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Abstract

Development of middleware components is a non-trivial, slow and costly exercise. Within
a single organisation, many of these components are similar. We explore an approach
that, by defining data and interactions between data in a declarative manner, allows to
generate (parts of) the applications as opposed to manually engineering them. We aim
to reduce maintenance cost and improve time to market.

This work allows domain experts to create simple models of data and the IT systems
interacting with the data. Then, these models are gradually improved and extended by
applying a series of model transformations. Given a concrete use case, the work queries
the resulting model to identify a series of steps that indicate an execution plan which
satisfies the provided use case. Finally, we generate code for a middleware component
that can be executed.

In this project, we have developed a design based on this approach for non-trivial
applications in a corporate context. We generate an application that uses in-house
frameworks in order to integrate with the rest of the corporate infrastructure. The
resulting code has been created with both maintainability as well as preventing a lock-
in to this technology in mind. Finally we have shown the approach to work using a a
number of use cases defined by an expert, using a subset of the GitHub APIs and data.



v

Acknowledgements

This work could not have been created without the support of the following people:

• Arend Rensink for all of the discussions and advice over the past years.

• Pieter Vallen for the willingness to explore the unknown.

• Stefan Ansing for challenging me on and helping with the nitty gritty details.

• Jorryt-Jan Dijkstra for doing the same PDEng and his willingness for exploring
the possibilities of this work with me.

• Robbert van Dalen for always helping me to take a step back and forcing me to
really understand the essence of a problem.

• Yaping Luo for always making sure there was enough freedom to give this work
the attention it required.

• Joost Bosman for setting up academic partnerships and creating opportunities
such as this PDEng.

• Michael Clijdesdale for sponsoring this work.

But most of all I want to thank Femke, Lynn and Loek for always being patient,
understanding and supportive during the past years. I have asked for a lot of you, and
could not have done it without your support.



Contents

Abstract iv

Table of contents vi

1 Introduction 1
1.1 The company . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Relevant roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Design problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Stakeholder objectives . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.8 Outline of the PDEng thesis . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9
2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Model Driven Engineering . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Expressing models . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Model transformations . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Domain Specific Language . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Source-code generation . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Methodology 15
3.1 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 High level design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Defining type models . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Model transformations . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Search strategy . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.4 Code generation . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Minos language design . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Model driven engineering technical space . . . . . . . . . . . . . . . 20

3.4.1 Architectural viewpoints . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Meta-model and transformation design . . . . . . . . . . . . 21
3.4.3 Model-to-text transformation . . . . . . . . . . . . . . . . . 24

3.5 Hypergraph traversal . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vi



CONTENTS vii

4 Minos language 29
4.1 Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Hierarchical structure of a Minos project . . . . . . . . . . . . . . . 30
4.3 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Notable usability features . . . . . . . . . . . . . . . . . . . . . . . 34

4.5.1 Name derivation . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.2 Named parameters . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.3 Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.4 Inline type definition . . . . . . . . . . . . . . . . . . . . . . 35

4.6 IDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6.1 Jump to declaration . . . . . . . . . . . . . . . . . . . . . . 36
4.6.2 Outliner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.7 Type Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.8 Relationship to the requirements . . . . . . . . . . . . . . . . . . . 38

5 Models and transformations 40
5.1 Meta-models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.1 Minos AST meta-model . . . . . . . . . . . . . . . . . . . . 41
5.1.2 Minos IR meta-model . . . . . . . . . . . . . . . . . . . . . 43
5.1.3 Minos ASG meta-model . . . . . . . . . . . . . . . . . . . . 43
5.1.4 Minos TypeGraph meta-model . . . . . . . . . . . . . . . . 46

5.2 Model transformations . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Implementation of the model transformation pipeline . . . . . . . . 48

5.3.1 Useful Scala features . . . . . . . . . . . . . . . . . . . . . . 48
5.3.2 Model and transformation components . . . . . . . . . . . . 49

5.4 Relationship to the requirements . . . . . . . . . . . . . . . . . . . 54

6 Searching for solutions 56
6.1 Graph definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Search strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Search implementations . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3.1 Naive strategy . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3.2 Pruning strategy . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.3 Frontier strategy . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4 Applying search strategies in our product . . . . . . . . . . . . . . 62
6.5 Implementation of the search algorithms . . . . . . . . . . . . . . . 63

6.5.1 Testing search strategies . . . . . . . . . . . . . . . . . . . . 63
6.5.2 Eager and lazy searches . . . . . . . . . . . . . . . . . . . . 64

6.6 Relationship to the requirements . . . . . . . . . . . . . . . . . . . 65

7 Code generation 67



CONTENTS viii

7.1 Design decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 Target platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3 Generated code concepts . . . . . . . . . . . . . . . . . . . . . . . . 68
7.4 Composing generated code . . . . . . . . . . . . . . . . . . . . . . . 69
7.5 Java implementation details . . . . . . . . . . . . . . . . . . . . . . 70

7.5.1 Equals and hashcode . . . . . . . . . . . . . . . . . . . . . . 70
7.5.2 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.5.3 Asserting presence of all Interactions . . . . . . . . . . . . . 71

7.6 Data-binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.7 Encoding use case search results as Java code . . . . . . . . . . . . 71
7.8 Readability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.9 Relationship to the requirements . . . . . . . . . . . . . . . . . . . 72

8 Validation 75
8.1 Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.2 Step 1: Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.2.1 Domain 1: Hello world . . . . . . . . . . . . . . . . . . . . . 76
8.2.2 Domain 2: Motivating example . . . . . . . . . . . . . . . . 76
8.2.3 Domain 3: Cards . . . . . . . . . . . . . . . . . . . . . . . . 76
8.2.4 Domain 4: GitHub . . . . . . . . . . . . . . . . . . . . . . . 77
8.2.5 Domain 5: Aggregation . . . . . . . . . . . . . . . . . . . . 78

8.3 Step 2: Formulating use cases . . . . . . . . . . . . . . . . . . . . . 79
8.3.1 Implementation details . . . . . . . . . . . . . . . . . . . . . 79

8.4 Step 3: Producing middleware components . . . . . . . . . . . . . 80
8.5 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9 Conclusion and Future Work 85
9.1 Reflecting on requirements . . . . . . . . . . . . . . . . . . . . . . . 85
9.2 Potential solutions to design limitations . . . . . . . . . . . . . . . 87

9.2.1 Practical limitations . . . . . . . . . . . . . . . . . . . . . . 88
9.2.2 Fundamental limitations . . . . . . . . . . . . . . . . . . . . 88

9.3 Discussing stakeholder objectives . . . . . . . . . . . . . . . . . . . 89
9.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.5 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Bibliography 93

A Metamodels 99

B Eclipse Epsilon usability issues 103

C Minos reference implementation 105



CONTENTS ix

D A complete Minoa metamodel 108

E Minos syntax definition 110
E.1 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
E.2 AST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

F Scala selector code 116

G Embedding our work in the company 119
G.1 Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
G.2 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
G.3 Next steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

H Use cases 125
H.1 UC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
H.2 UC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
H.3 UC3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

I Capita Selecta report 129



Chapter 1

Introduction

This thesis reports on a project carried out at ING group. As a major financial
services provider, ING leverages a large number of IT systems. To interact with
those systems, a sizeable portion of software is part of the class middleware
components.

These components share a common, high level design. Concurrently, details
of the various concrete use cases of the middleware components are different.
This results in a generalisable core component that usually is quite generic and
has a certain amount of reuse, but with a lot of details that are specific to the
local context. Examples of such generic features are data mapping and service
orchestration, an example of specifics is any form of business logic.

Creating and especially maintaining middleware components is an expensive en-
deavour. To achieve lower maintenance cost and improve the time to market, we
propose to use model-driven engineering techniques to automate the creation of
these generic parts of software systems, whilst still allowing for manual work on
the more specific parts in the middleware components.

1.1 The company

ING group describes itself in the following way [27]:

ING is a global bank with a strong European base. Our 57,000 em-
ployees serve around 38.9 million customers, corporate clients and
financial institutions in over 40 countries. Our purpose is to empower
people to stay a step ahead in life and in business.

Our products include savings, payments, investments, loans and mort-
gages in most of our retail markets. For our Wholesale Banking clients
we provide specialised lending, tailored corporate finance, debt and
equity market solutions, sustainable finance solutions, payments &
cash management and trade and treasury services.

1
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Customer experience is what differentiates us and we’re continuously
innovating to improve it. We also partner with others to bring dis-
ruptive ideas to market faster.

To gain an understanding of the size of the company, here are some key figures
of the financial year 2020 [26]:

• more than 58.000 employees worldwide

• ∼ 937 billione assets

• ∼ 17 billione revenue

• ∼ 2.4 billione net profit

1.2 Motivation

In the past, the CEO has described ING as having ambitions to become a tech
company with a banking license [31]. This ambition contributes to the assets the
bank has: a huge software base that needs to evolve for strategic reasons (i.e.
brand satisfaction, business needs) as well as legal ones (regulatory pressure).
The 2020 annual report totals the value of all software to 688 millione [26].
Employees working on these assets are excluded from this figure.

As a recurring pattern, each type of banking service operates in its own domain.
Examples of such domains are mortgages and payments. Customer-facing ap-
plications such as mobile banking or internet banking need to interact with all
of these different domains in order for customers to be able to complete their
banking activities. Therefore the organisation applies middleware components
to act as the glue between the customer facing components and the underlying
banking domains. An example of such a customer-facing application combining
a number of these domains can be found in figure 1.1. One can imagine that the
total number of middleware components can become quite large.

Against the background of this state of affairs we want to achieve the following
objectives:

1. Reducing the maintenance costs of middleware components.

2. Improving the time-to-market of newly built middleware components.

3. Promoting reuse of code amongst middleware components created and
maintained by different teams.

Re 1: Most of the user interaction leveraging these components is about inter-
acting with ING via the Mobile Banking App [28] or the Mijn ING Internet-
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Figure 1.1: The ING Mobile Banking app, and markings of each individual (bank-
ing) domain that together make up the main view.

bankieren [29]. Given that in The Netherlands, both of these are used by more
then 5 million customers1, one can understand the importance of a high quality
user interaction. In fact, the quality of these digital channels is even a key differ-
entiating factor of ING compared to its competitors. Because of these business
concerns, as well as standard software maintenance requirements, a large amount
of effort is spent on software, and thus also on maintaining middleware compon-
ents. The business implications are clear: this can only be achieved by spending
a considerable amount of money on technology but especially labour.

Re 2: This is driven by the need to quickly respond to changes in society or in

1https://nieuws.ing.nl/nl-NL/about/

https://nieuws.ing.nl/nl-NL/about/
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the market. These occur frequently, and will continue to do so. Example change
drivers are rules and regulations, or business products. As a rule of thumb, one
can assume that every single view, screen or report requires specifically writ-
ten code. This means that adding new features regularly requires creating new
components, thus indicating the usefulness of improving the time-to-market.

Re 3: It is in general beneficial to obtain a (higher) degree of code reuse [24].
Although there is no one-size-fits-all approach, we’d like to emphasise this affects
primarily two dimensions: a) similar code shared between components, such as
code addressing numerous non-functional requirements and b) business logic rep-
licated across components. We will consider both dimensions in our work.

1.3 Relevant roles

Within the scope of our work, the following roles are relevant because they operate
within the area of influence of our design. Some of the terminology are the result
of ING’s way of working [30], which in turn is heavily influenced by the Spotify
model [38]. A short introduction of the relevant roles will be given here.

DevOps Engineer A software engineer, responsible for transforming the jour-
ney defined by a Customer Journey Expert and the vision of an Architect
into a software component, as well as its maintenance.

Feature Engineer A person that moves through the organisation in an ho-
rizontal manner, aiding Architects, Customer Journey Experts and Dev
Engineers in helping to make preliminary designs more concrete. Is also
expected to be in the lead when work touches multiple squads to make sure
it’s aligned. An employee in this role typically has a large amount of tacit
knowledge about the design and its software landscape.

Customer Journey Expert A person that identifies the needs of customers,
designs products for those customers and develops it together with the
Tribe.

Architect Designs high level organisational designs, generally focused on who
uses what information, as well as the high level structures of the IT land-
scape. Role is divided between domain and IT architects.

Squad A multidisciplinary (software) team that can function individually to
work on a mission (such as “Supporting customers with their mobile pay-
ment workflow”).

Tribe A group of squads working on related things (high level collaboration).

Chapter A group working on a specific topic (low level collaboration).
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Guild A community sharing specific interests. You can join guild(s) based on
interest in a specific field.

1.4 Design problem

In the scope of our work, a middleware component is limited to software that en-
ables communication between systems. Given the relatively homogeneous tech-
nological nature of communication channels in our organisation, the main focus
is integration and not the technological connectivity. As we are only consuming
data from various domains and not store anything ourselves, we don’t need to con-
sider any data management concerns such as availability of data. Non-functional
aspects should match with the organisational baseline as much as possible.

Our design problem is about the three objectives introduced in Section 1.2, which
were 1) reducing maintenance cost, 2) improving time-to-market and 3) promot-
ing reuse of (parts of) middleware components. Of these three objectives, this is
also the order of importance. Maintenance cost in general is a broad topic, but it
is widely accepted that it contributes to the majority of the costs in the software
life cycle[5, 43].

To address these objectives, we present a new approach on how middleware sys-
tems can be created and maintained. We deliver a blueprint architecture of
how this can be achieved, as well as a proof-of-concept implementation. The
implementation is a stand-alone product that can be used independently of the
organisational context.

This design and prototype are based on principles of model driven engineering
(discussed in Chapter 2). They are intended to be used by relatively technical
people, even if they represent business roles (see Section 1.3). We address a
number of requirements that are introduced in Section 1.5. Because this is the
majority of our operational usage, this seems to be a good trade-off to limit
complexity.

1.5 Requirements

The high level requirements of our work are the following:

1. Model existing services as-is, without requiring any changes to their do-
mains.

2. Explicitly separate functional and non-functional aspects of generated mid-
dleware components.
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3. Decrease engineering effort associated with creating or adjusting existing
middleware components.

4. Emphasise the business needs and put those first, as opposed to the tech-
nological details related with implementations.

5. Embrace change, such that changing the behaviour of middleware compon-
ents for business needs is something that can be facilitated by design.

6. Include a strategy on how to implement this approach in the host organ-
isation.

7. Prevent lock-in so that at any point in time the decision could be made to
stop using our approach.

8. Ensure readable, understandable and thus maintainable assets so engineers,
security experts and tooling can audit the products.

9. Only require support querying of data, since the majority of customer in-
teractions are like this (e.g. as shown in Figure 1.1).

1.6 Stakeholder objectives

In this section we discuss the roles from Section 1.3, and regard them as pro-
totypical stakeholders. We then evaluate what goals our work contributes to.
Note that we limit ourselves our sphere of influence here to only the main and
directly interacting roles, because the majority of the organisation is currently
not involved in the current work. Appendix E.1 discusses a strategy to apply this
work in the host organisation and does take a broad scope into account. Table
1.1 relates the stakeholder roles and requirements.

DevOps Engineer The main objective is decrease of maintenance effort re-
quired. This work allows engineers to focus more on the essential complexity
of their engineering work, instead of accidental complexity and maintenance
tasks. How this works is discussed in Chapters 3 and 7.

Feature Engineer Detailed alignment and discussions on exposing (parts of)
the data-set of System of Records will become a more prominent task in the
day-to-day activities. The alignment work that this role usually undertakes
becomes more explicit because information is encoded in the models created
for this approach. This could save time and effort that is currently spent
on alignment between different stakeholders.

Customer Journey Expert By using this approach, the feedback loop on cre-
ating new products becomes shorter, allowing for faster iterations. Is able
to explore opportunities for new use cases more quickly, by removing a part
of the dependencies on other roles.
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Architect This role is not impacted much by this work, but can use more (static)
analysis approaches to reason about the real state of the architecture in the
organisation, instead of what is documented. In practice, those two always
diverge to a varying extent.

R1 R2 R3 R4 R5 R6 R7 R8 R9
DevOps Engineer x x x x x
Feature Engineer x x x x x x x x
Customer Journey Expert x x x x
Architect x x x x x x

Table 1.1: Requirements contributing to stakeholder objectives.

1.7 Validation

We have defined a number of tasks required to validating our approach. An
overview of tasks and requirements can be seen in table 1.2.

Prototype of the approach
We have created a prototype – ensuring an executable architecture – that
a) creates a domain model and b) is able to generate a working middleware
component based on a given use case.

Modelling domains
We validate our approach by modelling a number of separate domains. This
is discussed in great detail in Chapter 8.

Validating Customer Journey Expert use cases
By having our stakeholders define a number of use cases based on the type
of usage they generally encounter, we ensure that we validate with realistic
usage patterns. These use cases are discussed in detail in Section 8.3.

Productisation
We have defined a strategy on how to productise this work within the
organisation. This is presented in Appendix G.

1.8 Outline of the PDEng thesis

The rest of this document is organised in the following way. Chapter 2 provides
the background of our work. In Chapter 3 we discuss the methodology. Chapter
4 presents the language in which we create models. Chapter 5 discusses the
transformation of these models, using techniques of model-driven engineering.
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R1 R2 R3 R4 R5 R6 R7 R8 R9
Prototype x x x x x x x
Model a domain x x x x x
Validating use cases x x x x x x x
Productisation x x x

Table 1.2: A mapping between validation efforts and requirements

In Chapter 6 we elaborate how we find solutions to use cases. Chapter 7 is
about our approach to generate code. In Chapter 8 we discuss how we have
validated our work. Finally, Chapter 9 is about the conclusions, future work and
recommendations to the company.



Chapter 2

Background

This chapter provides background of our work. In Section 2.1 we will introduce
related work. Section 2.2 is about Model Driven Engineering, and Section 2.3
provides background on how to create models. Model transformations are dis-
cussed in Section 2.4, domain specific languages in Section 2.5. Finally, Section
2.6 introduces source-code generation.

2.1 Related work

Starlink A framework for execution of high-level protocol specifications to achieve
middleware behaviour on demand, via k-coloured automata [32, 7]. Al-
though this focuses the (semi)automatic construction of middleware com-
ponents, its main focus is on runtime interoperability. It primarily addresses
the challenges one encounters when bridging different technologies. How-
ever, although its models allow automatic construction of the various indi-
vidual automata used in their work, it is up to the researchers to manually
create the merged automata used to describe an actual use case. For future
work the authors suggest to apply semantic models or machine learning to
automate these steps.

Falcor Industrial project [25] that exposes all domain data as a single model, in
a uniform way. Details about implementations or origin (i.e. data coming
from different services) is hidden. Data can be queried in a uniform way,
but queries do need to be made manually.

GraphQL Both an open-source query and manipulation language, as well as a
runtime to fulfil queries [19]. A very popular and modern alternative to
REST, but incurs some overhead in defining and maintaining the graphs.

Federated GraphQL An approach [56] that addresses one of the major issues
with GraphQL namely the lack of integration capabilities.

Synquid A program synthesizer for refinement types [53]. Can be used to gen-
erate programs satisfying a given specification.

9
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ReSyn Built on top [39] of Synquid [53]. Also enables to guide the program syn-
thesis with resource consumption characteristics (i.e. any implementation
satisfies a symbolic resource bound).

Baker Create (micro)service-based process flows [61]. It allows individual com-
ponents to be shared and reused by others as well. The process flows are
defined declaratively but requires any ingredient to be defined by an engin-
eer.

2.2 Model Driven Engineering

Model Driven Engineering (MDE) revolves around creating models representing
a simplification of a complex reality. If these models are properly designed, they
reflect just the essential complexity as opposed to also accidental complexity [8].
These models, and the tools to interact with these models, can then be used by
people to reason about a system.

Designing models of a system can be done in various ways, with numerous tools
and also at various levels of abstraction. The book by Brambilla et al [6] goes
into detail and uses terminology from the Object Management Group (OMG)
when defining the levels of abstraction.

The highest level of abstraction is the Computation Independent Model (CIM)
level. This describes high level characteristics, without going into technical de-
tails.

The second level is the Platform Independent Model (PIM). Such models define
behaviour in terms of data and algorithms, but don’t go into any technical details.

The third level is the Platform Specific Model (PSM) and it defines all techno-
logical aspects in enough detail to understand how the model can eventually be
executed.

2.3 Expressing models

There are two primary, but distinct approaches to expressing models [51].

The first approach is about text-based languages and tools, called grammarware.
Here, one generally defines grammar(s) that can be used to interpret a program
and create a syntax tree. As the name suggests, this is mostly a text-oriented
approach for both the design and use of the models. Examples in this space are
Xtext [18], Spoofax [35] and Rascal [37].
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The second approach is called modelware and leverages modelling languages and
tools to achieve the same goals. Generally speaking this also results in a much
more visual approach, where one creates (meta)models via graphical workflows.
Examples in this space are MetaEdit+ [36], Whole platform [54] and Eclipse
EMF [55].

Although both approaches exist in two different technical spaces, they are actually
very similar, as can be seen in Figure 2.1.

Figure 2.1: Modelware and grammarware technological spaces, as taken from [6].

There are also approaches that can bridge these two worlds. The first is by using
projectional editing [65], the second by transforming the models of one world into
another [47, 68].

Although model design tends to be closer to modelware in case of projectional
editing, one can create a projection that suits the grammarware domain more.
Because of the nature of the projection, this can also be done for only a small
part of a model, so you end up with a hybrid approach.

In our work, we leverage various types of intermediate models from the gram-
marware domain. These are Concrete Syntax Tree (CST), Abstract Syntax Tree
(AST) and Abstract Semantic Graph (ASG). A CST exactly represents the source
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code of a program, in our case that of a domain model expressed by our Domain
Specific Language (DSL). An AST is a abstract representation of the conceptu-
ally essential aspects of the CST. An ASG is a graph derived from the ASTs, and
can have shared components and references (such as pointing to type declaration
sites). This is discussed in detail in Chapter 5.

2.4 Model transformations

As described in the taxonomy by Mens and van Gorp [44], model transformations
are defined as transformations from one artefact to another.

These transformations all happen in specific technical spaces, of which we have
also addressed two relevant ones; modelware and grammarware.

Model transformations can be categorised into dimensions. If transformations
happen between models of different languages they are called exogenous. When
they happen in place, on the same model they are called endogenous.

Another dimension is whether they are horizontal or vertical, of which the former
is on the same abstraction level, the latter a different one.

Together, this yields table 2.1. This shows how model transformations can be
categorised, as to make understanding them an easier task.

horizontal vertical

endogenous Refactoring Formal refinement
exogenous Language migration Code generation

Table 2.1: Orthogonal dimensions of model transformations with examples, as
taken from Mens and van Gorp [44].

Finally, another important distinction between different approaches of model
transformations is whether they are declarative or imperative. Declarative trans-
formations are defined in terms of source and target relationships, and don’t
require any further details on how to achieve the transformation itself. For im-
perative transformations it is the other way around. Here, one defines the steps
required to do the transformation in detail. This generally provides you with
more flexibility because all steps are controlled in detail. The cost of this is a
more complicated, less automated way of doing transformations (e.g. manually
defining model traversal sequence).

Although there exists various technology to implement model transformations,
well known examples of dedicated transformation languages such as ATL [33],
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QVT [42] and ETL [41], and generally tend to be declarative based on pattern
matching.

All of these model transformation approaches are designed according to the OMG
approach, which we represent in Figure 2.2. This will be explored further in
Chapter 3.

Figure 2.2: Model transformation design according to OMG, as taken from [6].

2.5 Domain Specific Language

Domain Specific Language (DSL) techniques allow you to construct highly spe-
cialised languages, designed for expressing a very well defined (and generally
narrow) problem domain. For more background we refer to a short, but slightly
older overview [60] and to a more up-to-date online overview [59].

DSLs need to be engineered, which is why we also refer to language workbenches.
These tools supports the development and maintenance of languages accessible
and affordable. A very thorough overview of workbenches can be found in the
form of a challenge, where various workbenches implement the same thing using
their own technology [17].
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2.6 Source-code generation

Source-code generation is the process of having or writing specialised code that
emits source code based on input data. An example of this would be using
the swagger-codegen1 to generate a client implementation based on an OpenAPI
specification2.

For model transformations there is a specific class of model-to-text transforma-
tions. Although this is not limited to code generation, it is the most relevant part
for our work. Model-to-text transformation is an enabler for faster iterations of
the resulting product, since most of the application is generated.

1https://swagger.io/tools/swagger-codegen/
2https://swagger.io/specification/

https://swagger.io/tools/swagger-codegen/
https://swagger.io/specification/


Chapter 3

Methodology

In this chapter we discuss the methodology behind our work. We start with
Section 3.1, where we introduce an example to illustrate the problem, and which
will reoccur as a running example throughout the rest of the thesis. Section
3.2 provides a bird’s-eye view of our work, and outlines our four-step approach.
Step one is about the DSL design, addressed in Section 3.3. Step two and four
are about our MDE methodology, which is discussed in Section 3.4. Step three
addresses searches, and is introduced in Section 3.5.

3.1 Motivating example

To illustrate our approach we provide an example use case. This is an extremely
simplified example of a finance domain where customers can have savings and
payment accounts. Money transfers can be executed between these accounts and
the savings account can accrue interest. Finally, customers will sign agreements
with our hypothetical company, which entitles them to use certain products.

From a technical point of view, there exist four backend APIs that can provide
us with data:

getAgreements Given a customer, produce a list of agreement that this cus-
tomer has signed.

getAccount Given an Agreement, produce the Account (payment or savings)
that is associated with the agreement.

showAccount Given an Account (payment or savings), produce an account
overview that states the balance and IBAN of the account.

listTransactions Given an Account, produce all of the money transfers that
have been applied to this account.

In order to model this domain, we have to make a number of choices. Because this
is a very simple example, we will not go into too much detail and only highlight
the important aspects.

15
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Most importantly, we have made a distinction between three subdomains:

FinanceConcepts Financial concepts, such as Money, Interest and Currencies
that don’t really require any product-specific knowledge.

CustomerDomain Customers and contracts with those customers. This is
more related to a customer relationship domain.

Transactions Core business assets related with booking transactions and ac-
counts to book them on.

Given the statement made about the showAccount API endpoint we want to
model the SavingsAccount and PaymentAccount to both be an Account.

Finally, we can also define an example business use case we want to support
within our example domain. This can be defined as such:

Given a Customer in the request, create a response with that same
Customer, as well as all AccountOverviews of that Customer.

We have interpreted the use case above and defined a diagram of the use case in
Figure 3.1. This is modelled as a UML class diagram [20] because it is close to
the representation we will discuss in Chapter 4, as well as being one of the more
common diagrams in the field of software engineering.

The creation of such a diagram follows from making a series of modelling decisions
that are the core job of our end users. These choices have to be made as to how the
domain is represented, and they are reflected in the final structure of the model.
Concretely, the choice to represent SavingsAccount and PaymentAccount as two
types of Accounts and to add all of it to the Transactions package is an example
of those decisions.

3.2 High level design

In this section we will introduce the high level design of the whole project, aimed
at making the more detailed design chapters that follow easier to understand.

The approach we designed can be summarised in four steps, which are also de-
picted in figure 3.2. We will explain each of the steps in the following four
subsections.
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1. Type models 2. Model transformations

4. Code generation3. Search strategy

DSL Editor

Models
Improved models

Model

Selects one Dev engineer

Solution

Strategy

Solutions Model2Text
Middleware
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fx

logic

Business

Transformation

Pipeline

Models

Figure 3.2: A schematic design overview of our approach.

Any operation on data, whether its business logic or some API call, is defined
as an interaction. These interactions require zero or more parameter types to
produce exactly one other type. An example is getAgreements(Customer): [

Agreement ] from Figure 3.1.

3.2.1 Defining type models

Step 1 of Figure 3.2 is about defining type models of all data used in any of
the interactions of a system (i.e., the domain in question), together with the
interactions themselves. Both the interactions and the data definitions are types
in terms of our type system. Because there is usually a (possibly untyped) API
definition of the domain available, this can be used as a starting point to make a
rudimentary data model of all types used.

This approach allows a user to model both existing systems as well as the data
they use, without making assumptions on how they work internally or requiring
changes at their interfaces. Examples are any of the classes shown in Figure 3.1,
such as FinanceConcepts.Money.

Interactions with existing systems can be hidden behind declarations in our type
model, such as with getAgreements that consumes one type, but produces an-
other. In case we want to include our own logic, we can do by defining a similar
interaction, e.g. [ Account ] -> [ SavingsAccount ], which effectively filters
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a list of Accounts such that only SavingsAccounts are left. Note that at this
stage there is no way to define an implementation for these interactions.

The challenge is how to design language and tooling to support users in creating
these type models. We discuss this in Chapter 4.

3.2.2 Model transformations

The second step of Figure 3.2 takes the type models as input and applies a series
of model transformations that gradually enhance them, or transform them into
models conforming to different meta-models. These are based on the type model
instances, an intermediate representation used for increasing the level of detail
and a highly detailed graph-based one.

At this stage it suffices to understand that we gradually increase the level of detail
within those models, until they can be used for the final code generation. The
transformations themselves each focus on a single change, such as introducing
derived types based on other definitions. An an example, because a Money has
a Currency property, we can derive an interaction that extracts the Currency

from a given Money type. These step-wise transformations together is what we
call our model transformation pipeline.

The eventual goal is to produce the models mentioned at the start of this section.
The challenge is how to design the models and the transformations to support
this goal. We discuss this in Chapter 5.

3.2.3 Search strategy

In step three of Figure 3.2, we take a particular query on the domain for which
we need an implementation. This query can be formulated in terms of given
elements (the types in the model that we assume to be directly available) and
the target type (the value that the query should obtain).

This query can be applied on a graph, which we derive from the final model of
step two. In this graph, each of the nodes represents a type and the edges are
the effective interactions. We then execute the query at the graph with help of
a specific search strategy, which produces results. As an example, an edge in
the aforementioned graph could be {Currency, MonetaryAmount, f, Money},
representing a function f that transforms Currency and MonetaryAmount into
Money.

A solution takes the form of a Directed Acyclic Graph (DAG), representing a
possible (partially ordered) sequence of interactions in the domain that will pro-
duce the target type from the givens. In case of multiple solutions, they can be
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ranked according to some heuristic, such as smaller size, and the user can make
the final selection by hand.

An example of such a query on our running example was already introduced in
Section 3.1: given a Customer, produce all its AccountOverviews.

The challenge for this step is to formulate and implement an efficient search
algorithm. In Chapter 6, we present our solution.

3.2.4 Code generation

Step four uses the result produced in step three, and combines this with the
detailed model from step two. We have created a model-to-text transformation
that generates middleware components based on these models.

Target technology choices during code generation are embedded in the model-to-
text transformation. This means we can support different targets by providing
specialised transformations for different cases, such as target language (e.g. Java
or Kotlin) or architectural choices (e.g. introduction of caching layers).

The interactions defining business logic introduced in step one also need to be
coded at this stage. That is why, regardless of the details of the model-to-
text transformation, we aim for a hybrid between code generation and manually
written code.

This creates two challenges for this step: a strategy for mixing manually written
with auto generated code and generating code that is of high enough quality to
be assessable by software engineers. We discuss this in more detail in Chapter 7.

3.3 Minos language design

In general, data can be defined by two aspects: its fully qualified name (i.e.
nominal typing, such as C and Java) and the data its composed of (i.e. struc-
tural typing, such as Go and Typescript). In our approach, the identity is de-
termined via nominal typing. Any data can therefore be given a Type, such as
Transactions.MoneyTransfer shown in Figure 3.1.

Doing so brings us the opportunity to create meaningful types, of which the
names reflect the intention of the data. It also allows us to explicitly introduce
interactions between various types of data, making these links very explicit. To-
gether, this results in a domain that has functional behaviour encoded in its type
model, but has no details at all about implementation.
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3.4 Model driven engineering technical space

The choice of using an MDE approach has been made before starting the project.
Within the MDE space we have evaluated our possible choices, and selected the
technology that fits our context best.

MDE is about models and model transformations. Because we can address this
either via the modelware or grammarware technical spaces, we will list the pros
and cons of both of them.

3.4.1 Architectural viewpoints

As mentioned in Section 2.2, we will be using the common OMG viewpoints CIM,
PIM and PSM. However, they represent a slightly different perspective than one
might initially expect.

Because of the size of the company, there are a large number of people involved in
the development and maintenance of any product we create. The most important
roles from our point of view were introduced in Section 1.3. However, even the
most business oriented roles are generally fulfilled by people with an engineering
background or at least affinity, and the ”real” business is actually addressed in a
completely different part of the organisation.

Taking the above into consideration, we can conclude that even the business
representatives involved in our project are still quite technical. From a design
point of view, this means that a possibly technologically oriented approach is still
enough of a business approach1.

To relate this back to the CIM, PIM and PSM we can state the following:

CIM Our domain is about enabling customers and allowing them to access their
data, as well as providing them with insights of their financial status. This
makes the business aspect mostly focused on other systems, the data they
contain and the APIs that exist to access the aforementioned data. In other
words, a much more technical business domain than you would normally
expect. Therefore this abstraction level is our CIM.

PIM At this level we need to include more operational details, such as what
kind of interactions are available for all of the data. This is much closer to
the common interpretation of PIM.

PSM This level is equal to the common definition of a platform specific model,
and is a technical model encompassing all technological aspects required to

1As an example: most business people in our part of the organisation have at least entry
level familiarity with programming languages.
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eventually execute the intended middleware components.

A detailed discussion on this topic can be found in Section 5.1.

3.4.2 Meta-model and transformation design

The design of our meta-models is based on a staged approach. In order to limit
the complexity at the start of our work where the type model is expressed, we
want to be as abstract as possible. The design of the model at this level should
therefore be a CIM.

Improving the level of detail of such a model can be done, but it is more conveni-
ent to first transform the model into an intermediate representation. We have
designed this intermediate model to be slightly similar to the first model, but
with a much more explicit structure to make model transformations easier. This
second model therefore is more of a PIM.

Before doing actual model-to-text transformation, the structure within the model
becomes more important, for example in order to make querying for information
easier. We address this by making an even more detailed PIM, after which we
can do the final transformations.

The transformations themselves are designed to do one thing only, much like
the Unix philosophy2. They are also designed to be largely declarative, in order
to limit complexity. Finally, as these transformations sometimes are inherently
complex, being able to debug them is critical.

The designs of the meta-models and transformations are discussed in detail in
Chapter 5.

Modelware

The pros of the modelware domain are following:

Uniform modelling standard The field seems to have mostly settled on a
single modelling standard. This is Ecore [11], in itself based on OMGs
Meta Object Facility [50]. The clear benefit of having a uniform standard
is ubiquitous support between various tooling.

Jetbrains MPS Jetbrains Meta Programming System [63] deserves a special
mention because it is arguably the most advanced platform that mostly
fits the modelware domain, whilst also not being built on top of Ecore/-
MOF. It also sees some industrial use[64, 3]. Although there are also some

2http://www.catb.org/~esr/writings/taoup/html/ch01s06.html

http://www.catb.org/~esr/writings/taoup/html/ch01s06.html
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grammarware-like influences, especially the projectional editing is able to
provide a very high quality platform.

Graphical model editors There exist visual model editors, such as the open
source Ecore Tools [12]. These are very convenient because it lowers the
entry barrier for model creators.

Open source tooling There is a large amount of open source tooling available,
most of it within the Eclipse ecosystem. There are fundamental frameworks
like the Eclipse Modeling Framework [10, 55], but also higher level tooling
such as the Ecore tools [12], EMFatic [13] and the GMP [15]. This results
in an open ecosystem, where no single vendor can decide over the future of
the technology.

Model transformation languages Dedicated model transformation languages
such as ATL [33], QVT [42] and ETL [41] exist to make model transform-
ations more convenient.

Model-to-text Although a class of model transformations, these transforma-
tions are non-standard in the sense that they are designed and used dif-
ferently (e.g. the use of templates). Acceleo3 [9] and Xpand [16] are good
examples for model-to-text transformation languages.

The downsides are:

Little use in industry Although there exist various companies using model-
ware approaches, it is orders of magnitude less widespread then those in
the grammarware technical space. This can also be seen in the low number
of contributors to the various modelware projects.

Low quality of tooling Implied by the statement above, the little usage has
its effect on the quality of the tooling. We have evaluated one of the most
popular platforms, Eclipse Epsilon [40], quite thoroughly and after using it
for a couple of months we have decided to stop using it. To give an insight
in the type of problems encountered, we refer to Appendix B.

Model creation Although defining meta-models is a relatively nice experience,
creating model instances is not necessarily so. The default creation of
EMF [10] powered Human Usable Textual Notation (HUTN) [47] or XML
Metadata Interchange (XMI) editors provides very limited user experience,
and rolling your own requires more manual work (e.g. via Sirius [62]).

Debugging Model transformation languages are very hard to debug. Although
support varies per language, none of the well known transformation lan-

3implements OMGs MOF Model to Text Transformation Language standard.

https://www.omg.org/spec/MOFM2T
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guages have support for debugging as is common with the more standard
programming languages.

Jetbrains MPS Although very sophisticated, it is also a single platform that
operates in a very distinct way compared to other systems. This results in
a very steep learning curve and a limited number of experts.

Hard to apply GPL Although a General Purpose Language like Java can be
used in conjunction with the Ecore tooling, it requires a very specific API
and a lot of low level details (e.g. casting of types).

Grammarware

For a grammarware technical space the benefits are:

Robust technology Because most languages are defined in a textual manner,
the technology used in this domain is generally speaking much more mature.

Language workbenches The creation of languages is aided by so called lan-
guage workbenches. These tools support the creation and maintenance of
languages, as well as editor integration. In a language workbench challenge
[17], a large number of these workbenches have been evaluated in detail.
One of these is Rascal [37], a language workbench which the author is famil-
iar with. Since this paper is published, a thorough type checker framework
for Rascal has also been made available under the name TypePal. Next to
being a welcome addition to the language, it also indicates that the project
is still under active development.

Familiar developer experience The fact that meta-models are generally defined
by grammars, and models by creating text-based programs, this generally
makes engineers feel more at home.

Easy to apply GPL General Purpose Languages can be applied more easily,
as there are no special expectations from the ecosystem as opposed to all
the modelware tooling.

The cons are:

Limited integration with modelware In order to use all of the features from
the modelware technical space, a bridge needs to be defined between the two
spaces. Although this is possible via bridges [47], XMI/Ecore model serial-
isation or other model connectivity approaches [41], providing (bi)direction
connections can become quite tricky.

No dedicated transformation language By default, no dedicated and well-
known transformation languages will be available. This is up to the engineer
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to provide.

Choosing which technology to use

Taking the pros and cons into account, we decided to pick the grammarware
approach for the (meta)modelling, in conjunction with a language workbench.
Within this selection we have picked Rascal as the language workbench of choice
because we have prior experience.

The rest of the project is implemented in a GPL instead of modelling tooling.
This choice has been made because the cons of the above technical spaces are so
present that we decided that it does not bring enough benefits to use the dedicated
tooling. Our experience with the Eclipse Epsilon platform only confirmed our
feeling (again, see Appendix B).

We feel that the most important shortcoming of a GPL, namely the lack of
a sophisticated model transformation approach, can be addressed by building
some additional libraries on top of standard language features. Because the
company widely employs the JVM, and we prefer to have an advanced language
available for the aforementioned libraries, we have opted to use Scala4 [48] as the
implementation language of the rest of our project.

3.4.3 Model-to-text transformation

Whereas model-to-model transformations were discussed in the previous section
when evaluating the technical space of model-, and grammarware, model-to-text
deserves its own evaluation.

The textual models we intend to create are actually source code models of pro-
gramming languages. This requires the target model to be at the level of detail
of a PSM.

To achieve a model-to-text transformation, we have two technical spaces we can
explore. The first is to do a transformation into a programming language; the
second is a transformation into text.

Directly applying a model-to-text transformation

The benefits are:

One fewer transformation This approach only requires a single pass before
the model can be transformed into the target source code model.

4https://scala-lang.org/

https://scala-lang.org/
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Implicit encoding PSM aspects All Platform Specific aspects that make up
a PSM are encoded implicitly into the model-to-text transformation. This
has the effect of having a simpler transformation itself, given that these
aspects are codified in the context of the transformation (e.g. in text tem-
plates).

Easy to debug Although we have invested in the debuggability of a model
transformation, investigating the output text after applying the model
transformation is even more transparent. If the target text is source code,
one can even leverage the respective compiler or interpreter for even more
detailed feedback.

The downsides are:

More complex model transformation context The corollary of the advant-
age Implicit encoding PSM aspects is that the context becomes more com-
plex. In case of text templates, these need to contain various platform
specific details before they can work as intended.

Harder to scale Supporting multiple model-to-text transformations, for example
to support multiple runtime platforms, is possible but requires development
of more transformations with a high level of detail (i.e. the aforementioned
PSM aspects).

Two step approach

The alternative is a two step approach where we first apply a model-to-model
transformation into a programming language meta-model, followed by another
transformation into text.

The benefits are:

Reusable transformations The programming language meta-model can be
transformed into source code, without specialising it in any other way. This
means that these transformations are extremely reusable, and can be shared
between any user of the technology (e.g. open source project or bundled
with a compiler).

Easier to scale Assuming the transformations are reusable and widely avail-
able, it becomes easier to scale because syntactic language concerns of the
model-to-text transformations are not an issue anymore.

Automatically address language constraints When creating text, especially
for programming languages, there are various constraints that need to be
addressed, such as rules for class names etc. The reusable model-to-text
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transformation can take care of this by automatically transforming any
offending strings.

The downsides are:

Program model is expensive Creating a target model for a program in a pro-
gramming language effectively requires you to create an AST of the target
model, making such a transformation very expensive.

Harder to analyse The first step, the model-to-model transformation, becomes
quite complex because it is highly detailed. Because of this, debugging any
issues in the transformation can become very complicated.

Model-to-text transformation design

We have opted to single-pass, model-to-text transformation because of the afore-
mentioned benefits. We have designed our approach to be similar to existing
model-to-text transformation languages, such as EGL [14, 9] and Acceleo [9].

By encoding all platform-specific details into the structure of the templates, we
keep the transformation itself simple which allows us to just focus on the incid-
ental complexity.

Acquiring contextual information from the various models is designed to happen
via queries, or lenses, that can be applied on the models. We have extended this
approach to create a smaller, more light-weight projection of the complete model.
This allows reuse and composability, as well as improving the maintainability of
this part of the system.

The two final important concerns we address are in the target model (i.e. target
code) itself. Although strategies exist where markers are used in to indicate
manually written code in the midst of generated code, we feel that this is an
unnecessarily complex strategy as you explicitly entangle generated and manually
written code. Our approach is to use standard software engineering patterns and
define interfaces in the generated code, allow engineers to create implementations
of those interfaces and use Dependency Injection (DI) to ensure that on runtime
the configuration is as intended.

Secondly, we should be able to abandon the code generation and allow engineers
to take over for maintenance and future development. This requires us to make
sure that the layout of the code is actually familiar to humans and that the code
quality is good enough for engineers to work with.
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3.5 Hypergraph traversal

Graph traversal itself is a well known topic. There exists two well known cat-
egories of strategies, breadth first [46] and depth first [58], as well as numerous
variations of this technique. For hypergraphs, optimised strategies also exist.
One approach is to transform a hypergraph to a standard graph and reuse exist-
ing approaches as discussed in [21], or use an algorithm taking the nature of a
hyperedge into account and use it to find hyperpaths [21, 23], according to various
heuristics.

However, as we discuss in Chapter 6 and Appendix I, all of the ”branches” that
take part in a hyperpath are also important. Before a hyperpath is valid according
to our criteria, all leaves on all branches that make up a path need to satisfy our
constraints. This means that we generally consider a much larger section of the
complete graph as partaking into a solution, meaning we cannot reuse the existing
related work as-is. Therefore we will explore alternatives in Chapter 6.
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Figure 3.1: A simplified banking domain to demonstrate our work. The boxes
named CustomerAPICall and TransactionsAPICalls indicate the hypothetical
API endpoints that exist in our example.



Chapter 4

Minos language

To express domain models with our approach, we have created a DSL called
Minos1. Its goal is to define data types, as well as any operations that are
available to operate on the data. This principle was introduced in Section 3.2. In
this chapter we will explain the language based on the example domain introduced
in Section 3.1 (see Figure 3.1).

The language is designed with a nominal type system, where each type explicitly
derives its identity from the fully qualified given name and not its structure.
There is also no implicit type coercion available.

The Minos encoding of the example domain was introduced in Section 3.1 and
shown in full in Appendix C. Snippets of this encoding will be used in this chapter
to provide examples accompanying the text2.

In Section 4.1 we discuss polymorphism. Then, Section 4.2 we elaborate on
the hierarchical structure of a Minos project. Section 4.3 is about types, and
Section 4.4 about interactions. In Section 4.5 we discuss some notable usability
features built into the language. Section 4.6 is about the IDE integration we have
built. Section 4.7 elaborates on the type checker. Finally, Section 4.8 relates the
requirements back to our work in this Chapter.

For brevity, we omit the complete Minos syntax definition from the main text.
The grammar can be found in Appendix E.1 and the resulting AST can be found
in Appendix E.2.

4.1 Polymorphism

As introduced in Figure 3.1, there are two types of accounts in our example

1The name Minos comes from Greek mythology, and supposedly the name of a king of Crete.
The name of the Minoan civilisation is derived from him, which is also the name we have given
the model transformation pipeline discussed in Chapter 5.

2Sometimes we make small changes to the full model sources as to ensure the examples are
short and focused.

29



CHAPTER 4. MINOS LANGUAGE 30

domain. These are SavingsAccount and PaymentAccount, both of them are also
an Account.

This provides us with the question on how to design support for this in Minos. A
well known challenge in language design is the Expression Problem [66]. In this
classic problem, it is identified that there is always a tension between extensibility
in terms of representation (i.e. data definitions) and behaviour (i.e. operations).
There are a various approaches that have been proposed to address this problem.
We identify the two most well-known solutions, and select one for our work.

A straightforward way to address this is by providing some form of inheritance
to the language. This would allow us to express the relationship in a very natural
way, via a mechanism that is also quite familiar to most software engineers. How-
ever, a downside of this is that this requires a much more complex type system
because we essentially require subtyping. As Benjamin Pierce summarises sub-
typing is a cross-cutting extension, interacting with most other language features
in non-trivial ways [52].

Another way of supporting polymorphism is to enable the use of the composition
over inheritance design pattern [22] in our language. This can be achieved by
introducing sum types, which represent an exclusive choice of any of its constitu-
ents. An advantage is that this approach is relatively simple to type check and
allows friction-less extension in the representation dimension (i.e. the expression
problem). The downside is that it is more limited than having a full inheritance
style type system.

Based on the above considerations, in particular the complexity of subtyping, we
selected sum types as our mechanism for polymorphism. Therefore the example
from Figure 3.1 can be defined as a sum type in the following way: Account =
SavingsAccount ⊕ PaymentAccount.

4.2 Hierarchical structure of a Minos project

Minos projects are organised in a hierarchical structure. This is intended to
allow grouping of related concepts in the same place of the hierarchy, as well
as preventing name conflicts from happening when different concepts share the
same name.

This hierarchy is reflected as folders and via package declarations. Any Minos
source file can be recognised by an .mns extension and is stored in folders match-
ing this declaration. The package names are equal to the folder names, starting
the hierarchy at the root of the project. This setup is pretty much equal to Java
language package declarations.
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In the case of our example domain introduced in Figure 3.1, a valid package
declaration would be package example.FinanceConcepts; stored in the file
FinanceConcepts.mns, which resides in the folder example.

To organise these packages, a module system can be used. Listing 4.1 depicts
how this works. There are three ways we can manage what is imported in scope
and what is not.

package example . Transact ions ;

import example . FinanceConcepts ;
import example . FinanceConcepts { Money } ;
import example . FinanceConcepts { −Currency } ;

Listing 4.1: A sample denoting imports

The first import statement indicates that everything from the FinanceConcepts

package is imported, regardless of what is defined there. Effectively, this pulls in
all those declarations into the current (module) scope.

For the second import statement, only the Money type from the FinanceConcepts
domain is imported into the current scope. All other types will not be made
available.

Finally, the third import statement shows you how to hide certain imports you
do not want to have in scope. This helps in situations where there are similarly
named concepts existing in different packages, which would otherwise result in
a name conflict because the short name would be defined twice. An example
would be something called an Account that conceptually could exist in both
Transactions as well as Customer domain, and therefore result in a naming
conflict.

4.3 Types

There are a number of built-in types, or native types, available. These are the
primitives that can be used to construct any of the other types. The following
are the native types of Minos:

String A sequence of characters3.

Bool True or false.

Int 32-bit signed two’s complement integer.

3The definition of what is a character is up to the user to define in the PSM. Our imple-
mentation is Java and therefore UTF-16.
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Long 64-bit two’s complement integer.

Number Arbitrary-precision signed decimal numbers. Guaranteed to not over-
flow, but slower then int and long.

UUID Universally unique identifier. To indicate something is effectively unique.

ZonedDate A date, including timezone info. Guarantees unambiguous dates.

ZonedDateTime Both date and time, including timezone info. Guarantees
unambiguous dates and time.

From the point of view of the domain, built-in types are not meaningful though;
they lack identity because they have no nominal type name.

To provide domain-specific meaning, there are four ways to create user-defined
types within Minos’ type system. These are type aliases, records, lists and sum
types.

Listing 4.2 shows how these can be used.

package example . Transact ions ;

import example . FinanceConcepts { Money } ;
import example . OutOfScope { IBAN, Debtor ,

PaymentAccount , SavingsAccount } ;

@doc { Type a l i a s }
Cred i tor : IBAN ;

@doc { A record d e c l a r a t i on }
MoneyTransfer {

c r e d i t o r : Cred i tor
debtor : Debtor
amount : Money

} ;

@doc { An example f o r l i s t d e c l a r a t i o n s }
ExapleTrans fers {

bookings : [ MoneyTransfer ]
} ;

@doc { A sum type d e c l a r a t i on wi th both r e f e r enc e s }
Account

= PaymentAccount
| SavingsAccount
;
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Listing 4.2: Type declarations.

Type Alias First declaration in Listing 4.2 and an alias of any other type. Note
that although the new type is structurally equivalent to the type it aliases,
they are not equal (because of nominal typing, see Section 3.2) and likely
represent different business concepts.

Record Type Second declaration in Listing 4.2 and defines a named structure
of compound data. Its members can be any other valid type that is in
scope. These members have names, which will be derived from the member
type name if omitted (e.g. the line with Debtor from Listing 4.2 will be
equal to debtor: Debtor).

List Type Third declaration in Listing 4.2 and an ordered collection of a single
type.

Sum Type Fourth declaration in Listing 4.2 and a type that can either be any
of a set of given options.

4.4 Interactions

In order to embed business logic or the behaviour of existing APIs, it is also
possible to define interactions between different kind of data. This has been dis-
cussed in Section 3.2. Conceptually we call these interactions, but on a technical
level they are effectively equal to function signatures. We make this distinction
because the implementation details of an interaction only become relevant within
our approach during code generation, which is discussed in Chapter 7.

Listing 4.3 shows how these declarations can be made.

package Example ;

import CustomerDomain { Customer } ;
import Transact ions { Account } ;

@doc { A s i n g l e parameter and re turn type }
l i s t A c c o u n t s = Customer −> [ Account ]

@doc { Or , one can use mu l t i p l e parameters }
example1 = Customer −> St r ing −> Account ;

Listing 4.3: Function declarations
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4.5 Notable usability features

This section describes a number of useful language features that improve the
usability of the language.

4.5.1 Name derivation

When defining types it is common that record members are assigned a name
that is, except for camel casing, identical to the pre-existing type definition. We
therefore allow omitting the name in such a case, implicitly assuming a lower case
version of the same name. An example is shown in Listing 4.4.

@doc { Equal to :
’name : Name’ and
’ i d e n t i f i c a t i o n : I d e n t i f i c a t i o n ’

}
Enrolment {

Name
I d e n t i f i c a t i o n
motivat ion : Desc r ip t i on

} ;

Listing 4.4: Name derivations

4.5.2 Named parameters

When defining interactions, parameters can optionally be named. Listing 4.5
shows an example.

@doc { You can use named parameters }
something = a : Foo −> b : Bar −> Baz ;

Listing 4.5: Named parameters in interactions.

4.5.3 Modifiers

Any type declaration can also be succeeded by a type modifier. Although the
language design is flexible in terms of supporting multiple modifiers, the current
implementation only has one which is optional types. Listing 4.6 provides an ex-
ample. Here the Priority type member of the MoneyTransfer record is optional,
and therefore it is allowed for this property to not be present at runtime.

package example . Transact ions ;
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import example . FinanceConcepts { Money } ;
import example . OutOfScope { Creditor , Debtor , P r i o r i t y } ;

@doc { A record d e c l a r a t i on wi th an op t i ona l a t t r i b u t e }
MoneyTransfer {

Cred i tor
Debtor
amount : Money
P r i o r i t y ?

} ;

@doc { An example j u s t f o r s y n t a c t i c a l reasons }
example = Cred i tor ? −> Debtor ? −> Money ;

Listing 4.6: Optionality with type declarations.

4.5.4 Inline type definition

When defining a sum type, it can sometimes be convenient to define choices in
an ad-hoc manner. An example is shown in Listing 4.7.

package example . S ignature ;

import example . OutOfScope { Valid , Expired } ;

@doc {
An i n l i n e type d e f i n i t i o n o f ’ Signature ’
’ Valid ’ and ’ Expired ’ are r e f e r enc e s .

}
Signature = Val id

| Expired
| UnknownSignatureType ( s i g n a t u r e : St r ing )
| UnknownKey ( )
;

Listing 4.7: Name derivations

4.6 IDE

To be able to use Minos in practice, we have developed IDE support. There is
syntax highlighting, a real-time type checker, outlining and jump-to-declaration
available. All of this is built with Rascal [37], on top of Eclipse4. Figure 4.1

4https://www.eclipse.org/

https://www.eclipse.org/
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shows a screenshot of this editor integration. We discuss a few highlights of the
system in the following sections.

Figure 4.1: A screenshot of the Minos IDE.

4.6.1 Jump to declaration

In order to make navigation throughout a model more convenient, the editor has
support for jumping to declarations of any type that is used in a model definition.
This is mostly a developer experience improvement, but a very useful one.

4.6.2 Outliner

The user is provided with an outline of the current Minos source file, indicating
the contents that are defined. Figure 4.1 shows the whole editor, but in Figure 4.2
only the outliner is shown in more detail. It is provided as a collapsible hierarchy.
If the user selects any element of the outline, the cursor in the editor window will
jump to the location in the source file that contains the selected declaration. This
feature can be used to quickly navigate through larger source files and find the
relevant sections.
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Figure 4.2: A screenshot of the outliner.

4.7 Type Checker

The Minos language design results in a strongly typed language based on a nom-
inal type system. This allows us to leverage a type checker to statically verify
whether a model is valid. Any errors will be presented to the end user at real
time, therefore shortening the feedback loop considerably.

Next to errors, the type checker is also extended to provide some hints in case of
recognising certain patterns. As an example, a record type using primitive type
members without defining a type alias is considered an anti-pattern in Minos.
Although technically correct, the type checker does issue a warning if it detects
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patterns like this. These warnings can therefore be used to nudge the end user
in a direction we deem favourable.

Type checker inner workings

The Type checker is implemented with the TypePal5 framework [57], which in
itself is a work-in-progress design.

The authors describe TypePal as a declarative framework that operates on a
program model. This model in turn has three primary concepts:

facts Information about a source code fragment, such as known types of literals
or semantic rules about expressions.

calculators Dynamic computations of info on source code fragments that cre-
ate new facts, such as calculating the type of an expression based on its
operands.

requirements Rules about source code fragments, such as a rule that prevents
certain type coercions because it violates language design principles.

We apply this framework by structurally matching concrete syntax of the parsed
DSL, and defining any of the concepts stated above in the program model. From
a design pattern point of view, this is implemented with a visitor pattern[22]
where we visit all of the concrete syntax trees. All that is left is to check the
program model with TypePal, retrieving the facts of the model and extracting
any relevant messages to provide to the user.

4.8 Relationship to the requirements

The requirements that are (partially) addressed by the work in this chapter can
be found in Table 4.1.

A detailed slightly more detailed summary for each of the requirements can be
found below:

• R1: Model existing services as-is, without requiring any changes to their
domains. We have designed a domain specific language that allows the
user to create models of data exposed by existing systems. We don’t require
upstream parties to facilitate us, and if we want to add additional data or
interactions built on top of other parts of our model we can do so in a
non-intrusive manner.

5https://docs.rascal-mpl.org/unstable/TypePal/#TypePal-Overview

https://docs.rascal-mpl.org/unstable/TypePal/#TypePal-Overview
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• R2: Explicitly separate functional and non-functional aspects of generated
middleware components. This model only allows for addressing functional
aspects, thus enforcing a split of functional and non-functional components.

• R7: Prevent lock-in so that at any point in time the decision could be made
to stop using our approach. We have designed all of the components to
be non-intrusive, requiring no changes to any interacting systems. Next to
this, we also built all our work on top of open source components so we also
will not be subject to any licensing discussions with vendors.

• R8: Ensure readable, understandable and thus maintainable assets so en-
gineers, security experts and tooling can audit the products. All of the code
we have written for this part of our work, as well as the models that are
created by our users can be easily audited. There has been no use of com-
plicating factors such as binary models or (proprietary) encodings. The
only remark that can be made here is the use of Rascal, which is not a very
well known language. However, documentation is extensive and the code
itself is not esoteric, so that is acceptable.

R1 R2 R3 R4 R5 R6 R7 R8 R9
Requirement x x x x

Table 4.1: Requirements being addressed by the work in this chapter.



Chapter 5

Models and transformations

The heart of our work is the combination of a number of models and model
transformations to gradually manipulate instances of those models. As discussed
in Section 3.4.2, we have implemented this as a Scala project and named it
Minoa1.

In this chapter we will discuss all models and model transformations we have
designed and implemented in more detail. First we will discuss the meta-models,
and highlight important design considerations of those models. Second we dis-
cuss the model transformations in detail. Finally, we show how all of this is
implemented and what supporting libraries we have built to make this possible.

In Section 5.1 we discuss the design and implementation of our meta-models.
Section 5.2 is about model transformations. In Section 5.3 we discuss the model
transformation pipeline. Finally Section 5.4 discusses how the work in this
Chapter meets the requirements.

5.1 Meta-models

There are three important meta-models we use in our approach. In addition, the
graph we create for searching, discussed in Section 3.2, can also be counted as
a meta-model; however, given that this is much more aligned with Chapter 6, it
will be discussed there.

MinosAST Abstract Syntax Tree meta-model. A one-on-one mapping of the
AST that is the result of the compilation process described in Chapter 4.

MinosIR Intermediate representation meta-model. Designed to be a more con-
venient representation than the AST meta-model. This is still a tree-based
model.

1The name Minoa is derived from the Minoan civilisation, which was active between c.
3500BC until 1100 BC. It’s known for being a highly advanced civilisation, leveraging complex
networks, such as for maritime trading, roads and sewers.
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MinosASG Abstract Semantic Graph meta-model. A more interconnected
model and therefore a graph instead of just a tree.

Note that for readability of the meta-model images in the following sections, we
have left out some of the elements that exist in the complete model. We also
did not list all of the relations because otherwise this figure becomes much to
cluttered. The goal of this section is to elaborate on the type of design decisions
we made while constructing these models, thus we have only focused on a subset
of each of the meta models. The complete meta-models are too big to embed in
this text; they can be found in Appendix A.

5.1.1 Minos AST meta-model

The first meta-model is what we call the AST meta-model, and has the ab-
straction level of the Computation Independent Model (CIM)2. This model is
a one-on-one match to the structure of the AST we create when compiling the
Minos DSL as discussed in Chapter 4.

The type checker we discussed in Section 4.7 automatically ensures that any
model that is compiled is a valid model. This means we do not need to employ
any constraint languages such as OCL [49] to ensure internal model consistency.

Figure 5.1 shows an excerpt of the meta-model.

We use this part of the model to illustrate the differences between the various
models and to explain our reasoning. Some of the type constructs of Minos
(discussed in Section 4.3) can be recognised in this figure. Amongst other things,
you can clearly see that the SimpleDataType declaration is the most basic type
declaration, that is used by all other types.

This declaration in turn contains concrete type declarations, depending on what
exact definition is used in the model. Figure 5.1 shows an excerpt on some
of the Types and their relationship to a TypeDecl, which is a property of the
SimpleDataType.

The result of this is that we have a very simple structure to parse, but require
some additional work at a later stage. This allows us to focus on a single design
aspect at a time, eventually decreasing the overall model complexity. Examples
of this simplicity are the lack of fully qualified type names and explicit package
scopes. For the complete Minos AST meta-model we refer to Figure A.1.

As an example we show how the AccountOverview from Section 3.1 is modelled.
This uses two instances of SimpleDataType, for the fields iban (of type IBAN) and

2See Section 2.2.
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UNREGISTERED
UNREGISTERED

«interface»
Declaration

«interface»
Type

Data

+type: DataType

Function

+func: FunctionType

FunctionType

+name: String
«interface»
DataType

Record

+record: RecordDataType
Simple

+simple: SimpleDataType

ADT

+adt: AbstractDataType

RecordDataType

+name: String
+members: SimpleDataType[1..*]

AbstractDataType
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+choices: AbstractDataDefinition[1..*]
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+modifiers: Modifier[0..*]
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«interface»
AbstractDataDefinition

AbstractData

+name: String
+members: SimpleDataType[1..*]

AbstractReference

+name: TypeDecl

StringType

ImportedType

+imported: String

ListType

+memberType: TypeDecl

QualifiedType

+qualified: QualifiedTypeName
QualifiedTypeName

+package: String[1..*]
+type: String

Figure 5.1: An excerpt of the MinosAST meta-model

balance (of type Money). Given that the former is defined in the same package
and is just a type alias, it will have StringType as the ’type’.

Money is defined in another package, and thus requires a reference. Therefore the
’type’ will be an ImportedType with the ’imported’ property assigned to Money.
Here, the type checker has already ensured that there is an accompanying import
that can be resolved.

Finally, AccountOverview itself is a Record, with an accompanying RecordData-
Type that contains two members that also use the ImportedType trick as ’type’
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of the accompanying SimpleDataType.

5.1.2 Minos IR meta-model

The Intermediate Representation (IR) meta-model is a Platform Independent
Model (PIM) and used in most transformations. It is intended to be a more
convenient representation (in terms of easy-to-use for model transformations)
than the previous AST meta-model, while at the same time simple enough to
allow (mostly local) modifications to the model without impacting the overall
model integrity.

As can be seen in Figure 5.2, the structure of the model is similar to the previous
AST model. The most notable changes are the addition of convenient derived
properties, such as the package of the encompassing package definition.

Furthermore there is also some more subtyping in the model, for example by
introducing the NamedDefinition. This provides additional context and a helper
method that yields a QualifiedType. This is in turn properly resolves the type to
its qualified name, so including any package prefixes.

Another change is the addition of markers for more specialised types. A Func-
tionType in the IR meta-model now has an additional FunctionKind property,
which is an indication which type of function it is. This becomes especially useful
when new types of Functions (i.e. interactions) are added with the model trans-
formations, and we can assign what kind it is. This is used to indicate what it
does, but not how (which is left for a later, more concrete stage).

The motivation behind changes like this is to make the model easily traversable
and properly introduce fully qualified names, while still allowing relatively inde-
pendent model changes, such as the addition of new elements within a package.
The model transformations discussed in Section 5.2 go into more detail.

As an example, the AccountOverview we discussed in the previous section now
has a notion of which package it is in, which is also used by the NamedDefinition
to construct a QualifiedTypeName. An application of this is one of the model
transformations, which replaces all ImportedType usages with their fully qualified
counterparts. So, the Money and IBAN properties of AccountOverview can be
updated accordingly.

The Minos IR meta-model is depicted in full in Figure A.2.

5.1.3 Minos ASG meta-model

The most complete, but also most complex meta-model is the Abstract Semantic
Graph (ASG) meta-model, which is also a PIM. As opposed to the IR meta-
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Figure 5.2: An excerpt of the MinosIR meta-model

model, the ASG is intended to be much more interconnected. The goal is to
make interpreting the model easier, with the downside that making changes to the
model is more involved because the internal consistency needs to be guaranteed.
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Figure 5.3: An excerpt of the Minos ASG meta-model

Figure 5.3 again provides an excerpt of the meta-model. Most notably the Ty-
peRef now has a way to dereference it, which eventually should point back to
its type declaration, irregardless of where in the model that is. Because this is
present at such a basic interface, this is applicable to any type, including all of
the various types of references.

The NamedDefinition from the IR meta-model is also changed to an Identifiable
interface, which is implemented by all types. Like the previous meta-model, its
primary use is to provide a number of convenience methods to allow easier model
navigation between types. Being able to produce a NominalTypeName is the
most important of these, and it in turn points to both its declaration site, as well
as allowing it to derive TypeRef references from any type declarations.

In other words, the (de)referencing of types and the use of TypeRef nodes makes
model instances of this meta-model an interconnected graph.

At this stage the package hierarchies are explicitly available, as a nested Scope
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structure. It can be queried for any of the declared types contained within.

As an example, the properties of the AccountOverview we discussed in the two
previous section now contain explicit references to their declaration sites, IBAN
in the current package (or scope in light of the current naming convention) and
Money in another.

A complete view of the Minos ASG meta-model is depicted in Figure A.3.

5.1.4 Minos TypeGraph meta-model

Although this is not really a meta-model, we do want to mention it here because
it is closely related. At the end of the model transformation sequence (T15:
Minos ASG to TypeGraph below), we end with the Minos TypeGraph. This
is effectively a data class that contains the final MinosASG model, as well as
the search query we will discuss in Chapter 6. Together with some convenience
methods such as rendering the whole graph as a DOT graph (as can be seen
in Figure D.1) or executing a search, this allows us to process the results more
conveniently.

5.2 Model transformations

We have created various model transformations, each executed at its own time.
Below we will provide an overview of the various transformations that exist in our
work, including a short summary of their use. Note that although we provide an
order in this listing, it is not necessarily the order in which the transformations
are executed. We refer to Section 5.3.2 for more details on the execution order.

T01: Imported types to qualified types For any type referenced by name,
and imported from another module, replace those names with fully qualified
references.

T02: Minos AST to Minos IR Transform the AST model as used in the
DSL to a slightly more detailed model used in the majority of the model
transformations.

T03: Builtin types Built-in types are ’special’ in the sense that they don’t
have a corresponding declaration. Implicitly add one so that all logic of
resolving references etc later on becomes much easier.

T04: Derive Lists For each type, check if there is a accompanying list declar-
ation available. If not, create one and include it to the same scope.
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T05: Rewrite inline lists to references Rewrite any inline list declaration
(e.g. a record with a list member) to a reference pointing to the same list
declaration in the package scope.

T06: Derive getters For any record or inline sum type declaration, introduce
a function that retrieves a property from the aforementioned types. This
equates to the creation of get functions for each property in a class in OOP.

T07: Derive constructors For any record or inline sum type declaration, in-
troduce a function type that creates the aforementioned type, given all of
its member types. This equates to a constructor of a value object in OOP.

T08: Derive missing optionals For any function containing at least one op-
tional parameter, derive functions for all combinations of parameters being
present or not. The original function is removed. This effectively removes
the optionality of the parameters, at the cost of introducing more functions.

T09: Specialise Sum Type Instances For each function, check if it is using
sum type(s) as its argument. If so, derive new functions for each of the
combinations of the choices of the sum types.

T10: Sum Type Generify For each choice in a sum type, introduce a func-
tion that lifts it specific type into the more generic function type name. In
our example domain, this could be lifting SavingsAccount into an Account.

T11: Derive functor maps For any function operating on a type, derive an-
other function that applies the given function on a list of that same type.
Because any list is an instance of a functor, the functor map can be derived
automatically.

T12: Minos IR to Minos ASG Transform the Minos IR to the Minos ASG
model.

T13: Name resolution For any nominal type in the model, set its declaration
site. Note that this can be a reference type, in which case it cannot be
resolved yet.

T14: Dereference type refs Make sure that any TypeRef within the model
points back to its type declaration. As there is always only one type de-
claration, this can reference into another module scope.

T15: Minos ASG to TypeGraph Transform the ASG into a TypeGraph in-
tended for the search. Note that the ASG is still embedded in the graph as
a property.

Table 5.1 provides an overview of the dimensions of each of the model transform-
ations. Most of them are self-explanatory, except for exogenous transformations



CHAPTER 5. MODELS AND TRANSFORMATIONS 48

T02 and T12. These are typical applications of a so called language migration,
where one model is transformed into another without changing the level of ab-
straction. As you can see at each of the subsequent model transformations, they
are vertical and there we do change the level of abstraction. Finally, T15 is ver-
tical, since we actually decrease the fidelity of the model, so as to focus on the
scope discussed in Chapter 6.

name input† output‡ abstraction|

T01: Imported types to qualified types AST AST Horizontal
T02: Minos AST to Minos IR AST IR Horizontal
T03: Builtin types IR IR Vertical
T04: Derive Lists IR IR Vertical
T05: Rewrite inline lists to references IR IR Horizontal
T06: Derive getters IR IR Vertical
T07: Derive constructors IR IR Vertical
T08: Derive missing optionals IR IR Vertical
T09: Specialise Sum Type Instances IR IR Vertical
T10: Sum Type Generify IR IR Vertical
T11: Derive functor maps IR IR Vertical
T12: Minos IR to Minos ASG IR ASG Horizontal
T13: Name resolution ASG ASG Vertical
T14: Dereference type refs ASG ASG Vertical
T15: Minos ASG to TypeGraph ASG TG Vertical

Table 5.1: An overview of all model transformations, the meta-
models they involve and the abstraction level they have.

† Name of the input meta-model
‡ Name of the output meta-model
| Horizontal or vertical transformation.

5.3 Implementation of the model transformation
pipeline

As discussed in Section 3.4.2 we have opted to use a General Purpose Language
for our work. In order to make this work effectively, we have designed and
implemented a number of core components that allow us to do so more effectively.

5.3.1 Useful Scala features

For the purpose of this section, we presume the reader is familiar with the Scala
[48] 2.13 language features3. Nevertheless we want to highlight a few key features
that have helped us in our design.

3https://scala-lang.org/files/archive/spec/2.13/

https://scala-lang.org/files/archive/spec/2.13/
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Case class Immutable data class where equality is defined by its structural
value.

unapply Extractor function that is automatically created for all case classes.
Yields the properties of the provided class.

Pattern matching Checking values against a pattern, and optionally decon-
struct a match into its members if requested. The latter is achieved via the
aforementioned unapply method.

Partial functions Unary function that allows for definitions that are incomplete
(i.e. by only having definitions for an incomplete number of options). This
is implemented via pattern matching.

5.3.2 Model and transformation components

Both model and transformation components will be discussed in order.

Meta-model design

Because we have opted to use Scala and not existing model transformation lan-
guages, we have to address two challenges before we can effectively use the meta-
models. The first is how to enumerate all of the properties of a model in an easy
way. The second is how to ensure that if we match elements from the model, we
do so in a complete way such that we do not miss any nodes and only discover
this during runtime.

The first property can be achieved by implementing Scala’s Product trait. This
the most basic trait that denotes anything that is a product, and forces those
products to implement ways to iterate over all of the elements within the product
in a uniform way. Implementations for productIterator: Iterator[Any] and
productElement(n: Int): Any provide this by either providing an iterator of
all products, or just the nth element.

The second property is achieved by defining the root trait of a meta-model as
sealed. By doing so we state that the type definition is closed and no other
inheritance can exist except for what is declared in the current source file. In
turn this allows the compiler to statically infer whether pattern matches of any
meta-model type are incomplete, and if so yield a compiler error.

Transformation execution order

Model transformations can be dependent on each other. Managing the order
manually can become quite complex, requires continuous maintenance and is an
act against the more declarative nature of model transformations.
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Another approach is to allow each model transformation to define dependencies
which should have executed first. Using this information, we can compute the
order in which all of the transformations must be executed.

This is achieved by creating a graph where all transformations are added as
nodes, and all dependencies as directed edges between those nodes. By topolo-
gically sorting the graph, we end up with the final execution order of all of the
transformations.

Transformation

Each model transformation is required to implement the trait defined in Listing
5.1. Line 1 defines generic type constraints of the meta-models of this transform-
ation, stating that parameterised types A and B need to be a sub-type of both a
Product and a user defined type.

1 tra i t Transformation [A <: AnyRef with Product , B <: AnyRef with Product ] {
2 protected def warning [X] ( message : St r ing ) : Ei ther [ Message , B] = Lef t (Warning (

↪→ message ) )
3 protected def e r r o r [X] ( message : St r ing ) : Ei ther [ Message , B] = Lef t ( Error ( message )

↪→ )
4 protected implic it def succ e s s ( r e s u l t : B) : Either [ Message , B] = Right ( r e s u l t )
5
6 @t a i l r e c
7 protected f ina l def repeat [X <: AnyRef with Product ] ( f : X => X) ( in : X, t imes : Int

↪→ ) : X = times match {
8 case 0 => in
9 case remainder => repeat ( f ) ( f ( in ) , remainder − 1)

10 }
11
12 def dependsOn : Set [ Class [ <: Transformation [A, B ] ] ] = Set . empty
13
14 def transform ( in : A) : Either [ Message , B]
15 }

Listing 5.1: Transformation trait

Lines 2 and 3 denote helper methods to define results, of which the first two,
error and warning produce messages accordingly. Line 4, success, accepts a
meta-model type, and lifts it into a Right. Scala with the implicit keyword
allows this to be done implicitly, so a successful result is automatically lifted as
such if this matches up to a method’s type signature.

Line 7 defines the repeat method, which enables us to repeatedly apply a certain
method a number of times at a model.

Line 12 allows us to define any dependencies, used to derive the final execution
order as discussed in Section 5.3.2.

Finally transform of line 14 remains abstract and needs to be implemented by
each individual model transformation, as this is where the real changes happen.
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Find and replace

Based on the Product tricks introduced in Section 5.3.2, we can now define a
Find trait and a Selector class. With the former we declare how we can find
elements in a model, the latter implements the former.

The Find interface, shown in Listing 5.2, works on any Product type and provides
us with four useful functions. The first is of, used to find all types conforming
to the type constraint R <: T : ClassTag4. The second collect will apply a
partial function at any node in the model and collect the results if it is defined
for the given node. Finally, there are two find functions that do the same thing:
find the first occurence of a type that satisfies the given predicate. This predicate
can either be a simple boolean method, or a more complex partial function.

tra i t Find [T <: Product ] {
def o f [R <: T : ClassTag ] ( t r e e : T) : L i s t [R]
def c o l l e c t [R] ( search : Part ia lFunct ion [T, R] ) : T => L i s t [R]
def f i nd ( pred : T => Boolean ) : T => Option [T]
def f i nd ( pred : Part ia lFunct ion [T, Boolean ] ) : T => Option [T]

}

Listing 5.2: A Find trait

The main parts of the implementation are shown in Listing 5.3. Code referenced
by this class is included in Appendix F, Listings F.1, F.2 and F.3. An especially
noteworthy section is third line, where the ClassTag is used to overcome JVM
type erasure and to decide if a certain type is an instance of the class type that
was indicated.

private [ v i s i t o r ] c lass UntypedSelector [T <: Product : ClassTag ] extends Find [T] {
private def i fR [R <: Product : ClassTag ] : Part ia lFunct ion [T, R] = {

case n : Product i f c lassTag [R ] . runtimeClass . i s I n s t an c e (n) => n . as InstanceOf [R]
}

private def apply [R] ( search : Part ia lFunct ion [T, R] ) : (T) => L i s t [R] = ( t r e e : T) =>
↪→ {

(new Co l l e c t i ngTrave r s e r [T, R] ( search ) runOn t r e e ) . r e s u l t s . t oL i s t
}

def o f [R <: Product : ClassTag ] ( t r e e : T) : L i s t [R] = {
val fn : Function [T, L i s t [R ] ] = apply [R] ( i fR [R] )
fn ( t r e e )

}

override def c o l l e c t [R] ( search : Part ia lFunct ion [T, R] ) : T => L i s t [R] =
apply [R] ( search )

override def f i nd ( pred : T => Boolean ) : T => Option [T] = c o l l e c t {
case element i f pred ( element ) => element

} andThen ( . headOption )

override def f i nd ( pred : Part ia lFunct ion [T, Boolean ] ) : T => Option [T] = c o l l e c t {
case element i f pred . i sDef inedAt ( element ) && pred ( element ) => element

} andThen ( . headOption )
}

Listing 5.3: An untyped selector

4Read this as R should be a sub-type of T, and the class type information should not be
erased (i.e. to prevent JVM type erasure).
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Replacer

As stated before, model instances are created by trees of immutable case classes.
This means that any change to a node in the model would require changes to
”bubble up”, to make sure the whole tree gets updated until the root node is
reached. To make this convenient, we designed the Replace trait shown in Listing
5.4.

tra i t Replace [T <: Product ] {
def r ep l a c e ( p a r t i a l : Part ia lFunct ion [T, T] ) : Function [T, T]

}

Listing 5.4: A Replace trait

By providing a partial function with what effectively are rewrite rules this allows
us to change model in a declarative manner, much like the model transformation
languages discussed in Section 5.2.

This works by iterating over the whole immutable tree structure and updating a
node if any of its children is updated as well. The complete code is too detailed
to include here and thus we refer to Figure F.4 in Appendix F.

RichMetaModel

For each meta-model, we apply an implicit Rich class pattern5. By doing so, we
can effectively annotate the meta-model classes with additional features. In our
case, the methods from Listings 5.2 and 5.4 are the most outstanding enhance-
ments.

By providing an automatic implicit conversion, each instance of a type of the
meta-model is automatically transformed into its rich counterpart. Because of
this, they all automatically receive these additional enhancements.

Model transformation example

The features from the previous sections all come together when we look at a
concrete example of a model transformation. Listing 5.5 is the implementation
of T10: Sum Type Generify , and illustrates how to use most of the mechanisms
introduced in the previous sections.

c lass SumTypeGenerify extends Transformation [ MinosIR , MinosIR ] {
override def dependsOn : Set [ Class [ <: Transformation [ MinosIR , MinosIR ] ] ] =

Set (
c l a s sOf [ Bui l t inTypes ] ,
c l a s sOf [ Spec ia l izeSumTypeInstances ]

)

override def transform ( in : MinosIR ) : Either [ Message , MinosIR ] = {
def i n t r oduc t i on s ( cu : CompilationUnit ) : L i s t [ Dec la rat ion ] = {

5https://docs.scala-lang.org/overviews/core/implicit-classes.html

https://docs.scala-lang.org/overviews/core/implicit-classes.html
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val newFuncIngredients = cu . c o l l e c t {
case d@Data ( , : ADT) => d −> d . c o l l e c t {

case c : AbstractDataDef in i t ion => c . asQualifiedTypeName
}

}
newFuncIngredients . f latMap {

case (d , ms) => ms .map(m => i n j e c t i o n (d , m) )
}

}

in . transform {
case cu : CompilationUnit =>

val toAdd = in t r oduc t i on s ( cu )
cu . copy ( d e c l a r a t i on s = cu . d e c l a r a t i on s ++ toAdd )

}
}

/∗∗ C r e a t e an i n j e c t i o n o f t h e f o rm A −> A + B g i v e n a sum t y p e ∗/
private def i n j e c t i o n ( a : Data , sum : QualifiedTypeName ) : Function =

Function ( [ . . . ] )
}

Listing 5.5: Implementation of T10: Sum Type Generify.

Debugging model transformations

Another concern we raised in Section 3.4.2 was that model transformation lan-
guages are not very debuggable. We have designed our pipeline in such a way
that it can be configured with an additional debugger. If present, each step of
the pipeline will create a log file with a pretty-printed, source-code-compatible
representation of the model instance. In other words, that log file can be directly
consumed as Scala source code, making it a very readable and flexible represent-
ation.

Because each step is serialised like this, we also include a preconfigured script to
open each of the models in a diff tool. This yields a textual diff of the changes
that have been applied, as can be seen in Figure 5.4.

Figure 5.4: A screenshot of a model diff in Meld, a visual diff and merge tool.

https://meldmerge.org/
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Next to this model serialisation, there is also the standard JVM debugging cap-
abilities, which allow us to set breakpoints at any line of a model transformation.
After stopping, we also have the means of step-by-step evaluation like any other
JVM language. Together, these features provide an excellent insight into debug-
ging model transformations and we have used this extensively while working on
our product.

5.4 Relationship to the requirements

The requirements that are (partially) addressed by the work in this chapter can
be found in Table 5.2.

A detailed slightly more detailed summary for each of the requirements can be
found below:

• R3: Decrease engineering effort associated with creating or adjusting exist-
ing middleware components. Our model transformations gradually improve
the fidelity of the models, allowing us to derive most interactions we need
while transforming data. We can also reuse models for different use cases.

• R4: Emphasise the business needs and put those first, as opposed to the
technological details related with implementations. The business needs are
the drivers for our meta-model and model transformation design, as they
impose us with the capabilities we need to support.

• R5: Embrace change, such that changing the behaviour of middleware com-
ponents for business needs is something that can be facilitated by design.
Any change allows us to re-run the pipeline when the context changes,
saving us from some manual engineering work.

• R7: Prevent lock-in so that at any point in time the decision could be made
to stop using our approach. We built all our work on top of open source
components so we also will not be subject to any licensing discussions with
vendors.

• R8: Ensure readable, understandable and thus maintainable assets so en-
gineers, security experts and tooling can audit the products. We have spent
considerable effort on making our Scala framework easy to use when imple-
menting model transformations, as well as ensuring that we have advanced
debugging capabilities available. Next to that, Scala is a commonly used
language in our company, as well as the rest of the world.
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R1 R2 R3 R4 R5 R6 R7 R8 R9
Requirement x x x x x

Table 5.2: Requirements being addressed by the work in this chapter.



Chapter 6

Searching for solutions

This chapter dives into the details of how we query the models to seek solutions
for our use cases. These queries are executed on the Type Graph mentioned in
Section 5.1.4. This type graph is actually a hypergraph, which allows us to reuse
any techniques related to hypergraphs, e.g. data structures and visualisations.
Given an arbitrary goal and starting position(s), a search constructs all available
hyperpaths that connect these and thus fulfil the search query.

Since the execution of this search is preferably done in real time by the end users
of the application, we would like execution time to be limited to a reasonable dur-
ation. We have not defined any hard bounds because at this stage it is impossible
to discuss this with more then a handful stakeholders. Therefore the target max-
imum execution time is defined to be at most 5 minutes, but preferably less than
a minute, on a realistically sized graph.

We have written a separate report on the content discussed in this chapter, except
for Section 6.3.3. Therefore we refer to Appendix I for a more in-depth discussion
on the graph, the search strategies and their evaluation. The majority of this
chapter is based on the aforementioned report.

In Section 6.1 we discuss the definition of the hypergraph. Section 6.2 introduces
the strategies we have evaluated. Section 6.3 goes into detail of the implementa-
tions of the algorithms from a design perspective In Section 6.4 we explain how
the algorithms have been applied. Section 6.5 goes into detail of implementing
the search strategies in our work. Finally, Section 6.6 discusses how this relates
to our requirements.

6.1 Graph definition

Our problem domain is captured by a single hypergraph, which is the result
from the process described in Section 5.2. In hypergraphs edges can join any
number of vertices, something that can’t occur in standard graphs. For our
hypergraph these edges are also directed. It also contains two partitions of node

56



CHAPTER 6. SEARCHING FOR SOLUTIONS 57

types, corresponding to the types and interactions discussed in Chapter 3. In
this section we will introduce the semantics of our graph.

• The nodes of the hypergraph are given by the set of data types and the set
of interactions.

• The edges are directed sequences of nodes, having a one-on-one correspond-
ence to the interaction nodes.

• Each edge has zero or more types which we call sources, a single interaction
and a single producing type.

• A search is initiated by providing zero or more given types, as well as a
target. The former represent known data available at runtime, the latter
the intended data that we want to produce.

• A solution to a search query is always a hypergraph without cycles (i.e. a
DAG), and a single sink node that is the provided target node. All source
nodes in all edges at the source of the DAG are also part of the given types.

To illustrate the graph with define a number of example edges from our motivating
example introduced in Section 3.1:

1. {{SavingsAccount}, getActualBalance, Money}

2. {{IBANcreditor, IBANdebitor, Money}, createMoneyTransfer, MoneyTransfer}

3. {{Currency, MonetaryAmount}, createMoney, Money}

4. {{Money}, getCurrency, Currency}

6.2 Search strategy

We have implemented three different strategies for searching through the graph
introduced in the previous section. These three methods are:

Naive A naive implementation that by definition will not be fast enough for
any graph nearing real-life complexity. However, it is a relatively straight-
forward implementation that allows us to reason about the algorithm, and
validate our test cases more easily. It is a tail recursive, backwards, depth-
first search algorithm.

Pruning An implementation intended to perform fast, by doing two passes over
the graph. The first pass prunes the graph of any subgraphs that are
not reachable according to the actual search criteria. The second pass
recursively searches backwards, depth-first via trampolining [4] and tries
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to improve performance with memoisation. It effectively is an optimised
version of the naive algorithm.

Frontier An implementation that in a first pass also removes unreachable parts
of the graph. The second pass searches backwards, depth-first and caches
the most efficient production trace of each of the producible nodes, replacing
a trace if a more efficient one is found.

6.3 Search implementations

We will discuss the three strategies in detail.

6.3.1 Naive strategy

Serves as the basic implementation of the strategy we evaluate and it allows us to
do so in a non-obtrusive way. In this section we will discuss the implementation
and in Figure 6.1 a visualisation is shown.

The algorithm iterates over all edges producing the given target type. This re-
cursively traverses edges until a terminating condition is met. We have a number
of base criteria that stop recursion:

• During this recursive traversal we return a complete trace if all of the source
types of the current edge are given at the start of the search.

• If we encounter an edge we have already seen before we reached a cycle, so
an empty set (i.e. no solution) is returned.

• The final check is that we also return an empty set if we have seen each
individual source type before (meaning we have reached a dead end during
traversal).

For the recursion we first define a product of all combinations of source nodes
for each of the edges that produce said node (e.g. predecessors). Then, for each
of these combinations, we traverse all of these options recursively in this same
recursive method. If there exists any partial result that is empty, the whole
combination is discarded because all source types are required before a type can
be considered to be created. Otherwise we combine the individual results to a
single, encompassing trace. This is then added to the results that are returned
from this function.

This is a functionally correct strategy that does not terminate in acceptable
time on any graph larger than a handful of nodes. This is caused by the need
to continuously re-evaluate all the possible paths when a cycle is encountered.
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Figure 6.1: Animated example execution of the naive algorithm. Animation only
works in Adobe Acrobat Reader.

Essentially an infeasible amount of computation time is required to complete a
search.

6.3.2 Pruning strategy

This strategy is identical, but optimised compared to the simple strategy dis-
cussed in the previous section. However, we prune the graph before conducting
the actual search, so the state we need to explore is smaller. By reducing the
size of the hypergraph, fewer hyperedges need to be considered during the ac-
tual search. This pruning is done according to the strategy described below and
visualised in Figure 6.2.

This approach hinges at the assumption that type vertices can either be not
producible or maybe producible. The former means we are sure that a type can
never be produced in the context of a given search, the latter that we are either
certain or at least think we can produce it.

For interactions we make a similar distinction by differentiating whether a inter-
action is not useful or maybe useful. Here we apply the same meaning.

We start by marking the goal and all given types as maybe useful or producible
such that these will always remain the graph. By traversing the graph in opposite
direction as opposed to the search, starting at each edge that has at least one
given type as source, we eventually encounter all edges. We decide whether all of
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Figure 6.2: Animated example execution of the pruning of a graph. Animation
only works in Adobe Acrobat Reader.

the source types are maybe producible and if that’s the case mark the interaction
as maybe useful and the target as maybe producible. Otherwise the elements are
assumed to be not useful and not producible respectively.

After traversing the whole graph in a single pass, we remove all edges that have
a target that is not producible as well as have an interaction that is not useful.
Otherwise the edge is kept. This means that only edges that are guaranteed to
be satisfiable will remain in the graph.

6.3.3 Frontier strategy

The third strategy we have created has a three-step approach. As the first step,
we traverse the remaining graph and create some indexes for fast querying. The
second step is to prune the graph of all nodes (and associated edges) that are un-
reachable. The third step iteratively traverses the graph in a depth-first manner,
and keeps track of this traversal state. This is designed as a coroutine, which
is able to suspend at any found solution. By continuously asking it to either
compute the next solution, or to wait for it to have exhaustively evaluated all
options we can make it complete. A high level overview is shown in Figure 6.3.

As the first step, we create a number of indexes based on an initial traversal.
These are the following:
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nodePreMap A map that indexes all types to their predecessor types (transit-
ively).

edgePreMap A map that indexes all edges to the predecessor types (transit-
ively).

inEdgeMap A map that indexes all types to the edges that are able to produce
them.

outEdgeMap A map that indexes all types to the edges that edges of which it
is an input.

For the second step, pruning, we take all nodes that are given, as well as all
target types of edges without source types, and add them to a queue and create
a new graph with these nodes. For each type in this queue, we get all edges from
the outEdgeMap, and for all of these edges check if we can a) produce all of the
source types and b) don’t introduce a self-referencing cycle. If this is the case,
we add the edge to the new graph. In case the target type of the current edge is
new to the graph as well, that type is also added to the queue. This is repeated
until the queue is empty, after which the new graph is kept and the old one is
thrown away.

In the third step we actually compute solutions based on the search query. This
is implemented as a continuation, wrapped behind a Java Iterator interface.
When a search instance is queried whether hasNext is true, we compute a solu-
tion, or learn that we have exhausted the possible solution space.

This solution is created in a step-by-step algorithm, using the following data
structures:

made A list of types that have been made in the current traversal state.

frontier A list of types that still needs to be explored in the current traversal
state.

downstreamMap A map that indexes all types to their (currently known)
downstream nodes (transitively).

makerIxMap A map that indexes a type to the current index of their maker
(i.e. when there are alternative productions available).

deltasMap A map that indexes edges to downstream deltas of their early pro-
ducers.

Starting at the target type we must reach, we expand the frontier in a depth-
first manner, marking each of the types we encounter as made. We also store
the current node in the makerIxMap, starting with the initial production number
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(i.e. 0 – the first). Then, we select the maker edge, which is the edge producing
the current type based on the current production number. Of this maker edge,
we iterate over all the input types, and either add it to the frontier (if its new) or
add its production trace to the deltasMap (if already seen). This last step allows
us to reuse partially explored options without traversing the graph again. Finally,
the downstreamMap is updated to reflect the newly explored part of the graph.
This process is repeated until the frontier is empty, or the graph is exhausted.

In case the hasNext is true, a solution can be returned based on its internal state
by querying next, the other method of the Iterator. A solution is returned by
looking at the made types, and retrieving the current alternative to produce the
given type from the makerIxMap.

Note that after producing a solution and when asked to continue to produce
results, we backtrack and reevaluate each of the types. If a type can be produced
in another way, that will be the frontier to explore next.

Figure 6.3 shows an animation of how the algorithm traverses through a graph.
It can be seen that the frontier is moving while the nodes are marked made. As
soon as the frontier is empty, nextValid becomes green to indicate that a valid
solutions is found. This solution is then computed based on the made types, and
marked accordingly. Then, the frontier backtracks and evaluates each of the type
to decide if there are alternative ways to produce the given type. In our example,
this is not the case and we finally end up in an exhausted state, which signals
that we have exhaustively explored the graphs and have produced all possible
solutions accordingly.

Because of the size of this algorithm we refer to the actual source code for the
complete set of details.

6.4 Applying search strategies in our product

The three search strategies we discussed have been applied to our project. The
findings were:

Naive Impossible to use in graphs larger then a handful of nodes. However, it
has been useful in validating our assumptions about how searches should
work, as well as defining test cases.

Pruning A simple and relatively fast implementation for small graphs of about
a thousand nodes. After applying this approach for a while, we eventually
encountered problems when our graphs became too large to handle. This
results in this search strategy being infeasibly slow.
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Figure 6.3: Animated example execution of the frontier strategy. Animation only
works in PDF readers with JavaScript support.

Frontier The algorithm currently used in our approach. Is very fast and we have
so far experienced no issues on our graphs. Due to the complexity of the
approach and the size of the code it is the most complex of our algorithms.

6.5 Implementation of the search algorithms

The implementations of the three search strategies differ in size. In Table 6.1 the
corresponding sizes have been listed.

Strategy Files Lines Blanks Comments Code
Naive 1 133 21 25 87
Pruning 5 286 50 22 55
Frontier 12 1298 158 132 1008

Table 6.1: The size of our search strategies.

6.5.1 Testing search strategies

These algorithms all need to be extensively tested, as we learned that correctly
searching through a highly interconnected graph requires attention to detail.

We have therefore created a test suite based on examples, where each test is
defined in terms of a very small graph (i.e. a handful of vertices and edges).
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Each test also defines an expected outcome, which has to be all of the valid
solutions that can be found in a given graph. Finally, the query itself is also
defined.

Our test harness executes all tests against all strategies, and ensures that everything
properly tested. Note that this approach does not prove the absence of bugs. To
alleviate regressions, we always add a new test as soon as a bug is detected. Fi-
nally, when a test fails, a visual representation of the test case is written to disk
so it can be analysed by us. Such a failure is shown in Figure 6.4.

In this figure, the blue element is the given node and the red element the target
node. Each coloured dot next to a node is manually added and represent which
hyperedge a node belongs to. The left side of the image shows the expected
result, the right side the complete test case. In case of a failure, we render the
incorrect results in the same way, allowing for easy visual analysis of the test
results.

The image represents an actual bug we encountered while working on the search
strategies. Although this bug has long been solved,we have added this test to the
test set to prevent a similar regression from happening again.

6.5.2 Eager and lazy searches

The first two algorithms are eager searches, which will traverse to the whole
(pruned) graph before returning control to the caller. This means it will have
collected all of the results at that stage. The third algorithm is lazy, only produ-
cing results on a per-request basis.

When graphs become of reasonable size, it becomes insufficient to eagerly find all
of the solutions to a search query, as this will take too long. In such situations,
the user is blocked, waiting for the completion of a search strategy.

On the other hand, if a search result is known to be complete, all results can be
sorted in such a way that they you always get the best solution to that criteria.
This is impossible if a search is not complete, as the next result might contain a
better answer.

Therefore a trade-off must be made between eagerly searching for all solutions,
and thus picking the best outcome. Or by lazily querying some elements and
stopping to do so when some condition is met.

We have decided to address this by assigning a configurable deadline timer. A
search will only stop when it is complete, and can therefore not produce any more
results, or when the deadline timer has passed. At that stage all of the available
solutions are sorted according to some heuristic (e.g. smallest number of edges).
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Figure 6.4: An example of a test case (right) where the expected result (left)
could not be produced.

An end user of the tool must make a choice of how long it is acceptable to wait
for the completion of a search, and configure the deadline timer accordingly.

6.6 Relationship to the requirements

The requirements that are (partially) addressed by the work in this chapter can
be found in Table 6.2.

A detailed slightly more detailed summary for each of the requirements can be
found below:

• R3: Decrease engineering effort associated with creating or adjusting exist-
ing middleware components. Instead of manually defining the whole step-
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by-step process of a use case implementation, it is now a matter of defining
a search query.

• R5: Embrace change, such that changing the behaviour of middleware com-
ponents for business needs is something that can be facilitated by design.
Any change in the model can result in re-running the queries and ensuring
a (new) valid implementation remains.

• R7: Prevent lock-in so that at any point in time the decision could be made
to stop using our approach. We built all our work on top of open source
components so we also will not be subject to any licensing discussions with
vendors.

• R8: Ensure readable, understandable and thus maintainable assets so en-
gineers, security experts and tooling can audit the products. We have spent
considerable effort on making our framework easy to use when implement-
ing search strategies, as well as ensuring that we have advanced debugging
capabilities available. Next to that, we have implemented various visual-
isation approaches.

R1 R2 R3 R4 R5 R6 R7 R8 R9
Requirement x x x x

Table 6.2: Requirements being addressed by the work in this chapter.



Chapter 7

Code generation

In step four of the approach introduced in 3.2, we apply a model-to-text trans-
formation. The search result of Chapter 6 and MinosASG model from Chapter
5 are input, a middleware component is produced.

In Section 7.1 we introduce the most important design decisions. Section 7.2
defines the target platform. In Section 7.3 we introduce the most important
components of the generated code. Then, Section 7.4 discusses how we intend
to compose all of the components. Section 7.5 is about the Java implementation
details of the generated code. In Section 7.6 we explain why we need data-
binding. Section 7.7 elaborates on the concept of a Path. Section 7.8 discusses
the readability characteristics of the generated code. Finally, in Section 7.9 we
relate our work to the requirements of this work.

7.1 Design decisions

The design of this model-to-text transformation is based on a number of design
decisions. All these decisions are bundled in a component called code generator,
of which we can have multiple in parallel in our tool. The decisions we made are:

Template based text generation As discussed in Section 3.4.3, we have se-
lected a template based approach.

Encode platform specifics into transformation We have made the target
model (i.e. the source code) responsible for all the platform specific details,
making this a typical PSM. The corollary is that any deviation in these
choices means that a new target model, and thus a new code generator, is
required. These code generators can be added horizontally, so there are no
real limitations apart from having to add one.

Design for readability The generated code should be in such a shape that it
can be read and audited by other engineers. At the same time, this goal
also results in an exit strategy in case a decision is made to stop using the
tool. Ensuring this means there is no (very strict) vendor lock-in.
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Mix generated and manually written code Mixing generated and manually
written code is hard. As discussed in Section 3.4.3 there are various ap-
proaches to mix manually written and generated code. We have opted
for a strategy in which it is absolutely not an option to change generated
code manually, but to provide predefined extension points in the generated
application.

Company frameworks and coding standards The target application should
be embeddable in the host organisation. We have chosen to address this
very explicitly, by creating a code generator that leverages in-house frame-
works and libraries.

Emphasise reusable model queries Emphasise the creation of reusable quer-
ies instead of doing ad-hoc model selections. To make this even more con-
venient, we have also introduced a small projection of the MinosASG model
which projects the main model properties used for code generation into an
easier-to-digest shape. This can be seen as analogous to an ad-hoc, small
meta-model with an accompanying transformation, without the upfront
design associated with a real meta-model.

7.2 Target platform

Given the widespread use of the JVM in the company, and the fact that the rest
of our work also runs on the JVM, we have chosen to target this platform as well.
Because Java still is the ubiquitous language for the JVM, that also became the
target language for code generation. Nevertheless, none of the design aspects
discussed in this chapter are really tied to the Java language, and it could be
changed fairly easily.

The middleware component that will be generated is built on top of a proprietary
web application framework for the JVM. Although we cannot share any of the
details, we can say that it is used by a large part of the web components built in
our company. We ensure that any code we generate fits the design methodology
of this framework.

7.3 Generated code concepts

Within the aforementioned framework, our code is generated according to an
application architecture that defines the following concepts:

Model A model is a value object of a given type. Going back to our example
introduced in Section 3.1, an example would be AccountOverview. As
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expected of a value object, it has a constructor, getters for all of its values
and the Java-imposed hashCode and equals that we generate according to
the type definition as defined in our type model.

Interaction An interaction that is defined in our type model needs to be defined
by an engineer. All other interactions can be synthesised and therefore will
have Java implementations available. For all manually introduced interac-
tions we generate an interface definition which needs to be implemented
by a software engineer. At runtime, a dependency injection mechanism
will ensure that instead of the interface, a concrete class is available in the
application.

Deserializer Any interaction that retrieves data via the network, such as via a
REST call, needs to map the data into our value objects. We have opted to
use the very common Jackson1 JSON parser and data-binding library. In
order to do data-binding, we define custom deserializers where the JSON
is mapped to the value objects of our domain.

Path A step-by-step instruction of the actions that make up the use case. This
is a one-on-one mapping from a search solution to Java code.

Resources The endpoint of our API. By default we generate an endpoint that
consumes the given types, and produces the target type of the search query.
The implementation of the endpoint is mainly to invoke the Path mentioned
above.

7.4 Composing generated code

When generating all these code components, it is convenient if each of the indi-
vidual parts can be composed easily. To achieve easy to compose building blocks
in any language, we can look at design patterns again for inspiration. A fitting
pattern is the Observer pattern [22], which we could employ to be notified if the
state of a component changes.

However, this still leaves quite a leaky abstraction, for example because we need
to differentiate between scalar or a sets of values as well as (a)synchronicity of
any code.

Therefore we have opted to use Reactive Extensions2. On the one hand, this
is an extension of the observable pattern. At the same time it is a self-named

1https://github.com/FasterXML/jackson
2http://reactivex.io/

https://github.com/FasterXML/jackson
http://reactivex.io/
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library intended for composing flows and sequences of asynchronous data. That
is why we make this the glue of our generated code.

7.5 Java implementation details

Because we target Java, there are a number of specifics we need to consider.
These will be discussed in the following sections.

7.5.1 Equals and hashcode

Given that our data classes are value objects, we must override the default
hashCode and equals implementation to ensure the objects have proper struc-
tural equality checks.

The implementation generated for both methods just takes all of the proper-
ties into account. It ensures that the equivalence relations for equals3 and the
contract for hashCode4 are implemented as defined in the Java language specific-
ation.

7.5.2 Interactions

Interactions can be split in two groups: derived ones we can generate implement-
ations for, and the others with business logic for which we cannot do so.

Derived interactions

All of the derived interactions, which are the result of the model transformations
of Section 5.2, can be automatically generated. As such, we generate implement-
ations for all interactions of the following categories:

get Given a Record, extract a property.

constructor Given all properties of a record, create an instance.

lift Lift a type T into a list of T, or given a case of of a Sum type, lift it into the
Sum type (e.g. a controlled form of type coercion).

map Apply a function to each element of a list, and create a new list accordingly.

3https://cr.openjdk.java.net/~iris/se/11/latestSpec/api/java.base/java/lang/
Object.html#equals(java.lang.Object)

4https://cr.openjdk.java.net/~iris/se/11/latestSpec/api/java.base/java/lang/
Object.html#hashCode()

https://cr.openjdk.java.net/~iris/se/11/latestSpec/api/java.base/java/lang/Object.html#equals(java.lang.Object)
https://cr.openjdk.java.net/~iris/se/11/latestSpec/api/java.base/java/lang/Object.html#equals(java.lang.Object)
https://cr.openjdk.java.net/~iris/se/11/latestSpec/api/java.base/java/lang/Object.html#hashCode()
https://cr.openjdk.java.net/~iris/se/11/latestSpec/api/java.base/java/lang/Object.html#hashCode()
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Interaction: Business logic

Any function defined in the initial type model cannot be given an implementation
automatically. We therefore generate an interface with the given signature, and
allow engineers to later implement the interface in another class.

This implementation can then be wired into the application during runtime by
using a dependency injection mechanism. This approach allows us to just always
the interface as type everywhere we require a reference, and allow the framework
to arrange the proper instance.

7.5.3 Asserting presence of all Interactions

The downside of relying on the dynamic nature of dependency injection is that
any missing implementations are discovered during runtime. Although we cannot
statically infer whether all implementations are created, we can design a unit test
to ensure that all implementations are present.

The unit test searches for all interfaces denoting an interaction. For each of those
interfaces, we verify the existence of a class that implements that interface. This
way, we ensure that at least there exists an implementation for any of the business
logic Interactions.

7.6 Data-binding

Over-the-wire encodings used by API calls, such as the common JSON APIs,
need to be mapped between our model classes. This is called data-binding, and
can sometimes be done automatically. Our java classes are not created according
to the same expectations used by the default data-binding, therefore we have to
define our own Jackson deserializers.

7.7 Encoding use case search results as Java code

The Path is the class where all of the steps that make up the use case are com-
posed, which allow it to be executed accordingly.

As mentioned before, we pull in all steps as components built with the Reactive
Extensions library. However, to actually do so and to compose them properly,
the execution order becomes important. After all, if one element depends on
another it must be defined in that same order as well.

The order is defined by splitting all steps into two sets: those that are producible
(i.e. the given nodes) and those that are not. We start by noting down the
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givens, and marking those as producible. Then we iterate over the non producible
elements, and check whether it can be produced given the producible set. If that’s
the case we remove the element, write it down and mark it as producible. We
repeat the process until all elements are producible.

The final act of wiring everything together is achieved by composing all of the
components together with the help of the Reactive Extensions Observable intro-
duced in Section 7.4. This can be achieved by chaining all of our steps, effectively
applying a builder pattern [22] to our Path.

7.8 Readability

The code that we generate is intended to be readable by other software engineers
for the reasons discussed in Chapter 1. We achieve this readability by undertaking
a number of steps:

• We target the familiar Java programming language, not a more machine-
oriented instruction set like Java bytecode. This makes the output very
high level and allows for easier human consumption than the more low
level instruction sets.

• We have manually designed a prototype middleware component that sat-
isfies company guidelines and then built the code generator around this
component by gradually replacing manually written code with generated
code that shares the same structure.

• We have had in depth discussions with colleagues about the code struc-
ture, and concluded that the code is structured well enough for it to be
understood quickly.

• All names given to classes and variables are given names reflecting the
underlying types to be as meaningful as possible.

• We link concepts from the type models to the generated code, for example
by including an comment where the definition is coming from (i.e. trace-
ability).

• Any comment attached to a type in the type model is also included in the
generated code.

7.9 Relationship to the requirements

The requirements that are (partially) addressed by the work in this chapter can
be found in Table 7.1.
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A detailed slightly more detailed summary for each of the requirements can be
found below:

• R1: Model existing services as-is, without requiring any changes to their
domains. The design of the code generation phase of our approach does
not make any assumptions about upstream or downstream systems. Any
concerns, such as communication protocols or data mapping strategies can
be encoded in this part of the project, without impacting the other com-
ponents.

• R2: Explicitly separate functional and non-functional aspects of generated
middleware components. All of the functional aspects are encoded in the
models from the earlier chapters. The non-functional aspects can be man-
aged at this stage of the project.

• R3: Decrease engineering effort associated with creating or adjusting exist-
ing middleware components. The process of generating the majority of the
code initially, as well as regenerating all of it on changes will contribute to
this requirement.

• R5: Embrace change, such that changing the behaviour of middleware com-
ponents for business needs is something that can be facilitated by design.
All components can be regenerated and will then automatically reflect the
changes that have been made in the underlying data or models. When
non-functionals change, we have to update the generator. Subsequently,
the process is equal to dealing with functional changes.

• R7: Prevent lock-in so that at any point in time the decision could be made
to stop using our approach. We built all our work on top of open source
components so we also will not be subject to any licensing discussions with
vendors.

• R8: Ensure readable, understandable and thus maintainable assets so en-
gineers, security experts and tooling can audit the products. We have spent
considerable effort on making our framework easy to use when implement-
ing search strategies, as well as ensuring that we have advanced debugging
capabilities available. Next to that, we have implemented various visual-
isation approaches.

• R9: Only require support querying of data, since the majority of customer
interactions are like this (e.g. as shown in Figure 1.1). Our current code
generator only supports querying for data, and cannot deal with use cases
requiring any form of persistence.
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R1 R2 R3 R4 R5 R6 R7 R8 R9
Requirement x x x x x x x

Table 7.1: Requirements being addressed by the work in this chapter.



Chapter 8

Validation

In this chapter we report the activities we have undertaken to validate our design.
In particular, we have selected five domains, of varying complexity, for which we
have carried out one or more of the following steps:

• Define a model for the domain in Minos.

• Formulate use cases, i.e., queries on the domain for which code should be
generated.

• Generate the code for those use cases.

Section 8.1 introduces the domains. In Section 8.2 we discuss the modelling of
a domain. Section 8.3 is about formulating the use cases. Section 8.4 discusses
how we produce middleware components. Finally Section 8.5 discusses the lessons
learned.

8.1 Domains

The domains we have selected are:

1: Hello world A very simple domain that only serves to be embedded in the
project as a kind of Hello World example.

2: Motivating example From Section 3.1; a very simplified banking account
example.

3: Cards An implementation of a subset of the payment cards domain. This
work is done by another engineer as a means of evaluating the Minos DSL
and platform.

4: GitHub A subset of the GitHub API where five endpoints are modelled, as
well as all data that is transitively reachable from those endpoints.
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5: Aggregation A high profile API that that aggregates data from at least ten
(financial) domains. Therefore a highly complex domain, which ticks all of
the motivations from Section 1.2.

Table 8.1 gives an insight in their complexity, in terms of number of types and
interactions.

Domain Files Lines Code† Types‡ Interactions‡

Hello world 5 84 55 15 4
Motivating example 3 112 82 25 4
Cards 12 614 403 87 11
GitHub 17 805 580 212 19
Aggregation (inside-out) 20 412 272 53 13
Aggregation (outside-in) 17 1000 673 89 23
Aggregation (hybrid) 18 1105 821 120 7

Table 8.1: The size of our (partial) models.
† Lines that are not empty and not a comment. Like in most programming languages,

single declarations can take up multiple lines for aesthetics.
‡ Only type model declarations, so before applying any of our model transformations

discussed in Section 5.2.

8.2 Step 1: Modelling

In this section we discuss how we modelled all of the domains.

8.2.1 Domain 1: Hello world

This model has no meaningful complexity. It serves as a demonstration of mod-
elling features that can be used in the Minos DSL, and effectively can be seen as
part of the documentation of the tool. A very small model is defined, where a
user can define a query of their own, to just get started with all tooling involved
in this project. The domain serves no other purpose.

8.2.2 Domain 2: Motivating example

We have previously discussed the modelling in Section 3.1, and used it as an
example in Sections 4.3, 4.4, 5.1 and 6.1.

8.2.3 Domain 3: Cards

This is a subset of the payment cards domain as it actually exists within the
company. The added value of modelling this domain lies in the fact that it was
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not carried out by the author himself but by an engineering colleague, working
with the Minos system (Chapter 4). This has led to insights in the usability that
have been taken aboard during the project.

The step of modelling this domain has had the following outcome:

Partial model We gained experience in actually building type models.

Real-time type checker At the stage of this work, there was no real-time type
checker available yet. This was a major usability concern and hence ad-
dressed in Section 4.7.

Polymorphism We learned that, without a doubt, there should be some mech-
anism of polymorphism. This resulted in Section 4.1

Documentation The colleague turned out to use a feature in an unexpected
way. We designed annotations, such as documentation, that can be at-
tached to any type declaration. What we did not expect was the colleague
using this feature to record contextual information such that it will be
available for another engineer who implements interactions.

We may conclude that the modelling step was a qualified success. According to
the engineer who built the model, we have been able to model most aspects of
the business.

Precisely because this is a real domain, however, it turned out to be less suitable
for the next step of formulating use cases and generating code: the author did
not have access to the environment where the relevant back-end components are
developed and maintained, and organising this would have involved an effort
beyond what we could have gained from this.

8.2.4 Domain 4: GitHub

This model is external domain, and is a subset of the GitHub API. This is a
non-trivial domain and we have built a very complete model based on a small
subset of the aforementioned API. We therefore consider it to be representative
of the complexity of real-life domains.

The endpoints we we have included in the GitHub domain and thus modelled are
the following:

1. Retrieve the details of a specific commit reference ( link).

2. List repositories for a user (link).

3. List branches of a repository (link).

https://docs.github.com/en/rest/reference/repos#get-a-commit
https://docs.github.com/en/rest/reference/repos#list-repositories-for-a-user
https://docs.github.com/en/rest/reference/repos#list-branches
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4. List commits in a repository (link).

5. Return a single tree using its SHA1 hash (link).

Any type that is transitively referenced by any of the above API endpoints is
included in the model as well. Note that these five endpoints were selected
because they were required for the use cases defined by our stakeholder. This
will be discussed in Section 8.3.

8.2.5 Domain 5: Aggregation

For the aggregated domain (which consisted of 10 to 15 separate (business) do-
mains), we have created three partial models, based on three distinct design
principles:

inside-out Creating models based on the source code definitions of the original
middleware component. However, we experienced that ambiguities started
to arise which we could only solve by creating large sections of custom logic.
Finally, creating such models requires intimate knowledge of the existing
API source code.

outside-in only looking at the API definitions, and creating models from there.
While doing so, we discovered that many API definitions do not contain
enough concrete type information and that the author lacks domain know-
ledge of some of the financial domains that were involved.

hybrid a pragmatic approach where we tried to converge the two previous ap-
proaches, trying to find the sweet spot between the two. We have not
produced a complete model but nevertheless produced the most convincing
results via this approach.

For various reasons, none of these attempts have led to a complete model:

• The effort took place concurrently with the implementation of the support
framework. Though this was intentional, as it enabled us to make design
choices based on the issues encountered in the model, the combined effort
slowed down the progress. For this reason, we decided to concentrate on
the simpler GitHub domain.

• The complexity of the domain itself was also challenging. The product we
tried to model reached out into at least ten other business domains, pulling
in a massive amount of data types making modelling very complex.

• There was a lot of history involved throughout the model, it was sometimes
really hard to express certain things as well defined types. Analogous to
programming, sometimes APIs were so dynamic in use that effectively all

https://docs.github.com/en/rest/reference/repos#list-commits
https://docs.github.com/en/rest/reference/git#get-a-tree
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properties of a response were optional, and each type could only be defined
as an Any-like super-type.

As an outcome of this step, we created three partial models. Each of those models
is created differently, and none have lead to a complete model.

8.3 Step 2: Formulating use cases

As explained in the previous section, use cases have been formulated only for the
Hello World and GitHub domains. Given that the Hello World model is just a
demonstration, we will not address it in more detail than the discussion in Section
3.1 .

Our stakeholder has defined three use cases that can be understood as being
representative for the type of queries we need to support. These three use cases
are the following:

UC1 Retrieve the most recent commit details of each project of a single user.

UC2 For each project of a user, retrieve all of the files that are changed in the
last commit of the aforementioned repository.

UC3 Retrieve a list of branches for a single repository and sort them by when
they were last updated.

When implementing these use cases, we have sometimes extended the model to
include some logic that is not directly encoded in the GitHub APIs, but that
would make sense from a functional point of view.

As an example, given a list of Commits, it is reasonable to introduce a derived
concept LatestCommit, which is just the Commit with the most recent commit
date. Producing a latest commit can be done from a list of Commits. Such
an interaction can be encoded as [ Commit ] -> LatestCommit and the imple-
mentation is eventually added by an engineer.

8.3.1 Implementation details

We will illustrate how we have implemented the use cases by taking UC2 as
an example. If the reader is curious, UC1 and UC3 have a similar explanation
available in Appendix H.

Because we want to expose the use case as a simple API, we define both a
request and response datatype called U2Request and U2Response. It is modelled
according to the use case description.
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By implementing two record types LastChanged and ChangeDescription we
encode what the data should look like. In order to work around some of the
limitations of our approach we have created a small patch to implement this use
case, which will be discussed in Section 8.5. The complete implementation is
shown in Listing 8.1.

U2Request {
owner : AccountHandle

} ;

U2Response {
owner : AccountHandle
changes : [ LastChanged ]

} ;

LastChanged {
repo : RepositoryName
changes : [ ChangeDescr ipt ion ]

} ;

ChangeDescr ipt ion {
path : Fi lePath
u r l : FileURL

} ;

// Record in t roduced as par t o f the patch o f UC2
UC2PatchRecord {

AccountHandle
RepositoryName
GetTreeResponseOK

} ;

@doc {
We f l a t t e n a [ rec . [ TreeObject ] ] i n t o a [ LastChanged ]

}
UC2patch = [ UC2PatchRecord ] −> [ LastChanged ] ;

Listing 8.1: UC2 Minos definition minus package and import statements

8.4 Step 3: Producing middleware components

In this step we focus on actually producing the middleware components. We
start by applying our model transformations discussed in Section 5.2, which will
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gradually increase the size and complexity of the model. Table 8.2 depicts this
behaviour.

Transformation Types Interactions
Initial model size 212 19
T01: Imported types to qualified types 212 19
T02: Minos AST to Minos IR 212 19
T03: Builtin types 221 19
T04: Derive Lists 1039 19
T05: Rewrite inline lists to references 1039 19
T06: Derive getters 1039 226
T07: Derive constructors 1039 265
T08: Derive missing optionals 1039 327
T09: Specialise Sum Type Instances 1039 696
T10: Sum Type Generify 1039 733
T11: Derive functor maps 1039 3903
T12: Minos IR to Minos ASG 1064 3903
T13: Name resolution 1064 3903
T14: Dereference type refs 1064 3903
T15: Minos ASG to TypeGraph 1064 3903

|V | |E|
Complete type graph 4829 3845

Table 8.2: The size of our model after each transformation.

A search query is defined in terms of the U2Request and U2Response from Listing
8.1 and applied on the complete graph produced in the previous step. This
produces a number of results, so we apply our default heuristic of selecting the
shortest result of each use case. Table 8.3 shows the size of the resulting DAGs.
As can be seen these are a fraction of the original model.

Vertices Hyperedges
UC1 15 7
UC2 35 17
UC3 21 10

Table 8.3: The size of our solutions

The resulting DAG of UC2 is shown in Figure 8.1, the colours and shapes are
explained in Table 8.4.
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Notation Meaning

A given node

The target node

A data node

Interaction with business logic

Apply an interaction with business logic on a list (functor map)

Getter (retrieve a property from a record)

Constructor (build a record)

nothing specific (any other interaction)

Table 8.4: Legend for the DAG visualisations such as Figure 8.1.

In order to gain an understanding of the size and complexity of these software
components we have created Table 8.5. For a detailed comparison we refer back
to Tables 8.2 and 8.1.

Here we present the sizes of the complete code bases that make up the compon-
ents. The first two lines are self explanatory, of which the first is the total size of
the whole code base and the second the total size of generated code. The third is
Interactions, and is about the implementations of the business logic components
from the type model. Finally, the last – Deserializer – is also manually written
in the current state of this work.

UC1 % UC2 % UC3 % All + % All - %
All code 13245 100 15205 100 6214 100 34664 100 17626 100

Generated 12388 93.5 14146 93 5417 87.2 31951 92.2 16105 91.4
Interactions† 221 1.7 303 2 230 3.7 754 2.2 606 3.4
Deserializer‡ 636 4.8 756 5 567 9.1 1959 5.6 915 5.2

Table 8.5: The sizes of the codebases of all three usecases, and the percentages of
each category. The column All + denotes the sum of the three usecases, including
duplicates, whilst All - is the sum, but with duplicates removed as to highlight
the possibilities for reuse.

† Always intended to be manually written by an engineer
‡ Only manually written for now, a code generator is missing because of time constraints.
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8.5 Lessons learned

We have encountered a number of challenges while implementing our models and
use cases. First and foremost we learned that although we sometimes have to
apply patches, we can do so in a very succinct manner. It does require a thor-
ough understanding of the domain and expert insight into the search mechanism
though, so this is not an approach that can be used in a productised version of
this tool.

Secondly we learned that in practice, not all data definitions can be expected
to be mapped to a well defined type definition. An example would be a prop-
erty x, which can either be A or B, depending on surrounding context. However,
sometimes this is not clear from documentation, making discovery of such an
occurrence almost coincidental. Such a data definition or endpoint can be re-
factored, but in our case this is not possible because we do not have control over
components in the domains we are modelling. Hence the reason why Requirement
1 came to light.

The patches applied in the three use cases are required because of the following
limitations:

Type alias and coercion A type alias of a record (i.e. LatestCommit, which
is an alias of a Commit) is seen as a different type. Because there is no type
coercion, it is currently not possible to automatically get the constituents
of the aliased type. In practice you need to manually define an interaction
to do this for you, such as use case one.

Model recursion If there is a type X, one of our transformation adds a [X] to
the model. And given another transformation that given an interaction f

that can be applied on an X to produce a Y, [X] -> [Y] is added to the
model. We can repeat this up to infinite depth, but don’t want that as to
not explode the size of the graph. For practical reasons we stop at a depth
level of 2, which implies the need for patches if this is surpassed.

Ambiguity Sometimes the models can become ambiguous without immediately
noticing this. An example in our GitHub domain is the concept of a
CommitHash, which can be retrieved in various ways (i.e. via various API
calls). This is such a generic and ubiquitous type that interactions can be
found while searching for solutions that are conceptually nonsense. This in
turn makes the tool suggest conceptually incorrect solutions.
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U2Response

UserHandle_as_AccountHandle

(UserHandle) → AccountHandle

AccountHandle

ListCommitsOnARepositoryResponseOKList

FMapjustLatestCommitOnListCommitsOnARepositoryResponseOKList

(ListCommitsOnARepositoryResponseOKList) → LatestCommitList

LatestCommitList

ListCommitsOnARepositoryRequestList

FMapListCommitsOnARepositoryRequestToAccountHandleOnListCommitsOnARepositoryRequestList

(ListCommitsOnARepositoryRequestList) → AccountHandleList

FMapListCommitsOnARepositoryCall_ListCommitsOnARepositoryResponseOKOnListCommitsOnARepositoryRequestList

(ListCommitsOnARepositoryRequestList) → ListCommitsOnARepositoryResponseOKList

AccountHandleList

RepositoryList

FMapRepositoryToRepositoryNameOnRepositoryList

(RepositoryList) → RepositoryNameList

RepositoryNameList

FMapAccountHandleRepositoryNameGetTreeResponseOKToUC2PatchRecordOnAll

(AccountHandleList, RepositoryNameList, GetTreeResponseOKList) → UC2PatchRecordList

FMapAccountHandleRepositoryNameCommitHashRecursiveTreeRequestToGetTreeRequest_opt_OnAll

(AccountHandleList, RepositoryNameList, CommitHashList) → GetTreeRequestList

FMapAccountHandleRepositoryNameHashOrBranchFilePathGithubUserSinceUntilToListCommitsOnARepositoryRequest_opt_OnRepositoryNameList

(RepositoryNameList, AccountHandle) → ListCommitsOnARepositoryRequestList

UC2PatchRecordList

UserHandle

UserHandleRepositoryTypeListRepositorySortedBySortDirectionToListRepositoriesForUserRequest_opt_

(UserHandle) → ListRepositoriesForUserRequest

ListRepositoriesForUserRequest

AccountHandleLastChangedListToU2Response

(AccountHandle, LastChangedList) → U2Response

CommitHashList

GetTreeRequestList

ListRepositoriesForUser_ListRepositoriesForUserResponseOK

(ListRepositoriesForUserRequest) → ListRepositoriesForUserResponseOK

ListRepositoriesForUserResponseOK

ListRepositoriesForUserResponseOKToRepositoryList

(ListRepositoriesForUserResponseOK) → RepositoryList

FMapasLatestCommitDetailsOnLatestCommitList

(LatestCommitList) → LatestCommitDetailsList

FMapGetCommit_GetTreeResponseOKOnGetTreeRequestList

(GetTreeRequestList) → GetTreeResponseOKList

GetTreeResponseOKList

LatestCommitDetailsList

FMapLatestCommitDetailsToCommitHashOnLatestCommitDetailsList

(LatestCommitDetailsList) → CommitHashList

LastChangedList

U2RequestToAccountHandle_UserHandle

(U2Request) → UserHandle

UC2patch

(UC2PatchRecordList) → LastChangedList

U2Request

Figure 8.1: The DAG showing step-by-step actions for UC2



Chapter 9

Conclusion and Future
Work

In this work we have created a functional prototype that shows the viability of
our approach. This prototype consists of the following components:

• Chapter 4: A domain specific language, a real time type checker and editor
integration for creating domain models.

• Chapter 5: A number of meta-models and model transformations to gradu-
ally increase the fitness of our models and create the hypergraphs used in
the next step.

• Chapter 6: A number of search strategies for the (large) hypergraphs that
are the result of the previous step. Each search represents a use case.

• Chapter 7: A strategy and reference implementation on generating a mid-
dleware component based on the results of the previous steps.

We have evaluated this end-to-end implementation in the manner described in
Chapter 8.

In Section 9.1 we reflect on the requirements. Section 9.2 discusses the potential
solutions to design limitations. In Section 9.3 we discuss the results and relate
back to Chapter 1. Section 9.4 discusses directions for future work and Section
9.5 contains recommendations to the host organisation.

9.1 Reflecting on requirements

In this section, we go back to the requirements listed in Section 1.5 and discuss,
one by one, to which degree they have been met in our project. A summary is
skipped for now and provided in Table 9.2.

• R1: Model existing services as-is, without requiring any changes to their
domains. Partially met. Because we have been able to model domains that
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have well defined types and API definitions, but had more trouble doing
so when the quality of the source definitions decrease (see Section 8.2).
However, given that these upstream type definitions can be improved, and
are much stricter defined in new systems this is not a complete failure.

• R2: Explicitly separate functional and non-functional aspects of generated
middleware components. Completely met. The design allows an arbitrary
number of code generators, each with a varying complexity. We have im-
plemented a template-based code generator that directly encodes the non-
functional aspects in the model-to-text transformation templates. These
concerns are then weaved in with the functional parts of the application
while generating code. However, our design also supports a multi step ap-
proach where non-functionals are also modelled, and a (number of) PSM(s)
are made based on their interactions.

• R3: Decrease engineering effort associated with creating or adjusting exist-
ing middleware components. Partially met. We cannot provide a definitive
answer to this question, given that we have not created new implementa-
tion(s) of existing middleware components, and thus cannot compare the
effort required to do so. However, given the size of the generated projects
compared to the model definitions (Section 8.4), the expectation is that
this can be achieved when this approach is developed further.

• R4: Emphasise the business needs and put those first, as opposed to the
technological details related with implementations. Mostly met. We some-
times still need patches to fix use cases, but at least these are reasoned
about from a domain perspective. Technological concerns (mostly related
to non-functionals) are part of the PSM and thus embedded in the code
generator. Business has no need to interact with this.

• R5: Embrace change, such that changing the behaviour of middleware com-
ponents for business needs is something that can be facilitated by design.
Completely met. Creating new components to address changes in the eco-
system or business needs is only a matter of model updates, and then
running our tool.

• R6: Include a strategy on how to implement this approach in the host or-
ganisation. Completely met. Appendix G has also been aligned with the
primary stakeholders within the company.

• R7: Prevent lock-in so that at any point in time the decision could be made
to stop using our approach. Completely met. We only use open source
tooling which we built on top of. As for the generated assets, these are
generated in such a way that they are also built on top of open source
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tooling, as well as being readable by human engineers. The main lock-in
scenario, after all, is the use of this tool, so having a very pragmatic exit
strategy is worth it.

• R8: Ensure readable, understandable and thus maintainable assets so en-
gineers, security experts and tooling can audit the products. Mostly met.
Based on informal evaluation with engineering colleagues, the generated
code is very readable and on par to existing middleware component source
code. However, we have not formally investigated this, for example by ana-
lysing the quality of the products. We can say that the our code base has
a very manageable size, making maintenance of the whole project a viable
strategy. Details can be found in Table 9.1.

• R9: Only require support querying of data, since the majority of customer
interactions are like this (e.g. as shown in Figure 1.1). Completely met.
For now we leverage the query-only use case to keep our product simple.

Files Lines Blanks Comments Code
Minos DSL (Rascal) 27 2058 372 88 1598
Minoa pipeline (Scala) 137 12414 1808 909 9697
Minoa search (Java) 7 669 83 67 519

Table 9.1: The size of thalassocracy (excluding templates for code generation).

R1 R2 R3 R4 R5 R6 R7 R8 R9
Partially met x x
Mostly met x x
Completely met x x x x x

Table 9.2: Summary of the degree to which the requirements have been met.

9.2 Potential solutions to design limitations

In this section we will discuss ways to overcome the design limitations of the
current state of our work, which were listed in Sections 8.5. We have divided
the limitations into two groups: related to the current design (i.e. practical
limitations that can be solved given enough time) and related to the approach
(i.e. fundamental limitations).
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9.2.1 Practical limitations

Type alias and coercion We do not support automatic type coercion because
it effectively equates distinct nominal types. What follows is that we also
cannot use the constituents of an aliased record type automatically. Oth-
erwise, we could just extract all the properties, and invoke the constructor
again.

The inverse, disallowing (automatic) construction of alias-typed data values
could improve the situation but also still not be a solution. If that were to
happen, we could end up in an reversed scenario where a type alias gets
deconstructed and we might still end up with the original type.

This behaviour is generally not what is intended. To illustrate this with
an example: assume we have two distinct types A and B (where B can be
defined as a type alias), but both consist of the same (rather low level)
properties X and Y. Although types A and B are structurally equivalent,
they are nominally not equal.

Our current design that applies model transformations currently ignores
these type aliases and regards those as a black box, of which no properties
can be derived automatically. If we were to not do this, we would end up
with a series of steps that effectively defines a bijective function between
X and Y. This nullifies our effort of separately defining the types. At least
one option to explore is the application of Path Dependent Types [1].

Model recursion We can encounter situations where, as part of a use case, we
need to support an interaction at a certain ”nested list level” (e.g. [ [ A ]

] -> [ [ B ] ]). If this is deeper than the nesting we include in the model,
we can manually introduce the interaction, and provide an implementation
as a viable workaround.

9.2.2 Fundamental limitations

Type-level ambiguity Given that we define nominal types and that the intent
of a type is partially captured in its name, we sometimes end up in a tricky
situation where a trade-off must be made. To give an example: a Money

type is a very clear and well-known type. However, its meaning depends
on the context (i.e. an AccountOverview with a balance of type Money is
not the same as a Money amount of a MoneyTransfer).

This creates either an ambiguity between the two Money types, or requires
manual intervention by defining and using type aliases or specialised interac-
tions for specific use cases. Although both options are viable workarounds,
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they are caused by a hard limitation of the current work.

9.3 Discussing stakeholder objectives

Looking back at the validation in Chapter 8, we can see that we are able to create
middleware components for the three use cases we have introduced. Table 8.5
gives an indication on the size of the components, as well as the amount of code
that is still to be written by engineers.

This suggests that ulterior motive of creating middleware components is possible,
albeit with the limitations discussed above. However, this is not the only aspect
we need to take into consideration.

In Section 1.6 we introduced the prototypical stakeholders of our work. As each
of them has their own objectives, we will now discuss to what extent our approach
is able to match those objectives.

DevOps Engineer The main objective is decrease of maintenance effort re-
quired. We think our approach contributes to this objective because the
end-to-end workflow of applying our pipeline until we end up with the
generated middleware components is both well enough designed to allow
regeneration as well as for that to happen non-destructively (i.e. without
losing manual engineering effort). After the creation of the initial models,
generating middleware components for our use cases is very feasible. For
the non-generated parts we can also see that there is actual reuse of code
between the three use cases.

In Table 8.5 we can see that about 20% of the Interaction code is duplicated
between use cases. For the Deserializer, this is about 50%. In practice, we
currently already share the implementations of these duplicated compon-
ents, indicating that this objective can also be accomplished.

If we look at the four traditional types of maintenance [43] we can con-
clude the following. Corrective, preventive and perfective maintenance
can be addressed effectively by making changes to the code generator, and
re-generating the middleware components. Adaptive maintenance can be
achieved by changing the search queries and re-generating the middleware
components.

Finally, we do have to conclude that we cannot quantify how much decrease
in maintenance effort there will be in the organisation, as we did not execute
the experiment with a real business component for the reasons discussed in
Section 8.2.5.



CHAPTER 9. CONCLUSION AND FUTURE WORK 90

Feature Engineer Detailed alignment and discussions on exposing (parts of)
the data-set of System of Records will become a more prominent task in the
day-to-day activities. In the current way of working, the feature engineer is
largely dependent on a large, implicit model of the organisation that only
exists in that person’s head. By ingesting various assets about the products
we have, as well as the data they expose, a feature engineer is able to distil
whom needs to be talked with in order to obtain a certain business result.

Our approach makes this knowledge explicit, by effectively capturing that
information contained into our type models, and allowing it to be traversed.

As discussed in Chapter 6, the size of those model is of great influence to the
effectiveness of the queries and whether or not they execute in a reasonable
time-frame. Our most advanced algorithm seems to be reasonably fast,
especially in conjunction with the quite aggressive pruning of the graph
in case it gets larger. Note that the use cases defined in Section 8.3 are
also representative in terms of behaviour and scope, giving us confidence
to make the above statement.

If the pruning is not possible, it means that so much contact points of
systems in the bank are touched that it is not feasible anymore to quickly
compute solutions. However, this effect is not so much a consequence of our
approach as of the inherently complex nature of the problem. In practice
the same will happen if you ask a similar question to humans and request
they come up with a way to implement a system able to devise an answer.

Customer Journey Expert The feedback loop on creating new products should
become shorter, allowing for faster iterations. When working with our ap-
proach, this role is now able to do quick prototyping and experimenting
based on the provided type models. This means that people in this role
are not dependent on a) the scheduling and b) the capacity of engineering
teams, and thus have much shorter feedback loops.

Architect Reason about the real state of the architecture in the organisation,
instead of what is documented. We have not implemented any static or
dynamic analysis that can help to answer those questions, but one can
easily imagine that having an automated approach like we propose will
make this possible. Thus, this role could also receive some benefit of our
work.

9.4 Future work

In this section we discuss some of the next steps we can undertake.
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Addressing limitations Full adaption of this approach requires developing prac-
tical solutions and work-arounds to the limitations discussed in Section
9.2.1.

Supporting a real business case As discussed in Appendix G, our approach
should support at least one real business case in order to continue to validate
the product thoroughly. See Section 8.2.5. for a discussion on the degree
to which this has already been done in the scope of this project.

Interactive exploration To improve the understanding of the type model and
the search results, an investigation of interactive exploration and search
possibilities is in order. This is especially relevant for the Customer Journey
Expert role as introduced in Section 1.3. An inspiration is the navigation
support in various maps services such as Google Maps. By implementing
additional features such as ”do or don’t travel via this edge”, we can both
improve the quality of the results, as well as provide a low entry method of
interactive exploration.

Link prediction Having a means of automatically suggesting new edges in the
graph would alleviate the pain of manually figuring out where to best add
new edges. Of course, a predicted edge must be sensible in terms of domain
knowledge. We have explored this hyperlink prediction problem in prior
work [67].

Generating (de)serialisers Instead of having engineers manually implement-
ing serializers and deserializers as discussed in Section 7.6, these software
components should be automatically generated. Based on prior experience
with building such a component in an industrial setting for the same com-
pany, we are very confident this can be achieved without introducing any
major risks.

Visualising use cases We have now explored a graph-based representation for
use cases, but are interested in others. For example, creating a sequence
diagram where each lifeline is an interaction (orange blocks from Figure
8.1) might also provide insight into what makes up a solution.

Extend capabilities for non-functionals As an extension of Requirement 2,
we want to experiment with including more advanced non-functional as-
pects. An interesting example can be the including capacity metrics of
edges into the path finding, and take those into account while suggesting
solutions and optimise for not one use case, but all of them at once in order
to find a global optimum.

Writes Next to only supporting reads, also incorporate writes. A likely direction
for exploration is the Command Query Responsibility Segregation (CQRS)
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pattern [34].

Program synthesis For any interaction that we cannot derive automatically,
we now have to provide a manual implementation. We would like to explore
the addition of methods to automatically derive implementation based on
model extensions such as refinement types [53], bird-meertens formalism [2]
or other means of program derivation.

Annotate with context Explore whether we can annotate data at runtime
with some sort of context, to support cases where the actual instance of
data is important. For example, bank account A is not equal to bank
account B, even though their types are identical. We could leverage this
information during the search for solutions.

First class change concepts Changes to the type model currently bring a
number of challenges such as answering questions like ”which components
should be updated” and ”which components break” (e.g. in case of the
removal of certain data). Any action that needs to be taken in this context
currently has to be managed by hand, we would like to investigate oppor-
tunities that warn about destructive model changes, broadcast the need for
updates etc.

Nominal type and context As mentioned in Section 9.2.2, we need to explore
how to pull in context into the nominal types, as to differentiate between
identical basic types such as Money and CommitHash.

Finally, we are interested in applying this work in a different context:

Search in GraphQL context Applying the concepts of Chapter 6 on a GraphQL
system might also produce useful results, effectively extending GraphQL
with the capability to have queries being generated for users instead of
having to be defined manually. Although this only builds on a part of this
work (i.e. Chapter 6), we believe this can be interesting especially if the
organisation were to move into the GraphQL technical space.

9.5 Recommendations

We have written a detailed recommendation for the host company. Because it
contains proprietary information, we refer to Appendix G.
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[63] Voelter, M., Kolb, B., Szabó, T., Ratiu, D., and van Deursen, A.
Lessons learned from developing mbeddr: a case study in language engin-
eering with MPS. Software & Systems Modeling 18, 1 (Jan. 2017), 585–630.

[64] Voelter, M., Ratiu, D., Schaetz, B., and Kolb, B. mbeddr: an
extensible c-based programming language and ide for embedded systems.
In Proceedings of the 3rd annual conference on Systems, programming, and
applications: software for humanity (2012), pp. 121–140.

[65] Voelter, M., Siegmund, J., Berger, T., and Kolb, B. Towards user-
friendly projectional editors. In International Conference on Software Lan-
guage Engineering (2014), Springer, pp. 41–61.

[66] Wadler, P. The expression problem. https://homepages.inf.ed.ac.uk/
wadler/papers/expression/expression.txt.

[67] Wientjes, M. Hyperlink prediction with modular directed hypergraph
neural networks. Master’s thesis, Eindhoven University of Technology, 2021.

[68] Wimmer, M., and Kramler, G. Bridging grammarware and modelware.
In Satellite Events at the MoDELS 2005 Conference. Springer Berlin Heidel-
berg, 2006, pp. 159–168.

https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

	Abstract
	Table of contents
	1 Introduction
	1.1 The company
	1.2 Motivation
	1.3 Relevant roles
	1.4 Design problem
	1.5 Requirements
	1.6 Stakeholder objectives
	1.7 Validation
	1.8 Outline of the PDEng thesis

	2 Background
	2.1 Related work
	2.2 Model Driven Engineering
	2.3 Expressing models
	2.4 Model transformations
	2.5 Domain Specific Language
	2.6 Source-code generation

	3 Methodology
	3.1 Motivating example
	3.2 High level design
	3.2.1 Defining type models
	3.2.2 Model transformations
	3.2.3 Search strategy
	3.2.4 Code generation

	3.3 Minos language design
	3.4 Model driven engineering technical space
	3.4.1 Architectural viewpoints
	3.4.2 Meta-model and transformation design
	3.4.3 Model-to-text transformation

	3.5 Hypergraph traversal

	4 Minos language
	4.1 Polymorphism
	4.2 Hierarchical structure of a Minos project
	4.3 Types
	4.4 Interactions
	4.5 Notable usability features
	4.5.1 Name derivation
	4.5.2 Named parameters
	4.5.3 Modifiers
	4.5.4 Inline type definition

	4.6 IDE
	4.6.1 Jump to declaration
	4.6.2 Outliner

	4.7 Type Checker
	4.8 Relationship to the requirements

	5 Models and transformations
	5.1 Meta-models
	5.1.1 Minos AST meta-model
	5.1.2 Minos IR meta-model
	5.1.3 Minos ASG meta-model
	5.1.4 Minos TypeGraph meta-model

	5.2 Model transformations
	5.3 Implementation of the model transformation pipeline
	5.3.1 Useful Scala features
	5.3.2 Model and transformation components

	5.4 Relationship to the requirements

	6 Searching for solutions
	6.1 Graph definition
	6.2 Search strategy
	6.3 Search implementations
	6.3.1 Naive strategy
	6.3.2 Pruning strategy
	6.3.3 Frontier strategy

	6.4 Applying search strategies in our product
	6.5 Implementation of the search algorithms
	6.5.1 Testing search strategies
	6.5.2 Eager and lazy searches

	6.6 Relationship to the requirements

	7 Code generation
	7.1 Design decisions
	7.2 Target platform
	7.3 Generated code concepts
	7.4 Composing generated code
	7.5 Java implementation details
	7.5.1 Equals and hashcode
	7.5.2 Interactions
	7.5.3 Asserting presence of all Interactions

	7.6 Data-binding
	7.7 Encoding use case search results as Java code
	7.8 Readability
	7.9 Relationship to the requirements

	8 Validation
	8.1 Domains
	8.2 Step 1: Modelling
	8.2.1 Domain 1: Hello world
	8.2.2 Domain 2: Motivating example
	8.2.3 Domain 3: Cards
	8.2.4 Domain 4: GitHub
	8.2.5 Domain 5: Aggregation

	8.3 Step 2: Formulating use cases
	8.3.1 Implementation details

	8.4 Step 3: Producing middleware components
	8.5 Lessons learned

	9 Conclusion and Future Work
	9.1 Reflecting on requirements
	9.2 Potential solutions to design limitations
	9.2.1 Practical limitations
	9.2.2 Fundamental limitations

	9.3 Discussing stakeholder objectives
	9.4 Future work
	9.5 Recommendations

	Bibliography
	A Metamodels
	B Eclipse Epsilon usability issues
	C Minos reference implementation
	D A complete Minoa metamodel
	E Minos syntax definition
	E.1 Grammar
	E.2 AST

	F Scala selector code
	G Embedding our work in the company
	G.1 Stakeholders
	G.2 Strategy
	G.3 Next steps

	H Use cases
	H.1 UC1
	H.2 UC2
	H.3 UC3

	I Capita Selecta report

	anm2: 
	2.57: 
	2.56: 
	2.55: 
	2.54: 
	2.53: 
	2.52: 
	2.51: 
	2.50: 
	2.49: 
	2.48: 
	2.47: 
	2.46: 
	2.45: 
	2.44: 
	2.43: 
	2.42: 
	2.41: 
	2.40: 
	2.39: 
	2.38: 
	2.37: 
	2.36: 
	2.35: 
	2.34: 
	2.33: 
	2.32: 
	2.31: 
	2.30: 
	2.29: 
	2.28: 
	2.27: 
	2.26: 
	2.25: 
	2.24: 
	2.23: 
	2.22: 
	2.21: 
	2.20: 
	2.19: 
	2.18: 
	2.17: 
	2.16: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


