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Abstract 

Today’s perplexing maintenance operations and rapid technology development require an understanding of the complex 

working environment and processing of dynamic and real-time information. However, the environment complexity and an 

exponential increase in data volume create new challenges and demands and hence make troubleshooting extremely difficult. 

To overcome the previously mentioned issues and provide the operator real-time access to fast-flowing information, we 

propose a hybrid solution made of augmented reality further combined with machine learning software. In particular, we 

present a dynamic reference map of all the required modules and relations that connect machine learning with augmented 

reality on an example of adaptive fault detection. The proposed dynamic reference map is applied to a pilot case study for 

immediate validation. To highlight the effectiveness of the proposed solution, the more challenging task of measuring the 

impact of combining augmented reality with machine learning for fault analysis on maintenance decisions is addressed.  
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1. Introduction

The increasing requirement of reliable, available, 

maintainable, and safe systems makes traditional 

maintenance strategies less effective and obsolete 

[1]. Due to the complexity of the systems and thus 

the maintenance procedures, in-depth knowledge is 

needed to detect and resolve failures. However, often 

the operator does not have this knowledge, and as a 

result, requires more support for troubleshooting.   

Traditionally, the fault diagnosis is based on 

manual inspection of the machine’s health state [2]. 

However, some maintenance tasks are relying on 

many dependencies and relations with other assets 

and systems, and are therefore too complex to be 

understood by the operator. In modern industrial 

applications are therefore automatic fault diagnosis 

methods required, able to recognize the health state 

of a machine and identify the causes of this state. 

Such an approach would enable the operator to 

diagnose failing components in an early stage and 

hence would make the production flow more 

effective and efficient.   

The ongoing digital transformation of industrial 

environments and practices in the light of Industry 

4.0 is a perfect scene for future automation. In this 

aspect, the open-ended development of augmented 

reality (AR) can help in addressing increasing 

complexities in machinery, and provide remote 

maintenance, whereas artificial intelligence (AI) and 

cloud/edge computing can help in the analysis of the 

collected extensive data sets to automatically 

diagnose the machine state, perform quality 

inspections and effectively predict the failure of the 

machine in advance. The use of the combination of 

AR and AI hence can further reduce maintenance 

costs and unexpected downtime [3].  

 In the context of Industry 4.0, both AR and AI 

have evolved independently, and are only recently 

studied in combination [4]. However, most of the 

existing research in this direction is limited to tasks 

such as detecting, localizing, and identifying objects 

by AI approaches in an AR environment [4]. To 

extend these research fields, AI can potentially be 

used as a tool in the AR software environment [4].  

The literature includes applications of anomaly 

and structural damage detection for prognostic 

health monitoring [1]. However, the application of 

integrating AI with (AR) wearable computing 

technologies for predictive analytics should be 

explored further [1]. AI and AR are both individually 

likely to help advance troubleshooting complex 

failures and give the operator in-depth knowledge of 

the problem. The combination and integration of 

both have the potential to support this even further.  

In this paper, the focus is on the integration of the 

knowledge-based systems (KBS) [5], AI, and AR in 

new technology, (see Fig. 1 for schematic 

representation) that can be used as a tool for 

supporting troubleshooting. The role of the KBS is 
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to incorporate the expert’s knowledge, and the 

supporting information necessary for complex 

maintenance tasks on the operator side [5]. Then AI, 

in particular machine learning (ML)/deep learning 

(DL), is used to extract and analyze the desired 

information. Eventually, this technology element 

supports the operator by screening failure diagnosis 

and possible repair instruction. To close the 

information loop between KBS and AI, and hence 

contextualize and visualize context- and user-

dependent information, the AR element is utilized. 

The three modules together define a dynamic 

reference map required to perform automatic fault 

diagnosis. In this way, all elements are related and 

connected, and hence will be an important starting 

point for troubleshooting.  

Fig. 1. Relations between KBS, AI, and AR. 

The paper is organized as follows: a brief 

introduction to the KBS, AR and AI for 

troubleshooting is given in section 2. The technology 

foundation of the dynamic reference map and all its 

modules required to map the environment to the 

troubleshooting procedure is described. In section 3 

a case study is analyzed as an early-stage 

demonstrator. Finally, section 4 concludes the paper 

and outlines topics for future research.  

2. New dynamic reference map

The newly proposed dynamic reference map 

connecting KBS, AI, and AR modules for automatic 

fault detection is depicted in Fig. 2 by adapting the 

KBS architecture presented in [5].  

2.1. Initializing reference map 

The map starts with the AR user interface that 

simply ensures efficient communication with the 

user through menus while having a clear graphical 

user interface that contextualizes, visualizes, and 

provides real-time information to the operator. This 

interface is then coupled to an automated data 

acquisition facility which transfers real-time data 

captured by the operator, its problem-solving 

expertise, and/or other information sources to an AI 

module. Since AI is capable enough to recognize, 

classify and predict the expected health state of a 

machine, this module is also referred to as an 

inference control engine [6].  This module acts as the 

brain of the system that uses the rule interpreter to 

execute a forward chaining algorithm and selects a 

methodology for reasoning. Next to the acquisition 

data, the control engine also uses data available in 

the information inference source, where the 

knowledge needed for understanding maintenance, 

in the form of manuals, figures, videos, and 

documents is stored. Finally, the decision rule 

module is detecting if additional data are required. 

Hence, the inference control engine uses input data 

and decision rules to automatically diagnose a 

failure and identify the corresponding maintenance 

tasks with the help of the appropriate ML/DL model. 

Failure diagnostics are then reported to the user 

interface and the operator is provided with 

maintenance tasks required to resolve the fault.  

2.2. Technology foundation 

The novelty of this research is based on 

combining AR spatial mapping with the processing 

power of AI while visualizing the results directly in 

AR. Data is collected from the KBS to supply 

supportive information. When these modules are 

connected, one may trace whether the operator 

understands the real-time information or not, by 

comparing performed activities with the suggested 

or expected activities. Similarly, monitoring of 

maintenance activities, as well as capturing of 

outcomes becomes possible. These data can be 

further used to improve the AI system for future 

maintenance activities. Eventually, connecting 

KBS, AI, and AR releases the contribution of human 

labor and automatically recognizes the health state 

of a machine.  

2.2.1. KBS module 

Maintenance operators are mostly experts in the 

field and have specific domain knowledge that 

consists of experience, expertise, judgement, and the 

knowledge about methods required to solve complex 

maintenance problems.  

Capturing and formalizing the previously 

described knowledge is the main focus within the 

information inference stage, which applies logical 

rules to the knowledge base to deduce the new 

information that can directly be used in maintenance 

operations [7]. When maintenance procedures are 

standardized, reliability prediction information can  
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Fig. 2. Dynamic reference map. 

be collected and used as input data for the 

information inference. From the standardized 

procedures, requirements and boundary conditions 

can be set. However, when procedures are 

standardized, the support given to the operator will 

not be dynamic. Therefore, the information 

inference requires the user to continuously feed the 

system with new data. When a service task or fault 

diagnosis is resolved, the operator must replenish the 

information inference with new information. Hence, 

this new information supports the maintenance 

procedure in establishing new strategies. 

To conclude, the information inference must be 

synthesized after every task performed by the 

troubleshooting tool. 

2.2.2. AR module 

The AR module in the proposed dynamic 

reference map can successfully assist maintenance 

operators in improving their overall productivity by 

corresponding automatic object recognitions and 

inspection of the machine or its parts. Similarly, 

maintenance tasks can be visualized and screened 

according to the failure diagnostics. This is achieved 

by visualization and contextualization of data stored 

in an intelligent data acquisition facility, a link to the 

AI module, that couples the maintenance 

instructions, the maintenance information systems, 

and the environment together. Data captured in the 

intelligent acquisition facility help the operator 

diagnosing faults correctly, by e.g. showing only the 

appropriate information which is normally not 

visible without AR. Therefore, the readability of text 

instructions in AR should be sufficient and 

simplified. Furthermore, the use of visual elements 

is partially encouraged [8] by translating as many 

text instructions to (2D or 3D) graphic symbols, if 

possible. When maintenance information is supplied 

properly to the operator and feedback on data 

acquired, proper failure diagnosis and repair can be 

guaranteed. However, to make use of AR solutions 

in different applications, the new authoring manuals 

for automatic failure diagnosis have to be within 

Industry 4.0 principles [9]. This offers structured 

and real-time communication by using automated 

augmentation of message elements and improves 

efficiency in terms of time and error reduction. Next 

to this,  standardized communication between cyber-

physical systems, the operators, and the environment 

is desired. Similarly, the performance data collected 

during diagnosing and repairing operations, have to 

be marked, tracked and captured for further 

improvements of the system. Hence, the AR module 

has to provide a digital and contextualized version 

of technical documentation, exchange real-time 

information, and be highly flexible. To achieve this, 

the specific hardware-software choice for the AR 

module has to be made based on the user and 

maintenance requirements [10]. Any hardware 

solution that interacts with human senses (e.g. 

tablets, Head Mounted Displays (HMD), hand-held 

devices, projectors, and headphones) can be an 

option. Based on the desired quality, resolution and 

environment conditions, these can be marker-less or 

marker-based AR systems [9]. The decisions on 

when, how and which type of AR can be used highly 

depends on the clarity of existing information on the 

operation application, specific maintenance tasks, 

and the end-user [11]. This decision can be made 

throughout the development and use phase since 

standardized communication allows multiple AR 

solutions to fit the system, and to be changed over 

time.  

2.2.3. AI module 

Over the years, an increasing amount of data is 

gathered from machines leading to more useable 
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diagnosis results. To automatically learn features 

given the input monitoring data and hence recognize 

the health state of machines [6], one can use the 

inference control engine (AI module). Inference 

control engines can be classified into four 

categories: (1) rule-based reasoning, (2) fuzzy-logic-

based reasoning, (3) ML/DL-based reasoning, and 

(4) case-based reasoning [6]. In the case of ML/DL

reasoning, the correct workflow in intelligent

maintenance operations and adequateness of

decision rules highly depend on the accuracy and

prediction of ML/DL  models [12]. To diagnose

failures of the tracked equipment and/or component,

the appropriate ML/DL model, as well as, the dataset

of sufficient size and quality have to be identified.

Therefore, sensible decisions on the collected data

type and handling are required. For example in

predictive maintenance based on ML/DL approach,

large datasets are required. This is often not feasible

as the data are often not available in the public

domain [12], or not collected at all. Although real-

time data is preferred over laboratory data, the latter

ones are more often used due to their availability.

The main challenge is, however, these datasets do

not contain the disturbing features or records of

subcomponents of the machine [12].

The choice and optimality of a suitable ML/DL 

model on the other hand depend on the chosen AR 

module, which is to be complemented by AI. In 

general, ML/DL models are used for image 

classification and object detection given the data 

collected by the AR module [4]. Image 

classification, as a predecessor to object detection, 

recognizes the scene and labels it to the 

corresponding class. Furthermore, object detection 

is used to recognize the objects in the scene by for 

example bounding box method or similar. Besides 

the mentioned AI applications in AR, the inference 

control engine also captures the performed tasks. 

To develop a decision-making engine, DL can be 

deployed for big data scenarios. ML/DL-based 

diagnosis procedures consist of two steps: (1) big 

data collection and (2) automatic diagnosis [6]. Once 

the dataset is collected, the manually extracted data 

features [6] are mapped to the corresponding failure 

class via classical ML models [3]. However, this 

type of modelling requires complicated features 

engineering in contrast to the DL approach. 

Following this, the main objective of the inference 

control engine is to identify the optimal supervised, 

semi-supervised or unsupervised ML/DL model 

within a defined computational timeframe. Utilizing 

the results from the ML algorithm requires special 

interpretations [4] that depend on the characteristics 

of the dataset, the chosen algorithm, parameter 

setting, and the expected output [4]. 

For effective maintenance interventions, 

discernment in the model’s interpretability, 

explainability, and  accuracy is of the utmost 

importance. Hence, the model verification and 

validation have to be analyzed according to the 

preset objectives.  

Finally, the outcome of the inference control 

engine provides machine diagnostics for the 

operator. Consequently, when combining KBS, AI, 

and AR, a new maintenance strategy can be 

established to support the operator.  

3. Real application troubleshooting

To enhance the knowledge and understanding of 

the process behind the reference map, a case study is 

executed. To validate the dynamic reference map, 

the proposed process is implemented in an early-

stage demonstrator. Eventually, a questionnaire is 

employed to reflect on the case study.  

3.1. Case study 

The case study comprises automatic failure 

detection, which combines KBS, AI, and AR for 

troubleshooting. The case has been selected based 

on the data given by diagnosis experts from a 

machine manufacturing company. These modular 

machines produce lay-flat photobooks and other 

premium print-on-demand products.  

The company provided over 20 hours of 

interviews to identify current processes and 

solutions in the classification of well-produced book 

blocks. Based on the interviews, a Failure Mode and 

Effects Analysis (FMEA) is performed and revealed 

that the book spine is mostly printed incorrectly 

[13]. More specifically, when the moving table and 

the rotating drum are not aligned, the book spines 

are not produced correctly.  

A book spine is classified as good or bad, and is 

bad if: (1) the book spine is uniformly leaning, (2) 

the book spine is one-sided leaning, (3) the book 

spine has a bulbous shape, or (4) the book spine has 

a hollow shape.    

3.2. Early-stage demonstrator  

The troubleshooting demonstrator comprises 

three main components: (1) an information inference 

to store the transferred data, (2) an HMD for the 

operator with an AR application using the HoloLens 

2, and (3) the AI intelligent control engine. The 

system overview, along with the software and 

hardware is presented in Fig. 3.  

For the information inference, interviews are 

performed with operators. Besides this, operating 

manuals, maintenance instructions, notes, videos, 

images, and CAD files of the machine are structured 

and stored. As the access to the real-time data from 
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the machine was not available, images of badly 

produced book blocks are collected.  

To identify the appropriate maintenance task, the 

image of the book block has to be classified 

appropriately. To achieve this, the convolutional 

neural networks (CNN) are offline trained on a 

balanced dataset of bad and good book spines and 

further used for online classification.  

Fig. 3. System overview. 

Due to the limited dataset, 100 images of real book 

blocks are augmented by a synthetic virtually 

emulated dataset. This results in a dataset consisting 

of 1000 images of both bad and good produced 

books which can be classified into the five 

aforementioned classes.  

Once the CNN model is trained, it is used on the 

real-time data coming from the camera stream of 

AR. The inference engine classifies the seen book 

block images by identification of the book spine 

problem. Images are recognized, analyzed, and then 

used for predicting the correct label. Thus, the 

algorithm classifies whether the book spine is 

correct, uniformly leaning, one-sided leaning, 

hollow, or bulbous shaped. The predicted labels are 

then projected to the HMD.  

Once the book block is classified, the 

corresponding result, as well as maintenance 

activity, is visualized on HMD based on the 

maintenance requirements. Maintenance of the 

considered machine is a standard operation 

performed by the operator. It is an operation of high 

occurrence and of very low variance in terms of time 

and maintenance failure rate. However, the machine 

itself is subject to degradation and hence may lead 

to the new maintenance operation. According to this, 

the maintenance (manual) instructions are generated 

in the information inference system, translated into 

the digital system, and anchored by a marker-based 

technology. To visualize the maintenance 

instructions on the HMD, Microsoft Guides is 

utilized. This application shows clear instructions 

while still being able to use custom pictures, videos, 

text, and 3D models.  

In short, a DL algorithm can classify good and 

wrong book spines, label the specific failure, and 

display the results on the HMD. Hereafter, the 

maintenance steps used to solve the issue causing the 

book spine problem are visualized on the HMD.  

3.3. Feedback on the proposed process 

The proposed dynamic map is validated by 

questionnaires. Expert and non-expert operators’ 

feedback is gathered, recorded, and compared. In 

total, six participants took part in validating the 

process. Participants were selected based on their 

level of expertise ranging from no previous 

experience to good knowledge about the HMD.  

All participants were asked to detect, inspect, and 

recognize a wrongly produced book spine. 

Hereafter, the DL algorithm and HMD are used to 

provide failure information and the corresponding 

maintenance task to the operator.  

The goal of this validation process is to identify 

(1) the usefulness of the reference map, (2) the

problem-solving capabilities of an automatic failure

diagnosis tool, (3) the reduction of diagnosis

failures, and (4) the effect on maintenance

operations in terms of time. To score the previous

statements, participants were asked about their

experience and the level of satisfaction related to the

aforementioned four goals. Statements are ranked

between 1-5 in which the score varies from strongly

disagree to strongly agree. Table 1 presents the

results of the validation session.

Table 1. Validation session automatic failure detection. 

Validated item Average score 

Usefulness 3.5 

Problem identification capability 4 

Time 4.2 

Failure reduction 4 

As the collected dataset is limited, the corresponding 

statistical analysis is not provided. Instead, the 

information gathered during this experiment is used 

to make the first qualitative estimation of integrated 

KBS, AI, and AR structure and elements.  

The data reveal that the majority of the 

participants were excited about using the 

troubleshooting demonstrator. Finding failures was 

easier when using automatic failure analysis by AI, 

and the use of AR guidance made the maintenance 

instruction clearer. Hence, the errors in the process 

were significantly reduced, and non-expert users felt 

confident when using the new technology. In 

addition, the experiment has validated the DL model 

used for the classification of both good and bad book 

spines. However, the classification procedure of the 

book itself was not as smooth as expected. Due to 

special features of the training dataset, the correct 
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distance between the book and the HoloLens 2 was 

difficult to find so that the algorithm could recognize 

the book block and properly classify its state. To 

improve this, more attention should be paid to image 

classification in the future. 

4. Conclusion

In this work, a dynamic reference map of all the 

modules required to perform automatic fault 

diagnosis is presented. The reference map describes 

the connection between KBS, AR, and AI in an 

existing maintenance system. The AI module is 

integrated as a computational system that 

automatically classifies and identifies failures. The 

AR module assists the operator in solving the 

previously identified failure. Thus, the given 

proposal draws a holistic view of integrating 

different modules to support the operator in his 

maintenance work, i.e. to supplement maintenance 

operations and contribute to knowledge 

enhancement by utilizing this troubleshooting tool. 

A case study revealed that the dynamic reference 

map is rather accurate when relating KBS, AI, and 

AR to maintenance systems. Although most user 

reactions to the proposed solution for 

troubleshooting were positive, more attention needs 

to be paid to its direct application. This research has 

impact on organization’s data infrastructure, i.e. data 

capturing and management. The AR module is 

connected to a centralized AI system for real-time 

data streaming. Identifying data processing 

techniques and developing centralized information 

management systems is required. Follow-up 

research is needed to develop the ML/DL algorithm 

with in-depth network and dataset specification. 

CNN promises efficient offline training of a 

balanced synthetic dataset, however this dataset 

should be replaced by a dataset containing real 

images for online training and classification. 

The current study is focused on image 

classification and performing maintenance on a 

physical component. Exploring the usefulness of 

this method in a different setting, such as 

maintaining digital systems, is also worthwhile. 

Thereby, adapting the algorithm to a big 

environment. Similarly, the dynamic reference map 

should be explored more thoroughly in different AI, 

and AR-model environments. While the current 

research is focused on image classification, the next 

step is to include object recognition and detection.  

In the future, this research should extend to 

creating a self-learning system that captures and 

transfers data to improve its capabilities. Thereby, a 

self-learning automatic fault diagnosis solution can 

be created that supports operators in their complex 

maintenance activities.  
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