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A B S T R A C T

This work presents an efficient probabilistic framework for the Bayesian calibration of micro-mechanical
parameters for Discrete Element Method (DEM) modelling. Firstly, the superior behaviour of the iterative
Bayesian filter over the sequential Monte Carlo filter for calibrating micro-mechanical parameters is shown.
The linear contact model with rolling resistance is used for simulating the triaxial responses of Toyoura sand
under different confining pressures. Secondly, synthetic data from DEM simulations of triaxial compression
are used to assess the reliability of iterative Bayesian filtering with respect to the user-defined parameters,
such as the number of samples and predefined parameter ranges. Excellent calibration results with errors
between 1 and 2% are obtained when the number of samples is chosen high enough. It is crucial that the
sample size is representative for the distribution of individual parameters within the predefined parameter
ranges. The wider the ranges, the more samples are required. The investigation also shows the necessity of
including both stress and strain histories, at certain confidence levels, for estimation of the correct mechanical
responses, especially the correct fabric responses. Finally, based on the findings of this work a fully-automated
open-source calibration tool is developed and demonstrated for selected stress paths.
1. Introduction

The Discrete Element Method (DEM) captures the collective be-
haviour of a granular assembly by tracking the kinematics of the
constituent particles (Cundall and Strack, 1979). In recent years, DEM
has been applied to deepen our understanding of the fundamental be-
haviour of soil, e.g. fabric (Ouadfel and Rothenburg, 2001), particle size
distribution (Sufian et al., 2021), and pore-fluid coupling (Cheng et al.,
2019a), and to produce accurate predictions for processes where the
particulate nature of the material cannot be overlooked such as shear
localisation (e.g. Guo and Zhao, 2016). The fundamental issue that
prevents DEM from being a practical tool for geotechnical engineers
is the challenge in measuring particle-scale properties, kinematics and
contact forces at the particle scale (e.g. Fuchs et al., 2014; Hurley et al.,
2016; Rorato et al., 2021). Because the micro-mechanical parameters
are not always measurable in an experiment, their estimation is mostly
formulated as an inverse problem, using statistical inference and op-
timisation techniques, such as gradient descent (e.g. Gao et al., 2021;
Qu et al., 2019) and other ad hoc algorithms (e.g. Richter et al., 2020;
Orefice and Khinast, 2020), or simply achieved by ‘‘trial and error’’ as
often seen in the literature (e.g. Plassiard et al., 2009; Coetzee, 2017).
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The design-of-experiment (DOE) approach has been utilised in the
last decades as an initial attempt to identify micro-mechanical param-
eters with a manageable size of DEM model evaluations (Johnstone,
2010; Coetzee, 2020). Hanley et al. (2011) and Yoon (2007) considered
the interactive effects between micro-parameters on characteristic bulk
properties in designing their DEM ‘‘experiments’’. Rackl and Hanley
(2017) further extended the idea and developed an optimisation-based
calibration approach using Latin hypercube sampling and Kriging. They
identified a solution space in which similar results are obtained for a
range of parameter combinations.

To further improve the efficiency of these optimisation-based tech-
niques, Machine Learning (ML) algorithms have been applied together
with other multi-objective optimisation methods. Do et al. (2018)
visualised a Pareto-optimal front between the model accuracy and
computational cost with a multi-objective optimisation evolutionary
algorithm. The Pareto-optimal front also demonstrates a solution space
of feasible parameter combinations that can give similar predictions of
the bulk responses, constrained by the desired calibration target. To
avoid the high computational cost in sampling the solution (parameter)
space, surrogate models, such as support vector machines (Ma et al.,
2020), back-propagation neural networks (Ye et al., 2019) and radial
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basis function (Turkia et al., 2019), can be trained with an initial
set of DEM model evaluations using parameters drawn from Latin
hypercube sampling. He et al. (2019) combined the back-propagation
neural network with a genetic algorithm to reduce the number of DEM
model evaluations required for optimisation without compromising the
accuracy. Westbrink et al. (2021) trained a multi-objective reinforce-
ment learning agent with multiple calibration test data to find an
optimal parameter set at a minimal computational cost.

From these efforts in automating DEM calibration, a common trend
that can be observed is the utilisation of micro–micro and micro–
macro parameter correlations in the sampling of the solution space.
Qu et al. (2020) developed a hybrid calibration approach in which
the analytical expression that relates Hertz-type contact parameters to
the Young’s modulus and Poisson’s ratio of isotropic granular packings
was used to facilitate the optimisation. Another good example is given
by Nguyen et al. (2019), where semi-analytic laws for micro–macro pa-
rameter correlations are deduced from an ad hoc constructed numerical
database.

In optimisation-based approaches the calibration is usually done
for specific characteristic bulk properties, such as Young’s modulus,
angle of repose, peak- or critical-state macroscopic friction. This is a
major limitation because these characteristic properties result from a
parameterisation of history-dependent stress and strain responses and
may include extra bias and uncertainty. Recursive Bayesian filtering
provides a rigorous basis for the calibration of numerical models using
the raw time-series data. The framework also allows for quantifying
the evolution of model uncertainties over a load history (Oden et al.,
2010a,b). Hadjidoukas et al. (2014) developed a versatile computa-
tional framework to estimate the posterior distribution of microscopic
parameters and quantify the model uncertainties for DEM simula-
tions of granular materials. In addition, the framework also allows for
Bayesian model selection (Hadjidoukas et al., 2015), i.e. the evaluation
of the robustness of physical models conditioned on reference data
(either numerical, experimental, or theoretical).

More recently, Cheng et al. (2018) treated the DEM calibration
as an inverse problem and solved it with history-dependent stress
and strain data based on sequential Monte Carlo (MC) filtering. The
method was further improved by Cheng et al. (2019b) with an ML-
based iterative sampling technique and implemented in the Bayesian
calibration toolbox GrainLearning (GL). Within each iteration, the
conditional distribution of model parameters on the reference (experi-
mental) data is updated by the recursive Bayes’ rule. This conditional
(posterior) distribution is updated based on the complete history of the
data and used to train a proposal distribution to draw new samples
for the subsequent iteration. As the number of iterations increases, the
proposal distribution is progressively narrowed down to local optima
with decreasing model uncertainty.

The previous contributions by Cheng et al. (2018, 2019b) focus on
the mathematical background and implementation of GL. However, the
performance of the algorithm has not yet been discussed in detail, nor
has the influence of the user-defined parameters. In order to provide
a reliable, robust and fully-automated calibration ‘‘black-box’’, it is
crucial to investigate aspects including convergence, computational
efficiency, observation versus modelling uncertainties and multiple
local optima. The current work focuses on understanding these as-
pects with several key variations in the DEM model (loading condition
and the number of particles) and reference data (experimental and
synthetic) for the Bayesian calibration. The numerical framework is
briefly introduced in Section 2. The performance of GL is investigated
in Section 3 by systematically comparing the GL results to those of MC
and experimental data. In Section 4, synthetic reference data generated
from a DEM simulation of a triaxial compression test is used for a more
detailed investigation of the performance and limitations of GL. Having
a numeric solution as reference data for the inference eliminates any
measurement errors and reveals the true performance of GL. A final
discussion of the obtained results is conducted in Section 5. Finally,
the main findings of the study and possible extensions of the work are
2

discussed in Section 6. c
2. Numerical framework

2.1. Discrete element method

The DEM represents granular materials as assemblies of solid par-
ticles with simplified geometries and vanishingly small inter-particle
overlaps. Spherical particles are often preferred due to their very
high computational efficiency. Governed by springs, dashpots and slid-
ers upon collision, the kinematics of the particles are updated using
Newton’s equations of motion, based on the net forces and moments
resulting from the interactions (Cundall and Strack, 1979). The open-
source framework Yade (Šmilauer et al., 2015) is used to perform the
DEM simulations in this work.

2.1.1. Preparation of particle packing
Particle packings of dense granular materials are typically created

from a cloud of loose particles which is compacted before undergoing a
certain loading path. To remove the computational cost involved in this
packing generation process, ‘‘stress-free’’ packings are prepared before-
hand so that the cost per DEM model evaluation1 is kept at a minimum.
The packing preparation procedure for the triaxial compression tests
conducted in this study can be summarised as follows:

(i) A cloud of randomly distributed spherical particles is generated
in a cuboidal periodic cell.

(ii) The cloud is compacted at a reference confining pressure 𝑝ref,
with a very high normal stiffness to keep the inter-particle
overlaps small.

(iii) The inter-particle friction is reduced periodically and the pack-
ing is allowed to stabilise (e.g., wait until the ratio between
kinetic and elastic potential energy is smaller than 10−3), until a
reference void ratio 𝑒ref is obtained.

(iv) The packing is unloaded to a confining pressure 𝑝 ≪ 𝑝ref and
then allowed to stabilise.

The resulting configuration contains particle positions and radii and
he dimensions of the periodic cell. Once generated, the particle con-
iguration, for a given number of particles, will be readily importable
or each model evaluation, that is the DEM simulation of isotropic
nd triaxial compression in which random parameter values will be
dopted. As a continuation from the ‘‘stress-free’’ state, the packing
ith randomised contact properties will be first loaded to a target

onfining pressure 𝜎𝑐 and then sheared under triaxial compression.
In this work, the reference initial confining pressure and void ratio

re taken from a Toyoura sand specimen (see Sun et al., 2007), namely,
ref = 0.1 kPa and 𝑒ref = 0.68. Three different confining pressures are
onsidered, i.e. 𝜎𝑐 = 0.2, 0.5 and 1.0MPa. For Toyoura sand, these con-
ining pressures may lead to a small degree of particle crushing which
n turn can affect the grain morphology and mechanical properties (Sun
t al., 2007; Wu et al., 2020). The particle diameters are drawn from
scaled size distribution of Toyoura sand. The density of the sand

articles is 𝜌𝑔 = 2650 kgm−3. Six different initial particle configurations
ith various numbers of particles (1000, 2000, 5000, 8000, 10000, and
7000) have been generated. Fig. 1 shows an example of a randomly
enerated packing with 2000 particles.

1 A ‘‘model evaluation’’ is referred to as a single simulation with a certain
hoice of model parameters. The values chosen for this model evaluation are
andomly drawn from a multivariate distribution and referred to as a ‘‘sample’’.

sample should not be confused with a ‘‘packing’’ which is the geometrical
onfiguration of a DEM model.
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Fig. 1. Illustration of a typical DEM packing consisting of 2000 spherical particles
(particles are coloured by size) used in the triaxial compression simulations.

Table 1
Expression for inter-particle normal, tangential, and rolling stiffness and corresponding
plastic limit conditions. 𝐸 and 𝜈 are the inter-particle Young’s modulus and inter-
particle Poisson’s ratio, respectively. 𝜙 is the inter-particle friction angle, 𝑟∗ is the
equivalent radius defined as 𝑟∗ = (1∕𝑟1 + 1∕𝑟2)

−1 where 𝑟1 and 𝑟2 are the radii of the
two touching particles and 𝜂𝑚 is the rolling friction coefficient.

Micro-mechanical stiffness Plastic limit condition

𝑘𝑛 = 2𝐸𝑟∗

𝑘𝑠 = 2𝐸𝜈𝑟∗ ‖𝐅𝑠‖ = tan𝜙‖𝐅𝑛‖

𝑘𝑚 = 𝛽𝑚𝑟1𝑟2𝑘𝑠 ‖𝐌‖ = 𝜂𝑚‖𝐅𝑛‖min(𝑟1 , 𝑟2)

2.1.2. Contact laws
The kinematics of each particle is updated from the net force and

moment, resulting from contact-level force–displacement and moment–
rotation constitutive laws. For two touching spheres the inter-particle
normal and tangential forces 𝐅𝑛 and d𝐅𝑠 as well as contact moments
𝐌 are related to their normal overlap 𝐮𝑛, tangential displacement
increment d𝐮𝑠 and relative rotation 𝜽 via

𝐅𝑛 =𝑘𝑛𝐮𝑛
d𝐅𝑠 =𝑘𝑠 d𝐮𝑠
𝐌 =𝑘𝑚𝜽.

(1)

The parameters 𝑘𝑛, 𝑘𝑠 and 𝑘𝑚 in Eq. (1) are the stiffnesses in the nor-
mal, tangential and bending/twisting directions, respectively. Rolling
resistance is typically adopted (through 𝑘𝑚) to handle the fact that
soil particles are non-spherical and have a certain surface roughness.
This allows keeping computational costs very low compared with sim-
ulations with realistic particle shapes. These contact-level springs can
be either constant (Cundall and Strack, 1979) or functions of the
inter-particle overlap, e.g. according to the Hertz–Mindlin theory. In
this work, the linear contact law summarised in Table 1 is used.
Both shear and rolling adopt the Mohr–Coulomb type formulation as
plastic limit via the inter-particle sliding friction coefficient tan(𝜙) and
rolling friction coefficient 𝜂𝑚. The micro-mechanical parameters to be
identified in the calibration are the inter-particle Young’s modulus 𝐸,
inter-particle Poisson’s ratio 𝜈, inter-particle friction angle 𝜙, rolling
stiffness coefficient 𝛽𝑚 and rolling friction coefficient 𝜂𝑚.

2.2. Bayesian calibration

Solving an inverse problem that involves non-linearity and/or dis-
continuity in the forward model (e.g., DEM) is very challenging. Be-
cause of the potentially large computational cost for running the sim-
ulations, the samples have to be selected with an optimised strategy
in order to ensure high efficiency. In this work, the iterative Bayesian
3

filtering framework GrainLearning (GL) developed by Cheng et al.
(2019b) is utilised to tackle these challenges.

In Bayesian calibration, the probability distribution of model pa-
rameters conditioned on given reference data (termed ‘‘posterior dis-
tribution’’) is estimated. This means that not only a perfect match
between the reference and prediction data is sought but also the
associated uncertainty. The simplest method for this estimation is the
sequential MC filter (e.g. Särkkä, 2013). The iterative Bayesian filter
implemented in GL allows for adaptive (re)sampling near potential
posterior modes in parameter space, until the ensemble predictions of
the model parameters converge. In the following, the iterative Bayesian
filtering framework will be briefly introduced. Interested readers are
referred to Cheng et al. (2019b) for the mathematical background and
the numerical implementation.

2.2.1. A non-linear non-Gaussian state-space model
The forward (DEM) model can be framed within a non-linear, non-

Gaussian state-space model with parameters 𝜣 to be estimated via
statistical or Bayesian inference

𝐱𝑡 = F(𝐱𝑡−1,𝜣𝑡−1) + 𝝂𝑡
𝐲𝑡 = H(𝐱𝑡,𝜣𝑡) + 𝝎𝑡

𝜣𝑡 = 𝜣𝑡−1.

(2)

F can be understood as the process of obtaining the stochastic predic-
tion of the current model state 𝐱𝑡 from the forward model (e.g. DEM),
based on the previous model state 𝐱𝑡−1 and the parameter 𝜣 which is
also treated as a stochastic variable. If all observations in 𝐲𝑡 are inde-
pendent and directly comparable to 𝐱𝑡 without any unknown mapping,
H is reduced to the identity matrix 𝐈𝑁obs with𝑁obs being the number
of independent observations. The modelling errors and observation
errors 𝝂𝑡 and 𝝎𝑡 are assumed to be Gaussian, i.e. that they follow
the normal distributions  (0,𝜮𝑀

𝑡 ) and  (0,𝜮𝐷
𝑡 ), with a diagonal

covariance structure for the sum of both errors 𝜮𝑀
𝑡 +𝜮𝐷

𝑡 .
Eq. (2) is generic for any theoretical, numerical, or empirical models

that are formulated to capture time or history dependency. In the
context of the present work, the model parameters to be estimated are
the contact parameters, i.e. 𝜣 = {log𝐸, 𝜈, 𝜙, 𝛽𝑚, 𝜂𝑚}, and the macro-
scopic model state and observation vectors 𝐱𝑡 and 𝐲𝑡 at each time or
loading step 𝑡 consist of two independent entries: stress ratio 𝜎1∕𝜎𝑐 and
volumetric strain 𝜀𝑣, with 𝜎1 being the major principle stress and 𝜎𝑐
the confining pressure. Both 𝐱𝑡 and 𝐲𝑡 are vectors of size 2. The total
covariance matrix 𝜮𝑡 = 𝜮𝑀

𝑡 + 𝜮𝐷
𝑡 is assumed to be diag(𝐬𝟐)𝐲𝑡 with

𝐬𝟐 = 𝑠𝐰𝐬 and det(𝐰𝐬) = 1, making the normalised covariance coefficient
𝑠 a user-defined input parameter. When all variable measurements
contribute equally to the inference, 𝐰𝐬 is reduced to the identity matrix
𝐈𝑁obs .

2.2.2. Bayesian filtering
The aim of Bayesian filtering is to estimate the probability dis-

tribution of the augmented model state that consist of parameters
(assuming they vary in time) and model state 𝐱̂𝑡 = (𝐱𝑡,𝜣𝑡) conditioned
on all available reference data 𝐲1∶𝑡 until time 𝑡. From this conditional
probability (termed ‘‘posterior’’) distribution 𝑝(𝐱̂𝑡|𝐲1∶𝑡), the moments
such as the means Ê and variances V̂ar are computed by

Ê[𝑓𝑡(𝐱̂𝑡)|𝐲1∶𝑡] =
𝑁𝑝
∑

𝑖=1
𝑤(𝑖)

𝑡 𝑓𝑡(𝐱̂
(𝑖)
𝑡 )

V̂ar[𝑓𝑡(𝐱̂𝑡)|𝐲1∶𝑡] =
𝑁𝑝
∑

𝑖=1
𝑤(𝑖)

𝑡 (𝑓𝑡(𝐱̂
(𝑖)
𝑡 ) − Ê[𝑓𝑡(𝐱̂𝑡)|𝐲1∶𝑡])2.

(3)

In Eq. (3), 𝑓𝑡 describes an arbitrary quantity of interest as a function
of 𝐱̂𝑡. In the context of DEM modelling, 𝑓𝑡 can be any model prediction
next to 𝐱𝑡 = {𝜎1∕𝜎𝑐 , 𝜀𝑣}, such as fabric anisotropy, coordination number.
𝑁𝑝 is the number of samples drawn from a proposal distribution. Each
sampled model state 𝐱̂(𝑖) is associated with an importance weight 𝑤(𝑖),
𝑡 𝑡
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that corrects the Monte Carlo approximation of the full posterior distri-
bution 𝑓𝑡(𝐱̂0∶𝑡)|𝐲1∶𝑡 from the proposal distribution, using the recursive
Bayes’ rule. Note that the importance weights {𝑤(𝑖)

𝑡 ; 𝑖 = 1,… , 𝑁𝑝} are
ormalised to sum to unity at each time step (cf. Eq. 13–15 in Cheng
t al., 2019b).

.2.3. An efficient multi-level sampling algorithm
Because the posterior distribution of the model parameters is un-

nown, a non-informative proposal distribution is used to uniformly
xplore the parameter space in iteration 0. The sampling is done with
uasi-random numbers (defined by an initial guess of the parameter
anges), which leads to the so-called sequential quasi-MC filter (Gerber
nd Chopin, 2015). Although a uniform sampling is unbiased, it is
ery inefficient because the sampling density is the same everywhere
n the parameter space; model evaluations are mostly performed in
egions outside the optima. Furthermore, the importance weights for
he sequential MC are ensured to degenerate as 𝑡 → ∞ (Särkkä, 2013)
ith a vanishing variance in the ensemble, leading to a loss of statistical

nformation.
Weight degeneracy can be circumvented by reintroducing stochas-

icity in the state-space model (Eq. (2)). This is done by solving the
nverse problem again, using resampled parameters 𝜣(𝑖)

𝑘 and model
tates 𝐱(𝑖)𝑘 . For iteration 𝑘 ≥ 1, the resampled parameters are drawn
rom a more sensible proposal distribution, compared with that for
teration 𝑘 − 1. This proposal distribution is constructed by a non-
arametric Gaussian mixture model (Blei and Jordan, 2006) trained
ith the samples 𝜣(𝑖)

𝑘−1 and the importance weights2 𝑤𝑇
(𝑖)
𝑘−1 from iter-

tion 𝑘 − 1. This means the previous approximation of the posterior
istribution 𝑝𝑘−1(𝜣|𝐲1∶𝑇 ) is utilised as the proposal distribution for the
ubsequent iteration. This leads to sampling densities that vary for
ifferent modes of the proposal distribution. The sampling densities are
etermined based on the Gaussian components and their contributions
o the mixture (weights): the higher the likelihood, the higher the
ampling density. Resampling from this iteratively updated proposal
istribution allows zooming into highly probable parameter subspaces
n very few iterations as the sampling density progressively increases
round the posterior distribution modes. Note that because the number
f samples is finite, if one Gaussian component (one mode of the
roposal distribution) has a small weight, the sampling density for that
ode could be small as well, which can potentially cause local optima

o be overlooked after a few iterations.

.2.4. Numerical aspects
The iterative Bayesian framework contains very few user-defined

arameters. The normalised covariance coefficient 𝑠 (see Section 2.2.1)
s chosen such that the effective sample size 𝐸𝑆𝑆 = 1∕(

∑𝑁𝑝
1 (𝑤(𝑖)

𝑡 )2𝑁𝑝)
s larger than 𝐸𝑆𝑆 = 30% (Särkkä, 2013; Ruiz and Kappen, 2017).
he goal is to have a sufficient number of effective samples for the
raining of the proposal distribution. The other important parameters
re hyperparameters that optimise the number of Gaussian components
nd mixing proportions. For example, the upper bound of the num-
er of Gaussian components 𝐾𝑚𝑎𝑥 is chosen as 𝑁𝑝∕10, assuming that
en samples are sufficient to estimate one Gaussian component. The
aussian components can share the same covariance matrix or have
ifferent ones. The open-source package scikit-learn (Pedregosa
t al., 2011) provides the non-parametric Gaussian mixture class and
he mean-field variational inference of Blei and Jordan (2006) for the
raining.

According to Gerber and Chopin (2015), the minimum required
ample size 𝑁𝑝 scales with the natural logarithm of the number of
nknowns 𝑛 for sequential quasi MC filtering:

𝑝 = 𝛼 𝑛 log(𝑛) (4)

2 Note, the importance weights updated until the last time step are used
or training the Gaussian mixture model.
4

where 𝛼 is a scalar factor to be chosen a priori by the user. From
a stochastic point of view, the scaling with 𝑛 log 𝑛 is based on the
assumption of 𝑛 independent unknown model parameters.

2.2.5. Error definitions
For the evaluation of the quality of the individual samples, the abso-

lute error (in percent) between the DEM predictions and the reference
data is evaluated in an integral form. The observation sample error
𝜖(𝑖)(𝑗) for sample 𝑖 and observation 𝑗, with 𝑗 = 1,… , 𝑁obs, is defined
as

𝜖(𝑖)(𝑗) =
∑𝑇

𝑡=0 ‖𝑦𝑡(𝑗) − 𝑥(𝑖)𝑡 (𝑗)‖
∑𝑇

𝑡=0 ‖𝑦𝑡(𝑗)‖
⋅ 100%. (5)

As indicated in Section 2.2.1, 𝑡 in Eq. (5) denotes the 𝑡−th data point of
observation 𝑦𝑡(𝑗) in time or load history. The associated DEM prediction
is denoted by 𝑥(𝑖)𝑡 (𝑗). Based on the assumed relative contributions of the
individual observations to the inference diag(𝐰̃𝑠) = {𝑤̃𝑠

1,… , 𝑤̃𝑠
𝑁𝑜𝑏𝑠

}, the
combined sample error for sample 𝑖 is defined by

𝜖(𝑖) =
𝑁obs
∑

𝑗=1

[

1∕𝐰̃𝑠(𝑗, 𝑗)
∑𝑁obs

𝑗=1 1∕𝐰̃𝑠(𝑗, 𝑗)

]

𝜖(𝑖)(𝑗). (6)

For the calculation of the covariance matrix 𝜮𝑡, 𝐰̃𝑠 is multiplied by
= det(𝐰̃𝑠)

− 1
𝑁𝑜𝑏𝑠 to obtain 𝐰𝐬 such that det(𝐰𝐬) = 1. Following Eq. (3),

the sum of the combined sample errors 𝜖(𝑖) weighted by the associated
importance weights, i.e. weights 𝑤(𝑖)

𝑇 at the end of the calibration, is
used as the measure for the absolute GL error (in percent), namely

̂GL =
𝑁𝑝
∑

𝑖=1
𝑤(𝑖)

𝑇 𝜖(𝑖). (7)

2.2.6. Termination of GL and final sample selection
A stochastic termination criterion in terms of the normalised covari-

ance coefficient 𝑠 is used and GL is terminated as soon as 𝑠 < 0.01. The
utcome of GL in the final iteration are 𝑁𝑝 parameter samples with
ssociated probabilities. Eq. (3) gives the mathematical expression for
he final set of calibrated parameters when the probability distribution
s unimodal. However, the resulting posterior distribution of micro-
echanical parameters is usually multimodal for DEM models, as will

e discussed in Section 3.4. Although it would be stochastically more
eaningful to follow Eq. (3) and compute the weighted sum of individ-
al samples, the sample with the highest probability is selected as the
inal set of calibrated parameters, neglecting those that have smaller
eights but still represent other modes or peaks of the distribution.
his is because, if the posterior distribution is multimodal, which is
ften the case for the rolling resistance parameters, a weighted sum
ould deviate far from each of the peaks. Therefore, the sample with
he highest probability in the final iteration is chosen.

.3. Grainlearning workflow

In the following, the GL workflow is explained on the basis of
ig. 2 for the considered applications presented in this paper. The
rocess refers to the stochastic definitions introduced in Section 2.2
o allow for a smooth transition from theory to application. Overall,
he GL workflow can be divided into three steps: initialisation, iterative
ayesian filtering (GL iterations) and postprocessing including sample
election.

During initialisation, the number of samples 𝑁𝑝 is defined from
he proportionality factor 𝛼 and the number of unknown parameters
via Eq. (4). The observation vector 𝐲1∶𝑇 for GL consists of two time

eries (𝑁obs = 2): one time series of the stress ratio 𝜎1∕𝜎𝑐 and one
f the volumetric strain 𝜀𝑣. The combined sample errors (Eq. (5)) in
tress ratio, 𝜖(𝑖)stress, and in volumetric strain, 𝜖(𝑖)strain are computed and
iag(𝐰̃𝑠) = {𝑤̃𝑠

stress, 𝑤̃
𝑠
strain} is set based on the assumed partial contri-

ution of 𝜎 ∕𝜎 and 𝜀 to the covariance matrix 𝜮 in Section 2.2.1.
1 𝑐 𝑣 𝑡
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The final step during initialisation is the generation of 𝑁𝑝 parameter
samples using a Halton sequence based on an initial guess for the
parameter ranges.

The first step of an iteration is the execution of model evaluations
with respect to the corresponding 𝑁𝑝 samples. In the underlying case,
these are 𝑁𝑝 triaxial compression simulations using Yade, where each

odel evaluation is randomised by parameter sample (𝑖) that consists
f five micro-mechanical parameters 𝜣(𝑖) = {log𝐸(𝑖), 𝜈(𝑖), 𝜙(𝑖), 𝛽(𝑖)𝑚 , 𝜂(𝑖)𝑚 }.

The outputs of these model evaluations are 𝑁𝑝 state vectors {𝐱(𝑖); 𝑖 =
1,… , 𝑁𝑝} of model predictions for 𝜎1∕𝜎𝑐 and 𝜀𝑣, resulting from the
parameter samples. To prevent ambiguities regarding commonly used
terminology in engineering, the term ‘‘model prediction’’ is further
replaced by ‘‘model response’’. Next, the GL quantities are computed on
the basis of the model responses and the reference data. They include
the computations of errors, the normalised covariance coefficient and
the importance weights 𝑤(𝑖)

𝑇 at the end of the iteration.
Subsequently, the termination criteria (cf. Section 2.2.6) is evalu-

ted and GL is terminated if 𝑠 < 0.01. When GL is terminated, the
ample with the highest probability, i.e. max𝑤(𝑖)

𝑇 , in the last iteration
s taken as GL result and postprocessing can be performed. Thus, the
orresponding parameters of this sample represent the assumed final set
f calibrated micro-mechanical parameters. If the threshold of 𝑠 is not
atched, new samples will be drawn from the Gaussian mixture model,

f. Section 2.2.3, that is trained with the previous samples and weights.
new iteration starts thereafter, with the posterior distribution of the

arameters to be updated again from 𝑡 = 0 to 𝑇 .

3. Calibration of micro-mechanical parameters of Toyoura sand

3.1. Simulation set-up

The iterative Bayesian filter, from now on denoted GL, is utilised to
calibrate the micro-mechanical parameters of Toyoura sand. The same
triaxial compression test with 1000 particles as presented in Cheng
et al. (2018) is used for this purpose. Eq. (4) is utilised to determine the
number of samples per iteration in GL using 𝛼 = 10. Thus, the sample
ize applied for the calibrations is 𝑁𝑝 = 80. The GL results are not only
ompared against the experimental results by Sun et al. (2007), but also
gainst the results obtained by Cheng et al. (2018) using the sequential
uasi-Monte Carlo filter, from now on denoted MC.

As described in Section 2.3, the observation vector for GL consists of
he stress ratio 𝜎1∕𝜎𝑐 and the volumetric strain 𝜀𝑣. Both measurements
re assumed to contribute equally to the covariance matrix, i.e. 𝑤𝑠

stress =
𝑠
strain = 0.5. The predefined parameter ranges used in GL are the same
s those used in the MC by Cheng et al. (2018) (Table 2).

The DEM simulations are strain-controlled and conducted in a quasi-
tatic manner: the packing is loaded with a maximum strain rate of
.1 s−1, followed by a relaxation stage. When the average unbalanced
orce is lower than 10−3, a subsequent loading continues until the
ext target axial strain is reached. The strain-controlled procedure
o conduct quasi-static simulations ensures that the model state 𝐱 is
btained at the exact same strain level as the observation 𝐲 and the
omputational cost is minimised per model evaluation.

A variable time step is used by applying Yade’s GlobalStiff-
essTimeStepper with a time step safety coefficient of 0.8. Thus,

he time step is automatically calculated based on the micro-mechanical
arameters and the model configuration and, hence, will vary between
imulations. All simulations are performed on a high-performance com-
uting cluster with Intel Xeon Gold 6150 (2.70 GHz) processors. For the
ake of repeatability each simulation is run on a single thread.
5

able 2
eans and standard deviations of the micro-mechanical parameters used in the

alibration process (after Cheng et al., 2018).
log𝐸 [GPa] 𝜈 [–] 𝜙 [◦] 𝛽𝑚

[

Nm rad−1
]

𝜂𝑚 [–]

Mean 9 0.25 30 0.5 0.5
Std. dev. 2 0.25 30 0.5 0.5

3.2. Comparison between GL, MC and experimental data

The sets of micro-mechanical parameters estimated by the calibra-
tion procedures for varying confining pressures 𝜎𝑐 are listed in Table 3.
Values estimated with both, GL and MC, are provided in the same table
for a better comparison. The values in parenthesis are those obtained
with MC by Cheng et al. (2018).

Comparing the MC and GL solutions reveal a similar trend for log𝐸
and 𝜙 with respect to the applied confining pressures. Generally, the
higher the pressure, the higher log𝐸 and the lower 𝜙. Exceptions of
these trends are only observable for the MC results, where the resulting
micro-mechanical parameters are exactly the same for 𝜎𝑐 = 0.2MPa and
𝜎𝑐 = 0.5MPa. The stiffness ratio 𝑘𝑠∕𝑘𝑛, denoted as 𝜈, shows an opposite
trend with increasing pressure. The reason for the variation of log𝐸,
𝜈 and 𝜙 as functions of 𝜎𝑐 can be attributed to mild-to-moderate grain
crushing, which leads to the change of grain morphology (e.g., surface
roughness and asperity), as the confining pressure increases. Neverthe-
less, the isotropic and deviatoric loads are not large enough to cause
an evolution of the particle size distribution as in Wu et al. (2020).
Therefore, non-crushable DEM particles with the same particle size
distribution still suffice for the confining pressures considered.

No clear trend can be observed for the rolling resistance parameters.
Moreover, when comparing the same calibrations for the two methods,
the calibration with 𝜎𝑐 = 0.5MPa (cf. Table 3) stands out. Even though
log𝐸 and 𝜙 vary only slightly between GL and MC, the remaining three
parameters vary significantly. For MC 𝜈 = 0.080, 𝛽𝑚 = 0.564Nm rad−1

and 𝜂𝑚 = 0.194 are obtained, whereas for GL 𝜈 = 0.161, 𝛽𝑚 =
0.071Nm rad−1 and 𝜂𝑚 = 0.885 are obtained. It is assumed that two
model evaluations with small variations in micro-mechanical param-
eters are related to the same solution (local minimum). In contrast,
two evaluations with significant parameter variations indicate that the
solutions do not belong to the same local minimum. This indicates that
different solutions are found using GL.

For a further qualitative evaluation of the results, the model re-
sponses based on the most probable identified parameters are plotted
against the reference data. Thus, the variation of the stress ratio 𝜎1∕𝜎𝑐
and volumetric strain 𝜀𝑣 are plotted against the strain in the normal
direction 𝜀1 (Fig. 3). Comparing the model responses of GL and MC
with the experimental data clearly shows the superior behaviour of
GL over MC. All curves related to GL fit the experimental data better
than the curves associated with the MC calibration. For the previously
mentioned calibrations with 𝜎𝑐 = 0.5MPa (Fig. 3), where the calibrated
micro-mechanical parameters considerably differ between MC and GL,
the fit in stress ratio and volumetric strain is significantly better for
the GL calibration. Because of the marked difference in the associated
curves, the assumption that a different and better solution is found
using GL is confirmed.

To confirm the qualitative results, a quantitative evaluation is per-
formed. The observation sample errors in stress ratio, 𝜖stress, and in
volumetric strain, 𝜖strain, are evaluated using Eq. (5). In Fig. 4, 𝜖stress is
plotted against 𝜖strain, where arrows are used to indicate the difference
between MC and GL results. The heads are related to the GL observation
sample errors and the tails to the MC observation sample errors. Thus,
the arrow lengths and directions indicate the differences between the
two approaches. It can be seen that 𝜖stress and 𝜖strain are always smaller
for the GL calibrations. 𝜖stress ranges from 2.75 to 7.53% and 𝜖strain from
4.77 to 21.41% for the MC calibrations. The related error ranges are with
𝜖 ∈ [1.65%, 2.18%] and 𝜖 ∈ [3.48%, 7.91%] significantly smaller
stress strain
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Fig. 2. GrainLearning workflow.
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Table 3
Micro-mechanical parameters obtained with GL and MC using 1000 particles. The values in parentheses correspond to those
obtained with MC (see Cheng et al., 2018).
𝜎𝑐 [MPa] log𝐸 [GPa] 𝜈 [–] 𝜙 [◦] 𝛽𝑚

[

Nm rad−1
]

𝜂𝑚 [–]

0.2 8.722 (8.736) 0.078 (0.080) 31.263 (30.203) 0.436 (0.564) 0.178 (0.194)
0.5 8.782 (8.736) 0.161 (0.080) 30.626 (30.203) 0.071 (0.564) 0.885 (0.194)
1.0 8.961 (9.098) 0.241 (0.439) 25.441 (22.043) 0.086 (0.076) 0.944 (0.726)
Fig. 3. Comparison of experimental data (Exp. data) by Sun et al. (2007) with GL and MC model responses in (a) stress ratio and (b) volumetric strain for simulations with 1000
particles and varying confining pressures.
Fig. 4. Error in stress ratio 𝜖stress against error in volumetric strain 𝜖strain for simulations with 1000 particles and varying confining pressures. Arrow heads are related to GL errors
and tails to MC errors.
for GL. The biggest improvement in errors is obtained for the confining
pressure of 𝜎𝑐 = 0.5MPa (blue arrow in Fig. 4) with a reduction from
6.22 to 1.65% in 𝜖stress and from 21.41 to 5.22% in 𝜖strain. Thus, the better
performance of GL is also quantitatively confirmed.

3.3. Convergence

3.3.1. Evolution of GL error over number of GL iterations
The convergence properties of the GL calibration framework are

investigated by calculating the GL error 𝜖GL defined in Eq. (7) by taking
into account the weighted mean of the combined sample errors 𝜖 from
all samples within an iteration.

The evolution of 𝜖GL over the number of GL iterations for the
previous simulations using 1000 particles is depicted in Fig. 5. It
can clearly be seen that 𝜖GL decreases with an increasing number of
iterations. This oscillation-free behaviour is desired since it indicates a
good convergence behaviour of GL. Convergence is reached between
iteration 6 and 10 with 𝜖 between 3.58 and 5.98%.
7

GL
3.3.2. Influence of number of particles
In DEM simulation the particle size distribution is generally scaled

up and sometimes truncated. This is necessary to keep computational
costs at an acceptable level. The resulting number of particles is gen-
erally less compared to the physical one. Hence, the influence of the
number of particles on the GL calibration framework is investigated
next. Considered is the confining pressure of 𝜎𝑐 = 0.5MPa. GL is per-
formed for 1000, 2000, 5000, 8000, 10000 and 27000 particles. Since
the confidence in the volumetric strain reference data is significantly
smaller than in the data of the stress ratio (cf. Section 3.2), their relative
contributions to the covariance matrix are adjusted to 0.2 for the stress
ratio and 0.8 for the volumetric strain. This leads to a higher stochastic
weighting on the stress ratio.

The estimated micro-mechanical parameters are listed in Table 4.
No clear trend can be seen for any of the micro-mechanical param-
eter with respect to the number of particles. The ranges are rela-
tively wide with log𝐸 ∈ [8.683GPa, 8.973GPa], 𝜈 ∈ [0.079, 0.296],
𝛽𝑚 ∈ [0.036Nm rad−1, 0.352Nm rad−1], 𝜂𝑚 ∈ [0.284, 0.576] and 𝜙 ∈
[24.923 ◦, 34.327 ◦]. Nevertheless, the curves in Fig. 6 show all a very
good agreement with the experimental data.
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Table 4
Identified micro-mechanical parameters and corresponding errors for GL with varying number of particles.

Identified parameters Errors [%]

Particles log𝐸 [GPa] 𝜈 [–] 𝜙 [◦] 𝛽𝑚
[

Nm rad−1
]

𝜂𝑚 [–] 𝜖stress 𝜖strain 𝜖

1000 8.753 0.152 34.327 0.065 0.324 3.39 7.58 4.23
2000 8.727 0.226 28.479 0.076 0.576 3.11 6.62 3.81
5000 8.973 0.079 24.923 0.352 0.284 2.41 11.56 4.24
8000 8.812 0.131 29.733 0.095 0.707 2.01 6.82 2.97

10000 8.800 0.126 26.960 0.153 0.409 2.51 5.82 3.17
27000 8.683 0.296 33.055 0.036 0.567 2.69 10.65 4.28
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Fig. 5. Evolution of GL error 𝜖GL over number of iterations for simulations with 1000
articles and varying confining pressures.

𝜖stress and 𝜖strain as well as the combined sample error 𝜖 are consid-
red for a quantitative evaluation (Table 4). The smallest 𝜖stress of 2.01%
s obtained for 8000 particles and the smallest 𝜖strain of 5.82% for 10000
articles. In contrast, the highest 𝜖stress = 3.39% and 𝜖strain = 11.56% are

obtained for 1000 and 5000 particles, respectively.
Via Eq. (6), the combined sample error 𝜖 can be computed with

𝐰̃𝑠 = {0.2, 0.8}. In ascending order of the number of particles 𝜖 is 4.23,
.81, 4.24, 2.97, 3.17 and 4.28%. Thus, increasing the number of particles
oes not automatically lead to a decreasing error, i.e. better model
esponses. It seems that 𝜖 does not converge with an increasing num-
er of particles. Different solutions, i.e. combinations of stochastically
ependent micro-mechanical parameters, are obtained.
8

.4. Multiple solutions

The advantage of training a Gaussian mixture model with the
pdated statistics and using it for resampling (i.e. selecting the pa-
ameters for the next iteration) is that the correlation structure among
he parameters is used. In the following, the performance of the GL
alibration with 2000 particles and 𝜎𝑐 = 0.5MPa is investigated in more
etail. The resampled micro-mechanical parameters in five-dimensional
pace are visualised by ten two-dimensional planes (Fig. 7). The con-
erging trends are clearly indicated by the clustering of the resampled
arameters, as the number of iterations increases. GL needs a total of
2 iterations (iteration 0 to iteration 11) in order to reach below the
arget error in the ensemble prediction. Fig. 7 shows the resampled
arameters of iterations 0 to 6. The parameter values for iteration
are uniformly sampled from quasi-random numbers between the

redefined ranges. At iteration 5 an excellent agreement is already
chieved between one numerical data set and the experimental data,
ut the distribution of the parameter samples still shows multi-modal
eatures, resulting in a rather large variance in the ensemble predic-
ions. Fig. 8 shows the stress–strain responses obtained with the top ten
ost probable parameter samples. Table 5 summarises the correlation

oefficients of the samples for iteration 5. They are based on the
calar Pearson product-moment correlation coefficient (Rodgers and
icewander, 1988), which is a measurement for the linear relation
etween two variables. The coefficient is defined between −1 ≤ 𝜌 ≤ 1,

whereby 1 corresponds to a perfect positive linear relation and −1 to a
perfect negative relation. Absolute values around 0.4 are considered as
moderate linear relation and values around 0.8 as strong linear relation.
The NumPy library (Oliphant, 2006) is used for the computation of
the Pearson coefficients. Note, the coefficients after iteration 5 are not
given because the samples are already localised to one of the clusters
and the correlation structures are no longer visible. In the following,
multiple solutions and statistical correlations between the parameters
will be discussed based on the samples of iteration 5.

Fig. 7 and Table 5 show that the inter-particle Young’s modulus 𝐸
is moderately to strongly correlated with the parameters relevant to
Fig. 6. Comparison of experimental data (Exp. data) by Sun et al. (2007) with GL model responses in (a) stress ratio and (b) volumetric strain for varying number of particles.



Computers and Geotechnics 141 (2022) 104491P. Hartmann et al.

T
C
i

Fig. 7. Resampled micro-mechanical parameters over consecutive iterations. The proposal distribution, which the samples are drawn from, is clearly multi-modal.
Fig. 8. Stress–strain responses obtained with the top ten most probable parameter samples for iterations 0 to 5.
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able 5
orrelation coefficients between the five micro-mechanical parameters obtained at

teration 5.
log𝐸 𝜈 𝜙 𝛽𝑚 𝜂𝑚

log𝐸 1.000 −0.676 −0.479 0.660 −0.133
𝜈 1.000 −0.173 −0.599 −0.231
𝜙 1.000 −0.332 0.392
𝛽𝑚 1.000 −0.483
𝜂𝑚 sym. 1.000
9

p

tangential and rolling stiffnesses (𝜈 and 𝛽𝑚), with |𝜌| = 0.676 and 0.66. 𝐸
is almost independent of the rolling friction coefficient 𝜂𝑚 (|𝜌| = 0.133)
nd no multiple optima seem to exist in the log𝐸 − 𝜂𝑚 plane. 𝜈 and
seem to be independent of each other at iteration 5 (|𝜌| = 0.173),

lthough some clusters exist at 𝜙 ≈ 35◦. The correlation coefficients
ecome unreliable when several isolated clusters of samples emerge
rom the resampling algorithm. This happens most significantly to the
olling parameters 𝛽𝑚 and 𝜂𝑚. The samples in the 𝛽𝑚 − 𝜂𝑚 plane show a
urved, non-monotonic trend along which all combinations of 𝛽𝑚 and
𝑚 can potentially be a good solution. Although multiple solutions exist
or 𝛽𝑚 and 𝜂𝑚, they appear to show moderate correlations with the inter-

article friction angle 𝜙, with |𝜌| = 0.332 and 0.392. 𝐸 and 𝜙 seems to
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Fig. 9. GL error 𝜖GL over iteration number using synthetic reference data.

e moderately correlated as well, particularly in iteration 5, with |𝜌| =
0.479. As shown in Fig. 8(f), at iteration 5 the accuracy is acceptable
for a standard calibration. The negative outcome of continuing the
iterations (after iteration 5) is that some local optima will tend to be
overlooked as the iterations continue, even though they are identified
in several previous iterations.

4. GL using synthetic reference data

As shown in Section 3, the outcome of a GL calibration depends on
simulation parameters (e.g. boundary conditions, number of particles)
as well as on calibration specific parameters. Thus, it is possible that
for different parameter combinations the model responses are accurate
to a similar degree. This opens a question: which combination is the
correct one? For a proper parametric study of GL-specific parameters,
it is beneficial to compare the model responses against an analytical
solution. Since there is no analytical solution for the problem at hand,
synthetic data generated using a DEM simulation can be used. The
benefit of this approach is that not only the confidence in model
responses is increased, but the micro-mechanical parameters to be
calibrated are known a priori.

4.1. Numerical set-up and proof of concept

As a proof of concept, synthetic reference data is generated using
a DEM simulation with 2000 particles. The choice for 2000 particles
is arbitrary and based on the main objective to investigate the perfor-
mance of GL and not to perform detailed DEM analyses. Using 2000
particles allows keeping the computational costs of the following study
at an acceptable level.

A similar simulation set-up as in Section 3.1 is used for the synthetic
data generation and the subsequent GL calibrations. Thus, similar to the
previous calibrations, all simulations start with the exact same prepared
initial packing and hence the same initial porosity. The same linear
contact law with a confining pressure of 𝜎𝑐 = 0.5MPa is considered.

he packings are loaded incrementally for every 0.4% axial strain,
followed by a relaxation stage (see Section 3.1), until the total axial
strain reaches 20%. Note, that the considered strain window (i.e. the
history) has a direct impact on the calibration results. The longer the
history, in this case, the history from zero to maximum axial strain, the
more information is available for calibrating the parameters and, hence,
the more representative the calibrated parameters will be. All micro-
mechanical parameter samples from the last iteration step of the GL
result for 2000 particles are used to define the target synthetic micro-
mechanical parameters. They are defined as the weighted sum of all
parameters of the final samples with associated posterior probabilities.
10

If not explicitly stated otherwise, the predefined parameter ranges a
indicated in Table 2 and a sample size based on 𝛼 = 10 (cf. Eq. (4))
are used. The synthetic micro-mechanical parameters for the synthetic
reference data generation are listed in Table 6.

The convergence of the GL error 𝜖GL over the number of iterations
is plotted in Fig. 9. It can be seen that 𝜖GL converges to 1.88% at
teration 10. A significant reduction in 𝜖GL is observed within the
irst six iterations, with a reduced convergence rate afterwards. This
ndicates that a good fit has already been found after iteration 6 and
lightly better solutions close to this fit are found in the subsequent
terations. This is in line with the findings of Section 3.4, where an
cceptable fit is found after iteration 5.

The calibrated synthetic micro-mechanical parameters are listed in
able 6. Comparing the calibrated with the synthetic micro-mechanical
arameters reveals that the parameters found by GL are very close to
he parameters of the synthetic data. The differences in log𝐸 and 𝜙
re within 0.15 and 1.53%, respectively. The differences in the remain-
ng three parameters are slightly more and can be attributed to the
andomness in the microstructure.

Fig. 10 shows the model responses and the synthetic data. An ex-
ellent agreement can be observed for both stress ratio and volumetric
train. This can also be seen in the observation sample errors 𝜖stress and
strain (Table 6). They are 1.06 and 1.20%, respectively, which again
ighlights the excellent fit. Moreover, the combined sample error 𝜖
s with 1.13% smaller than all 𝜖 obtained for the calibrations using
xperimental data (cf. Section 3).

.2. Combined influence of predefined parameter ranges and number of
amples

For the investigation of the influence of the predefined parameter
ange on the performance of GL, only the range for log𝐸 is varied

according to Table 7 and the default ranges as indicated in Table 2
are used for the remaining parameters. The reason why only log𝐸 is
aken into account is that the default ranges of 𝛽𝑚 and 𝜂𝑚 already cover
heir full range and with 𝜈 ∈ [0, 0.5] and 𝜙 ∈ [0 ◦, 60 ◦] the majority of
ssociated possible ranges is covered. In contrast, the possible range for

is considerably wider and can vary in magnitude depending on the
aterial.

GL is performed for the given ranges for 𝛼 = 5, 10 and 20 in order to
nvestigate the combined influence of the predefined parameter range
ith the number of samples. The goal is to investigate if there is a
ependence of the predefined parameter ranges on the specific number
f required samples.

Fig. 11 shows the evolution of 𝜖GL over the iteration number for
ll combinations. It should be noted that the results for the wide
ange with 𝛼 = 5 are truncated and that GL was terminated after
00 iterations. Even though 𝜖GL converges around 10.00%, the applied
ermination criteria are never fulfilled. Moreover, 𝜖GL is significantly
igher in comparison to all other combinations. Thus, using 𝛼 = 5 and
he wide range leads to an unsuccessful GL calibration. Similarly, GL is
ot immediately terminated for the mid range with 𝛼 = 5 and 𝛼 = 20,
ven though there are no noticeable changes in 𝜖GL after iteration 7
nd it takes additional iterations before the GL termination criteria are
ulfilled. It seems that the performance of GL depends on the predefined
arameter ranges and the number of samples. Nevertheless, most of the
ombinations converge within less than 10 iterations.

The associated calibrated micro-mechanical parameters and the
orresponding errors 𝜖stress, 𝜖strain and 𝜖 are listed in Table 8. In ad-
ition, Fig. 12 depicts the associated model responses compared with
he synthetic data. Generally a very good agreement can be observed
etween model responses and synthetic data. The combinations with
he smallest sample size (𝛼 = 5) and the small and wide ranges deviate
he most. This is also confirmed by the errors listed in Table 8.

In the following, the combined sample errors 𝜖 are used to evaluate
nd compare the GL model responses. The errors are between 1.13

nd 6.36%. Five out of nine errors are below 2% and the associated
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Table 6
Synthetic and calibrated micro-mechanical parameters.

Identified parameters Errors [%]

log𝐸 [GPa] 𝜈 [–] 𝜙 [◦] 𝛽𝑚
[

Nm rad−1
]

𝜂𝑚 [–] 𝜖stress 𝜖strain 𝜖

Synthetic data 8.720 0.227 28.099 0.079 0.569 – – –
Calibrated 8.733 0.186 28.530 0.095 0.797 1.06 1.20 1.13
Table 7
Ranges for log𝐸 used in GL for studying the influence of the predefined parameter
range.

Small range Mid range Wide range

log𝐸 [GPa] 8–10 7–11 6–12

calibration results are classified as optimal. Independent of the range,
𝜖 is always higher than 2% for 𝛼 = 5. Thus, a value of 𝛼 = 5 turns out to
e sub-optimal. A reason behind this is that for 𝛼 = 5 the highest log𝐸
alues are obtained, all overestimating the synthetic solution.

The remaining GL calibrations with 𝜖 higher than 2% are for the
ide range with 𝛼 = 10, resulting in 𝜖 = 2.63%. In contrast, the error

s 1.63% for the small range and 1.13% for the mid range. Since 𝜖 is
only 1.28% for the wide range and 𝛼 = 20, the number of samples with
𝛼 = 10 is not sufficient for the wide range. Furthermore, the results
indicate that there is a dependency between the number of samples
and the predefined parameter ranges. The wider the ranges, the more
samples should be used. Additionally, the error for the small ranges
is always higher than for the associated mid ranges. The reason behind
this is that, for small ranges, log𝐸 tends to be overestimated and, hence,
higher than for the mid ranges.

The most important finding is that 𝛼 = 10 is sufficient when
the range of predefined inter-particle Young’s modulus is not exces-
sively wide. The wider the range, the more samples are required for
a successful calibration. To confirm this hypothesis, two additional
11
GL calibrations are performed. Considered is an extra wide range of
log𝐸 ∈ [5GPa, 13GPa] with 𝛼 = 20 and 𝛼 = 30. Based on the previous
results, a better GL result for 𝛼 = 30 is expected. Table 9 summarises
the final estimated micro-mechanical parameters. It should be noted
that GL was terminated manually after step 100 for 𝛼 = 20. The
resulting micro-mechanical parameters differ clearly from each other,
whereby the parameters for 𝛼 = 30 are overall closer to the synthetic
micro-mechanical parameters (cf. Table 6).

Fig. 13 compares the stress–strain responses with the synthetic data.
An excellent fit can be observed for 𝛼 = 30, whereas the GL model
response for 𝛼 = 20 only fits the stress ratio reasonably well. The
combined sample error 𝜖 is 8.52% for 𝛼 = 20, indicating that the
terminated GL model responses are not very accurate. On the contrary,
GL converges for 𝛼 = 30 with 𝜖 = 1.28% (Table 9).

4.3. Prediction for uncalibrated stress paths

In a next step, the synthetic micro-mechanical parameters and the
calibrated parameters obtained for the proof-of-concept (Table 6) are
used for the sake of validation. Therefore, model responses for the
uncalibrated stress paths with confining pressures 𝝈𝑐 = 0.2MPa and
1.0MPa are considered. Note that in contrast to the experimental refer-
ence data in Section 3, particle crushing or change of grain morphology
are irrelevant (i.e. spheres will stay spheres) and the previously men-
tioned correlations of the micro-mechanical parameters and the applied
confining pressure are non-existing.
Fig. 10. GL Model responses in (a) stress ratio and (b) volumetric strain compared with synthetic reference data.
Table 8
Identified micro-mechanical parameters for all combinations and corresponding errors.
Combination Identified parameters Errors [%]

Range 𝛼 log𝐸 [GPa] 𝜈 [–] 𝜙 [◦] 𝛽𝑚
[

Nm rad−1
]

𝜂𝑚 [–] 𝜖stress 𝜖strain 𝜖

Small 5 8.950 0.063 26.937 0.466 0.217 1.45 6.80 4.13
Mid 5 8.805 0.184 26.406 0.112 0.554 1.76 2.88 2.32
Wide 5 9.090 0.381 22.721 0.068 0.432 4.19 8.52 6.36
Small 10 8.785 0.122 27.285 0.222 0.236 1.08 2.18 1.63
Mid 10 8.733 0.186 28.530 0.095 0.797 1.06 1.20 1.13
Wide 10 8.736 0.300 26.625 0.078 0.767 2.71 2.55 2.63
Small 20 8.778 0.107 26.736 0.741 0.175 1.82 1.94 1.88
Mid 20 8.706 0.286 27.928 0.069 0.493 1.44 1.33 1.38
Wide 20 8.715 0.198 27.635 0.115 0.260 0.95 1.61 1.28
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Fig. 11. GL error 𝜖GL over iteration number for all combinations of 𝛼 values and predefined parameter ranges.
Table 9
Identified micro-mechanical parameters for extra wide parameter ranges and corresponding errors.
Combination Identified parameters Errors [%]

Range 𝛼 log𝐸 [GPa] 𝜈 [–] 𝜙 [◦] 𝛽𝑚
[

Nm rad−1
]

𝜂𝑚 [–] 𝜖stress 𝜖strain 𝜖

Extra wide 20 9.219 0.037 24.365 0.637 0.520 3.03 14.01 8.52
Extra wide 30 8.738 0.169 27.129 0.174 0.233 1.15 1.41 1.28
Fig. 12. Model responses in (a) stress ratio and (b) volumetric strain for varying ranges and 𝛼 values.
Fig. 13. Model responses in (a) stress ratio and (b) volumetric strain for extra wide range and different 𝛼 values.
12
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Table 10
Resulting errors for the model responses under uncalibrated confining pressures.

Confining pressure Errors [%]

𝝈𝑐 [MPa] 𝜖stress 𝜖strain 𝜖

0.2 2.68 2.60 2.64
1.0 1.11 2.26 1.69

The model responses in stress ratio and volumetric strain for the
entioned sets of micro-mechanical parameters under 𝝈𝑐 = 0.2MPa

nd 1.0MPa are depicted in Fig. 14. The discrete points belong to
he model responses obtained with the synthetic parameters. The solid
ines correspond to the predictions using the parameters calibrated for
𝑐 = 0.5MPa. Overall, a very good agreement between the curves of

he synthetic and calibrated parameters is obtained for both confining
ressures. The stress responses for 𝝈𝑐 = 1.0MPa are almost identical,
hereas for 𝝈𝑐 = 0.2MPa some differences are observable for strains
reater than 15%. This is also reflected by the associated errors 𝜖stress,
strain and 𝜖, depicted in Table 10.

Altogether, satisfactory results are obtained when comparing the
odel responses under these two confining pressures for the synthetic

nd calibrated micro-mechanical material parameters. This suggests
hat the calibrated parameters also give reliable results for predictions
nder non-calibrated confining pressures.

.4. Micro-mechanical predictions

So far, all investigations have been done with respect to the macro-
copic model responses and successful calibration was achieved at the
acroscale. An open question is how well the fabric is captured us-

ng the micro-mechanical parameters calibrated from the macroscopic
esponses. Since the synthetic data is generated by a DEM simulation,
ll required micro-mechanical information of the reference solution is
vailable. This allows an accurate comparison of the micro-structure
ver time. This can also be seen as an additional validation of the GL
esults since no micro-mechanical data is used for the calibration.

For the micro-mechanical consideration, the coordination number
and fabric are considered. Neglecting particles which do not con-

ribute to a stable state (Thornton, 2000), the coordination number is
omputed as

=
2𝐶 −𝑁𝑐

1
𝑁𝑐 −𝑁𝑐

0 −𝑁𝑐
1

(8)

here 𝐶 is the accumulated number of contacts, 𝑁𝑐 the number of
articles and 𝑁𝑐

0 and 𝑁𝑐
1 the number of particles with zero and one con-

act, respectively. The fabric and mechanical anisotropy is evaluated on
he basis of the fabric tensors (Guo and Zhao, 2013; Rothenburg and
athurst, 1989)

𝝋𝑐 = 1
𝑁𝑐

∑

𝑁𝑐
𝐧𝑐 ⊗ 𝐧𝑐

𝝌𝑛 = 1
𝑁𝑐

∑

𝑁𝑐

𝑓 𝑐
𝑛𝐧

𝑐 ⊗ 𝐧𝑐

1 + 𝐚𝑐 ∶ (𝐧𝑐 ⊗ 𝐧𝑐 )

𝝌 𝑡 = 1
𝑁𝑐

∑

𝑁𝑐

𝑓 𝑐
𝑡 𝐭

𝑐 ⊗ 𝐧𝑐

1 + 𝐚𝑐 ∶ (𝐧𝑐 ⊗ 𝐧𝑐 )
.

(9)

he fabric tensors are an indication of the spatial distribution of the
ontact normals 𝝋𝑐 , the fabric of the normal force chains 𝝌𝑛 and the
abric of the tangential force chains 𝝌 𝑡. In Eq. (9), 𝐧𝑐 and 𝐭𝑐 are the
ormal and tangential unit vectors; 𝑓 𝑐

𝑛 and 𝑓 𝑐
𝑡 are the magnitudes of the

nter-particle contact forces in the normal and tangential directions. For
he definition of anisotropies, the deviatoric parts of the fabric tensors
re used. Further, the anisotropic tensor due to geometrical change
𝑐 as well as the mechanical anisotropy tensors corresponding to the
13
able 11
rrors in coordination number and anisotropic indicators.
Combination Errors [%]

Range 𝛼 Grading 𝜖Z 𝜖𝑎𝑐 𝜖𝑎𝑛 𝜖𝑎𝑡

Wide 5 sub-optimal 5.16 7.33 4.13 15.32
Mid 10 optimal 0.43 2.02 1.31 2.15
Extra Wide 20 sub-optimal 2.02 6.01 3.63 3.27
Extra Wide 30 optimal 0.49 1.83 1.50 2.99

normal and tangential parts of force chains 𝐚𝑛 and 𝐚𝑡 are used. They
are defined as

𝐚𝑐 = 15
2

dev(𝝋𝑐 )

𝐚𝑛 = 15
2

dev(𝝌𝑛)
tr(𝝌𝑛)

𝐚𝑡 = 15
3

dev(𝝌 𝑡)
tr(𝝌𝑛)

.

(10)

Based on 𝑆𝑟, the inclination between the respective anisotropy tensor
and the stress deviator dev(𝝈), the anisotropic indicators 𝑎∗ (∗ stands
for 𝑐, 𝑛 and 𝑡) are computed as

∗ = sign(𝑆𝑟)
√

3
2
𝐚∗ ∶ 𝐚∗. (11)

hus, the second invariant of the anisotropic tensor is used to measure
he intensity of the anisotropy. In the following analysis 𝑎𝑐 , 𝑎𝑛 and 𝑎𝑡,
alculated according to Eq. (11), are used in the comparisons.

Four GL results are considered in the analysis, two optimal and
wo sub-optimal solutions. The classification is done with respect to
he combined sample errors 𝜖. The two best GL results, mid range
ith 𝛼 = 10 and extra wide range with 𝛼 = 30 are used as optimal

olutions. Their corresponding errors are with 𝜖 = 1.13% and 𝜖 = 1.28%
he smallest. In contrast, the two worst GL results, extra wide range
ith 𝛼 = 20 and wide range with 𝛼 = 5, are used as sub-optimal

olutions. Their corresponding errors are with 𝜖 = 8.52% and 𝜖 = 6.36%
he highest. As described before, the associated parameters and model
esponses for the mid and wide range are depicted in Table 8 and
ig. 12, respectively. The same is depicted for the extra wide range
n Table 9 and Fig. 13 respectively.

For a better understanding on how a GL calibration influences the
icro-structure, the coordination number and the anisotropic indica-

ors of the chosen calibrations are compared with those of the synthetic
ata. The relevant differences (𝛥) are plotted in Fig. 15. Additionally,
he observation sample errors (calculated according to Eq. (5)) are used
s quantitative evaluation. They are shown in Table 11.

For the differences in both coordination number and anisotropic
ndicators, a clear tendency can be observed. The maximum difference
n each plot belongs to the wide range with 𝛼 = 5 and is already
bservable within 2% axial strain. Compared with the other GL results,
he deviations of 𝛼 = 5 from the reference solution are the highest over
he whole strain range. The differences in the coordination number and
he anisotropic indicator in the tangential direction are significantly
igher over the entire strain range, compared with the other GL so-
utions. Accordingly, all corresponding observation sample errors 𝜖∗
∗= 𝑍, 𝑎𝑐 , 𝑎𝑛, 𝑎𝑡) are the highest for this calibration.

Large differences are also observed for the second sub-optimal GL
esult (extra wide with 𝛼 = 20). Similar to the other sub-optimal result
iscussed previously, large differences are obtained within the first
art of the applied strain range. From a quantitative point of view the
orresponding 𝜖∗ are relatively high as well.

In contrast to the two sub-optimal GL results, significantly smaller
ifferences are obtained for the two optimal GL results. This is also
eflected in the observation sample errors, between 0.43% and 2.99%.
s a consequence, the micro-mechanical behaviour in terms of fabric

s captured significantly better, leading to the macroscopic responses
lmost identical to the reference data.
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Fig. 14. Model responses in (a) stress ratio and (b) volumetric strain for the confining pressures of 𝝈𝑐 = 0.2MPa and 1.0MPa. The discrete points show the model responses using
he synthetic parameter set. The solid lines correspond to the predictions using the parameter set calibrated for 𝝈𝑐 = 0.5MPa (Table 6).
Fig. 15. Differences (𝛥) of (a) coordination number 𝑍, and anisotropic indicators (b) 𝑎𝑐 , (c) 𝑎𝑛 and (d) 𝑎𝑡 with respect to solutions of the synthetic data.
able 12
orrelations coefficients between errors in model response and errors in fabric.

𝜖Z 𝜖𝑎𝑐 𝜖𝑎𝑛 𝜖𝑎𝑡

𝜖stress 0.82 0.79 0.95 0.86
𝜖strain 0.69 0.86 0.73 0.44
14
The result indicates that there are inherent relationships between
the errors in the macroscopic and microscopic model responses. As a
measurement for the correlation, the correlation coefficient introduced
in Section 3.4 is used. The observation sample errors of the macroscopic
model response and the fabric are used as the variables. Table 12
summarises the resulting correlation coefficients between errors in the

macroscopic model prediction and errors in the fabric. With respect to
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the observation sample error in stress ratio, the correlation coefficients
are 0.82, 0.79, 0.95 and 0.86. That means there is at least a strong
inear correlation between 𝜖stress and all observation sample errors in

the fabric.

4.5. Computation times

Computation time might be a limiting factor for the practical ap-
plication of GL. Hence, the computation times of the synthetic GL
calibrations are analysed in more detail. Considered are the maximum
computation time per iteration, the accumulated maximum computa-
tion time and the accumulated total computation time (Fig. 16). Note,
that an iteration always consists of a batch of 𝑁𝑝 DEM simulations
(model evaluations). If necessary, the results are truncated after iter-
ation 15. At this point, the GL error 𝜖GL has generally converged (cf.
ig. 11) and no noticeable changes are expected.

From a computational resource point of view, it is essential to
nvestigate the accumulated maximum computation time as well as the
ccumulated total computation time. Since the time of sample gener-
tion and resampling is negligible in comparison to the DEM model
valuations, the accumulated simulation times represent how long the
L calibrations can take. The accumulated maximum computation time

epresents a GL calibration under perfect conditions where all DEM
imulations of a batch, i.e. within an iteration, are performed in parallel
e.g. 80 threads would be required for 80 model evaluations). In
his case the maximum computation time per iteration determines the
ime required for the corresponding iteration. The accumulated total
omputation time represents a GL calibration under the worst possible
onditions. All DEM model evaluations are performed in series and
hus the sum of simulation times within a batch must be considered.
s a consequence, the accumulated maximum and accumulated total
omputation times in the final iteration represent the times required
or a complete GL calibration. The latter one is under the worst possible
nd the first-mentioned under the best possible conditions.

The highest maximum computation times per iteration are obtained
n iterations 0 and 1 for all GL calibrations (Fig. 16(a)). The peaks are in
he range of 0.52–4.08 h. Thus, a high variation between the different
L calibrations is observable. The three highest peaks correspond to

he three GL calibrations with a wide range and the two smallest peaks
o small ranges. Generally, the maximum computation time reduces
ver the number of iterations and at iteration 6 the highest maximum
omputation time reduces to 0.29 h. Afterwards, only minor changes
n maximum computation times are observed. This is in line with the
inding of Section 3.4. An acceptable accuracy for standard calibrations
s achieved and only minor changes of micro-mechanical parameters
ithin the samples take place. Thus, there is no big difference in

omputation times anymore. Furthermore, the high maximum compu-
ation times in the beginning (i.e. iteration 0 and 1) are related to
amples with high log𝐸. The higher log𝐸, the smaller the time step and

the higher the computation time. Consequently, the highest maximum
computation times in the beginning are obtained with the widest range.

In addition to the maximum computation times per iteration, the
computation time histograms of iterations 0 and 1 for the calibration
with the wide range and 𝛼 = 20 are shown as an inset in Fig. 16(a). It
an be seen that in iteration 0 seven DEM simulations take between 1–
h, two simulations between 2 and 3 h and a single simulation slightly
ore than 4 h (160 simulations in total). In contrast, in iteration 1 only

ive simulations take between 1 and 2 h with a maximum computation
ime of 1.41 h. The reason for this is that the samples in iteration 0 are
uasi-randomly generated by a Halton number generator with respect
o the pre-defined parameters ranges (cf. Section 2.2). This includes
he generation of samples with high stiffness as well as samples with
nfavourable parameter combinations. Hence, the high computation
imes are not only related to the required time step, but also the
umber of time steps needed to reach stability for certain unfavourable
15

arameter combinations, such as 𝜙 close to zero. Since samples with a
nfavourable parameter combinations are generally not giving good
odel responses, they are automatically eliminated after iteration 0.

The final accumulated maximum computation times range from
.96 h for the small range with 𝛼 = 5 to 8.29 h for the wide range with
= 20 (Fig. 16(b)). For the default range (mid range) and the advised
= 10 the final accumulated maximum computation time is 3.91 h

bout twice as high as the minimum time. However, the associated
ombined sample error of 1.13% is clearly smaller than the 4.13% which
s obtained for the small range with 𝛼 = 5 (cf. Table 8).

Considering the accumulated total computation times (Fig. 16(c)),
he final values are drastically higher than for the accumulated max-
mum computation times. For the default range (mid range) and the
dvised 𝛼 = 10 the final accumulated total computation time is 119.24 h.
he minimum of 44.15 h is obtained for the small range with 𝛼 = 5.
ue to the serial approach, the three lowest final accumulated total
omputation times correspond to the GL runs with 𝛼 = 5. In contrast,
he three highest times, each greater than 250 h, are obtained for the
L runs with 𝛼 = 20. This reveals the importance of using a platform
hich allows parallel execution of the DEM simulations.

. Discussion

In the previous sections, a comprehensive study on the performance
f iterative Bayesian filtering for the calibration of DEM models based
n triaxial compression tests was presented. In a first step, the superior
ehaviour of the iterative approach compared to the non-iterative
pproach was shown by performing Bayesian calibrations of micro-
echanical parameters of Toyoura sand (Section 3). The errors in stress

atio and volumetric strain for the confining pressure of 𝜎𝑐 = 0.5MPa
re reduced by factors of 3.77 and 4.10, respectively. The associated
alibration was automatically terminated after iteration 6, i.e. a total
f seven simulation batches were necessary to reach convergence. With
0 samples per batch (cf. Eq. (4) for 𝛼 = 10 and five fitting parameters),
60 model evaluations were performed to obtain the optimal solution.

In a second step, synthetic reference data was used as a quasi-
nalytic solution to further the validation in Section 4. Based on 11 GL
alibrations, it was shown that GL leads to outstanding accuracy when
sufficient number of samples was used. Generally, the number of re-

uired samples was estimated with respect to the unknown scalar 𝛼 via
q. (4). However, it was discovered that 𝛼, thus the optimal number of
amples, depends on the predefined parameter ranges. Only a varying
ange of inter-particle Young’s modulus, 𝛥 log𝐸, is considered since the
anges of the remaining parameters were already well covered.

The variation of the combined sample error with respect to log𝐸
nd 𝛼 is now shown in Fig. 17. 𝛥 log𝐸 is plotted against 𝛼 for all
ynthetic GL calibrations. The corresponding combined sample errors
𝜖 are classified and indicated by different colours. Green is related to
𝜖 < 2% and classified as optimal. Red and orange correspond to 𝜖 > 5%
nd 2% ≤ 𝜖 ≤ 5%, respectively, and represent sub-optimal solutions.

Sub-optimal solutions are obtained for all simulations with 𝛼 = 5
nd the first optimal solutions (green dots) are obtained for 𝛼 = 10.
onsequently, there is a threshold for 𝛼 below which no optimal GL
olutions are obtained, independent of the range 𝛥 log𝐸. The reason
ehind this is that the number of samples is not representative for the
istribution of individual micro-mechanical parameters within the pre-
efined parameter ranges. The same holds for the wide range (𝛥 log𝐸 =
GPa) with 𝛼 = 10 and the extra wide range (𝛥 log𝐸 = 8GPa) with

𝛼 = 20.
Based on the regime map for the calibration quality, it is advised

to use 𝛼 = 10 as the default value to determine the number of samples
whilst applying a maximum predefined range of 𝛥 log𝐸 = 4GPa for the
inter-particle Young’s modulus. If it is impossible to pre-estimate 𝐸 in
the range of 𝛥 log𝐸 = 4GPa it is advised to increase 𝛼 by 10 for each
widening of 𝛥(𝛥 log)𝐸 = 2GPa.

Generally, GL results with acceptable accuracy are obtained at iter-

tion 6. Up to this iteration, significant changes within the samples are
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Fig. 16. (a) Maximum computation time per iteration with inlet showing computation time histograms of iterations 0 and 1 for wide range and 𝛼 = 20, (b) accumulated maximum
(parallel) computation time and (c) accumulated total (serial) computation time. Note that all simulations have been carried out using one thread only.
Fig. 17. Colour coded combined sample errors 𝜖 for all synthetic GL calibrations with
respect to the predefined range 𝛥 log𝐸 and sample size defining factor 𝛼.

created by the resampling algorithm. Afterwards only minor changes
in micro-mechanical parameters within the samples are observed and
local minima with low probabilities are overlooked for the sake of the
more probable local minima. To investigate this behaviour further, the
evolution of observation sample errors in stress ratio 𝜖stress, volumetric
strain 𝜖strain and the combined sample error 𝜖 are considered for the
sample with the highest probability in each iteration. They are plotted
for the synthetic GL calibration with 𝛼 = 10 and the mid range
(𝛥 log𝐸 = 4GPa) in Fig. 18.
16
Fig. 18. Evolution of observation sample errors in stress ratio 𝜖stress, volumetric strain
𝜖strain and combined sample error 𝜖 for synthetic GL calibration with 𝛼 = 10 and mid
range (𝛥 log𝐸 = 4GPa).

From Fig. 18 it can be clearly seen that 𝜖 decreases with an in-
creasing number of iterations. In contrast, there is no oscillation free
behaviour for 𝜖stress and 𝜖strain. On the one hand, 𝜖stress increases from
3.79 to 10.60% after iteration 1 before decreasing again to 3.66% at
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iteration 3. On the other hand, 𝜖strain decreases from 15.55 to 1.55%
after iteration 1 before increasing again to 5.81% at iteration 3. The
reason behind this oscillatory behaviour is that the local minima for
the sample with the highest probability changes. Thus, it is not a
convergence problem of GL. This is seen in the combined sample
error 𝜖 which gradually decreases from 9.67 to 6.07 and 4.73% from
iteration 1 to iteration 3. Starting from iteration 5 both, 𝜖stress and
𝜖strain decrease with an increasing number of iterations and with 𝜖 =
3.11% an acceptable accuracy is obtained. With respect to the previous
classification the result is still sub-optimal. However, after iteration 5 𝜖
decreases slowly to 2.36, 1.99, 1.73, 1.51 and finally to 1.13% in iteration
10. Thus, 𝜖 is only reduced by 1.98% within the last five iterations. In
contrast, 𝜖 is reduced by 13.35% from iteration 0 to iteration 5. As a
consequence, the question arises if the further reduction of errors after
iteration 5 is in proportion to the additional computational effort. This
question is problem dependent and cannot be answered in a general
manner.

As shown in Section 4.2, it is not sufficient to only use the nor-
malised covariance coefficient 𝑠 for the termination of GL. More sophis-
ticated termination criteria are obtained when additionally including
the increment of 𝜖GL, as well as the increment of 𝜖. Including the
increment of 𝜖GL guarantees an automatic termination of the calibration
in case of convergence to a normalised covariance coefficient higher
than the applied threshold. This is the case when resampling does not
lead to noticeable changes in the parameter samples anymore. A termi-
nated calibration with a normalised covariance coefficient significantly
higher than the threshold can then be used as an indicator for sub-
optimal results. The inclusion of 𝜖 in the termination criteria allows
the possible reduction of GL iterations when the desired accuracy is
reached. Thus, it represents a trade-off between accuracy and compu-
tational effort. Even if the desired accuracy is not reached it might
be beneficial to automatically terminate GL when the increment of 𝜖
undercuts a predefined threshold. This is required for the calibration
with highly disturbed experimental data where an excellent fit, inde-
pendent of the applied optimisation scheme, is impossible. Thus, it
might be possible that the desired 𝜖 is never reached. Terminating GL
when the increment of 𝜖 is sufficiently small guarantees a solution close
to the best possible solution with a reduced computational effort for
the calibration. Based on the GL results using synthetic data, 𝑠 = 0.01,
𝛥𝜖𝐺𝐿 = 0.2%, 𝜖 = 2% and 𝛥𝜖 = 0.2% are proposed as default values
for the termination criteria. Consequently, new termination criteria are
implemented in GL:

𝑠 ≤ 0.01 or 𝛥𝜖𝐺𝐿 ≤ 0.2% or 𝜖 ≤ 2% or 𝛥𝜖 ≤ 0.2%. (12)

Furthermore, Section 4.2 shows that a reasonable, but still sub-
optimal, fit for the stress is possible while the error for the volumetric
strain can be quite high (e.g. Fig. 13), even though both are used as ref-
erence data in the calibration. This indicates that the volumetric strain
should not be neglected in the reference data. Otherwise, significant
errors in the corresponding model response in volumetric strain are
expected. To proof this hypothesis, the GL calibration with 𝛼 = 10 and
the mid range is run again, but without the volumetric strain in the
reference data.

Fig. 19 shows the associated model response in stress ratio and
model prediction in volumetric strain, obtained in iteration 7. As
expected, an excellent fit for the stress ratio is obtained whereas the
prediction of the volumetric strain is less satisfactory. A quantitative
confirmation is obtained by the corresponding observation sample
errors. The error in stress ratio, 𝜖stress = 1.84%, indicates an optimal
GL result. In contrast, the error in volumetric strain, 𝜖strain = 19.67%,
is more than ten times higher than 𝜖stress. This reveals that it is not
sufficient to consider the stress response only. Moreover, having only a
single observation in the reference data reduces the constraints within
the Bayesian filtering and this increases the risk to fall into sub-optimal
local minima. A benefit of GL is its inherent multi-objectivity. The
17

approach is not limited to a single observation vector. This allows the
calibration of parameters with respect to stress and volumetric strain
response at the same time, as clearly shown in this work.

Micro-mechanical predictions reveal that the error in the fabric
is strongly related to the errors in the macroscopic model response,
independent of the associated micro-mechanical parameters. As a con-
sequence, it is crucial to reduce the error in model responses as much as
possible within the calibration, even if it comes with higher computa-
tional costs. Otherwise, errors in the fabric are expected and the micro-
mechanical behaviour cannot be capture correctly in more complex
configurations. This is also seen for the differences (𝛥) of coordina-
tion number 𝑍 and anisotropic indicator 𝑎𝑐 with respect to the two
calibrations with 𝛼 = 10 and the mid range (Fig. 20). For both 𝑍
and 𝑎𝑐 the resulting differences with respect to the synthetic solution
are significantly higher when only the stress response is used in the
reference data. This outcome was expected due to the high error in
volumetric strain.

Summarising, the micro-mechanical material behaviour cannot be
captured accurately when a contact model with sub-optimal calibrated
parameters is used for more complex simulations. Thus, it is not advised
to terminate GL for the sake of computational costs before the proposed
threshold of 𝜖 = 2% or a sufficiently large strain range is reached.

The investigation of computation times for GL in Section 4.5 reveals
that the efficiency of GL highly depends on computational resources.
The required computation time for the calibration with 𝛼 = 10 and
the mid range under best possible (all model evaluations in parallel)
and worst possible (all model evaluation in series) conditions vary
significantly. Under the worst possible conditions (119.24 h) the total
computation time is more than 30 times higher than under best possible
conditions (3.91 h). Consequently, it is advised to perform GL on
computing platforms that allow parallelisation.

Based on the findings of this work, a more sophisticated and com-
pletely automated version of GL is developed. Within the calibra-
tion toolbox, the predefined parameter ranges of Table 2 (log𝐸 ∈
[7GPa, 11GPa]) and 𝛼 = 10 are set as defaults to guarantee optimal GL
results. Furthermore, the extended termination criteria (Eq. (12)) with
corresponding default values is implemented. Moreover, the toolbox is
designed to run DEM simulations in parallel on several independent
platforms by implementing Python–Shell interfaces for several plat-
forms. The resampling of parameters is performed in Python, the DEM
simulations are started via Shell-script on the chosen platform and as
soon as all simulations have finished the Bayesian filtering is performed
in Python.

6. Conclusions

The work at hand constitutes a major step to a fully-automated
and reliable calibration toolbox for DEM simulations, based on an
iterative Bayesian filtering framework. The presented framework fea-
tures excellent performance in terms of model responses of a triaxial
compression test using the stress as well as the volumetric strain as
reference data. In comparison to the sequential Monte Carlo method,
the errors in stress ratio and volumetric strain are reduced by a factor
of about 4. In addition, with respect to synthetic data, optimal results
with errors between 1 and 2% are obtained. Optimal calibration results
are guaranteed when the number of samples is high enough. With the
proposed default ranges of micro-mechanical parameters, the sample
size is reliably estimated on the basis of the previously unknown
scalar factor 𝛼 by setting a default value of 𝛼 = 10. Thus, for five
micro-mechanical parameters 80 samples are representative for the
distribution of individual parameters within their default ranges.

It is further revealed that the calibration of micro-mechanical pa-
rameters for the DEM is clearly a multi-objective problem. The error
in volumetric strain skyrockets to 19.67% when the volumetric strain is
removed from the reference data. This has also a negative impact on
the prediction in the fabric since it is demonstrated that the errors in
the fabric are correlated to the errors in stress and volumetric strain
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Fig. 19. (a) Model response in stress ratio and (b) model prediction in volumetric strain for synthetic reference data neglecting the volumetric strain in the reference data.
Fig. 20. Differences (𝛥) of (a) coordination number 𝑍 and (b) anisotropic indicator 𝑎𝑐 with respect to the calibrations with 𝛼 = 10 and the mid range.
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redictions. Thus, it is not sufficient to calibrate with respect to the
tress response only.

Moreover, it is shown that the calibrated micro-mechanical pa-
ameters can be used to accurately predict the behaviour under non-
alibrated stress paths provided no particle crushing or change of grain
orphology is involved. Nevertheless, it is also pointed out that particle

rushing or change of grain morphology has an influence on the micro-
echanical parameters, and if relevant, the correct stress regime should

e used in the calibration procedure. The current study focuses on
rained triaxial compression, with the initial micro-structure originat-
ng from a dense Toyoura specimen. Whether the micro-mechanical
arameters calibrated in the dense state can give accurate prediction for
on-calibrated loose states or undrained stress paths is not tested. The
apability of the calibration framework to estimate micro-parameters
rom the whole spectrum of soil volumetric behaviour (i.e., compres-
ive, dilative and volume-conserved) will be investigated in future
ork.

The fully-automated Bayesian calibration toolbox GrainLearn-
ng 1.03 is released based on the current findings. Default values

or the predefined parameter ranges as well as for the sample size
determined on the basis of 𝛼 = 10) are implemented. More complete

3 https://github.com/chyalexcheng/grainLearning
18

a

termination criteria are formulated and implemented. The criteria in-
clude the normalised covariance coefficient and the increment of the
GL error as collective measures of all DEM model responses within an
iteration. If the combined sample error (or its increment) is sufficiently
small, GL will be terminated to avoid redundant iterations that do not
improve the model accuracy further.

A huge benefit of the developed toolbox is its flexible implemen-
tation in terms of Python–Shell interfaces for various computing
latforms as well as its modular expandability. For example, replacing
he simulation framework (model evaluations) in the currently imple-
ented wrapper is straightforward, which means GrainLearning
.0 is not limited by the Yade software. This also means that Grain-
earning can be readily used for calibrating the micro-mechanical
arameters of irregularly-shaped particles, as well as any arbitrary
ulti-objective optimisation problems.

Future work involves implementing and integrating more efficient
ampling and optimisation techniques. Currently, the computational
ost is spent mostly on re-evaluating the DEM model with different
arameter samples. One possibility to reduce the computational cost
s to ‘‘emulate’’ model evaluations in the parameter subspace that has
reviously been visited with a data-driven surrogate model. Moreover,
n extension to additional observation vectors in the reference data in
erms of multiple stress paths would be beneficial. The implementation
s straightforward since GrainLearning 1.0 is designed to accept

n arbitrary number of observations.

https://github.com/chyalexcheng/grainLearning
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