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ABSTRACT 

The computation of stress in beam elements requires the internal stress resultants like 

axial force and bending moments. For displacement-based beam elements, these 

resultants can be obtained 1) based on equilibrium, 2) consistent to the constitutive 

law or 3) based on load interpolation functions. Although the methods give similar 

results in case of small deformation, the discrepancies in case of large deformation 

are significant. This paper shows that the method based on equilibrium gives the most 

accurate results. 

Torsion of beam elements causes warping of the cross section. This warping is 

constrained at clamped ends of beam elements, causing extra stress. This paper shows 

a method to accurately obtain the corresponding internal stress resultants, i.e. the 

Saint-Venant torsion moment and bimoment. 

Keywords: Beam, stress, internal stress resultants, Vlasov beam theory, flexures. 

1. INTRODUCTION 

Structures are often analyzed using beam-elements. This paper is motivated by flexure 
mechanisms in particular, where each leaf spring can be modelled by multiple serial connected 

beam elements [1-5]. Fig. 1 shows an example. Stress in mechanisms that are modelled by beam-
elements can be computed in three steps, see Fig. 1: 

1. The displacements, deformations and reaction forces on each beam element are computed 

based on the stiffness relations; 

2. For each beam-element the internal stress resultants are computed at a finite number of points 

along the beam axis. These stress resultants are quantities like the axial force and bending 
moments. 

3. The stress-distribution on the cross section is computed based on the internal stress resultants. 

Formulas for this can be found in standard text books [6]. 
 

This paper focusses on step 2, the computation of internal stress resultants for three-dimensional 
beams undergoing large deformation. Firstly by comparing 3 different methods to compute five 

of the internal stress resultants and secondly by proposing an accurate method to interpolate the 
internal stress resultants related to torsion. 

The internal stress resultants can be determined from equilibrium equations or be computed 

consistent with the constitutive law. These two methods give a different result. For small planar 
elastic deformations though, it was concluded that the discrepancies between these methods are 
small [7-9]. 

However, the deformation in a beam element can be large. Moreover, by using beam elements 
that are accurate for larger deformation, less serial connected beam elements are required to model 
a single leafspring accurately, and this increases the computational efficiency. A significant 
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amount of literature is published on the modelling of stiffness of beam elements for large 
deformation. An overview can be found in [10]. The use of these beam models urges for an 
accurate method to obtain internal stress resultants in case of large deformation. 

Two specific beam formulations are used in this paper, a 2nd order formulation [11] and a 3rd order 
formulation [12]. The 3rd order formulation is based on the Hellinger-Reissner principle, which 

implies that interpolation functions for both load and displacement fields are used. The load 
interpolation functions can be used to obtain the internal stress resultants. This is the third method 
that is used in this paper for comparison. 

Torsion of a beam generally causes warping of the cross section. This warping however is 
constrained at the clamped ends of the beam element and this can cause significantly extra 
stiffness and stress [13, 14]. This effect can be included in a beam element by two extra 
deformation modes for the torsion, which is also applied in the used formulations [11, 12]. The 
correct computation of the corresponding stress requires two internal stress resultants, namely the 
bimoment and the Saint-Venant torsion. These stress resultants however cannot be derived very 
accurately by the three previously mentioned methods. This paper presents a more suitable 

method to obtain the bimoment and Saint-Venant torsion moment. 

The results in this paper are derived for the case of flexure mechanisms, using beam elements 

with thin rectangular cross section, in which the torsional warping is explicitly modelled. 
However, the results also apply to most other applications, beam formulations and different cross 
sectional shapes. 

 

 
Figure 1. Steps to obtain stress, shown for a parallel flexure guidance consisting of 
two flexures (each modelled by three beam elements) and a connecting rigid part,    
1) compute forces and displacements of a mechanism, 2) compute for each beam 
element the internal stress resultants 3) compute the stress distribution on the cross 
section 

 

2. METHOD 

This section shows how the internal stress resultants can be obtained based on the results of step 

1 of Fig. 1. These results are visualized in Fig. 2: the positions (𝒓𝑝 𝒓𝑞) and orientations (𝑹𝑝, 𝑹𝑞) 

of both nodes of the beam-element, and the forces (𝑭𝑝, 𝑭𝑞), moments, (𝑴𝑝, 𝑴𝑞) and bimoments 

(𝐵𝑝, 𝐵𝑞) at both nodes. Based on the nodal positions, orientations and the mode-shapes of the 

element, the local displacements, (𝑢𝑥(𝑠), 𝑢𝑦(𝑠), 𝑢𝑧(𝑠)) and local rotations (𝜙𝑥(𝑠), 𝜙𝑦(𝑠), 𝜙𝑧(𝑠)) 

can be obtained. Here 𝑠 is the axial coordinate from 0 to the undeformed length 𝐿0. Using these 

local displacements, the global positions (𝒓(𝑠)) and orientations (𝑹(𝑠)) inside the element can 

also be found. 

Seven internal stress resultants should be obtained: section 2.1 presents three methods to obtain 

the axial force, shear forces in the local 𝑦-direction and 𝑧-direction and the bending moment 

around the local 𝑦-axis and 𝑧-axis. Section 2.2 explains three methods to obtain the Saint-Venant 

torsion moment and the bimoment. 
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Figure 2. Beam-element, showing the forces, positions and orientations for both 
nodes and internally. Reference frame 𝑂 is the global reference frame. 

 

2.1. Internal stress resultants for extension, shear and bending 

 

Method A1 – Equilibrium. The internal stress resultants can be found based on equilibrium, 

using the values at both nodes: 

  𝑭𝐿(𝑠) = 𝑹𝑇(𝑠)𝑭𝑞, 𝑴𝐿(𝑠) = 𝑹𝑇(𝑠)(𝑴𝑞 + (𝒓(𝑠) − 𝒓𝑞) × 𝑭𝑞) (1) 

where the subscript 𝐿 emphasizes that it is expressed in the local reference frame 𝑹(𝑠). The local 

force is composed of the axial force and the 2 shear forces and the moment is composed of the 

total torsion moment and the 2 bending moments: 

 𝑭𝐿(𝑠) = {

𝐹𝑥(𝑠)

𝐹𝑦(𝑠)

𝐹𝑧(𝑠)

} , 𝑴𝐿(𝑠) = {

𝑀𝑥(𝑠)

𝑀𝑦(𝑠)

𝑀𝑧(𝑠)

}. (2) 

Method A2 – Constitutive law. The internal stress resultants are directly related to the derivatives 

of the local displacements: 

𝐹𝑥(𝑠) = 𝐸𝐴𝑢𝑥
′ (𝑠)                                                                                        

 𝐹𝑦(𝑠) = 𝐺𝐴𝜅𝑦 (𝑢𝑦
′ (𝑠) − 𝜙𝑧(𝑠)),         𝑀𝑦(𝑠) = 𝐸𝐼𝑦𝜙𝑦

′ (𝑠), (3) 

𝐹𝑧(𝑠) = 𝐺𝐴𝜅𝑧 (𝑢𝑧
′ (𝑠) + 𝜙𝑦(𝑠)) , 𝑀𝑧(𝑠) = 𝐸𝐼𝑧𝜙𝑧

′ (𝑠), 

where ( )′ defines a derivative to coordinate 𝑠. 𝐸 is the elasticity modulus of the material and 𝐺 

the shear modulus,  𝐴 is the cross sectional area, 𝜅 the shear correction factor according to Cowper 

[15] and 𝐼𝑦 and 𝐼𝑧 are the second moments of area. 

Method A3 – Load interpolation functions. The third order beam element is derived based on 

the Hellinger-Reissner principle. This implies that it is derived based on a combination of load 

interpolation functions and displacement interpolation functions of which the corresponding 

coordinates are computed in step 1 of Fig 1. These load interpolation functions (see eq. 24 of ref. 

[12]) give a direct estimation for the required internal stress resultants. 

2.2. Saint-venant torsion moment and bimoment 

Torsion causes warping of the cross section. At the clamped ends of a beam this warping is 

constrained, resulting in additional strain energy storage, which causes extra stiffness and stress. 

The internal stress resultant related to warping is the bimoment, 𝐵. The shear stress is related to 

the Saint-Venant torsion moment, 𝑇𝑥. According to Vlasov torsion theory [14] the total torsion 

moment is composed of the Saint-Venant torsion moment and the derivative of the bimoment: 

 𝑇𝑥(𝑠) + 𝐵′(𝑠) = 𝑀𝑥 (𝑠), (4) 

Below, three methods are given to compute the Saint-Venant torsion moment and the bimoment. 
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Method B1 – Interpolation. The bimoment is available at both nodes such that the bimoment 

can be obtained by a linear interpolation between these two values: 

 𝐵(𝑠) = −𝐵𝑝
𝐿−𝑠

𝐿
+ 𝐵𝑞

𝑠

𝐿
 (5) 

The Saint-Venant torsion moment is not available at the nodes so it cannot be obtained by 

interpolation. The Saint-Venant torsion moment can however be approximated by the total torsion 

moment 𝑇𝑥(𝑠) ≈ 𝑀𝑥 (𝑠), which is a good approximation far from the clamped ends. This total 

torsion moment 𝑀𝑥 (𝑠) can be computed based on equilibrium, see method A1, eq. (2). 

Method B2 – Constitutive law. The Saint-Venant torsion moment and bimoment are directly 

related to derivatives of the torsion angle: 

 𝑇𝑥(𝑠) = 𝐺𝐼𝑡𝜙𝑥
′ (𝑠),          𝐵(𝑠) = −𝐸𝐼𝜔𝜙𝑥

′′(𝑠) (6) 

where 𝐼𝑡 is Saint-Venant’s torsion constant and 𝐼𝜔 is Vlasov’s warping constant [14]. 

Method B3 – ODE. The Saint-Venant torsion moment and the bimoment can be solved based on 

the differential equation in eq. (4). According to eq. (6) the Saint-Venant torsion moment and 

bimoment are related like:  

 𝐵(𝑠) = −
𝐸𝐼𝜔

𝐺𝐼𝑡
𝑇𝑥

′(𝑠) (7) 

Substituting this result into eq. (4) gives the ordinary differential equation (ODE):  

 𝑇𝑥 −
𝐸𝐼𝜔

𝐺𝐼𝑡
𝑇𝑥

′′ = 𝑀𝑥(𝑠) (8) 

To solve for 𝑇𝑥 a homogeneous and a particular solution have to be obtained. 

For the particular solution 𝑀𝑥(𝑠) is approximated by a 4th order polynomial. This is done by first 

approximating the internal forces on the undeformed element (the orange, dotted line in Fig. 3a). 

The torsion 𝑀𝑥
∗(𝑠) and the shear force 𝐹𝑧

∗(𝑠) are linearly interpolated between their values on the 

nodes. The bending moment 𝑀𝑦
∗(𝑠) is approximated by a second order polynomial that 

corresponds to the moments on the nodes and satisfies 𝑀𝑦
∗′′(𝑠) = 𝐹𝑧

∗′(𝑠). Then, using equilibrium 

considerations, the total torsion moment at the deformed line (black dotted line in Fig. 3a) is 

computed by: 

 𝑀𝑥
(4𝑡ℎ)

(𝑠) = 𝑀𝑥
∗(𝑠) + 𝑀𝑦

∗(𝑠) ⋅ 𝜙𝑧(𝑠) − 𝐹𝑧
∗(𝑠) ⋅ 𝑢𝑦(𝑠) (9) 

The resulting relation is fourth order, assuming the displacement 𝑢𝑦(𝑠) to be a third order 

polynomial which is common in beam elements. Note that this equation neglects displacements 

in the z-direction as the shown beam element is very stiff in this direction. However, 

displacements in the z-direction could be accounted for in similar way as for the 𝑦-direction by 

including the term −𝑀𝑧
∗(𝑠) ⋅ 𝜙𝑦(𝑠) + 𝐹𝑦

∗(𝑠) ⋅ 𝑢𝑧(𝑠). Having a polynomial expression for 𝑀𝑥 (𝑠), 
the particular solution 𝑇𝑥

(𝑃)
 of the ODE is easily obtained. The corresponding bimoment can be 

obtained by using eq. (7). For a constant total torsion moment, the solution is 𝑇𝑥
(𝑃)

(𝑠) = 𝑀𝑥 ,
𝐵(𝑃)(𝑠) = 0. This indicates that the particular solution describes the bimoment due to a variation 

of the total torsion moment over the axial coordinate. 

The homogeneous solution describes the effects at the boundaries of a leafspring where the 

warping is usually fully constrained or completely released. The homogeneous solution of the 

ODE is: 

 𝑇𝑥
(𝐻𝐺)

(𝑠𝐿𝐹) = 𝐶1 cosh(𝜆𝑠𝐿𝐹) + 𝐶2 sinh(𝜆𝑠𝐿𝐹) , 𝜆 = √𝐺𝐼𝑡 𝐸𝐼𝜔⁄  (10) 

where 𝑠𝐿𝐹 is the axial coordinate for a whole leaf spring, from 0 to the undformed length 𝐿𝐿𝐹. 

The corresponding bimoment is, according to eq. (7): 

 𝐵(𝐻𝐺)(𝑠𝐿𝐹) = −√
𝐸𝐼𝜔

𝐺𝐼𝑡
(𝐶1 sinh(𝜆𝑠𝐿𝐹) + 𝐶2 cosh(𝜆𝑠𝐿𝐹)) 

The constants 𝐶𝑖 are computed based on the end-conditions of a full leafspring. For a clamped 
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end we have the boundary condition 𝑇𝑥 = 0 and for a free end we have the condition 𝐵 = 0 (see 

Fig. 3b). So the particular solution was computed for each beam element individually, where the 

homogeneous solution is computed for a whole leafspring at once. 

Note that as this method does not use the bimoment at the nodes that was computed in step 1 of 

Fig 1, it can also be used with beam elements that do not have warping modes. 

 

  
Figure 3. a) The particular solution is obtained using an estimation of the total 
torsion moment, which is derived based on an approximation of the forces on the 

undeformed line 𝑀𝑥
∗(𝑠), 𝑀𝑦

∗(𝑠) and 𝐹𝑧
∗(𝑠), and its deflection, 𝑢𝑦(𝑠), 𝜙𝑧(𝑠). b) The 

homogeneous solution is based on the end-points of a whole leafspring 

 

3. RESULTS 

This section applies the methods to investigate which method is most accurate. A 2nd order beam 

model [11] and a 3rd order model [12] are used, with slightly different deformation modes as 

derived in appendix A of [16]. A rectangular beam with the following dimensions and material 

properties is used: length: 𝐿 = 100 mm, width: 𝑤 = 10 mm, thickness: 𝑡 = 0.3 mm, material 

elasticity: 𝐸 = 200 GPa, Poisson ratio: 𝜈 = 0.3. Vlasov’s warping constant is computed as 𝐼𝜔 =
𝑤3𝑡3 144⁄ , see [17, 18]. The left side of the beam is fixed to the ground, the torsional warping at 

both sides is constrained and the right side is subjected to six different loading conditions, 

visualized in Fig. 4. 

 
Figure 4. Load cases of the leaf spring, modelled by 10 beam elements. The left side 

is always completely fixed, except for case 4. 1) bending rotation, 2) applied bending 
moment, 3) bending displacement in combination with a shear force, 4) the 
displacement of both ends is fixed and both ends are rotated to create a coupling 
between the axial and bending direction, 5) torsion, 6) torsion in combination with 
bending to create a significantly varying torsion over the axial coordinate. 
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Figure 5. Resulting internal stress resultants as function of the axial coordinate 𝑠𝐿𝐹 
for two loading cases shown in Fig. 4. The leaf spring is modelled with 1, 3 and 10 
beam elements. Method A1 is applied with the 2nd order and with the 3rd order beam 
element. Method A2 is only applied with the 2nd order beam element (the results with 
the 3rd order element were worse in general). Method A3 can only be applied with 

the 3rd order element. 

 

Case 1 and 2 are simple, the only nonzero internal stress resultant is the bending moment around 
the z-axis which is constant. For these two cases all methods give the exact result. Fig. 5 shows 
results for case 3 and 4 to compare methods A1, A2 and A3. Some observations are: 

 The differences between the results of the three methods are significant if few beam 
elements are used. 

 The results show that all methods converge to the same result if many beam elements 
are used in series, indicating that all methods converge to the exact solution. One 

exception on this observation is in the shear force 𝐹𝑧 where method A2 and A3 give 
fundamentally wrong results. Appendix A explains this and shows that the resulting 
relative error in the final stress is small. 

  Method A1 converges the most rapidely to the exact solution when using more beam 
elements. The most imporantant reason for this is that this method accounts for local 

rotations of the cross section, i.e. the vector with internal foces 𝑭𝐿(𝑠) and the vector 

with internal moments 𝑴𝐿(𝑠) is rotated according to the orientation of the cross section 

𝑹(𝑠), see eq. (1). 

 The internal stress resultants obtained by method A1 are continuous between the 
elements, where this is not the case for the methods A2 and A3. 
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 The 3rd order beam element gives generally better results than the 2nd order beam 
element, especially in case 4. 

 

Fig. 6 shows results of torsion (method B1-B3). The following observations are made: 

 The bimoment on the beam nodes of case 5 is perfectly computed by the 3rd order beam 
element, but method B1 still gives a quite bad estimation inside the elements because of 

the linear interpolation. Method B2 also gives significant errors, even with 10 beam 
elements the bimoment at both ends is 40% off. Method B3 gives a perfect result for 
case 5, even with only one beam element. 

 In case 6 the total torsion moment varies over the axial coordinate and therefore the 
bimoment at the nodes is not accurately approximated by the 2nd order and 3rd order 
beam element if only 1 or 3 beam elements are used. Therefore method B1 gives a bad 
estimation of the internal bimoment. Method B3 gives a relatively accurate result, even 
with only 1 beam element. 

 The Saint-Venant torsion moment in case 6 is in method B1 approximated by the total 
torsion moment. Internally this approximation is quite good (for 3 or more beam 
elements) but not at both ends of the leaf spring. In method B2 clearly a lot of beam 
elements are required for an accurate estimation of the Saint-Venant torsion moment. 
Method B3 gives an accurate result with 3 or more beam elements. 

 

 

 

 
Figure 6. Resulting internal bimoment and Saint-Venant torsion moment as function 

of the axial coordinate 𝑠𝐿𝐹. The leaf spring is modelled with 1, 3 and 10 beam 
elements. Results are given for methods B1-B3 based on results of the 2nd order or 
3rd order beam element. 
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In summary, method A1 gives more accurate results than method A2 and A3. The most important 

reason is that it is easy to evaluate the nonlinear equilibrium-equation (see eq. (1)), therefore 

method A1 accounts for the effect of local displacements and rotations of the cross sections on 

the equilibrium. Method A2 and A3 use interpolation functions that are based on equilibrium in 

the undeformed state. 

Method B3 gives the most accurate results for torsion. Similar to method A1, this method 
obtains an accurate estimation of the total torsion moment based on equilibrium and the local 

displacements of the beam. Based on this estimation the Saint-Venant torsion moment and the 
bimoment can be obtained accurately. 

As this reasoning is not limited to the used beam dimensions and loading conditions, method A1 
and B3 will be the most accurate for displacement based elements in general. 

 

4. CONCLUSIONS 

The computation of stress in beam elements requires the internal stress resultants to be obtained. 

These resultants can be obtained by different methods, which result in significant different results 

in case of large deformation. Three methods were compared to obtain the internal stress resultants 

for extension, shear and bending. The method based on equilibrium equations gives the most 

accurate results. 

Three other methods are proposed to obtain the internal stress resultants related to torsion, i.e. the 

Saint-Venant torsion moment and the bimoment. It was found that these resultants can be obtained 

accurately based on the solution of the differential equation that relates the total torsion moment, 

the Saint-Venant torsion moment and the bimoment. 

The results indicate that a right choice of the method to obtain the internal stress resultants is 

highly relevant for an accurate computation of the stress in beam elements undergoing large 

deformation. 
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APPENDIX A – INCONSISTENCY INTERNAL SHEAR FORCE 

This appendix explains why an inconsistency is found between the shear force that is obtained 

based on the equilibrium-method and the shear force obtained by the constitutive law, even for 

short beams. The inconsistency occurs in generalized strain beam elements. First the relations of 

these elements are summarized. Then two causes of the inconsistencies are derived. Finally, it is 

shown why the error in the final stress is small in engineering practice. 

The derivations in this appendix use the formulation of the 2nd order element [11], but also hold 

for the used 3rd order element, which are both generalized strain elements. 

Summary generalized strain beam formulation 

In a generalized strain beam element deformation modes are defined, which are related to the 

nodal coordinates 

 𝜺 = 𝓓(𝒙) (11) 

The used beam elements have 8 deformation modes (eq. 7 of [11]), but only the first 6 are relevant. 

They are visualized in Fig. 7. 
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Figure 7. Six deformation modes of the beam element 

 

The generalized forces of these deformation modes are called generalized external stresses, 𝝈. 

They are related to the generalized strains by a constant stiffness matrix: 𝝈 = 𝑺𝜺. The exact 

expression for the stiffness matrix is given in eq. 40 of [11], but not relevant for the current 

derivation. According to the principle of virtual work the nodal forces are related to the 

generalized stresses (eq. 15 of [11]) 

 𝑭 = 𝓓,𝒖
𝑇 𝝈 (12) 

in which 𝑭 consist of 12 terms, i.e. the forces and moments at both nodes. 𝓓,𝒖
𝑇  is the derivative of 

𝓓(𝒙) to the nodal displacements and rotations, 𝒖. The exact relations given in eq. 10-15 of [11]. 

The relevant results (eq. 16 of [11]) are: 

 

𝜎1 = −𝐹𝑥
𝑝

= 𝐹𝑥
𝑞

(normal force)

𝐿𝜎2 = −𝑀𝑥
𝑝

= 𝑀𝑥
𝑞

(torsion moment)

𝐿𝜎3 = −𝑀𝑦
𝑝

,   𝐿𝜎4 = 𝑀𝑦
𝑞

𝐿𝜎5 = −𝑀𝑧
𝑝

,   𝐿𝜎6 = 𝑀𝑧
𝑞     } (bending moments)

 (13) 

These reaction forces are also visualized in Fig. 8.  

 

 

  
Figure 8. Reaction forces on a beam element with torsion 

 

 

Cause 1 – Different coordinate-axes 

In short the first reason for inconsistency is that the relations between the deformation modes and 

coordinates are defined using different coordinate axes such that also the relations between 𝝈 and 

reaction forces are defined in different axes. Fig. 8 shows for example that 𝑀𝑧
𝑝
 and 𝑀𝑦

𝑝
 have a 

different orientation. 
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It can be easily seen from Fig. 8 that based on method A1 (equilibrium), the shear force at node p 

should be: 

 𝐹𝑧
𝑝

= −
𝑀𝑦

𝑝

𝐿
+

𝑀𝑦
𝑞

𝐿
cos(𝜃2) −

𝑀𝑧
𝑞

𝐿
sin(𝜃2) (14) 

The same result is obtained by substituting eq. (13) into the full expression of eq. (12). By 

assuming a short beam element, such that also the deformations become small, we can linearize 

this result and substitute 𝜃2 = 𝜙𝑥
′ 𝐿: 

 𝐹𝑧
𝑝

= −
𝑀𝑦

𝑝

𝐿
+

𝑀𝑦
𝑞

𝐿
−

𝑀𝑧
𝑞

𝐿
𝜙𝑥

′ 𝐿 = −
𝑀𝑦

𝑝

𝐿
+

𝑀𝑦
𝑞

𝐿
− 𝑀𝑧

𝑞
𝜙𝑥

′  (15) 

which is the internal shear stress at node p that is found from equilibrium. 

 

The resulting shear force at node 𝑝 based on method A2 (constitutive law) is intuitively only 

related to the moments around the 𝑦-axis: 

 𝐹𝑧
𝑝

= −
𝑀𝑦

𝑝

𝐿
+

𝑀𝑦
𝑞

𝐿
 (16) 

This result can also be obtained by a more detailed derivation: First substituting the mode shapes 

(eq. 38 of [11]) into eq. (3) of this paper: 

 𝐹𝑧
𝑝

= 𝐸𝐴𝜅𝑧 ⋅ (𝑢𝑧
′ (𝑠) + 𝜙𝑦(𝑠)) =

𝐸𝐴𝜅𝑧

𝐿
⋅

Φ𝑧

2(1+Φ𝑧)
(𝜀4 − 𝜀3) (17) 

where Φ𝑧 = 12𝐸𝐼𝑦 𝐺𝐴𝜅𝑦𝐿2⁄ . Then the inverse of the stiffness relation (eq. 40 of [11]) and eq. 

(13) can be used to obtain: 

 𝐹𝑧
𝑝

=
1

𝐿
(−𝜎3 + 𝜎4) = −

𝑀𝑦
𝑝

𝐿
+

𝑀𝑦
𝑞

𝐿
 (18) 

 

The difference in result between the equilibrium method and the constitutive-law-method is the 

term −𝑀𝑧
𝑞

𝜙𝑥
′ . This term can be nonzero, even for very short beams. As the bending moment in a 

very short beam is almost constant we will write this as −𝑀𝑧𝜙𝑥
′  

 

Cause 2 – Second order term in the deformation modes 

In the 2nd order beam element a second order term is included which correct for the fact that the 

local rotation matrices are not linear in the virtual rotations around the 𝑥, 𝑦 and 𝑧 axis (eq. 45 of 

[11] gives the full expression of the rotation matrix). This causes a coupling term between the 

torsional deformation (𝜀2) and the bending deformation (𝜀3 till 𝜀6). This effect is included by 

modifying the strain definitions (see eq. 54 of [11]). The modification that causes an inconsistency 

is in the torsional mode: 

 𝜀2̂ = 𝜀2 +
1

𝐿
(−𝜀3𝜀6 + 𝜀4𝜀5) (19) 

where 𝜀2̂ is the second order generalized strain definition and the other generalized strains are the 

linear definitions as visualized in Fig. 7. For short elements, all the generalized strains become 

small, meaning that this second order term with squared generalized strains becomes negligible. 

The reason for the inconsistency is that the extra term in the derivative �̂�,𝒖
(2)

= 𝑑𝜀2̂ 𝑑𝒖⁄  does not 

become zero for short beams. This causes an extra term in eq. (12), which causes an inconsistency 

as derived in more detail below. 

Eq. (12) can be evaluated for 𝐹𝑧
𝑝
. Note that 𝐹𝑧

𝑝
 is a term in 𝑭 such that only the derivative of 𝓓 to 

the corresponding displacement, 𝑧𝑝, is required: 

 𝐹𝑧
𝑝

= �̂�,𝑧𝑝
𝑇 𝝈 = (

𝜕�̂�

𝜕𝑧𝑝
)

𝑇

𝝈 =
𝜕𝜀1

𝜕𝑧𝑝
𝜎1 +

𝜕�̂�2

𝜕𝑧𝑝
𝜎2 +

𝜕𝜀3

𝜕𝑧𝑝
𝜎3 +

𝜕𝜀4

𝜕𝑧𝑝
𝜎4 +

𝜕𝜀5

𝜕𝑧𝑝
𝜎5 +

𝜕𝜀6

𝜕𝑧𝑝
𝜎6, (20) 

in which the nonzero terms in the derivative of 𝜀2̂ are, see eq. (19): 
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𝜕�̂�2

𝜕𝑧𝑝
=

𝜕𝜀2

𝜕𝑧𝑝
−

𝜀6

𝐿

𝜕𝜀3

𝜕𝑧𝑝
−

𝜀3

𝐿

𝜕𝜀6

𝜕𝑧𝑝
+

𝜀5

𝐿

𝜕𝜀4

𝜕𝑧𝑝
+

𝜀4

𝐿

𝜕𝜀5

𝜕𝑧𝑝
 (21) 

In a beam element that is only deformed in bending around the 𝑧-axis, eq. (20) reduces to: 

 𝐹𝑧
𝑝

= − (
𝜀6

𝐿
+

𝜀5

𝐿
) 𝜎2 − 𝜎3 + 𝜎4 = (𝜃6 + 𝜃5)

𝑀𝑥

𝐿
+

𝑀𝑦
𝑝

𝐿
+

𝑀𝑦
𝑞

𝐿
 (22) 

For short beam elements the resulting terms are: 

 𝐹𝑧
𝑝

=
𝜃6+𝜃5

𝐿
𝑀𝑥 +

𝑀𝑦
𝑝

𝐿
+

𝑀𝑦
𝑞

𝐿
= 𝜙𝑧

′ 𝑀𝑥 +
𝑀𝑦

𝑝

𝐿
+

𝑀𝑦
𝑞

𝐿
 (23) 

This is the internal stress resultant found by method A1 (equilibrium). The internal stress resultant 

obtained by method A2 (Constitutive law) is given in eq. (16). So the inconsistent term is 𝜙𝑧
′ 𝑀𝑥. 

This is a nonzero error, even for very short beam elements. 

 

Influence of the inconsistencies on the total stress 

The inconsistent terms in the shear stress are: −𝑀𝑧𝜙𝑥
′  and 𝜙𝑧

′ 𝑀𝑥 as derived above. The resulting 

stress terms can be shown to be negligible for initially straight beams of common materials, based 

on classical beam theory, see e.g. [6]. For common materials we can assume that the maximum 

strain is limited to 1% and the maximum shear strain to 0.5%, this limits the curvatures 𝜙𝑥
′  and 

𝜙𝑧
′. For bending of a beam with rectangular cross section of thickness 𝑡 and width 𝑤 (Fig. 9) the 

relation between the highest strain and the bending curvature is: 

  𝜀𝑥𝑥 𝑚𝑎𝑥
(𝑏𝑒𝑛𝑑)

=
𝑡

2
𝜙𝑧

′ ≤ 0.01 ⇒ 𝜙𝑧
′ ≤

1

50𝑡
 (24) 

For torsion, the relation between the highest shear stress and the curvature is approximately: 

 𝛾𝑥𝑧 𝑚𝑎𝑥
(𝑡𝑜𝑟)

= 𝜙𝑥
′ 𝑡 ≤ 0.005 ⇒ 𝜙𝑥

′ ≤
1

20𝑡
 (25) 

The following relations exist between the highest stress and the internal stress resultants of shear, 

bending and torsion: 

 𝜏𝑥𝑧 𝑚𝑎𝑥
(𝑠ℎ𝑒𝑎𝑟)

=
3

2𝑤𝑡
⋅ 𝐹𝑧(𝑠),          𝜎𝑥𝑥 𝑚𝑎𝑥

(𝑏𝑒𝑛𝑑)
=

6

𝑤𝑡 2 𝑀𝑧(𝑠),          𝜏𝑥𝑧 𝑚𝑎𝑥
(𝑡𝑜𝑟)

=
6

𝑤𝑡 3 𝑇𝑥(𝑠) (26) 

Using these formulas we can relate the inconsistency in shear stress because of the terms −𝑀𝑧𝜙𝑥
′  

and 𝜙𝑧
′ 𝑀𝑥 to the existing stress of bending and torsion, accounting for the constraints in eqs. 

(24,25): 

 𝜏𝑥𝑧 𝑚𝑎𝑥
(𝑠ℎ𝑒𝑎𝑟,𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠)

=
3

2𝑤𝑡
|𝜙𝑧

′𝑀𝑥 − 𝑀𝑧𝜙𝑥
′ | ≤

3

2𝑤𝑡
|

𝜏𝑥𝑧 𝑚𝑎𝑥
(𝑡𝑜𝑟)

𝑤𝑡2

6
⋅

1

50𝑡
−

𝜎𝑥𝑥  𝑚𝑎𝑥
(𝑏𝑒𝑛𝑑)

𝑤𝑡2

6
⋅

1

20𝑡
| (27) 

By simplifying this equation we obtain the maximum extra shear stress: 

 𝜏𝑥𝑧 𝑚𝑎𝑥
(𝑠ℎ𝑒𝑎𝑟,𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠)

≤ |
𝜏𝑥𝑧 𝑚𝑎𝑥

(𝑡𝑜𝑟)

100
−

𝜎𝑥𝑥 𝑚𝑎𝑥
(𝑏𝑒𝑛𝑑)

80
| (28) 

Which indicates that the error in shear stress is below 1/80 of the total stress. Moreover, both 

terms in these equation are likely to partly cancel each other, which further reduces the error. 

 

 
Figure 9. Rectangular cross section with thickness 𝑡 and width 𝑤 
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