merged version of a graph of which they had previously

analysed the merged version. We then asked them questions

regarding the similarity and differences of the information

shown in this graph with respect to the previous one.

4) Analysis of the results:
a) Domain: A first thing that we observed is the fact

that the engineers did not pose many domain questions. This

is not surprising since they have been working on PACBASE

migration projects for over 15 years and therefore are experts

in this domain.

This is confirmed by the fact that they both asked the

same detailed domain-question very early during the interview.

Indeed, both participants are used to work with and look at

the logs, and wanted to know exactly what parts of it we

selected before proceeding with the analysis we asked them to

perform. Once they had this information, they had no trouble

recognising the things they are so used to work with.

Still concerning the domain, both engineers asked us if it

was possible to have a node repeated in a graph. Both of them

seemed to have trouble visualising and understanding that.

They felt it might be confusing for an end user. PT said that “it
would be less useful that way”. Having no concrete example

of a graph with a repeated node at hand during the interview,

it was impossible for us to show them and get further feedback

on this issue. We keep this in mind for future work: while we

feel that a repeated node should not threaten the usability of

our graphs, we should test this further. It may be necessary to

adapt the visualisation so that repeated nodes occur together,

and analyse whether that yields a better visualisation or not.

b) Tool usage: We observed that the most performed

actions were moving nodes and zooming into the graphs. This

may suggest that despite our merge algorithm, the generated

graphs are still not easy to analyse to understand “at a glance”,

requiring engineers to zoom in on a specific section at a time,

then move over to the next one. Their systematic moving

around of the nodes may also suggest that the default layout

we chose might not be ideal for this specific use case.

However, when asked about this, the engineers as-

sured us that, while the overall placement of the nodes

was certainly not perfect, the tool itself remained usable.
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Moreover, some of the layout issues were due to the

length of the labels of the nodes, and are inherent to

Raincode’s use case. For example, a particularly lengthy

and fairly common label is IfThenElseGotoRemoval
deletedgoto=FALSE. This label-length issue could easily

be fine-tuned by changing the logs themselves, and is some-

thing that the engineers would be willing to do when using

our tool on a regular basis.

c) Meaning: Questions regarding the meaning of visual

components arose mostly at the beginning of the interview,

when the engineers were still unfamiliar with the visualisa-

tion or unsure about how to do something. Yet they were

able to answer most, though not all, of those questions by

themselves by referring to the one-page manual we provided.

This means that the most unclear components should probably

be explained better when presenting the tool to new users.

We found that the meaning of the orange links is the least

easy to understand. This is probably because its description

in the manual remains too high level, referencing to varying

probabilities, causing both engineers to need clarification of

this description. Second, the use of the gray nodes might not

be very intuitive either: one engineer did not click on it to

open the inside representation, and the second one needed us

to tell him how to do so, even though it is mentioned in the

manual.

d) Future work: As described previously, the selection

of what to keep from the logs is critical to have useful

outputs. In this case, we chose to keep only the rules names,

which seemed sufficient to the engineers. We also choose to

focus on the most fine-grained level of the logs, while we

could summarise some of the information and present the

visualisation on another level of detail. This was not done due

to time constraints, but was noted as something that could

interest PC . Another round of interviews on a more coarse-

grained level would have been useful to compare which level

would be more suited for which analysis, or simply preferred

by the participants.

As for feature requests, we want to highlight two that

seemed quite interesting. PC would like to have, attached to a

merged node, details on where in the process changes start to

happen. For example, he would want a label on the right-hand

side of the node, noting that he can look at log line number 42.

PT had a simpler request: he would like to highlight a node

that is new to a file. For example, if rule A was not triggered

in the first execution of the migration but is in the next, he

would like it to be not in green for ”added”, but in yellow for

“added and new to this file”.

e) Open questions: We focus here on the comparison be-

tween the non-merged and merged graphs. When shown a non-

merged version of a merged graph they had analysed before,

we asked the engineers if, at a first glance, this was something

they saw previously. Both of them said they thought they

recognised it, though without certainty. We then confirmed

that it was indeed the same thing, visualised differently, and

asked them if they could find the same information as was

presented in the previous graph they analysed before. They

agreed that they could but that it would take them longer. PC

stated “Yes, I could find the same information, but I don’t
really care about all those white nodes, they don’t give me any
interesting information”. PT disagreed that the white nodes

were uninteresting. He liked the idea of being able to look at

a broader context if needed, but did agree that this did not

necessarily require the full graph, instead having the option

of opening the inside of a merged node would be sufficient

for his needs. When asked if they thought that the merged

graphs were an improvement over the non-merged ones, they

both agreed that the merged graphs were a strict improvement.

They also said that no features from unmerged graphs would

be missed.

5) Conclusions: To conclude, we observed that, even if

they had fairly different points of view due to their back-

ground, both engineers used the tool in a very similar fashion

(excluding idiosyncrasies of who prefers scrolling and who

prefers dragging): when presented with our visualisation, they

look at the graph from left to right, stopping on clusters of

change and guessing at what might have caused that change.

It is in their interpretation of the changes that they differ: PC

views everything in terms of “what did the customer do to

initiate this change?”, while PT goes directly to reflecting on

the interaction between the refactoring rules themselves.

Because of those different inclinations, they also have a

different idea of how they would use our tool. PC , due to

his very frequent interactions with the customer, wishes to

use it as an aid in a conversation to convince his customer

or to help him understand why a rule should be picked over

another. He does not, however, see how the tool could be used

in the context of working on the refactoring process itself. PT

however, said that our visualisation might help him when he

is maintaining the rules and the process: he would like to

see if the changes he made to a refactoring rule influence the

execution of others, this to ensure nothing gets obsolete.

This suggests that our tool is quite versatile: depending on

the inclination of the person who is looking at it, it can prove

useful in several different ways.

Finally, we want to note that our merge algorithm seems

satisfactory: neither of our participants missed any information

from the previous graphs, and both agreed that they would

rather work only with the merged graphs.

V. RELATED WORK

The visualisation proposed in this paper was based on Gold-

stein’s log-based behavioural differencing algorithm. Other

papers presenting algorithms that perform differencing in

specialised or advanced ways, though a rare find, still exist.

The one closest to our current interest is Kim and Notkin’s

LSdiff [20] (Logical Structural DIFFerencing), an approach

aiming at representing structural changes in a very concise

manner, focusing on allowing the developer to understand the

semantics of the changes. However, that approach seems more

suited for object-oriented code, and less for our COBOL use

case. Other approaches exist that focus on the object-oriented

paradigm, such as cal-cDiff [2] and Diff-CatchUp [36].
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Other tools like REdiffs [17] or Ref-Finder [19] focus on

untangling changes due to refactoring from other changes

made to functionalities. Whereas such tools could prove useful

in the context of analysing a redelivery, in our industrial

migration process it would require explicitly encoding all

140 possible refactoring rules and maintain the tool as they

evolve. Our approach, in contrast, is agnostic of the particular

refactoring rules as it looks at the logs only.

Since we are not differencing code but models, we also

took interest in work happening in the software modelling

community, and studied tools that perform clear and efficient

differencing on specific kinds of models. Many of those

exist for widely-used models like UML (e.g., UMLDiff [35]),

activity diagrams (e.g., ADDiff [25]) or feature models (e.g.,

in FAMILIAR [1], [32]). Witnessing the abundance of many

different tools for each kind of model, Zhenchang Xing [34]

also proposed an approach to allow for a more generic way to

difference models. Here again, most tools focus on the object

oriented paradigm, though we did take inspiration from the

different visualisations these propose.

We also explored different techniques used when perform-

ing data differencing. From the starting point of the Hunt-

McIlroy algorithm treating simple text, to its extension to

treat binary data [33] when there is need of differencing

more heterogeneous artefacts. Afterwards, many different and

modern techniques were developed, including those based on

control flow graphs [21], program dependence graphs [16] and

other tools making use of ASTs or at least parse trees as with

GumTree [13] or cdiff [37]. We are also exploring the idea of

enriching the initial data format with infrastructures such as

srcML, and how it can be applied to differencing [24] using

its corresponding tool srcDiff [10], [31]. While we agree that

some of those techniques could be useful in the next stages

of this research project, in this paper we wanted to focus on

the logs to provide new insights to the users of our tool.

There is some work on log differencing as such, mostly

focused on business processes or on relating actual log

entries to logging code that produced them: Li et al [23]

have investigated log diffing with the intention to detect

unwanted duplicate log messages, such as those stemming

from cloning logging code without appropriate adjustments.

They detected 5 different patterns of harmful log message

clones, and developed a tool called DLFinder [22]. Gholamian

and Ward [14] developed another tool, Log-Aware Code Clone

Detector (LACC), that is capable of differencing two code

fragments and predicting the location of a log point in one

version based on the existence of a log point within another

version. Tama and Comuzzi [30] have tried using 20 different

classifiers to analyse logs in order to build models to predict

next events by looking at their history. Perhaps the closest to

ours is the paper by Bolt et al. [9], where the tool ProM was

written with the goal of comparing two processes based on

their event logs, and producing concise results. There are more

examples like this in the domain of process mining, such as the

work on differential perspective graphs [26] which in software

engineering would be analogous to grammatical inference.

Since Goldstein’s work came closest to what we needed, we

decided to build our own visualisation on top of that algorithm.

VI. CONCLUSION

In this paper, we presented an improvement to an existing al-

gorithm to perform log-based behavioural differencing [15], in

order to improve its scalability. This is because when applying

the original algorithm to an industrial refactoring process, we

found significant limitations in the original visualisation. To

overcome those limitations, we extended the algorithm with

a merging phase and implemented a new visualisation. We

then validated that log-based behavioural differencing could

indeed be applied to our industrial use case and that our merge

algorithm is an improvement on the output from the original

algorithm. Our extension is compatible with any textual logs,

just as the original. However, to benefit the most of our

merging algorithm, the logs need to be of a significant size

and the process itself needs to have many possible executions

chains: it should be able divert for a bit then join again later,

in order to create the clusters of changes we described.

Our improved algorithm reduces the output size of the

original algorithm by 75%. This allows for an easier analysis,

while not hiding any information to the user, as confirmed

by both industrial participants of our user study. Regarding

efficiency, our algorithm adds only a minimal overhead to the

computation time: for our industrial case of 39 logs of around

282 lines each, the original algorithm takes 0.77 seconds and

our extension adds 0.58 seconds. This is assuming that the

FSAs models have already been generated (our extension did

not impact the generation of those models).

The industrial user study confirmed that both participants

would be interested to use our tool in their specific context:

respectively for explanation support and for debugging during

an industrial COBOL migration project. Moreover, they con-

firmed that the tool might prove useful and that it provides

them new insights they cannot get otherwise.

For future work, the next step would be fine-tuning of the

layout, as well as having a more user-friendly interface for the

creation of the models and the differencing itself. We would

also like to conduct another round of validation using more

coarse-grained information that can be found in Raincode’s

logs. Finally, more validation with a higher number of par-

ticipants and on other processes (like our online shopping

example, or other examples such as traffic navigation) could

help validate on what kinds of processes our tool is most

useful.
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