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In this paper, we discuss the Fano response from a hybrid trimer composed of gold and silicon nanospheres. This
allows the structure to exhibit plasmonic properties while having a versatile spectral tuning of its Fano response. We
analyze the Fano response from the point of view of the individual subsystem as well as the coupling of supermodes
of the structure. The coupling between the sustained non-orthogonal eigenmodes can be traced as a result of these
modes sharing the same multipolar moments. With this, we provide insight into designing a hybrid structure with
tunable Fano properties. ©2021Optical Society of America
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1. INTRODUCTION

Fano resonances have attracted much interest in optics due to
their asymmetric lineshapes, which often exhibit very sharp
spectral features [1–3]. Based on their sharp spectral responses,
multiple applications exploiting Fano resonances have been
proposed. Examples of these applications are optical switches
[4–6] and optical sensing devices [7–10]. On the other hand,
the near-field properties of Fano resonances around the scatterer
can also be used to enhance several observable quantities, such as
Raman scattering [11,12], nonlinear response [13,14], circular
dichroism [15,16], or scattering suppression [17].

The origin of Fano resonance is often explained in terms of
spectral interference between different modes supported by the
scatterer [1,2]. For a specific incident field, several modes are
usually excited simultaneously in the scatterer. If some of the
excited modes are nonorthogonal to each other, a cross-coupling
between them occurs. This effect manifests itself in the form of
constructive or destructive interference, which can be measured
from spectrally observable quantities. For the simplest case
involving two nonorthogonal modes, the mode that is spectrally
broader (weaker dispersion) than the other one is called the
bright mode, while the mode with a narrower spectral response
exhibiting rather strong dispersion in its spectral phase is called
the dark mode. The interference between these two modes
results in a sharp spectral response of the scatterer. The most
prominent example of a system whose spectral response can
be fully analyzed by such an argument is the dolmen structure
[18,19].

On the other hand, many scatterers often consist of large
amounts of particles [20–22]. In this case, identifying relevant
modes can be challenging. This complication arises because
the properties of these scatterers cannot be explained simply
in terms of modes supported by each constituent, but rather
as supermodes of interacting particles [23]. These supermodes
depend strongly on the arrangement and the optical proper-
ties of each individual particle. For this particular reason, in
contrast to the interaction of eigenmodes of the isolated subsys-
tem as discussed before, here the collective eigenmodes of the
entire structure are used to explain Fano features arising from
a scatterer consisting of many particles [24,25]. Because this
description relies on collective modes supported by the struc-
ture, their identification is the most important requirement to
understand the feature of Fano resonance that arises from such a
structure.

In this work, using the eigenmode description from the
T-matrix, we investigate the emergence of Fano response in
a trimer scatterer system that consists of gold nanosphere(s)
coupled to silicon nanosphere(s). The sphere is chosen as a basic
building block, as it represents a structure that can be fabricated
easily via a bottom-up approach [26,27]. We chose this hybrid
system because it possesses flexible tunability of the response
of silicon nanospheres and the plasmonic behavior of gold
nanoparticles. We show that the scattering cross section can be
decomposed into terms that come from the contribution of each
individual eigenmode and from the coupling contribution of
the sustained nonorthogonal eigenmodes. Further investiga-
tion shows that these couplings originate from the fact that the
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involved eigenmodes share the same multipole components.
With these results, we provide insight into designing a hybrid
structure that provides a Fano response, which can be useful for
many applications.

2. T-MATRIX FORMULATION FOR
MULTIPARTICLE SYSTEM

When dealing with scattering problems, the fields are usually
decomposed into an orthogonal basis set. In our case, we choose
vector spherical harmonics (VSH) as our preferential basis set
due to the fact that it is quite straightforward to extract multi-
pole information, which we will use extensively later on. Here,
the incident (Ei ) and scattered fields (Es ) of a scatterer can be
expanded in VSH, written as

Ei =

∞∑
n=1

n∑
m=−n

[pmnN(1)
mn + qmnM(1)

mn], (1a)

Es =

∞∑
n=1

n∑
m=−n

[amnN(3)
mn + bmnM(3)

mn]. (1b)

Here, Mmn and Nmn are VSH [28], (pmn, qmn) denote the
expansion coefficients of the incident field, and (amn, bmn)

denote the expansion coefficients of the scattered field. The
superscript on VSH denotes the type of Bessel function being
used: (1) for a spherical Bessel function of the first kind jn or
(3) for a spherical Hankel function of the first kind h(1)n . In
practical computation, the summation over n must be termi-
nated at some value n = NB , which correlates to the amount of
VSH used in the expansion. In our calculation, we use NB = 4,
which yields an error less than 1% over the region of interest.
From these expansion coefficients, we can extract the multi-
pole field contributions [29], specifically, the amn coefficients
are associated with the electric multipoles, and the bmn coef-
ficients are associated with the magnetic multipoles; n = 1
refers to the dipole contribution, n = 2 refers to the quadrupole
contribution, and so on.

To link the scattered and incident field coefficients, T-matrix
formulation can be used. It reads as(

T11 T12

T21 T22

)(
pmn

qmn

)
=

(
amn

bmn

)
. (2)

Here, T11, T12, T21, and T22 are submatrices of the T-matrix of
the system being considered. The T-matrix depends only on the
geometry and configuration of the scatterer and is independent
of the incident field [28]. To obtain the T-matrix of the system,
several numerical methods can be employed. For a single sphere,
the associated T-matrix takes a very simple form, which is a
diagonal matrix. The diagonal components are the correspond-
ing Mie coefficients (an, bn) of the respective sphere [30,31].
For an arbitrary scatterer, the T-matrix can also be obtained as
shown in [32–34].

In a multiparticle system, there are two coordinates that can
be employed for T-matrix formulation: local coordinates of
each individual particle and global coordinates that represent
the whole system [35]. Every field in each local coordinate has
different expansion coefficients. Consider a system consisting of

N particles. In local coordinate formulation, the incident field
on particle j (E j

i ) can be separated into two parts: external field
from a source and scattered fields from the other particles in the
system. This can be stated mathematically as

E j
i = E j

0 +

N∑
l 6= j

El , j
s . (3)

The first term of Eq. (3) denotes the external incident field from
the source in the referential frame of local coordinate j . The
expansion coefficients of this field will be notated as (p j

mn, q j
mn).

The second term describes the scattered field from particle l to
particle j . To evaluate this term, an addition theorem of VSH
must be employed to transform fields from one local coordinate
of the scatterer to the other local coordinates of different scatter-
ers. The translation of the fields means that the VSH in one local
coordinate are expanded into VSH in another local coordinate
[36,37]. Transforming a scattered field from particle l into an
incident field for particle j can be expressed as

M(1)
mn( j )=

∞∑
n=1

n∑
m=−n

[Aµνmn(l , j )M(3)
µν(l)+ Bµνmn(l , j )N(3)

µν(l)],

(4a)

N(1)
mn( j )=

∞∑
n=1

n∑
m=−n

[Bµνmn(l , j )M(3)
µν(l)+ Aµνmn(l , j )N(3)

µν(l)],

(4b)

where Aµνmn(l , j ) and Bµνmn(l , j ) represent the translation coeffi-
cient from coordinate l to j [38]. Employing Eq. (4) in Eq. (3),
we obtain

P j
mn = p j

mn −

N∑
l 6= j

∞∑
ν=1

ν∑
µ=−ν

[a l
µν Aµνmn(l , j )+ bl

µνBµνmn(l , j )],

(5a)

Q j
mn = q j

mn −

N∑
l 6= j

∞∑
ν=1

ν∑
µ=−ν

[a l
µνBµνmn(l , j )+ bl

µν Aµνmn(l , j ),

(5b)
where (P j

mn, Q j
mn) denote the expansion coefficients of the total

incident field of particle j , and (a l
µν, bl

µν) denote the expansion
coefficients of the scattered field of particle l . These coefficients
can be linked via T-matrix formulation of the system in local
coordinates, Tlocal, as

Tlocal

(
P j

mn

Q j
mn

)
=

(
a j

mn

b j
mn

)
. (6)

Using Eq. (6), the scattered field from each individual particle
can be obtained.

To obtain the T-matrix in global coordinates, we have to
choose a single point in space as the referential global coordinate
origin. In principle, there are no rules for choosing this point, so
it can be any arbitrary point in space. Nevertheless, choosing a
referential point too far from the system requires higher NB for
the infinite summation to be converged. Choosing a symmetric
point of the system as the global origin usually helps to keep NB
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as low as possible [39]. After choosing the global origin of the
system, the total scattered fields from local coordinates of each
individual particle have to be translated into the chosen global
coordinate system. Furthermore, the external incident field
from the source has to be translated from global coordinates
into local coordinates of each particle [40,41]. The need for
these transformations will become more transparent in its use
in T-matrix transformation. In matrix notation, we obtain
the T-matrix of the system in global coordinates, Tglobal, by
transforming the T-matrix in local coordinates as

Tglobal =WTlocalV , (7)

where W denotes the translation coefficient matrix from local to
global coordinates, and V is the same matrix as W but consists of
translation from global to local coordinates.

3. EXTRACTING EIGENMODES FROM THE
T-MATRIX

Scattering eigenmodes from the system can be extracted using
eigenvalue decomposition (EVD) to the T-matrix. This can be
stated as

T = X E X−1, (8)

where X is a matrix whose columns are the eigenvectors of T,
and E is the diagonal matrix that stores the eigenvalues η of
the matrix T. We can use either Tlocal or Tglobal for the matrix
T. Here, we will use global formulation for mode analysis due
to the reduced number of involved modes compared to local
formulation.

One of the most common observable quantities used to
describe scattering characteristics from a system is the scattering
cross section Csca. To calculate Csca, the summation is performed
over the absolute square of the scattering coefficient (amn, bmn)

[42] associated with individual VSH. In eigenmode analysis,
Csca can be decomposed in terms of modes obtained from the
T-matrix [35]. Using global coordinates formulation, the
decomposition of Csca yields

Csca =
4π

k2

∑
j

∑
i

ηiη
∗

j 〈p|y j 〉〈y i |p〉〈x j |xi 〉. (9)

Here, k is the wavenumber of light, |p〉 refer to coefficients of
external incident field, |xi 〉 denotes the eigenvector associated
with eigenmode i , and |y i 〉 denotes the eigenvectors of the
Hermitian conjugate of T, T†. Further, we can separate the
above summation into direct (i = j ) and interference (i 6= j )
terms to yield

Csca =Cdirect +Cinterference. (10)

The first term of Eq. (10) corresponds to the contribution from
eigenmodes i , while the second term corresponds to the inter-
ference between eigenmodes i and j . This term arises whenever
nonorthogonal modes exist and are excited simultaneously.
This interference term is the source of the emergence of Fano
resonance in the system [25]. Note that this interference term
contains dependency on the incident field as denoted in Eq. (9).
This implies that the Fano properties depend heavily on the
incident field. For example, when discussing Fano properties
arising from different polarizations, the contribution of the
excited eigenmodes and their cross-coupling can be analyzed
directly.

The decomposition of the T-matrix is done independ-
ently for each wavelength. Hence, the eigenmodes for each
wavelength have to be ordered in a distinct way. To sort the
eigenmodes in a proper way, we use a sorting algorithm as
described in [43]. This algorithm computes eigenvalues and
eigenvectors for each wavelength while maintaining order in a
consistent manner.

4. GOLD–SILICON TRIMER STRUCTURE

In this paper, we chose a trimer, as it constitutes a rather simple
structure that supports Fano resonance [44]. Here, we take
silicon as one component of the main building block instead of
a trimer, which is composed of three gold nanospheres due to
the tunability of the response of the silicon nanosphere, allowing
a flexible detuning of the frequency of one of the components.
Consider the case of a single gold nanosphere; a small resonance
peak shift, around 10 nm, can be observed when the radius of
the nanosphere changes from 70 nm to 75 nm and from 75 nm
to 80 nm [Fig. 1(a)]. On the other hand, for the same size of
change, the silicon nanosphere resonance peak shifts more

Fig. 1. Scattering cross section from a single (a) gold nanosphere and (b) silicon nanosphere embedded in vacuum with various radius sizes.
Different resonance shift behavior between silicon and gold nanospheres is observed.
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noticeably around 30 nm [Fig. 1(b)]. This shows that a silicon
nanosphere exhibits a more sensitive response compared to
a gold nanosphere, therefore showing its superior tunability
compared to the gold nanosphere.

In this paper, we assume that our structure is embedded
in air, nb = 1. Experimental data of the refractive index from
Johnson–Christy [45] and Aspnes–Studna [46] are used for gold
and silicon calculations, respectively. To understand the effect of
the coupling between two subsystems, it is desirable to under-
stand the response of each individual subsystem. For our case,
we want to design the gold dimer to support the magnetic dipole
(MD) mode, which will be coupled to the mode supported by
the silicon sphere later on. We keep the size of an individual
sphere big enough such that it is comparable to the size of the
silicon nanosphere that will be introduced later on. We choose
the radius of the gold nanosphere to be 100 nm. The scattering
response and its decomposition into its multipolar components
are shown in Fig. 2(a). Here, we observe that for a single gold
nanosphere, the response consists mainly of the electric dipole
(ED) contribution, which resonates at 615 nm, and a much
smaller electric quadrupole (EQ) contribution, which resonates
at 522 nm. Dimer structure is chosen such that the MD mode
in global coordinates has well-pronounced strength. For this
purpose, we choose center-to-center distance between the two
gold nanospheres to be around half of the wavelength of the
resonance wavelength of the ED mode of a single sphere. Here,
280 nm center-to-center distance is chosen, which translates
into 80 nm surface-to-surface distance. This allows an out-of-
phase response of each individual gold nanoparticle via plane
wave excitation, therefore forming a MD mode in the global
coordinate centered at the center of mass of the two-sphere
system. Figure 2(b) shows the multipolar decomposition of the
scattering cross section with the incident field direction and
polarization denoted in the inset. Here, two dominant modes
are observed, MD and EQ modes. The MD is the direct result of
the design strategy mentioned before. In the center coordinate
system, the EQ appears due to the ED’s arrangement. The ED
response of the total system, however, is suppressed considerably
due to this out-of-phase response of individual spheres.

The second subsystem that needs to be designed is the sili-
con nanosphere. The size of silicon nanospheres should be big
enough to support resonance of a dipole mode. The response
of the silicon nanosphere with a radius Rs is chosen such that
the resonance peak happens to be slightly detuned from the
resonance of the gold dimer structure, resulting in Rs = 75 nm.
The decomposition of scattering response into its multipolar
compositions of this silicon nanosphere can be seen in Fig. 2(c).
Here, a pronounced MD mode appears around 630 nm, which
is slightly blue shifted more than the mode resonance frequen-
cies of the gold dimer. Finally, we couple these two subsystems
by placing the silicon nanosphere such that it forms an equi-
lateral triangle with the distance to the gold dimer structure
d2 = 55 nm. The structure is illuminated by a plane wave with
its polarization and propagation vector of incident wave all
in-plane to allow the efficient excitation of the MD mode of
the gold dimer structure. This incident field will also excite the
MD mode of the silicon nanosphere, therefore allowing mode
coupling and, consequently, the emergence of a Fano profile.

Fig. 2. Multipolar decomposition of the scattering cross section
of (a) single gold sphere, (b) gold dimer, and (c) single silicon sphere,
which can be regarded as subsystems of the structure being considered
in Fig. 3. Shown here are the electric dipole (ED), magnetic dipole
(MD), electric quadrupole (EQ), and magnetic quadrupole (MQ)
contribution to the cross section.

The schematic of the resulted structure as well as the incident
field scenario are depicted in Fig. 3.

To allow a more quantitative analysis of the origin of the
Fano response in our trimer structure, we treat the gold dimer
and silicon nanosphere as a whole system. The eigenmodes of
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Fig. 3. Structure being considered consists of gold dimer of
radius Rg = 100 nm with separation d1 = 80 nm and single silicon
nanosphere of radius Rs = 75 nm. The surface-to-surface distance
between the silicon nanosphere and the dimer is d2 = 55 nm. The
structure, polarization, and propagation vector of incident wave are all
in-plane. The origin of the global coordinates is denoted by the red dot,
along with the direction of its associated coordinate axis.

this system are then calculated according to Eq. (8). Figure 4
shows the scattering cross section of the trimer structure with
the incident field as depicted in Fig. 3. Here, we decompose
the scattering cross section in terms of the contribution of the
eigenmodes and their cross-coupling terms. From the scattering
cross section spectrum of the trimer structure, we notice two
slightly perceptible Fano responses. Close-ups of the scattering
cross section spectra around 611 nm and 508 nm are shown in
Fig. 4(a) and Fig. 4(b), respectively, along with their dominant
eigenmode contributions (solid line) and dominant interference
terms (dashed line). The full spectra of the cross section are
shown as insets in each figure. A detailed modal analysis will be
focused around these two wavelengths, since the interference
between the excited eigenmodes occurred there.

The interference terms observed in the trimer structure
can be analyzed qualitatively via eigenmodes supported by
its individual subsystem. To do this, we inspect its subsystem
response, which consists of a gold dimer and single silicon struc-
ture. According to the resonance position of each individual
component. as shown in Figs. 2(b) and 2(c), we observe that
the interference term around 611 nm is the result of the cou-
pling between the MD mode of a silicon nanophere and MD or
EQ modes of the gold dimer. On the other hand, interference
around 508 nm, which has a larger magnitude, corresponds to
the coupling between the ED mode of the silicon nanosphere
and MD or EQ modes of the gold dimer. The larger magnitude
of this interference term can be attributed to the corresponding
multipole mode coupling of the silicon. Since the interaction
between two ED modes is much stronger than the interaction
between two MD modes (as demonstrated in [47]), we can
expect a stronger coupling between the silicon nanosphere
and gold dimer around a wavelength with a dominant ED
mode. This strong ED coupling results in a larger interference
magnitude observed around 508 nm.

On the other hand, we can also describe the magnitude
of the coupling in a global coordinates picture, which are
obtained from the EVD of the T-matrix in global coordinates.
By inspecting the close-up view of the spectra at around 611 nm
in Fig. 4(a), we observe three dominant eigenmodes (modes 1,
2, and 6). All of these modes are nonorthogonal to each other,
which results in three interference terms. Interference terms
between modes 1 and 6 and modes 2 and 6 have more or less
the same magnitude with a negative sign, while the coupling
between modes 1 and 2 has a positive sign. The summation
over these interference terms yields a negative total interfer-
ence term around 611 nm. The same analysis can be employed
for the interference around 508 nm by identifying the eigen-
modes and their coupling, as depicted in Fig. 4(b). Around this
wavelength, we have all dominant eigenmodes of the system
except mode 6. We observe that the three involved interference
terms are destructive interference, as shown by their negative
contribution to the scattering cross section.

As previously mentioned, interference terms are the prod-
ucts of the coupling between nonorthogonal eigenmodes.

Fig. 4. Close-up view of scattering cross section (black solid line) spectra for the system depicted in Fig. 3 at around (a) 611 nm and (b) 508 nm
along with its dominant eigenmodes (solid line) and dominant interference terms (dashed line). The full-wavelength spectra are shown as an inset in
each figure. Total interference term is also shown (blue solid line).



Research Article Vol. 38, No. 2 / February 2021 / Journal of the Optical Society of America B 397

Table 1. Contribution of Multipolar Moments in Each
Eigenmode at Wavelength of 611 nm

Eigenmode Multipolar Components

1 71%Pz + 24%My + 4%Qx z

2 3%Pz + 97%My

3 94%Px + 4%Qzz

4 97%Px + 1%Qx x

5 99%Px

6 76%Pz + 24%My

This nonorthogonality between eigenmodes can be explained
by noting that the corresponding eigenmodes share the same
multipolar moments. For example, consider the interference
dip at 611 nm. Each eigenmode can be decomposed into its
multipolar components. Here, we consider the contributions up
to EQ moments. Table 1 shows the normalized contribution of
multipolar components for each eigenmode. Decomposition
was done using the procedure as stated in [48] as Px

Py

Pz

=
 a1,1 − a1,−1

i(a1,1 + a1,−1)

−
√

2a1,0

 , (11a)

 Qx x Qx y Qx z

Q y x Q y y Q y z

Qzx Qzy Qzz

= 1

6
√

5

 i(a2,2 + a2,−2)−
i
√

6
2 a2,0 a2,−2 − a2,2 i(a2,−1 − a2,1)

a2,−2 − a2,2 −i(a2,2 + a2,−2)−
i
√

6
2 a2,0 a2,−1 + a2,1

i(a2,−1 − a2,1) a2,−1 + a2,1 i
√

6a2,0

 , (11b)

where P and Q denote the ED and quadrupole compo-
nents, respectively. To calculate the magnetic components,
the amn coefficients in Eq. (11) should be replaced by the bmn

coefficients, while the expression remains the same.
In Table 1, we can see that modes 1, 2, and 6 share the same

ED (Pz) and MD (My ) moments, where the coordinate system
used can be seen in Fig. 3. This results in nonorthogonality
between these modes. Hence, each pair of these three eigen-
modes contributes to interference terms, as can be seen in Fig. 4.
The same analysis can be employed for the interference terms
around 508 nm, as can be seen in Table 2. However, it should
be stressed that when two or more eigenmodes are nonorthog-
onal, the nonorthogonality is a direct result of the fact that the
involved eigenmodes share the same multipolar moments. It
should be noted that the inverse is not always true. Several eigen-
modes can share the same multipolar moments, but they can be
orthogonal to each other if the phases of the shared multipolar
components cancel each other. This fact can be seen from the
multipolar decomposition of eigenmodes 3 and 4 at the 611 nm
resonance and decomposition of eigenmodes 2 and 6 at the
508 nm resonance.

We have seen that a trimer structure consisting of gold dimer
and a single silicon nanosphere can produce interference terms,
which results in the observation of the Fano profile in cross
section spectra. Next, we will show that using the same trimer
geometry but with the materials permittivity swapped (now the
structure consists of a silicon dimer of radius 100 nm and single
gold nanosphere of radius 75 nm), a Fano profile can also be
observed due to interference between nonorthogonal modes.
This is additional example of the emergence of a Fano profile in a
hybrid metal–dielectric structure. In the following, we will show

Table 2. Contribution of Multipolar Moments in Each
Eigenmode at Wavelength of 508 nm

Eigenmode Multipolar Components

1 98%My

2 20%Pz + 78%My

3 91%Px + 2%Qx x + 6%Qzz

4 99%Px

5 46%Px + 30%Qx x + 20%Q y y

6 62%Pz + 38%My

the design consideration of this inversed-material trimer struc-
ture leading to a Fano response that is a result of nonorthogonal
eigenmode coupling. As the same analysis presented previously
can also be applied in this additional system, for the following
discussion, we will extract only a summary of the analysis for the
considered structure.

To gain first insight into our inversed-material trimer
structure, we will consider the silicon dimer and single gold
nanosphere separately as we have done previously. Figure 5
shows the scattering cross section of a trimer structure com-
posed of a silicon dimer and a single gold nanosphere and its

decomposition into its multipolar components. The scatter-
ing cross section of the gold nanopshere consists of only an
ED response. This is because the size of the gold nanosphere
is relatively small compared to the wavelength of interest;
therefore, it supports only the ED mode. On the other hand,
the silicon dimer exhibits several multipolar responses, up to
octupole [electric octupole (EO) and magnetic octupole (MO)]
terms, which can be seen clearly at around 570 nm for MO.
These higher multipole responses are a direct result of coupling
between each silicon sphere in the dimer structure. Due to the
large size of the silicon (100 nm in this case), the quadrupolar
response will be excited. Coupling between these quadrupolar
modes can lead to an octupolar response from the global coor-
dinate centered at the center of mass of the system. In Fig. 5, it
can be seen that the resonance wavelength of the excited MD
mode and MO mode of the silicon dimer are quite close to the
resonance wavelength of the ED mode of the gold nanosphere.
This strong spectral overlap around the resonance peaks will
result in the coupling between these excited modes; therefore,
we expect that the Fano response will appear in this spectral
range of interest.

Now we will identify the corresponding eigenmodes pro-
duced by the inversed-material trimer structure. In this analysis,
the silicon dimer and gold nanosphere are treated as one system.
We use the same spatial configuration and incident wave ori-
entation as in Fig. 3. Figure 6 shows the scattering cross section
(solid black line) of the inversed trimer structure along with
its seven dominant eigenmodes’ contribution. Also shown are
the total interference terms (blue solid line) that result from
coupling between nonorthogonal modes.
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Fig. 5. Multipolar decomposition of the scattering cross section
of the (a) silicon dimer and (b) single gold nanosphere, which can be
regarded as subsystems of the inversed-material structure in Fig. 3.
Here, we show the electric dipole (ED), magnetic dipole (MD), electric
quadrupole (EQ), magnetic quadrupole (MQ), electric octupole (EO),
and magnetic octupole (MO) contribution to the cross section.

As can be expected, interference terms are produced in the
interval between 550 and 600 nm, as seen in Fig. 6. This con-
firms our qualitative analysis based on the optical response of

each subsystem. A Fano profile in the scattering cross section
spectra can be observed at around 570 nm. The interference
terms in the interval 550–600 nm are rather complicated due to
many multipole resonances from the silicon dimer at this wave-
length interval [Fig. 5(a)]. Note also the appearance of another
interference term with a small magnitude at around 680 nm.
Identification of the interference between each eigenmode can
be done using the same procedure as employed in the previous
trimer structure.

Another analysis can be conducted regarding the tuning
aspect of our hybrid trimer structure. Here, we do some varia-
tion on the system parameters and observe whether there are
any significant changes to the Fano profile. Here, we focus our
variation on the first proposed trimer structure (gold dimer
and single silicon nanosphere), which will give insight into the
underlying physical mechanism related to the tunability of Fano
properties in general. The parameters that can be varied are the
distance d1, d2 and the polarization of the incident field. In our
previous case, we chose to fix the incident field polarization to
be able to generate a specific multipole mode of interest (MD
to be precise) on the gold dimer structure. Therefore, we do
variations only on the d1 and d2 parameters. This analysis would
be beneficial for structural design from an experimental aspect.

Tables 3 and 4 show the information corresponding to the
Fano properties of the trimer structure for each variation of d1

and d2. To compare the strength of the interference between
different structures, we use the ratio of the interference term to
the scattering cross section (Cint/Csca). We call this parameter
the Fano strength ratio. Here, we measure the difference in
this parameter relative to our structure presented in Fig. 3. All
quantities presented here are calculated at the Fano resonance
wavelength that happens around 611 nm. In Tables 3 and 4,
we can see that as d1 decreases, both Csca and Cint increase. On
the other hand, as d2 decreases, both Csca and Cint also decrease.
Note that this monotonous behavior does not necessarily apply
in other variation ranges. The behavior of the interference term
with respect to d1 (which is surface-to-surface distance between
gold dimers) variation can be explained as follows. As the dis-
tance between two subsystems decreases, the ED contribution
of the cross section (red line in Fig. 2) tends to shift to the lower
wavelength. This blueshift of the resonance frequency means

Fig. 6. Scattering cross section spectra (solid black line) for the inversed-material trimer structure along with its seven dominant eigenmodes
contribution and total interference terms (solid blue line). Primary interference terms are observed between 550 nm and 600 nm.
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Table 3. Difference between the Ratio of the
Interference Term (Cint) Relative to the Scattering Cross
Section (Csca) for Each Variation of d1

a

d1 (nm) Csca (nm2) Cint (nm2) 1
(

Cint
Csca

)
60 3.61× 105 1.88× 105 0.191
70 3.53× 105 1.30× 105 0.038
80 3.46× 105 1.14× 105 0
90 3.38× 105 9.90× 104

−0.037
100 3.32× 105 9.64× 104

−0.040
aDifferences are relative to default value d1 = 80 nm.

Table 4. Difference between the Ratio of the
Interference Term (Cint) Relative to the Scattering Cross
Section (Csca) for Each Variation of d2

a

d2 (nm) Csca (nm2) Cint (nm2) 1
(

Cint
Csca

)
45 3.37× 105 1.82× 104

−0.276
50 3.41× 105 4.79× 104

−0.189
55 3.46× 105 1.14× 105 0
60 3.50× 105 2.09× 105 0.267
65 3.54× 105 4.49× 105 0.936

aDifferences are calculated relative to the default value d2 = 55 nm.

there is a stronger scattered field from ED of the dimer at a
wavelength of 611 nm. This will result in higher coupling with
the silicon nanosphere modes, hence increasing the interference
term. The behavior of the interference term with respect to d2

[which is the distance between the silicon nanosphere and the
gold dimer as depicted in Fig. (3)] variation can be associated
with the fact that decreasing the surface distance can lead to
a partially destructive phase between the interacting modes,
hence decreasing the total amount of the interference term. If
we compare the results between the variation of d1 and d2 for
the relative Fano strength ratio (1(Cint/Csca)), it can be inferred
that changing d2 yields a more significant difference in the Fano
strength ratio compared to changing d1. Therefore, within this
variation range, d2 is more sensitive than d1. The same argument
can be applied to different structures as well. Note that changing
d2 generally exhibits a delicate interplay between the phase and
amplitude of the scattered field of one subsystem as experienced
by the other subsystem.

5. CONCLUSION

In this paper, we have shown that using a hybrid structure allows
versatile tuning of the response of individual subsystems to yield
a desired Fano response of the whole system. We study a trimer
system with different materials (metal and dielectric) and show
that this structure can produce a Fano profile in the scattering
cross section spectra. Here, we use a gold dimer and single silicon
nanosphere as the primary structure of interest. The resulting
Fano resonance can be explained as a result of the interference
between nonorthogonal eigenmodes in the structure. The
design analysis has been done qualitatively by inspecting the
optical response of each individual subsystem (dimer and single
nanosphere). For a more quantitative identification of the eigen-
modes, we employ EVD of the T-matrix of the system in global

coordinates. By using this method, interference between eigen-
modes is observed. We have shown that the nonorthogonality
between eigenmodes is the direct result of the involved modes
sharing the same multipolar decomposition. We also show that
the inversed-material of the primary structure (silicon dimer
and single gold nanosphere) can also produce a Fano profile, and
the same analysis procedure can be employed to this structure.
By changing the distance between subsystems, the Fano profile
can be tuned by the interplay between phase and amplitude of
the scattered field from one subsystem as experienced by the
other subsystem. With this, we provide insight into the origin of
the Fano response in a hybrid dielectric–metal structure.
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