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Abstract—A novel algorithm is presented that can resolve
frequency ambiguity that arises from sampling a set of signals
spanning more than a single Nyquist zone. The method uses two
samplers, each sampling the same input signal with different
(non-integer multiple) sampling rates. The algorithm is able to
resolve frequency ambiguity and reconstruct signals with an
orthogonal frequency basis spanning multiple Nyquist zones,
provided that the aggregate information-bearing bandwidth of
the signals is less than half the cumulative data converter
sampling rates. This manuscript describes the theoretical back-
ground for the algorithm and validates it through measurements
performed on a test-board comprising of two 10 bit analog-to-
digital converters clocked at two different (non-integer multiple)
sample rates. Measurements show that even in the presence of
aliasing, an orthogonal signal spanning multiple Nyquist zones
can be fully reconstructed.

Index Terms—Analog-to-Digital conversion, aliasing, DFT,
sampling, band-limited signals, Nyquist rate, time-interleaved
ADC, sampling, reconstruction.

I. INTRODUCTION AND PRIOR ART

W ITH the advancements in technology the energy con-
sumption for digital signal processing (DSP) has seen

a tremendous decrease. Before physical (analog) signals can
be processed by DSPs they have to be converted to the digital
domain by an analog-to-digital converter (ADC). This digi-
tization process involves the conversion of a continuous-time
continuous-amplitude analog signal to a discrete-time discrete-
amplitude digital signal. The conversion from continuous-time
to discrete-time may give rise to aliasing. Aliasing might
cause different signal frequencies to become indistinguishable
of each other, thus resulting in frequency ambiguity. Anti-
aliasing filters circumvent aliasing by filtering frequencies
outside the desired Nyquist zone (usually the first Nyquist zone
is desired). However if these other (mostly higher) frequencies
contain useful information, this information also gets removed.

The work in [1] solves frequency ambiguity due to aliasing
by sub-sampling a sine wave with a time difference between
two sampling clocks of the same frequency, resulting in a
frequency-dependent phase shift. However, this solves the
frequency ambiguity for a single tone only. The work in
[2] proposes an approach that requires (N+1) co-prime time-
delays and (N+1) ADCs for estimating N frequency compo-
nents. But even in narrow band systems N is typically large,
making this approach impractical.

Another method to estimate frequency content outside the
desired Nyquist band is sub-sampling the input signal with
different co-prime sample rates [3] and then calculating mul-
tiple DFTs corresponding to these sample rates. The frequency

corresponding to each DFT bin can be related to the (corre-
sponding) co-prime sample rates through a modulo operation
and a residue. Using the Chinese remainder theorem [3] on
this set of residues allows the determination of the unknown
input frequencies. However, this method requires at least as
many co-prime samplers as the number of frequencies to be
estimated, which significantly increases system complexity.

The work in [4] demonstrates spectral estimation and iden-
tification of sinusoidal signals using co-prime samplers. In
contrast to [3] the signal is sampled at sub-Nyquist rate by
only two co-prime samplers to obtain two sparsely sampled
data sets of the input signal. Spectral identification of the input
signal is then performed by estimating the (time) average auto-
correlation over multiple “snapshots” (time domain blocks)
of the two sparsely sampled data sets. The accuracy of
the spectral estimation (and auto-correlation) depends on the
length of the time interval over which the averaging takes
place. This results in a large latency in the overall signal
estimation as highlighted in [4], thereby making it impractical
to be used for real-time reconstruction of signals.

This paper proposes a deterministic algorithm to remove
frequency ambiguity due to aliasing by sampling the signal at
only two distinct non-integer multiples of each other sample
rates. This allows the algorithm to unalias signals that may
be spread over multiple Nyquist zones while simultaneously
keeping the aggregated bandwidth close to the Nyquist-
Shannon sampling limit. The proposed algorithm requires
signals that have an orthogonal frequency basis. This allows
the signal to be sampled without any spectral leakage, which
ensures that every spectral contribution occupies a single
distinct frequency after sampling. The proposed algorithm
could find applications in areas such as RF waveform charac-
terization [5] (Appendix C) and built-in self-test of transceiver
signal chains to improve digital pre-distortion and reliability,
IQ reconstruction and other application scenarios as long as the
frequencies of interest are known and the signal is orthogonal.

The structure of the paper is as follows. Section II revisits
the constraints on the sample rate for baseband and band-
limited signals and shows the effect of frequency ambiguity
due to aliasing. Section III introduces the proposed deter-
ministic algorithm for resolving multiple simultaneous band-
limited signals. Section IV compares the proposed algorithm
with other techniques. Section V discusses the limitations
of this algorithm under non-ideal conditions. Section VI
shows experimental verification of the algorithm, along with a
qualitative comparison with conventional sampling techniques.
Although all examples and test signals used in this paper are
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orthogonal frequency-division multiplexing (OFDM) signals ,
the proposed algorithm can be used to detect and reconstruct
signals with any orthogonal frequency basis as shown in
section III. Section VII summarizes the findings in this paper.

II. FREQUENCY AMBIGUITY DUE TO ALIASING

Frequency ambiguity arises when two aliases or the base-
band signal and an alias fold on top of each other. When
sampling a signal aliasing can occur, which can result in
signals folding on top of each other making them indis-
tinguishable, hence resulting in frequency ambiguity. This
work assumes that x(t) contains uniformly spaced orthogonal
discrete-frequency sub-carriers with frequency spacing fo.
Most modern communication systems use signals with some
form of orthogonal frequency basis for modulation such as
OFDM and orthogonal on-off keying (OOOK). This work
aims at more efficiently approaching the Nyquist-Shannon
limit for input signals with an orthogonal frequency basis
that are spread over multiple frequency bands (e.g. multi-band
OFDM). To retain orthogonality of the sub-carriers in each
symbol, both the symbol period must be a multiple of 1

fo
and

the complex value of the sub-carriers must remain constant
within a symbol period [6].
x(t) can be described as a set of L orthogonal sub-carriers,

which may be non-contiguous in the frequency domain. Since
x(t) is a band-limited signal it can also be represented by

x(t) =

L∑
l=1

(
Ale

j2πSlfot +A∗l e
−j2πSlfot

)
(1)

where 0 ≤ t < 1
fo

, S is the set of L down-converted modulated
sub-carriers, Sl ∈ N is the lth element in S, A is a set
containing the complex values (magnitude and phase) of the
sub-carriers in S, Al is the lth element in A, |S| and |A|
are the ranks of S and A respectively and L = |S| = |A|.
Please note that in (1) Al can be a complex number. Different
orthogonal signals (such as OOOK or MFSK) differ in the
M-ary encoding scheme, which corresponds to a different
complex value Al in (1) e.g. Al = {0, 1} in OOOK. The
proposed algorithm does not depend on the chosen modulation
scheme, as long as the modulation scheme has an orthogonal
frequency basis.

The straightforward way to convert an analog signal to
a time-discrete signal without any aliasing is to sample the
signal at a frequency higher than twice the highest frequency
component in the signal, such that

fs ≥ 2fo ·max(S). (2)

However this is inefficient as the frequency content between
the N band-limited signals lacks any information, yet is
processed.

According to the Nyquist-Shannon theorem [7], an analog
signal can be reconstructed without loss of information if fs is
higher than twice the bandwidth of the signal. The minimum
sampling rate fs,min for x(t) is therefore:

fs,min > 2|S|fo. (3)
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Fig. 1: Aliasing of a band-limited signal centred around fs to the baseband
for the case e.g. r = {−1, 1} in (5).

If fs is chosen to satisfy the Nyquist-Shannon limit as
defined in (3), then aliasing can occur [8], [9], since 2|S|fo ≤
fs ≤ 2fo ·max(S).

Sampling x(t) uniformly at a rate fs results in:

y(t) = x(t) · p(t), (4)

where p(t) is a series of Dirac delta pulses:

p(t) =

∞∑
r=−∞

δ

(
t− r

fs

)
where r ∈ Z. The Fourier transform of y(t) can be written as:

Y (f) = fs

∞∑
r=−∞

X(f − rfs) (5)

where X(f) is the Fourier transform of x(t).
The work in [8] and [10] showed that there are upper and

lower bounds on fs when directly sampling multiple band-
limited signals that are spread over multiple Nyquist zones.
If these boundary conditions for fs are not satisfied, then
some frequency components alias on top of each other making
them indistinguishable, resulting in frequency ambiguity as
illustrated in Fig. 1.

IQ reconstruction can remove a specific frequency ambigu-
ity due to aliasing [8], as shown in Fig. 2. However, frequency
components in higher Nyquist zones (frequency band from
(N−1)fs

2 to Nfs
2 where N > 1, see Fig. 2), all fold into the

first Nyquist zone. As shown in Fig. 2(e) these signals (from
multiple Nyquist zones) become indistinguishable and cannot
be recovered with IQ reconstruction. We present an algorithm
that allows more flexibility in allocation of component carriers
which can be spread over multiple Nyquist zones.

III. MULTI-RATE UNALIASING

This section presents a mathematical description of an
algorithm that can resolve frequency ambiguity due to aliasing,
by using multiple sample rates that are non-integer multiples
of one another. We denote this algorithm as the multi-rate
unaliasing (MRU) algorithm.

A. MRU Algorithm

In this section we present an algorithm that utilizes two
samplers with distinct sampling frequencies to enable de-
modulation of orthogonal signals from several Nyquist zones.
Simultaneously it allows an aggregated sample rate close to



3

𝑓𝑠
2

 
3𝑓𝑠
2

2𝑓𝑠 𝑓𝑠  𝑓𝑠  𝑓𝑠
2

 
3𝑓𝑠
2

 2𝑓𝑠  0 

Nth‐ Nyquist Zone

1st  2nd 3rd  4th   5th  1st   2nd  3rd   4th   

Power

Frequency
I Q

𝑓𝑠
2

 
𝑓𝑠
2

 0 
𝑓𝑠
2

 
𝑓𝑠
2

 0 

(a)

(b)

𝑓𝑠
2

 0 
𝑓𝑠
2

 0 

(d) I Q

𝑓𝑠
2

 
𝑓𝑠
2

 

I + jQ

𝑓𝑠
2

 
𝑓𝑠
2

 0 

(c)

𝑓𝑠
2

 0 

(e) I + jQ

𝑓𝑠
2

 

5th 

Fig. 2: (a) Two bandpass signals in different Nyquist zones where the
frequency components of the band-limited signals are on either side of the
sampling frequency fs. (b) I and Q power spectra after sampling when only
the signal in (a) centred around fs is present. (c) I+jQ spectrum from (b)
where the original input spectra can be recovered (d) I and Q power spectra
after sampling when both signals in (a) are present (e) I+jQ spectrum from
(d) where the original input spectra cannot be distinguished from each other.

the aggregated bandwidth of 2fo|S|. Sampling the signal at
different sample rates creates unique aliasing patterns for the
same input signal spectrum as described by (5). A system of
independent linear equations can be formulated that describes
these aliasing patterns, allowing for reconstruction of the
input spectrum. The limitations of the MRU algorithm on the
maximum aggregated bandwidth and maximum input signal
frequency are discussed.

The discrete-time sequence d[n] at the output of the sampler
contains the weight of the impulse train in the uniformly
sampled signal y(t) in equation (4) for sampling intervals Ts:

d[n] = y(nTs) (6)

where Ts = 1
fs

and n is the sample index. When sampled
at fs = Mfo the duration of a symbol period equal to 1

fo
,

d[n] has length M , which will be used as the DFT length.
We assume that these M-samples belong to a single symbol
to retain orthogonality between symbols. This ensures that the
spectral content of each sampled symbol is mapped uniquely
to a single DFT bin, allowing reconstruction by the MRU
algorithm. The M -point DFT of d[n] is:

D[k] =
1

M

M−1∑
n=0

d[n]e−j2π
n
M k 0 ≤ k ≤M − 1. (7)

By combining (6), (7) and using

1

M

M−1∑
n=0

e±j2πSl
n
M e−j2πk

n
M =

{
1 when k = ±Sl ∓ rM
0 otherwise.

(8)

D[k] can be written as

D[k] =

L∑
l=1

( ∞∑
r=−∞

(
Alδ(Sl − k − rM) +

A∗l δ(Sl + k − rM)
))

.

(9)

D[k] is the discrete-frequency representation of the input
signal x(t) and its aliases after sampling at a rate fs = Mfo.
We now reformulate (9) in vector form as:

D[k] = P[k]A (10)

where A is a 2L × 1 column-vector containing both Al
and A∗l and where P[k] is a 1 × 2L row-vector describing
the contributions of A to the value of D[k], and contains
information about the aliasing pattern. P[k] is ordered in such
a way that the even and odd elements respectively describe the
contributions of A and A∗. This representation is chosen for
convenience and does not further affect the algorithm. Thus:

P [k, 2l] =

∞∑
r=−∞

δ(Sl − k − rM), (11)

P [k, 2l + 1] =

∞∑
r=−∞

δ(Sl + k − rM) (12)

where 0 ≤ k ≤M − 1 and P [k, l] ∈ {0, 1}.
Combining the M linear equations for D[k] into one matrix

yields
D = PA (13)

where P is an M × 2L matrix. The aliasing pattern of
A to D depends on the signal frequencies relative to the
sampling frequency. Changing the sampling frequency changes
the aliasing pattern, resulting in a different P.

Fig. 3 shows the conceptual diagram of the MRU algorithm.
The switches S1 and S2 are samplers that are clocked re-
spectively at two different (non-integer multiple) sample rates
M1fo and M2fo.To demonstrate the effectiveness of MRU,
the input signal x(t) is directly generated from a signal source
and is sampled by both S1 and S2. In a practical system x(t)
would be the signal after frequency translation. This results in
two complex DFTs DM1 and DM2 after performing the DFT
on dM1

[n] and dM2
[n]. DM1 and DM2 are column vectors

with sizes M1×1 and M2×1 respectively. The two DFTs are
concatenated into a column vector Dc of length (M1+M2)×1
resulting in

Dc =

[
DM1

DM2

]
. (14)

In mathematical terms concatenation is equivalent to the col-
lection of output DFTs from both the samplers and vertically
appending the DFTs to create a new matrix.

The two distinct sets of aliasing patterns corresponding to
the sample frequencies M1fo and M2fo (PM1 and PM2 ) are
formed by using (11) and (12) and are concatenated as

Pc =

[
PM1

PM2

]
(15)
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Fig. 3: Schematic overview of MRU. The two samplers S1 and S2 are clocked
at M1fo and M2fo respectively. After a period of 1

fo
, M1 and M2 point

DFTs are calculated and combined into Dc. The vector Dc and matrix Pc

allow for reconstructing the complex value (magnitude and phase) vector A.

where Pc has size (M1+M2)×2L. The reconstructed complex
value vector AR can then be described as

AR = P−1c Dc (16)

where P−1c is the left inverse of Pc. AR contains the
estimated complex value (magnitude and phase) information
of the sub-carriers in the signal x(t). Performing an IFFT on
the sub-carriers corresponding to the signal of interest in AR

will result in the respective time domain estimate of x(t). An
example demonstrating MRU is shown in Appendix A.

The maximum bandwidth that can be reconstructed depends
on rank(Dc). The rank(Dc) equals the number of unique sam-
ples taken by the two samplers over the sampling interval Ts.
The total number of samples equals (M1 +M2), whereas the
common (coinciding) number of samples equals gcd(M1,M2),
where gcd(·) represents the greatest common divisor. Then
the rank(Dc) = (M1 + M2) − gcd(M1,M2), which allows

to resolve
⌊
M1+M2−gcd(M1,M2)

2

⌋
frequency components. For

orthogonal frequency components and a sampling interval
Ts = 1

fo
the bandwidth that can be properly converted equals

BWmax =

(⌊
M1 +M2 − gcd(M1,M2)

2

⌋
− 1

)
· fo (17)

Note that in contrast to co-prime sampling systems [4],
gcd(M1,M2) = 1 is not required in our sampling system. The
only requirement is that M1 and M2 are non-integer multiples
of each other, as otherwise (17) reduces to:

BWmax =

⌊
max(M1,M2)

2

⌋
· fo for

M1

M2
or

M2

M1
∈ N (18)

which is in accordance to the well known Nyquist theorem.
In a conventional Nyquist sampling system a single contin-

uous signal band with bandwidth BW is sampled by a single
sample frequency fs. MRU allows for the bandwidth (17) to be
spread over the frequency range for which the aliasing pattern
P is uniquely defined. This frequency range is:

0 ≤ f ≤ lcm
(
M1,M2) · fo (19)

where lcm(·) represents the least common multiple.
The aliasing patterns as described by (11) and (12) have

a periodicity of M . For the two sample rates M1 and M2

this results in an overall periodicity of the combined aliasing
pattern that is the lcm of the two sample rates. This means that

the input signal frequencies can be spread over the frequency
range given by (19) before MRU cannot solve frequency
ambiguity due to aliasing.

One of the considerations in the selection of M1 and M2 is
the total aggregated bandwidth, see (17), which is maximized
when gcd(M1,M2) = 1 (i.e. M1 and M2 are co-prime).
Another point of consideration is the maximum frequency span
over which the aggregated bandwidth can be spread out, see
(19), which again is maximized when M1 and M2 are co-
prime. Lastly, it follows that for co-prime M1 and M2 the
aggregated sample rate (M1 + M2) · fo can remain close to
the Nyquist-Shannon limit of 2fo|S| as long as all sub-carriers
contribute to an increase of rank(P−1c ) in (16).

IV. QUALITATIVE COMPARISON OF MRU WITH OTHER
TECHNIQUES

A. Time-interleaving versus MRU

Time-interleaving of N sub-rate ADCs increases the ag-
gregated bandwidth [11]. This requires a sample clock with
N equally spaced phases, where the phase accuracy require-
ment increases N-fold to maintain the distortion performance
[12], [13]. The increase in aggregated bandwidth increase the
frequency span of a Nyquist zone, however the problem of
aliasing will still occur (but at a higher frequency). In contrast
to time-interleaving MRU allows an increase in aggregated
bandwidth by using multiple sample rates that are non-integer
multiples of one another. Any timing mismatch between the
sample clocks can be fully compensated for by the MRU
algorithm as described in section V-B1. However MRU needs
the two samplers to both have a bandwidth equal or higher
than the full signal bandwidth, where a time interleaved ADC
only requires a single high-bandwidth sampler. The sub-ADCs
in a time-interleaved ADC can have a lower bandwidth and
thus consume less power.

MRU also allows for flexibility in the allocation of the ag-
gregated bandwidth to different Nyquist zones. It is possible to
combine MRU together with time-interleaving, however each
time-interleaved ADC has to be calibrated as in a conventional
time-interleaved system before MRU can be applied.

B. Anti-aliasing versus MRU

Increasing the order of the anti-aliasing filter or increasing
the oversampling ratio increases the amount of suppression for
signals outside the first Nyquist zone. However, any aliasing
that occurs will still degrade the signal to noise ratio (SNR)
of the reconstructed signal. MRU is not used to suppress the
signals outside the first Nyquist zone and can be combined
with multiple bandpass filters with distinct center frequencies.
This will prevent strong signals outside the first Nyquist zone
from saturating the ADC so that MRU can be used to unalias
them. If after filtering a strong alias (such as an out-of-band
interferer) folds into the band of interest, the wanted signal
and the alias become indistinguishable. If the strong alias
does not saturate the ADC, MRU can resolve this frequency
ambiguity as long as the original frequency band of the alias
is known, increasing the SNR of the wanted signal. MRU can
be expanded to include more than two samplers, increasing
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the aggregated bandwidth over which the aliasing pattern P is
uniquely defined (19). Using more samplers with non-integer
sample rates would therefore allow unaliasing of multiple
interferers from the wanted signal which would otherwise be
impossible with just conventional filtering [14], [15].

The programmability in [14] does allow multiple Nyquist
zones to be covered, however the power consumption of such
a programmable anti-alias filter is orders of magnitude more
than the two ADCs used in our MRU algorithm. Even with the
analog front-end driver in medium resolution state-of-the-art
ADCs [16], the power consumption is lower than the state-
of-the-art anti-aliasing filter for comparable analog bandwidth
and SNR[15]. Furthermore, the filters in [14], [15] require a
clock signal that has orders of magnitude higher frequency
than the bandwidth of the signal itself. In comparison to this
the presented MRU algorithm is based on sub-sampling and
does not require a high frequency clock signal. However, MRU
requires an additional sub-sampling clock frequency and extra
digital signal processing.

C. Potential advantages of MRU

MRU allows for flexibility in the allocation of frequency
bands, thereby providing more programmability compared to
solutions with a single sampler. In a conventional sampling
system aliasing can be prevented by changing the sampling
frequency. However, in case of a minimum sampling rate, the
precision of the sample rate must increase for signals in higher
Nyquist zones to prevent aliasing [8]. When multiple bandpass
signals are present, the range of sample frequencies that do
not aliase will also decrease [9]. In contrast to conventional
systems the clock rates in MRU have to be multiples of fo,
meet the aggregated bandwidth requirement in (17) and the
bandpass signals should be in the frequency range as defined
in (19) to prevent any aliasing that cannot be resolved.

Other potential advantages of MRU are the reduced sample-
rate (and thus the digital data rate), since the aggregated sam-
ple rate can be significantly lower than 2fo(max(S)−min(S)).
Furthermore MRU might in some scenarios replace the anti-
aliasing filter as long as the occupied frequencies before
aliasing are known and the signal does not clip the ADC.
Furthermore, the proposed MRU algorithm requires samples
over one single symbol period 1

fo
, just as a conventional

sampling scheme. The latency in [4] is approximately K times
longer compared to conventional sampling, where K is the
number of snapshots (300 and 2000 in [4] ) used in averaging.

The MRU algorithm can also be extended to work directly
with IQ signals. These systems typically already use two
ADCs, hence the extra ADC overhead is removed when
applying MRU in these systems. The modified equations for
the reconstruction of IQ signals are given in Appendix B, along
with the simulation results.

V. IMPACT OF NON-IDEALITIES

So far, it was assumed that the two samplers are ideal.
However, in an actual implementation the digitized output
suffers from non-idealities, e.g. gain mismatch, time delays,
offsets, quantization and thermal noise. Any deviation from the

ideal conditions degrades performance. This section discusses
the impact of the most important non-ideal effects, using the
reconstruction of OFDM signals as demonstration vehicle.

A. Inaccuracy propagation: the matrix condition number

The quantization noise and thermal noise of the ADC causes
errors in the computation of Dc. These errors propagate
through the system of linear equations resulting in an error in
the reconstructed complex value (magnitude and phase) vector,
AR. The sensitivity of AR to these (small) errors depends on
the condition number of Pc , as Pc has to be inverted. The
condition number of a matrix is defined (in dB) as:

κ = 20 log

(
σmax

σmin

)
≥ 0dB (20)

where σmax and σmin are the largest and smallest singular
values of the matrix.

A higher value of κ indicates a higher propagation of esti-
mation errors in Dc to the elements in AR and thus indicates
a higher in error vector magnitude (EVM). Fig. 4 shows
the impact of κ on the SNR of the reconstructed frequency
spectra assuming two samplers with respective sample rates
of 4.86 MHz (M1 = 324) and 5.13 MHz (M2 = 342)
which yields an aggregated bandwidth of BWmax = 4.86
MHz. For the simulation results in this figure, the aggregated
signal bandwidth is increased from 490 kHz to BWmax. For
BW < max(M1,M2)fo

2 the signal conversion can be done by a
single sampler, resulting in κ = 0. For BW ≥ max(M1,M2)fo

2
the MRU algorithm is used resulting in κ > 0.

Fig. 4 shows both the condition number of Pc and the
maximum SNR degradation for different aggregated signal
bandwidths for these sample rates. Additive white gaussian
noise is used as the signal x(t) to determine the SNR degra-
dation due to the condition number. The SNR degradation
reported is the difference between the noise power of an ideal
sampling system (switches S1 and S2) operating at twice the
aggregated bandwidth and that of the MRU algorithm. In order
to show the effect of the condition number of the matrix Pc

on the SNR, the aggregated bandwidth of the MRU algorithm
is varied. The ADCs sample rates are fixed at 4.86 MS/s
and 5.13 MS/s. The ADCs in MRU might have a higher
sample frequency than in a Nyquist rate sampling system,
resulting in a lower noise power per DFT bin in MRU. This
effect has been compensated for in the simulation results by
normalizing the simulated SNR by the oversampling ratio.
The maximum difference in the noise power between the
additive white gaussian noise and the MRU output is reported
in Fig. 4. Figure 4 illustrates that a higher condition number
κ thus results in a higher SNR degradation, thus reducing the
accuracy of the reconstruction. Note that in general the SNR
degradation depends on the relative aggregated bandwidth with
respect to the aggregated sample rate, hence a wide-band
system can achieve similar results.

B. ADC Non-idealities and Calibration

This section discusses the most typical non-idealities for AD
converters to be present. With ideal sampling, the algorithm
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performs the operation as shown in Fig. 5; A2 is calculated by
subtracting Bin B from Bin A resulting exactly in the actual
vector A2.

1) Timing Mismatch: In Section III it is assumed that the
two different sampling frequencies M1fo and M2fo have a
common rising edge at the beginning of the sample sequence,
resulting in dM1

[1] = dM2
[1]. This ensures that the complex

values A in DM1 and DM2 retain the same phase.
In case there is no common rising edge at the beginning of

the sample sequence, and therefore no common first sample,
dM1

[n] and dM2
[n] are effectively sampled with a constant

time delay ∆t between them.
Another source of timing mismatch is the path delay differ-

ence between individual paths. The switches S1 and S2 shown
in Fig. 3 are part of a linear time variant system, therefore path
delay mismatch between the two samplers S1 and S2 can be
treated in the same manner as the static clock timing mismatch.

Time delay results in a phase rotation of D[k] and is
described by:

D∆t[k] =

L∑
l=1

( ∞∑
r=−∞

(
Aϕ,lδ(Sl − k − rM) +

A∗ϕ,lδ(Sl + k − rM)
)) (21)

where Aϕ,l = ejϕoSlAl, A∗ϕ,l = e−jϕoSlA∗l and ϕo =
2πfo∆t. Fig. 7 illustrates the impact of a time mismatch.

The resulting DFT vector from (21) is described by:

D∆t =PϕA (22)

where Pϕ is described by:

Pϕ[k, 2l] =

∞∑
r=−∞

(
ejϕ0Slδ(Sl − k − rM)

)
(23)
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Fig. 6: Simulated EVM versus normalized timing error for a static timing error
and jitter. The static time delay error is defined between the common rising
edges of the two sample clocks and the error is normalized to 1

fo
, which. The

timing error caused by jitter is added to both the ADC sampling clocks. The
standard deviation of the jitter is normalized to the ADC sampling period.

I

Q
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Q

- =
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A1A2 A1 A2
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signal

A1

Fig. 7: Signal recovery in the presence of time difference between the sample
points at the start of the beat pattern. Here DFT Bin A contains both the
complex vectors A1 and A2 and DFT bin B only contains a time shifted
version of A1. By subtracting Bin B from Bin A the complex vector A1 is
only partially cancelled and still contributes to the estimation of A2.

Pϕ[k, 2l + 1] =

∞∑
r=−∞

(
e−jϕ0Slδ(Sl + k − rM)

)
. (24)

The calibration for timing mismatch is done by providing a
known single sinusoidal signal as the input and comparing the
phase of the two output DFTs at the input sinusoidal frequency.
The timing mismatch is calculated from the phase difference
by

∆t =
∆φ

2πfsin
(25)

where ∆φ is the phase difference between the two output
DFTs at the input sinusoidal frequency, fsin. This is a one-
time calibration.

Fig. 6 shows the (MATLAB) simulated effect of static
timing mismatch between the first rising edges of both sample
clocks on the expected EVM when using MRU. Here the
timing mismatch is normalized to the symbol period 1

fo
.

The EVM degradation without any calibration due to timing
mismatch is 10dB/decade, which behaves similarly to SNR
degradation due to timing mismatch in non-calibrated two-
channel time-interleaved ADCs [12].

Another source of timing mismatch is jitter in the ADC
clocks, which causes dynamic errors in ∆t. In conventional
ADCs jitter decreases the SNR of the sampled waveform,
hence it will also decrease the accuracy of the MRU algorithm.
Conventionally jitter (due to noise) is a random process, which
can often be described by a Gaussian distribution with zero
mean and standard deviation σt. Fig. 6 shows the simulated
EVM for different σt normalized to the ADC sample period.

2) Gain error: The MRU algorithm uses two samplers, or
two ADCs. These ADCs may have differences in their transfer
from the analog input voltage to the digital code, resulting in
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Fig. 8: Signal recovery in the presence of gain mismatch between the ADCs.
DFT Bin A contains complex vectors A1 and A2 and DFT bin B contains a
scaled version of A1. By subtracting Bin B from Bin A the complex vector
A1 is only partially cancelled and still contributes to the estimation of A2.
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Fig. 9: Simulated EVM versus gain error αADC . In this simulation only a
single ADC has a gain error, and the other ADC has unity gain.

a static gain error. The MRU algorithm however assumes the
contributions of A to DM1 and DM2 to be equal, leading to
errors, see Fig. 8. In this work the ADCs are assumed to have
unity gain. To compensate the gain error αADC, DC must be
normalized to the gain of the ADC (1 + αADC):

DC,norm =

[
DM1

1+αADC1

DM2

1+αADC2

]
. (26)

A static gain error can be compensated for in the digital
domain and is performed by comparing the magnitude of two
output DFTs at the input sinusoidal frequency.

Fig. 9 shows the simulated effect of the gain error αADC
on EVM when using MRU. In this simulation it is assumed
that only a single ADC has a gain error, and the other ADC
has unity gain. The EVM degradation due to the gain error
αADC is 10dB/decade, which is similar to SNR degradation
due to gain errors in time-interleaved ADCs [12]. Furthermore,
simulations demonstrate that dynamic gain errors follow the
same trend as static gain errors.

3) Offset: Offset of both ADCs end up in the first bins
of DM1 and DM2 . The resulting dataset is obtained by
concatenating the two DFT datasets and not by switching
between the outputs of the two ADCs. Therefore there is no
up-conversion of the DC-offset; consequently offset errors can
be compensated in the same manner as for a traditional ADC.
The offsets for the two ADCs are obtained from the DC bin
of the respective output DFTs.

VI. MEASUREMENT RESULTS

Fig. 10 shows the measurement test board containing two
energy and area-efficient 10 bit SAR ADCs as presented in
[17], which are used in this demonstrator since they were avail-
able in this project. Note that the algorithm is not limited to
low speed ADCs and can also be used with high speed ADCs.
The two ADCs share the same differential inputs and are
clocked separately. The ADC architecture is an asynchronous
one wherein the falling edge of the sample clock denotes the

ADC1
ADC2

CLK1

CLK2

Vin+

Vin-

Fig. 10: Photograph of the measurement PCB.
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Waveform generator
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CLK2

USB

USB
EoC

10 b

EoC

Control

Fig. 11: Block diagram of the measurement setup.

end of the sampling period and the internal logic controller is
self-timed and generates all the ADC conversion cycles.

The accuracy of the ADCs limit the maximum achiev-
able EVM and the relation between SNR and EVMRMS
is EVMRMS ≈ SNR−

1
2 [18] for a noise limited sys-

tem. For the ADCs used in the measurements, the
signal to noise and distortion ratio (SINAD) > 56 dB, hence
the EVM can be determined up to an accuracy of approxi-
mately 0.16% which is sufficient for most applications. For
example 256-QAM LTE requires an EVM < 3% [19] for
which typically 8 to 12 bit ADCs are used [20], [21].

Fig. 11 shows the block diagram of the measurement setup.
At the end of each conversion, the signal EoC indicates to
the FPGA to latch the data for reconstruction. The ADC
output bits are collected by the respective FPGAs (serial-to-
parallel conversion), which then connects to a computer with
MATLAB running the MRU algorithm.

To demonstrate the effectiveness of MRU three different
measurements are performed. For these measurements OFDM
signals are used, since they are a well known type of or-
thogonal signal. Appendix C discusses the characterization of
the harmonics of an RF-signal as another use case. The first
measurement demonstrates the ability of MRU to separate an
OFDM signal where due to sampling sub-carriers are aliased
into the first Nyquist zone, hence becoming indistinguishable
from each other. The second measurement demonstrates that
MRU can be used to reconstruct aliased signals outside
the first Nyquist zone, where a single OFDM band covers
higher Nyquist zones. The third measurement combines the
results of the two previous measurements for a dual-band
signal, demonstrating the ability of MRU to simultaneously
resolve for frequency ambiguity and individually reconstructs
the band-pass signals. Although the test signals used in this
section are OFDM, MRU in general can be used to detect and
reconstructs signals with any orthogonal frequency basis.
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TABLE I: Aliasing pattern when the OFDM signal is sampled at 4.86 MS/s
as described by (5). Only aliasing to the first Nyquist zone is shown (r=-1
and r=0).

Input frequency Frequency after sampling

r = −1, f + fs
-2.595 MHz 2.265 MHz
-2.415 MHz 2.445 MHz

r = 0, f
2.415 MHz 2.415 MHz
2.595 MHz 2.595 MHz

TABLE II: Aliasing pattern when the OFDM signal is sampled at 5.13 MS/s
as described by (5). Only aliasing to the first Nyquist zone is shown (r=-1
and r=0).

Input frequency Frequency after sampling

r = −1, f + fs
-2.595 MHz 2.535 MHz
-2.415 MHz 2.715 MHz

r = 0, f
2.415 MHz 2.415 MHz
2.595 MHz 2.595 MHz

A. Reconstruction of an aliased signal centred around fs/2

To demonstrate the algorithm a 180 kHz BW OFDM signal
centred around 2.505 MHz and ranging from 2.415 MHz to
2.595 MHz is used as a test signal. This signal mimics a
continues signal down-mixed to baseband, having no out-of-
band frequency components. The OFDM signal consists of
12 sub-carriers spaced at 15 kHz modulated with a 16-QAM
constellation and a Null-carrier at 2.505 MHz for a total of
13 sub-carriers. The Null-carrier is used as a reference for
reconstruction and does not influence the performance of the
MRU algorithm. Since the sub-carrier spacing is 15 kHz, fo
= 15 kHz to retain orthogonality of the sub-carriers after
sampling. The input signal spectrum is shown in Fig. 12(a).

This OFDM signal is simultaneously sampled by ADC1

and ADC2 at 4.86 MS/s (M1=324) and 5.13 MS/s (M2=342)
respectively, since these sample rates are close to the maxi-
mum sample rates of the available ADCs. However, the MRU
algorithm can be extended to (significantly) higher sample
rates and correspondingly a higher aggregated input signal
bandwidth. After sampling the input signal with these sample
rates aliasing occurs. For simplicity only aliasing to the posi-
tive half of the first Nyquist zone is considered and is shown in
Table I. The sampled signal frequency span ranges from 2.265
MHz to 2.595 MHz and the frequency range from 2.415 MHz
to 2.445 MHz now contains multiple aliased carriers to a single
DFT bin. Similarly the aliasing for ADC2 is calculated and
shown in Table II. Here the frequencies from 2.535 MHz to
2.595 MHz contain multiple aliased carriers to a single DFT
bin. Fig. 12(b) and 12(c) show the output spectra |DM1 |2 and
|DM2 |2 of respectively ADC1 and ADC2 zoomed in around
the signal of interest for a single OFDM symbol out of a
200 symbol sequence. After sampling the data is passed to
the MRU algorithm to reconstruct the input signal. M1 and
M2 are selected such that the two ADCs operate near to their
maximum throughput rate. If the ADCs can operate at higher
sample rates, M1 and M2 can be increased while keeping
the aggregated bandwidth constant. This has similarities with
oversampling and would result in a decrease in the condition
number, thereby improving the SNR (and EVM), see Fig. 4.

Consequently, a conventional sampling system cannot re-
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Fig. 12: Measured spectral snapshot of a single OFDM symbol out of a
200 symbol sequence with 12 sub-carriers centred at 2.505 MHz. (a) The
spectrum of the 180 kHz OFDM signal centred at 2.505 MHz. (b) Zoomed
in DFT spectrum |DM1

|2 around the signal of interest when the input signal
is sampled at 4.86 MS/s. (c) Zoomed in DFT spectrum |DM2

|2 around
the signal of interest when the input signal is sampled at 5.13 MS/s. (d)
Reconstructed spectrum of the OFDM symbol by using the MRU algorithm.
(e) Zoom-in of (d) showing both the measured (solid line) and ideal input
(dash line) signals.

construct this (aliased) signal without changing the sample
frequency. Even so, when the signal frequency changes or
an additional bandpass signal is added the constraints on the
sample rate to prevent any aliasing increases in conventional
sampling.
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Fig. 13: Measured constellation diagram of the sub-carrier with the highest
EVM for the OFDM signal in Fig.12. The circles are the ideal constellation
points, the dots are the reconstructed results when using the MRU algorithm
and the crosses are the reconstructed results of a single ADC.

Fig. 12(d) shows the output of the MRU algorithm and Fig.
12(e) shows a zoom in together with the ideal input signal. The
reconstructed signal shows that the OFDM signal is indeed
centred around 2.505 MHz and the frequency ambiguity in
the DFTs of ADC1 and ADC2 is resolved. The power level
of the sub-carrier at 2.505 MHz is 9.5 dB lower than the
maximum measured sub-carrier power as it lies on the inner
circle of the 16-QAM constellation in Fig.13. The effect of
ADC noise and condition number is barely visible in Fig.
12(e): the measured and ideal input spectra lie on top of each
other. The recovered spectra in Fig. 12(e) seems to approach
the ideal input, however there are some errors which are hardly
visible due to the logarithmic scale. The upper boundary for
the errors is set by the accuracy of the ADC. The second most
important factor of performance degradation is the propagation
of errors due to the MRU algorithm, where the degradation is
limited to the condition number κ. κ is determined by the
chosen sample frequencies and the selected sub-carriers.

To determine the effect of the MRU algorithm on the quality
of the received OFDM signal, the EVM for every sub-carrier
is determined. The RMS EVM over N-symbols for an M-ary
signal constellation is calculated as:

EVMRMS =

√
1
N

N∑
i=1

|Sideal,i − Smeas,i|2√
1
M

M∑
i=1

|Sideal,i|2
(27)

where Sideal,i and Smeas,i are respectively the ideal and mea-
sured vectors corresponding to the ith symbol.

Fig. 13 shows the constellation before and after applying
the MRU algorithm for the sub-carrier with the worst EVM
due to quantization plus aliasing and Fig. 14 shows the EVM
of all the sub-carriers in the OFDM signal measured over 200
symbols. The higher sub-carriers in Fig. 12 are corrupted by
in-band interference due to aliasing, which prevents demodu-
lation of the signal in a conventional way. It shows that the
modulated data is recovered with an EVM lower than 0.62% (-
44 dB). To compare the effect of degradation due to the MRU
algorithm alone, the EVM for the lower sub-carriers in Fig. 14
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Fig. 14: Measured EVM over 200 symbols of each sub-carrier of the OFDM
signal after demodulation by using the MRU algorithm (squares) and a single
ADC (circles). For the single ADC only the EVM of the sub-carriers that can
be successfully demodulated is shown.
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Fig. 15: (a) Sequentially measured spectra of a single OFDM symbol out of
a 200 symbol sequence with the center frequency in different Nyquist zones.
(b) EVM corresponding to the OFDM signal in different Nyquist zones.

is also determined. These lower sub-carriers in |DM2 |2 are not
corrupted by aliasing. The average EVM for these sub-carriers
is 0.28% (-50 dB). Using the MRU algorithm the signal can be
demodulated at a cost of about 12 dB higher SNR compared to
the case when there is no in-band interference. The 12 dB SNR
degradation translates to 6 dB EVM degradation in case of
no in-band interference, since EVMRMS ≈ SNR−

1
2 [18]. The

measured 12 dB SNR degradation agrees with the simulated
12 dB SNR degradation as shown in Fig. 4.

B. Reconstruction of aliased signal outside first Nyquist Zone

The performance of the MRU algorithm when demodulating
a single signal in higher Nyquist zone is demonstrated. The
operating frequency of the ADCs is lowered compared to the
previous measurement to allow sampling in multiple Nyquist
zones, since the input bandwidth of the used low power
ADCs is limited to 5 MHz. The sample rates are set to
1.17 MS/s (M1=78) and 0.93 MS/s (M2=62) for ADC1 and
ADC2 respectively. The OFDM signal from the previous
measurements is used and is centred around N · 1.125 MHz
in each sequential measurement where 1 ≤ N ≤ 5.

Fig. 15(a) shows the sequentially reconstructed spectra up
to 5.625 MHz using the MRU algorithm; Fig. 15(b) shows the
EVM of the OFDM sub-carriers over all center frequencies in
the different Nyquist zones. These figures show that the input
signal frequencies in multiple Nyquist zones were recovered.
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C. Reconstruction of two aliased signals from distinct Nyquist
zones

To demonstrate the ability of the MRU algorithm to con-
currently solve frequency ambiguity and determine the sub-
carrier frequency before sampling, a dual-band OFDM signal
that is spread over different Nyquist-zones is used as an
input signal. After sampling the two OFDM bands become
indistinguishable from each other, however MRU can resolve
this allowing individual reconstruction of the two bands and
determining the EVM.

The center frequency of the first OFDM band is 1.8 MHz
(BW = 180 kHz) and that of the second OFDM band is 7.05
MHz (BW = 750 kHz), resulting in aliasing in both DFT
spectra. The sample rates for ADC1 and ADC2 are set to 2.43
MS/s (M1 = 162) and 2.565 MS/s (M2 = 171). The BWmax
of this system is 2.43 MHz (see (17)). Since the aggregated
BW of the input signal (0.93 MHz) is smaller than 2.43 MHz,
the MRU algorithm can solve the frequency ambiguity caused
by sampling allowing reconstruction of both OFDM bands.
The aliasing matrix P is chosen such that it covers all the
sub-carriers in the dual-band OFDM signal.

The measured frequency spectra of a single OFDM symbol
by both ADCs is shown in Fig. 16(a) and 16(b) in blue.
The original input spectra are added in solid grey and dashed
black lines, and any overlap between the two input spectra
would impact the demodulation performance significantly. In
Fig. 16 the ratio PR between the average power of the first
and second band-pass signal is set to -20 dB for illustration
purposes. Fig. 16(c) shows the recovered frequency spectrum
after applying the MRU algorithm, clearly showing that the
frequency ambiguity is removed. Since the MRU algorithm
does not solve the frequency bands between the two OFDM
bands there is no data corresponding to those frequencies.
Fig. 16(d) shows the zoom-in around the first band for a
single OFDM symbol and Fig. 16(e) shows the zoom-in of
the second band for a single OFDM symbol. Compared to a
conventional sample system that would sample at 2fspan ≈ 15
MHz, MRU reduces the individual sample rates (2.43 MS/s
and 2.565 MS/s) and output data rates by a factor 6.

Fig. 17 shows the EVM of the demodulated dual-band
OFDM signal with and without the MRU algorithm. The
power ratio PR between the two band-pass signals is swept
from -18 dB to 18 dB in steps of 6 dB and the signal is scaled
in such a way that the total dual-band signal range exactly
fits the full-scale range of the ADC to minimize quantization
errors and to also avoid distortion due to clipping. For low
power ratios the increase in EVM by using the MRU algorithm
is due to the fact that the (desired) signal amplitude is also
decreased to prevent clipping in the ADC, thereby reducing
the SNR of the input.

From Fig. 17 it can be concluded that by using the MRU
algorithm, EVM can be improved by a maximum of 42 dB
for this setup, allowing successful demodulation and charac-
terization of the wanted signal in the presence of strong signals
which after sampling can become in-band, e.g. intermodulation
products. For a power ratio of -18 dB the desired signal can
still be demodulated with an EVM of -27 dB.
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Fig. 16: Measured spectra of the dual-band OFDM signal for a single OFDM
symbol out of a 200 symbol sequence. (a) 2.43 MS/s DFT spectrum |DM1

|2
(solid blue) with the ideal input signals (dash black and solid grey line). (b)
2.565 MS/s DFT spectrum |DM2

|2 (solid blue) with the ideal input signals
(dash black and solid grey line). (c) Recovered split-bandwidth spectrum. The
dual-band OFDM signal is separated allowing independent reconstruction. (d)
and (e) shows the zoom-in of (c) with both the measured (solid line) and the
ideal input (dash line).
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Fig. 17: EVM of a demodulated OFDM signal in the presence of another
OFDM signal with and without the MRU algorithm. The maximum improve-
ment in EVM by using our MRU algorithm is 42 dB and is limited by the
setup. The lower limit in EVM of the MRU algorithm is due to the SNR of
the ADC and the SNR degradation due to the condition number. The total
input signal is scaled to fit within the ADCs dynamic range to avoid clipping.
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VII. CONCLUSION

A novel multi-rate unaliasing algorithm (MRU) that solves
frequency ambiguity due to aliasing of (sub-)sampled multi-
band signals with an orthogonal frequency basis is presented.
Sampling the input signal at two different sample frequencies
that are non-integer multiples of one another results in two
distinct systems of linear equations. Combining them increases
the overall rank of the system of linear equations allowing the
MRU algorithm to solve frequency ambiguity due to sampling.
Additionally the MRU algorithm allows reconstruction of the
input signal spectrum, which can be (sparsely) spread over a
wide bandwidth equal to the least common multiple of the two
sample frequencies. Furthermore MRU allows reconstruction
of an aliased signal with an aggregated bandwidth close to
the Nyquist-Shannon limit. The MRU algorithm can solve for
frequency ambiguity in multiple Nyquist zones by using two
different clock rates and some additional digital signal pro-
cessing. A demonstrator setup comprising of two 10 bit ADCs
clocked at two different sample rates is used to demonstrate
the effectiveness of the MRU algorithm in the reconstruction
of aliased signals.

APPENDIX A
NUMERICAL EXAMPLE OF THE MRU ALGORITHM

This appendix gives a numerical example of the algorithm
described in this paper. In this example the set of modulated
sub-carriers S in the input signal x(t) is chosen as:

S = {0, 1, 3, 5} (28)

and the set A containing the complex value coefficients
corresponding to the sub-carriers in S are chosen to be:

A = {0, j1, j2, j3} (29)

where j2 = −1. The sets S and A respectively describe the
spectral and complex value (magnitude and phase) content of
the input signal x(t) in equation (1). The input signal is then
sampled at two different (non-integer multiples) frequencies
M1fo and M2fo, where in this example M1 = 4 and M2 = 5.
Sampling for a duration of 1

fo
and performing a DFT on the

sampled data results in the DFT vectors DM1 and DM2:

DM1 =
[
0 j2 0 −j2

]ᵀ
(30)

DM2 =
[
0 j1 −j2 j2 −j1

]ᵀ
. (31)

Combining the results of DM1 and DM2 into the vector Dc

results in:

Dc =
[
0 j2 0 −j2 0 j1 −j2 j2 −j1

]ᵀ
. (32)

In order to reconstruct the complex values of the sub-carriers
in the input signal, the MRU algorithm requires both the
combined DFT vector Dc and the aliasing pattern, Pc (16).

The matrix Pc is pre-calculated based on the sub-carriers
in S. Pc describes the contribution of the complex values in
A belonging to the sub-carriers in S to the DFT bins in D.
Using (11) and (12) the values of each of the elements in the
matrix P are calculated. The elements in P are equal to 1 if

Sl = k+rM in case of the even columns and Sl = −k+rM
in case of the odd columns where k is the row number and
0 ≤ l < |S|. The aliasing pattern PM1 corresponding to a
sample rate of M1fo = 4fo is:

PM1 =


1 1 0 0 0 0 0 0

0 0 1 0 0 1 1 0

0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 1

 (33)

As described in Section III, the even columns in (33) contain
information about the contribution of A to D and the odd
columns describe the contribution of A∗ to D. To illustrate
how the matrix Pc links A to D we use the second row of
(33) in (10) resulting in :

DM1[1] =PM1[0]A0 + PM1[1]A∗0 + PM1[2]A1+

PM1[3]A∗1 + PM1[4]A2 + PM1[5]A∗2+

PM1[6]A3 + PM1[7]A∗3

=j1− j2 + j3 = j2

(34)

which matches DM1[1] in (30).
The aliasing pattern PM2 corresponding to a sample rate of

M2fo = 5fo is:

PM2 =


1 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 1 1 0

0 0 0 1 0 0 0 0

 (35)

The combined pattern matrix Pc is calculated by using (33)
and (35) in (15), resulting in:

Pc =



1 1 0 0 0 0 0 0

0 0 1 0 0 1 1 0

0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 1

1 1 0 0 0 0 1 1

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0


(36)

Calculating the left-inverse of Pc results in P−1c (rounded
to second decimal in this example), which together with Dc

enables the reconstruction of the complex values A (magnitude
and phase) corresponding to the sub-carriers described by S.
The reconstructed complex value vector AR using P−1c and
Dc can be calculated from (37).

APPENDIX B
IQ EXTENSION OF THE MRU ALGORITHM

Conventional IQ demodulation systems already use two
ADCs, one in each of the I and Q paths. This section will
derive the algorithm such that MRU can be used in an IQ
system. The system overview is given in Fig. 18.



12



A0

A∗0
A1

A∗1
A2

A∗2
A3

A∗3


︸ ︷︷ ︸

AR

=



0.44 −0.06 0 −0.06 0.06 0.06 0.06 0.06 0.06

0.44 −0.06 0 −0.06 0.06 0.06 0.06 0.06 0.06

0.12 0.13 0 0.12 −0.12 0.87 −0.12 −0.12 −0.13

0.12 0.12 0 0.12 −0.12 −0.12 −0.13 −0.12 0.88

0.13 0.12 0 0.13 −0.13 −0.13 −0.13 0.87 −0.12

0.13 0.13 0 0.13 −0.13 −0.12 0.87 −0.13 −0.13

−0.38 0.62 0 −0.37 0.38 −0.62 −0.62 0.37 0.38

−0.37 −0.37 0 0.62 0.37 0.37 0.37 −0.62 −0.63


︸ ︷︷ ︸

P−1
c



0

−j2
0

j2

0

j1

−j2
j2

−j1


︸ ︷︷ ︸

Dc

(37)

RFin

cos(2πfct)

sin(2πfct)

DFTDFT

DFTDFT

xI(t)

xQ(t)

dI[n]

dQ[n]

DI[k]

DQ[k]

M1fo

M2fo

Fig. 18: MRU IQ system overview. The lowpass filters are only used to filter
out the high frequency content and are not used as anti-aliasing filters.

The RF-input signal can be described by

xRF (t) =
∑
l∈L

(
Ale

j2π(fc+Slfo)t +A∗l e
−j2π(fc+Slfo)t

)
,

(38)

where fc is the bandpass center frequency and Sl ∈ Z. Down
conversion by respectively cos(2πfct) and sin(2πfct) and
filtering the up-conversion products results in the baseband
I and Q signals give by

xI(t) =
∑
l∈L

(
Ale

j2πSlfot +A∗l e
−j2πSlfot

)
(39)

and xQ(t) = −jxI(t).
Sampling the analog signals xI(t) and xQ(t) results in the

two data-streams dI [n] and dQ[n]. Performing a DFT on both
dI [n] and dQ[n] results in the two dataset

DI [k] =
∑
l∈L

( ∞∑
r=−∞

(
Alδ(Sl − k − rM) +

A∗l δ(Sl + k − rM)
))

,

(40)

which describe the elements of the complex DFT vectors DI

and DQ and DQ[k] = −jDI [k].
The matrix PI describing the aliasing pattern of the input

signal to DI is equal to (11) and (12), since they both describe
the in-phase aliasing pattern. The matrix PQ describing the
quadrature aliasing pattern is derived from DQ[k] in a similar
way as (11) and (12) are derived and is given by

PQ[k, 2l] =

∞∑
r=−∞

δ(Sl − k − rM) (41)

PQ[k, 2l + 1] = −
∞∑

r=−∞
δ(Sl + k − rM) (42)

The matrices Pc and Dc are formed similar to (15) and (14)
by combining PI with PQ and PI with PQ resulting in

Pc =

[
PI

PQ

]
, Dc =

[
DI

±jDQ

]
. (43)

where the sign of DQ determines if the MRU algorithm
should solve for the upper (+) or lower sideband (-). The final
reconstruction is analog to the conventional case by using (16).

A simulation is performed to demonstrate MRU in an IQ
system. Fig. 19(a) shows the RF-input signal. It consists of two
1.5MHz OFDM signals centred at 2.4GHz and 2.4036GHz.
The RF signal is down-converted, filtered and sampled. Fig.
19(b) and (c) shows the resulting DFTs DI and DQ of the
sampled datastreams dI [n] and dQ[n]. Finally Fig. 19(d) and
(e) show a zoom-in of the separately reconstructed bands with
an overlay of the original input spectrum, demonstrating that
the input and output spectra are equal.

Any mismatch between the I and Q paths degrades the
accuracy of the signal demodulation, where commonly oc-
curring mismatch in IQ systems are gain and phase mismatch.
Fig. 20 shows the simulated results for the gain mismatch
Aε normalized to the ideal gain (e.g. 10−2 = 1%) and
phase mismatch φε normalized to 2π for both a conventional
oversampled IQ system and the MRU algorithm. Compared to
the conventional case the MRU algorithm degrades the EVM
by 1 dB and 1.5 dB for phase and gain mismatch respectively.
The degradation is independent on the amount of mismatch,
where the degradation only depends on the condition number
of the matrix Dc (see section V-A).

APPENDIX C
CHARACTERIZATION OF HARMONICS IN AN RF-PA

Another use case for the MRU algorithm is the charac-
terization of the harmonics of an RF-waveform to improve
the reliability and pre-distortion in an RF-PA as mentioned in
Section I. The work in [5] uses 8 equally spaced samples over
a single period of the RF-waveform, allowing characterization
of the DC component and the first 3 harmonics. However,
when the RF-waveform contains more harmonics aliasing will
occur. Down-mixing with a square wave at fo results in the
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Fig. 19: (a) RF-input spectrum. Measured spectra of the dual-band OFDM
signal after down-conversion for a single symbol. (b) 4.86 MS/s DFT spectrum
(|DI |2) of the I-path. (c) 5.13 MS/s DFT spectrum (|DQ|2) of the Q-path.
(d) and (e) shows the zoom-in of the recovered signal with both the measured
(solid line) and the ideal input (dash line).
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Fig. 20: Simulated EVM due to gain and phase mismatch in an IQ system.
The results are for both a conventional oversampled system and the proposed
MRU algorithm. Aε is the normalized gain mismatch (e.g. 10−2 = 1%) and
the phase mismatch φε is normalized to 2π.

harmonics becoming indistinguishable, where mixing with a
frequency offset can result in frequency pulling. To prevent
aliasing the sample rate can be increased, but this would
increase the system clock rate which might not be feasible
at all times. MRU can increase the number of distinguishable
harmonics by adding another sampler at a lower sample rate,
such as 7 samples per period.

Fig. 21 (a) shows an RF-waveform with fo = 2.5 GHz
and the resulting samples when sampling at rates of 20 GS/s

(M1 = 8, ’�’) and 17.5 GS/s (M2 = 7, ’×’). Fig. 21 (b)
and (c) show the aliased DFT spectra of the RF-input signal
when sampling at 20 GS/s and 17.5 GS/s respectively. Fig. 21
(d) shows the RF-input spectrum (line) and the reconstructed
RF-spectrum (◦) using MRU. By using MRU the number of
harmonics that can be characterized is increased from 3 to 6. In
contrast, a conventional system to characterize these harmonics
would require a sample rate higher than 30 GS/s.
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Fig. 21: (a) Characterization of a fo = 2.5 GHz RF-waveform in an
RF-PA. The ’�’ and ’×’ indicate the sampled signal for M1 = 8 and
M2 = 7 respectively. (b) and (c) are the DFT spectra |D1|2 and |D2|2
for M1 = 8 and M2 = 7 samples per period respectively. (d) Input RF-
waveform spectrum (line) and the reconstructed spectrum |AR|2 (◦).
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