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Abstract: Water infiltration rate (WIR) into the soil profile was investigated through a comprehensive
study harnessing spectral information of the soil surface. As soil spectroscopy provides invaluable
information on soil attributes, and as WIR is a soil surface-dependent property, field spectroscopy
may model WIR better than traditional laboratory spectral measurements. This is because sampling
for the latter disrupts the soil-surface status. A field soil spectral library (FSSL), consisting of
114 samples with different textures from six different sites over the Mediterranean basin, combined
with traditional laboratory spectral measurements, was created. Next, partial least squares regression
analysis was conducted on the spectral and WIR data in different soil texture groups, showing
better performance of the field spectral observations compared to traditional laboratory spectroscopy.
Moreover, several quantitative spectral properties were lost due to the sampling procedure, and
separating the samples according to texture gave higher accuracies. Although the visible near-
infrared—shortwave infrared (VNIR-SWIR) spectral region provided better accuracy, we resampled
the spectral data to the resolution of a Cubert hyperspectral sensor (VNIR). This hyperspectral sensor
was then assembled on an unmanned aerial vehicle (UAV) to apply one selected spectral-based
model to the UAV data and map the WIR in a semi-vegetated area within the Alento catchment, Italy.
Comprehensive spectral and WIR ground-truth measurements were carried out simultaneously with
the UAV-Cubert sensor flight. The results were satisfactorily validated on the ground using field
samples, followed by a spatial uncertainty analysis, concluding that the UAV with hyperspectral
remote sensing can be used to map soil surface-related soil properties.

Keywords: water infiltration rate; hyperspectral remote sensing; soil spectroscopy; soil surface;
unmanned aerial vehicle

1. Introduction

The water infiltration rate (WIR) into the soil profile is a very important hydrological
property that controls runoff, leaching, soil erosion, and water availability for both plants
and ground water [1]. It is therefore assumed that assessing and controlling the WIR in a
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spatial domain is critical for combating desertification processes in the current era of global
warming [2].

To achieve this, rapid and effective monitoring methodologies are needed to measure
WIR, which is affected by several factors. These factors can be divided into local and
regional parameters. The regional parameters are the topography [3] (mainly the slope that
governs runoff) and the landscape characteristics (mainly land coverage) [4-9]; the local
parameters are the soil profile characteristics such as soil moisture [10], organic matter (OM)
content [11], soil mineralogy [12], soil texture [12,13], soil sealing [14,15], soil structure [16]
and the arrangement of diagnostic layers of the soil profile. The soil surface is defined as the
interface between the atmosphere and the pedosphere, and hence is the most critical layer
where free water meets the soil body. Whereas clayey soils (or layer) with expanding 2:1
phyllosillicate minerals (also known as “swelling soils”) may decrease WIR values, sandy
soils (or layer) tend to increase them [12-15,17]. High WIR values are generally considered
a positive soil characteristic, and the negative effects of low WIR are of great concern.
Within the local parameters, low WIR can be due to a physical soil crust (e.g., fine structure
of the soil surface) [14,15,17], biogenic crust (e.g., cyanobacteria) [18] or chemical crust
(e.g., salinity) [14]. The positive effects of high WIR are due to OM [11,19], carbonates [20],
and other binding agents, such as those contributed to by microorganisms that stabilize
soil aggregation and thereby increase the WIR process [21]. Another positive factor for
WIR is plant litter or vegetation cover [22], which tends to reduce rain drop energy on
the soil surface and, accordingly, minimizes the formation of a physical crust [23]. As the
soil surface is affected by climatic factors (e.g. rain drop energy, sun heating and dust
accumulation), biological factors (e.g., cyanobacteria) [18], and agricultural management
practices (packing or plowing), monitoring the WIR at the local surface level is important
for saving water, preventing erosion, and improving crops’ yields [1-23].

The instrumentation for measuring WIR in the field varies from complicated, such
as field rain simulators [24], to simple, such as point infiltrometers [25], the latter being
easier to transport and operate. Nevertheless, both methods are time consuming and costly,
involving point orientation, and requiring qualified and highly skilled personnel, especially
when covering large areas for mapping purposes. Soil spectroscopy across the 400-2500 nm
spectral range is a precise way of simplifying the soil system’s complexity as it enables
the estimation of many soil attributes in a rapid and convenient way [26]. Today, there
are many soil spectral libraries (SSLs) available worldwide with spectral- and laboratory-
evaluated properties such as texture, OM, calcium carbonates, cation-exchange capacity,
and pH among others [27-30]. These SSLs can be used to develop spectral-based models,
which can then be exploited to predict soil properties without the need for expensive and
time-consuming wet laboratory analyses. The added value of soil spectroscopy lies in its
rapid measurements and rapid provision of information on soil attributes and, especially,
its possible execution using remote sensing (RS) means—both point and spectral imaging
sensors. This capability enables a spatial illustration of the soil properties available in the
SSLs over bare soils. The ability to derive WIR spectrally was demonstrated by Ben-Dor
et al. [31] and later by Goldshleger et al. [32]. These authors collected soils that were
subjected to different and controlled rain energies using a rain simulator in the laboratory.
Then, these samples were subjected to laboratory spectral measurements to generate a
spectral-based model to predict WIR. In Ben-Dor et al. [31], the spectral-based model was
run with airborne hyperspectral remote sensing (HRS) data to quantitatively map the WIR
in a selected field. Nevertheless, in those studies [31,32], the soil samples still had to be
collected and packed in boxes for the laboratory spectral measurements after applying
artificial rain. This sampling methodology is problematic because the soil surface (and
therefore the crust) is disturbed by the field sampling as well as by the packing. Accordingly,
in the reported works [31,32], the surface condition of the soil was not reproduced and a
WIR map could not be adequately obtained.

As spectral analyses across the 400-2500 nm spectral range appear to be sensitive
to WIR [31,32], it is postulated that they can provide precise measurements and a good
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representation of the real soil conditions in the field. This direction is doubly important:
First, it will enable accurate and rapid field WIR measurements using point spectrometers
and, second, it will enable RS practices to better represent the field WIR status spatially
from afar. We assume that traditional SSLs, which are generated in the laboratory, will
have some uncertainties regarding real field conditions. Accordingly, a new strategy that
relies on spectral measurements in the field under natural conditions must be adopted for
correct spectral-based modeling of soil surface-dependent properties. Our aim in this paper
was therefore to develop this field-based spectral approach using a novel apparatus [33]
to measure soil reflectance in the field with laboratory quality and to examine it over a
well-documented agricultural field [34] in Alento, Italy. We generated a comprehensive
field-based SSL (FSSL) of undisturbed soil samples, followed by reliable WIR measurements
in the field. The same FSSL samples were spectrally measured in the laboratory to evaluate
the gap between laboratory and spectral observations. We also examined the performance
of a spectral-based model generated from the FSSL to predict the WIR on a raster dataset
acquired by a hyperspectral camera onboard an unmanned aerial vehicle (UAV). The
predictions were further examined with field observations of the measured WIR and
spatial uncertainty analyses of hot and cold spots [35,36].

2. Materials and Methods
2.1. Study Sites
2.1.1. The UAV Campaign Study Site: Alento, Italy

For this study, we selected an agricultural field located in the Alento River catch-
ment, in southern Italy. The Alento catchment has long been a critical observatory for
monitoring climate change, hydrological processes, anthropogenic disturbances, drought
conditions, etc. [34,37,38]. The Alento River catchment is located in the Campania region
(Salerno Province, Italy). Alento has a Mediterranean climate (Csa) [39] and is charac-
terized by hills and mountains on limestone covered by volcanic ash, and alluvial and
coastal plains [34]. Three soil types are common in the Alento river catchment: Cambisols,
Leptosols, and Luvisols [40], but the samples that were collected from the examined study
site of the Alento basin were all classified as Leptosols (WRB-FAO classification), where the
soil is clayey—calcareous [34]. The center of the selected site was located at 40°21'53.68"N,
15°11'1.42"E.

2.1.2. Mediterranean Sites for Generating the FSSL

A comprehensive FSSL with 114 soil samples was created to generate spectral-based
models to map the WIR in Alento and to study the gap between laboratory and field
spectral observations. To build the FSSL, we selected six areas (including Alento) across
three countries along the Mediterranean basin: Israel, Italy, and Greece. The samples were
collected from the following fields:

I.  Alento, Italy (21 samples): The area described above.

II.  Kibbutz Sde Yoav, Israel (30 samples): Kibbutz Sde Yoav is an agricultural settlement
located in southcentral Israel, between the cities of Ashkelon, Kiryat Gat, and Kiryat
Malakhi. The soil type in the study area is alluvial [41] (Fluvisol according to the
WRB-FAOQ general classes). According to an updated version of the Képpen climate
classification [39], the climate is hot-semiarid (Bsh). The center of the study site is
located at 31°38'35”N, 34°40'15"E.

II.  Afeka, Tel Aviv, Israel (18 samples): Afeka is a residential neighborhood located in
north Tel Aviv. The soil type in the study area is brown-red sandy soil [42] (Ferralsol
according to the WRB-FAO reference soil groups), and the climate is hot-summer
Mediterranean (Csa). The samples at this study site were collected around the coordi-
nates 32°7'9.16""N, 34°48'14.84"'E.

IV.  Central Macedonia, Greece (45 samples from three different fields): Three different
agricultural fields were selected in this region. The climate is hot-summer Mediter-
ranean (Csa) [39]. According to the WRB-FAO reference soil groups, the soil type
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in the first field (40°37/32.03""N, 21°34'1.23"E) is classified as Fluvisol. The second
(40°39'55.31""N, 21°36'20.49"E) and third (40°40'11.46"'N, 21°37'56.67"E) field soils
are classified as Cambisol [43].

Figure 1a illustrates the Mediterranean basin area and the locations at the centers

of the selected sites from which samples were collected. The locations of the selected
agricultural fields in Greece are zoomed in on in Figure 1b.
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Figure 1. (a) Mediterranean basin and the locations of the fields from which the samples were
collected. (b) Zoomed in view of the central locations of the fields in Greece.

2.2. Field and Laboratory Data Acquisition

In the selected fields (including Alento), the in-situ undisturbed soil surface was
spectrally measured at different points, simultaneously with WIR measurements at each
point. This process was followed by soil (disturbed) sampling from the top 5 cm of
the measured point for further laboratory analyses. The samples were dried and gently
ground in the laboratory to pass through a 2 mm sieve. All of the field measurements
were performed during the Mediterranean summer, where the soil was air-dried with no
vegetation or litter over the measurement spots. The Alento field measurements were taken
on 13 June 2019 simultaneously with an UAV overpass (see Section 2.3).

The spectral measurements were taken with an ASD FieldSpec® spectrometer (Ana-
lytical Spectral Devices, model FSP 350-2500P). This device measures the reflected light in
2151 bands within the 350-2500 nm spectral range and consists of three discrete detectors:
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visible near-infrared (VNIR; 350-1000 nm), shortwave infrared 1 (SWIR1) (1001-1800 nm),
and SWIR2 (1801-2500 nm). In the VNIR detector, the full-width-half-maximum (FWHM)
is approximately 3 nm, and in both the SWIR1 and SWIR2 detectors, the FWHM is approxi-
mately 10 nm. The spectrometer was configured to take an average of 30 spectral readings
for each spectral measurement performed in the field and in the laboratory. Spectral re-
flectance in the field and laboratory was calculated relative to a Halon white reference
panel (Spectralon, Labsphere Inc., North Sutton, NH, USA). The laboratory spectral mea-
surements were conducted following the internal soil standard (ISS) protocol suggested by
Ben Dor et al. [44] with LB soil standards.

In the field, the ASD was hooked up to a SoilPRO® assembly [33] that was developed
at Tel Aviv University to measure the soil surface reflectance while preserving the field
condition (undisturbed). The system provides laboratory-quality spectral readings in the
field by eliminating atmospheric attenuation and variations in solar illumination and by
preserving a constant measurement geometry. The SoilPRO is furnished with a halogen
tungsten lamp at a fixed geometry that covers around 200 cm? [33]. The spectral readings
were calculated against a white reference Halon panel that covered the entire field of view
of the fore optic. For the spectral measurements, three repetitions were performed at each
site and then averaged for a representative spectrum.

The field measurements of WIR were performed using a minidisk infiltrometer (ME-
TER Group Inc., Pullman, WA, USA) [25] and the following protocol: a negative pressure
head of 2 cm was applied at the soil surface, and the volume of the infiltrated water over
time was recorded every 30 s for at least 5 min. According to the minidisk infiltrometer user
manual, to calculate the WIR values, the texture of the soil samples needs to be estimated.
Texture classification was performed following the field method of Thien [45] to determine
the most representative texture of every measurement point. Once the texture of every
sample was classified, the most representative classification per field was assigned to every
sample according to the field’s texture class. Table 1 illustrates the texture assigned to each
field, which varied from sand to loam clayey soils.

Table 1. Texture classes based on the assigned texture classification of the studied sites.

Field Country No. of Samples Classification Texture Group
Sde Yoav Israel 30 Clay Loam Clayey (heavy)
Sandy Cla

Afeka Israel 18 Lo};m y Clayey (heavy)

Alento Italy 21 Loam Clayey (heavy)
C. Macedonia 1 Greece 16 Sand Sandy (light)
C. Macedonia 2 Greece 15 Sandy Loam Sandy (light)
C. Macedonia 3 Greece 14 Sandy Loam Sandy (light)

As the WIR is considerably affected by the soil texture, the samples were grouped into
two textural categories to examine whether fine-tuning according to their texture would
provide better accuracy. Accordingly, three groups were evaluated as follows:

I.  The whole dataset: samples collected from all sites (114 samples).

II.  The “sandy” dataset: samples from Afeka (Tel Aviv), Israel and from the three fields
in Central Macedonia, Greece (58 samples).

II. The “clayey” dataset: samples from Sde Yoav, Israel and Alento, Italy (46 samples).

Thus, two groups of soil were created: The first was characterized by a high sand con-
tent (>50%) and termed the “sandy” group (light soils), and the second was characterized
by a low sand content (<50%) and termed the “clayey” group (heavy soils) (see Table 1).
This was based on the USDA texture triangle where the soil classifications were obtained
by an expert in the field using Thien’s [45] qualitative methods. Those samples that had
negative WIR were equalized to zero for display on the maps (in Section 3) because we
assumed that their real WIR value was extremely low. This problem has been previously
reported in the literature and has been related to hydrophobicity, soil moisture, and/or
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measurement errors [10]. Before each field measurement, we spoke with local farmers to
ensure that the fields had not been irrigated during the previous 14 days.

2.3. The UAV Data Acquisition

During the field data acquisition over the Alento site, we conducted an UAV mission.
For the UAV campaign, we used the Cubert UHD-185® camera, which is a hyperspectral
snapshot sensor installed onboard a CarbonCore Cortex X8 UAV platform with a Pixhawk
2 Cube flight controller. The Cubert UHD-185 sensor measures the reflected light across the
450-950 nm (VNIR) spectral range with 125 spectral bands and a dynamic range of 12 bits
collected within a 4 nm sampling interval. The images were acquired on a sunny, clear-sky
day (13 June 2019) between 09:57 a.m. and 10:30 a.m. (Central European Summer Time) in
an approximately 7 ha agricultural field close to Montiforte Cilento located in the Alento
catchment, Italy (exact location is given in Section 2.1.1). The UAV data were acquired from
a relative flight altitude of 138 m above ground level in terrain-following mode, providing
a unified pixel size of 4.6 cm in all images. To generate a mosaic image, we used 468
images for which we applied 80% forward overlap and 65% sidelap during flight. For
orthorectification of the image block, we used a HiPer V (Topcon) GNSS receiver to measure
six high-accuracy ground control points and three checkpoints, which presented root mean
square errors (RMSEs) of 2.0 cm and 7.3 cm, respectively, after the geometric transformation.
The locations of the field samples collected in the study area were also measured using
the HiPer V (Topcon) GNSS receiver. The digital numbers (DN) of the Cubert UHD-185
sensor were calibrated to reflectance using the Halon white reference, measured before take-
off. To validate the UAV reflectance calibration, we used one white panel and four black
agricultural nets with increasing densities folded over four white panels (Figure 2). All of
the white panels were identical. The panels were measured with the SoilPRO assembly to
form a set of validation targets for field and UAV spectral measurements.

Figure 2. The validation targets in the agricultural field in Alento, Italy.

2.4. Data Analysis

As the laboratory and field spectral data were resampled to the Cubert spectral
configuration, two spectral resolutions were examined for the spectral modeling of WIR.
For the spectral-based models that were generated before resampling the spectral data to
the Cubert resolution, we used the original 450-2400 nm (VNIR-SWIR region) spectral
range (ASD). Then, for the spectral-based models with the resampled data, we used the
482-902 nm (VNIR region) spectral range and the FWHM of the Cubert. In addition, the soil
samples were grouped according to their assigned texture to examine whether fine-tuning
based on texture would provide better accuracy and to select a set of samples that could
better represent the texture classification of the study area.
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Before generating the spectral-based models, we observed the average field and
laboratory spectra for every field (using all points) to look for any important differences.
In addition, to determine what spectral information was distorted after the sampling
procedures, we calculated the average spectral ratio between the field and laboratory
spectra. To recognize what soil properties with spectral assignments might be distorted
by the sampling procedures, we used the publications of Viscarra Rossel and Bahrens
(2010) [46] and Ben-Dor [26].

For the laboratory and field spectral-based models that were generated using the ASD
and the Cubert spectral configurations, the data were randomly split, retaining the same
samples (in both the laboratory and the field) to perform the calibration and validation
steps under the same conditions; 20% of the samples were selected for validation, and 80%
for calibration. To model the WIR, we selected partial least squares regression (PLSR) [47]
because it is an effective and well-known method in chemometrics and spectral-based
analyses [26,47] and has been successfully used to estimate normally and non-normally
distributed parameters [48-51]. Moreover, Zhao et al. [52] recently showed that PLSR
can provide higher accuracies than other machine learning algorithms (Cubist, random
forests, and support vector machines). In the present manuscript, the PLSR models were
developed using the scikit-learn package of Python 3.7 [53].

The performance of the spectral-based models was evaluated using R2, RMSE, and
the ratio of performance to interquartile distance (RPIQ) [54], where low RMSE and high
R? and RPIQ values indicate good performance. The equations describing the employed
statistics are as follows:

M

@

RPIQ = IQ/RMSE 3)

where Y is the predicted value, Y is the mean of observed values, Y is the observed value,
n is the number of data points, and IQ is the interquartile distance of the measured values.

The following preprocessing scenarios were examined: reflectance with no preprocess-
ing, Savitzky-Golay (SG) first derivative of reflectance, continuum removal of reflectance,
and SG first derivative of absorbance. To enable comparisons under the same process-
ing conditions between the laboratory- and field-based models, we maintained the same
spectral preprocessing and the same number of PLSR components in every comparison.
The spectral preprocessing and the number of components for each scenario were selected
by examining the lowest RMSE obtained in the validation phase of the field spectral-
based models, assuming that this dataset better represents the field conditions for the
WIR estimation.

Once the best field spectral-based model was obtained, the gap between the field and
laboratory spectral observations was analyzed using the beta coefficients generated by the
PLSR models. The beta coefficients summarize the most important spectral features for
the estimation of WIR in each spectral-based model [47]. To analyze the beta coefficients,
we followed the publications of Viscarra Rossel and Bahrens [46] and Ben-Dor [26], who
summarized several recognizable soil properties according to their indicative wavelengths.
The beta coefficients of the original ASD spectral resolution were smoothed to better
emphasize the most indicative wavelengths. This procedure was not necessary with the
Cubert UHD-185 spectral resolution because the spectral sampling interval of the Cubert
UHD-185 is larger than that of the ASD (4 and 1 nm, respectively). This examination can
indicate what quantitative spectral information is lost with the resampling procedures, and
the gap between field and laboratory spectral observations can be further analyzed.
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2.5. Spectral Similarity Analysis

To compare the UAV output with the field spectral observations, we carried out a
spectral similarity analysis using the white panels that were covered with different densities
of black agricultural net (validation targets). To further validate the UAV observations,
this similarity analysis was repeated for five soil samples that were collected at the Alento
study site and were not part of the calibration phase of the spectral-based model, which
was executed in the UAV hyperspectral image. To conduct the spectral similarity analysis,
we used a modified version of the average sum of deviations squared (ASDS) index [55]
termed as M—-ASDS, using the following equations:

Yiz1(Rra — 1)2

M-ASDS = - 4
where 7 is the number of wavelengths used, and Rr;,, was calculated as:
~ (Rty +1)
Rrn = (Rtry, +1) ®)

where Rt is the examined reflectance spectrum (i.e., Cubert), and Rtr, is the reference
spectrum (i.e., field) of the same target. Ry, represents the ratio between the examined and
reference spectra but with an added unit (to both the numerator and the denominator)
to correct the bias caused by dark targets. If this is not carried out, targets with very
low reflectance may increase the ASDS index, although they could have minimal spectral
variations relative to the examined spectra.

2.6. Spatial Analysis

Before running the field spectral-based model on a selected group of soil samples to
predict the WIR values in a spatial domain, we removed all pixels that represented vegeta-
tion by using the green-red vegetation index, whereas bare soil pixels can be represented
by negative values [56]. Figure 3 shows the location of the Alento study area, and an RGB
mosaic composed of the Cubert UHD-185 data over this area with the exact locations of
the field samples. It is important to note that several pixels were masked out due to the
vegetation cover. To represent green light, we considered the reflectance at 550 nm, and
for red light, 670 nm. In Figure 3, these pixels are encoded in red. In total, 223,094 pixels
represented the bare soil (“red areas”) from a total of 1,463,322 pixels.

For a visual and spatial representation of the WIR distribution, we applied the inverse
distance weighting (IDW) interpolation method [57] to the 21 ground-measured WIR values
at the Alento study site. We then randomly selected 100 bare soil pixels (from the 223,094
pixels) to reapply the IDW interpolation to the spectral-based WIR predictions. Thus,
less samples enable producing a smoother interpolation because a more homogeneous
distribution of the points is generated. To perform these interpolations, we selected the
default configurations of ArcGIS [57]. As this spatial-based representation cannot be
considered a robust validation, and to identify significant concentrations of low and/or
high WIR values in the study area, we also applied the Getis-Ord Gi* (pronounced G-
i star) method [35,36] to the ground samples and to the 100 bare soil pixels that were
randomly selected from the extracted layer of the spectral-based model. The Getis-Ord
Gi* method identifies significant hot/cold spots as a function of the analyzed values
and the neighboring entities. Thus, if the 21 field samples are not enough for a robust
spatial analysis, the Getis-Ord Gi* method can identify robust interpretations in the 100
bare soil pixels selected from the spectral-based WIR predictions. Certainly, this is valid
after validation of the UAV data calibration and the spectral similarities between the field
and UAV data (Section 2.3). To further validate the UAV spectral-based predictions, we
evaluated the correlation between the WIR measured in the field against the WIR predicted
from the UAV images after the execution of the spectral-based model for five selected soil
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samples that were not part of the model calibration and whose assigned pixels were not
covered by vegetation.

Field samples in Alento
15"11"‘E 15°11'2"E 15°1‘II'4"E

40°21'58"N

40°21'54"N 40°21'56"N

40°21'52"N

15°11'0"E 15°11"2"E 15°11'4"E

Figure 3. RGB image of the study area with the sample collection sites.

2.7. Flowchart

Figure 4 provides a flowchart of all of the work phases. This flowchart starts with the
texture classification and WIR measurements performed in the field. This is followed by the
acquisition of spectral measurements in the field and the laboratory. At both levels (field
and laboratory), spectral-based models are generated for the different soil-texture groups
and the different spectral configurations: ASD and Cubert. The obtained performance was
then compared at every stage, and the spectral-based model that was found to be most
indicative was then run on the Cubert hyperspectral image. Note that the selected model
was the one created with the clayey group using the Cubert spectral resolution, marked
in bold in Figure 4. This decision is further explained and justified in Sections 3 and 4.
Consequently, the flowchart presents the validation phases, vegetation removal, and spatial
analyses. In short, it demonstrates the methodological stages from field WIR measurements
to UAV spectral-based mapping of the WIR.
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Figure 4. Flowchart of the methods followed in this work.
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3. Results
3.1. Spectral Characteristics Per Field

Figures 5 and 6 show the average spectra at each of the selected sites as measured in
the laboratory and in the field. In addition, the ratio between these two measurements (field
vs. laboratory) is given. Figure 5 illustrates the sandy fields, and the clayey fields are shown
in Figure 6. Although in every field the laboratory and field average reflectance appear
to be similar, the average spectral ratio between the field and laboratory observations
indicated that several spectral features were distorted due to the sampling procedures.
In all sandy fields (Figure 5), the average spectral ratio between the field and laboratory
observations showed the highest gap in the VNIR spectral range, which can be assigned
to the decomposed OM content that decreases the VNIR reflectance as the OM content
increases. However, the OM content in the soil surface differed from the soil underneath
by color and structure. This effect is also known as the OM spectral slope [26]. In addition,
there were some changes in water absorption at 1400 and 1915 nm [46], probably due to the
drying process after collecting the samples. Differences in carbonate absorption at around
2336 nm [46] could be observed in the fields of Afeka and Central Macedonia 2. In the
Afeka study site (sandy group), the spectral features that can be assigned to hygroscopic
water, Fe oxides (884 nm), clay minerals (2200 nm), and carbonate content (2336 nm) were
further distorted probably because the soil crust in this field was more developed, and
therefore more sensitive to the sampling procedures. Some of these distortions were also
noticeable in the fields that represent the clayey soils (Figure 6). In Figure 6, the OM slope
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was again seen to be affected by the sampling procedure in both fields: Sde Yoav and
Alento. Nevertheless, Sde Yoav also showed differences in hygroscopic water absorption,
compared to Alento, which showed differences in the clay mineral absorption at 2200 nm.
These observations demonstrated that small spectral changes between field and laboratory
conditions are mainly due to the sampling procedure.
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Figure 5. Average reflectance obtained in the field and laboratory and average spectral ratio between
field and laboratory spectral measurements (per field) for the sandy group.

10 Sde Yoav (Field) 10 Sde Yoav (Lab) 250 Sde Yoav (Field:Lab Ratio)
—— Average ~——— Average 2.25 -=== Reference Line
0.8 —— Standard Deviation 0.8 —— Standard Deviation © 2.00 — Field:Lab Ratio
206 206 &5 1400nm 1915 nm
= £ 2 1.50{ ™ (OMsiope) ! (Water)  (water)
1] 9 )
=04 =04 5 1.25 ‘
& — V| & (]
0.2 / 02 i 1.00
’ 0.75
0.0 0.0 0.50
450 800 1150 1500 1850 2200 450 800 1150 1500 1850 2200 450 800 1150 1500 1850 2200
Wavelength (nm) Wavelength (nm) Wavelength (nm)
10 Alento (Field) 10 Alento (Lab) 250 Alento (Field:Lab Ratio)
—— Average —— Average 2.25 --=-= Reference Line
0.8 —— Standard Deviation 0.8 —— Standard Deviation © 2.00 — Field:Lab Ratio
] g 2 1.75{ (OMslope
£ 0.6 ] 0.6 < [{ pe)
- - Qo
G g K 1.50 2200 nm
§ 0.4 30.4 B 125 — (Clay minerals)
2 l
02 02 //V\/_\\_\//\Q & 1.00 R ——
0.75
0.0 0.0 0.50
450 800 1150 1500 1850 2200 450 800 1150 1500 1850 2200 450 800 1150 1500 1850 2200
Wavelength (nm) Wavelength (nm) Wavelength (nm)

Figure 6. Average reflectance obtained in the field and laboratory and average spectral ratio between
field and laboratory spectral measurements (per field) for the clayey group.
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3.2. Spectral-Based Modeling and Interpretation

This section introduces the results of the field and laboratory spectral-based models
that were generated using the whole dataset, as well as the clayey and sandy groups
separately, with the ASD across the 450-2400 nm spectral region; it also presents the
performance of these datasets after being resampled to the spectral configuration of the
Cubert UHD-185 (482-902 nm).

Tables 2 and 3 show the dispersion statistics of the WIR values that were measured
in the field for the whole dataset and each texture group (Table 2) and for each field
individually (Table 3). The texture groups differed to quite a large extent. In some cases,
the clayey fields such as Sde Yoav presented higher WIR values than the sandy fields,
such as Central Macedonia 3 and Afeka. Certainly, texture is one of the most important
factors affecting WIR. Accordingly, the variation between soils from the same texture
group may be related to other secondary factors, such as OM or minerology. In all cases,
the kurtosis and skewness were lower than 1, indicating near-Gaussian distributions [58].
Nonetheless, because we used the PLSR algorithm, the distribution behavior is not expected
to play a role in the analysis because PLSR is known to also be effective with non-Gaussian
distributions [48-51].

Tables 4 and 5 summarize the statistical parameters of all of the models generated
before (ASD) and after the spectral resampling (Cubert), respectively. Following these
tables, the results extracted from each examined group are interpreted separately, at the
field and laboratory levels, in both spectral configurations (ASD and Cubert).

Table 2. Dispersion statistics of the studied groups.

Group Parameter Value (cm/s)
Whole dataset Mean 0.00134
Standard deviation 0.00076
Interquartile range 0.00075-0.00183
Skewness 0.44
Kurtosis -0.3
WIR range 0.00007-0.00355
Sandy dataset Mean 0.001533
Standard deviation 0.00078
Interquartile range 0.00091-0.00204
Skewness 0.4
Kurtosis 0.49
WIR range 0.00008-0.00355
Clayey dataset Mean 0.00111
Standard deviation 0.00065
Interquartile range 0.000570.00155
SkewnessKurtosis 0.25
Kurtosis 0.83
WIR range 0.00007-0.00249

WIR, water infiltration rate.
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Table 3. Dispersion statistics per field.

Group Field Parameter Value (cm/s)
Sandy dataset Afeka Mean 0.0013
Standard deviation 0.00061
Interquartile range 0.00085-0.00171
Skewness 0.03557
Kurtosis —0.82087
WIR range 0.00021-0.0025
C. Macedonia 1 Mean 0.00202
Standard deviation 0.00079
Interquartile range 0.00139-0.00254
Skewness —0.41873
Kurtosis —0.91797
WIR range 0.00064-0.00324
C. Macedonia 2 Mean 0.00178
Standard deviation 0.00085
Interquartile range 0.00109-0.00235
Skewness 0.21709
Kurtosis —0.66361
WIR range 0.00043-0.00355
C. Macedonia 3 Mean 0.00108
Standard deviation 0.00046
Interquartile range 0.00077-0.00134
Skewness —0.22813
Kurtosis —0.33763
WIR range 0.00008-0.00182
Clayey dataset Sde Yoav Mean 0.00143
Standard deviation 0.00057
Interquartile range 0.00109-0.00179
Skewness —0.06322
Kurtosis —0.65508
WIR range 0.00023-0.00249
Alento Mean 0.00056
Standard deviation 0.00037
Interquartile range 0.00016-0.00088
Skewness 0.26864
Kurtosis —1.15855
WIR range 0.00007-0.00119

WIR, water infiltration rate.

Table 4. Statistical parameters of the spectral-based models before spectral resampling (450-2400 nm).

Group Parameter Field Laboratory
Whole dataset RPIQ (Cal) 10.83 5.26
R2 (Cal) 0.98 0.92
RMSE (Cal) 0.0001 0.0002
No. of samples (Cal) 83 83
RPIQ (Val) 2.26 1.87
RZ (Val) 0.70 0.57
RMSE (Val) 0.0004 0.0004
No. of samples (Val) 21 21
p-Value (Val) 0.0000 0.0001
No. of components 9 9
Spectral A
prep}z‘ocessing 1st derivative
Sandy dataset RPIQ (Cal) 4.24 1.8
R? (Cal) 0.90 0.48
RMSE (Cal) 0.0002 0.22
No. of samples (Cal) 46 46
RPIQ (Val) 3.19 1.84
R? (Val) 0.82 0.22
RMSE (Val) 0.0004 0.0007
No. of samples (Val) 12 12
p-Value (Val) 0.0001 0.123
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Table 4. Cont.

Group Parameter Field Laboratory
No. of components 5 5
Spectral N
preprocessing Absorbance and 1st derivative
RPIQ (Cal) 17.66 4.96
Clayey dataset R? (Cal) 0.99 0.89
RMSE (Cal) 5.86 0.0002
No. of samples (Cal) 37 37
RPIQ (Val) 3.14 2.85
R? (Val) 0.81 0.7
RMSE (Val) 0.0003 0.0004
No. of samples (Val) 9 9
p-Value (Val) 0.0004 0.0025
No. of components 6 6
Spectral 1st derivative
preprocessing

Val, validation; Cal, calibration.

Table 5. Statistical parameters of the spectral-based models after spectral resampling (482-902 nm).

Group Parameter Field Laboratory
Whole dataset RPIQ (Cal) 2.26 2.05
R2 (Cal) 0.52 0.41
RMSE (Cal) 0.0005 0.0006
No. of samples (Cal) 83 83
RPIQ (Val) 1.06 1.02
RZ (Val) 0.36 0.30
RMSE (Val) 0.0007 0.0007
No. of samples (Val) 21 21
p-Value (Val) 0.0038 0.0106
No. of components 10 10
Spectrall Absorbance and 1st derivative
preprocessing
Sandy dataset RPIQ (Cal) 2.36 2.59
R? (Cal) 0.63 0.55
RMSE (Cal) 0.0005 0.0005
No. of samples (Cal) 46 46
RPIQ (Val) 2.7 1.66
RZ (Val) 0.83 0.45
RMSE (Val) 0.0003 0.0005
No. of samples (Val) 12 12
p-Value (Val) 0.0000 0.0169
No. of components 11 11
Spectrall Absorbance and 1st derivative
preprocessing
RPIQ (Cal) 2.26 2.05
Clayey dataset R2 (Cal) 0.66 0.47
RMSE (Cal) 0.0004 0.0005
No. of samples (Cal) 37 37
RPIQ (Val) 3.67 2.18
RZ (Val) 0.86 0.49
RMSE (Val) 0.0003 0.0005
No. of samples (Val) 9 9
p-Value (Val) 0.0001 0.0048
No. of components 6 6
Spectral' 1st derivative
preprocessing

Val, validation; Cal, calibration.
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3.2.1. The Whole Dataset in the ASD Spectral Configuration

To generate the spectral-based models to extract WIR from the whole dataset before
spectral resampling, the spectral data were submitted to SG first derivative preprocess-
ing using nine components. Execution of the spectral-based model with the calibration
group showed high accuracies at both field and laboratory levels (R%2¢, = 0.98 and 0.92,
respectively). In the subsequent validation stage, the PLSR models generated using this
dataset showed excellent results in the field domain (R?y,; = 0.70). Although the validation
of the laboratory-based model showed acceptable performance (R%y, = 0.57), these results
indicated that the field-based model was more effective using the 450-2400 nm spectral
range, as expected. Table 4 presents these results.

With this dataset, the beta coefficients of the field- and laboratory-based models
showed differences (Figure 7). In the field domain, more extreme positive values were
obtained at around 450, 884, 1400, and 2200 nm. Whereas the beta coefficients around
450 nm and 884 nm can be assigned to hematite, the 1400 nm value may be caused by
an overtone of the fundamental absorptions of O-H in hygroscopic water and hydroxyl
in the chemical structures of clay minerals. The 2200 nm value can be assigned to clay
minerals [26,46]. On the other hand, although the beta coefficients of the laboratory-based
model highlighted similar spectral features, these were not as well differentiated as in the
field-based model.
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) . Wat i
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Figure 7. Beta coefficients of the PLSR models for the prediction of WIR using all samples and the
ASD spectral resolution.

3.2.2. The Whole Dataset in the Cubert Spectral Configuration

Table 5 presents the results of the PLSR models of both field and laboratory spectral
measurements using the whole dataset after spectral resampling (to the Cubert UHD-
185 spectral configuration) against the WIR values measured in the field (see Section 2).
We used 10 components for both models, where the spectral data were first converted
to apparent absorbance and then the SG first derivative was calculated. The accuracies
obtained after the execution of the spectral-based model with the calibration group were
unsatisfactory at both field and laboratory levels (R?c, = 0.52 and 0.41, respectively).
In the validation stage, despite the fact that the performance of the whole dataset after
resampling was unsatisfactory (in the laboratory and in the field), the field-based model
still presented a better correlation than the laboratory-based model (R?y,; = 0.36 and 0.30,
respectively). Although the field-based model provided better results, it demonstrated that
the contribution of the SWIR spectral range is very important; the VNIR spectral range was
insufficient to generate a good generic spectral-based model.

In the whole dataset after spectral resampling, the beta coefficients of the field-based
model highlighted the wavelengths between 482 and 650 nm that can be associated with
hematite (Fe oxides) [46] and with the OM slope of the VNIR spectral range [26] (Figure 8).
On the other hand, in the laboratory-based model, the spectral features around 490 nm
could be related to goethite (Fe oxide) content [46], as well as to the OM slope of the VNIR
spectral range [26]. Both models highlighted to a small extent the hematite spectral feature
at around 884 nm.
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Figure 8. Beta coefficients of the PLSR models for the prediction of WIR using all samples, with the
resampled data (to the Cubert spectral resolution).

3.2.3. Sandy Dataset in the ASD Spectral Configuration

As already discussed, WIR is strongly affected by soil texture [12,13]. Accordingly, we
split the dataset into sandy and clayey groups. For the spectral-based models generated to
predict WIR using the ASD spectral resolution (VNIR-SWIR1-SWIR?2), the spectral data
of the sandy group were transformed into apparent absorbance, and then the SG first
derivative was calculated. For the PLSR algorithm at this stage, we used five components.
The predictions obtained after execution of the spectral-based model with the calibration
group showed higher accuracies at the field vs. laboratory level (R%c,; = 0.90 and 0.48,
respectively). Again, validation of the field-based model showed a better correlation than
the laboratory-based model (R%y, = 0.82 and 0.22, respectively). See Table 4 for the results
and statistics.

In general, the beta coefficients for the laboratory- and field-based models of the
sandy dataset seemed to present similar spectral features, with no important differences
(Figure 9). Nevertheless, in the field domain, extreme beta coefficient values were present
in the clay mineral absorption at around 2200 nm. On the other hand, the extreme beta
coefficient values in the laboratory model were present in the water absorption at around
1915 nm.
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Figure 9. Beta coefficients of the PLSR models for the prediction of WIR using the samples of the
sandy group, and the ASD spectral resolution.

3.2.4. Sandy Dataset in the Cubert Spectral Configuration

At this stage, the ASD spectral data of the sandy group were resampled to the spectral
configuration of the Cubert UHD-185 sensor. Before generating the spectral-based models,
the spectra were submitted to SG first derivative pretreatment of apparent absorbance. For
these PLSR models, we used 11 components. Table 5 provides the results of this analysis.
The predictions obtained with the calibration group showed acceptable accuracies at the
field and laboratory levels (R%c, = 0.63 and 0.55, respectively). Again, validation of the
field-based model for the sandy group (after resampling) showed a much better correlation
than that of the laboratory-based model (R?%y, = 0.83 and 0.45, respectively).

The beta coefficients of the laboratory and field spectral-based models both showed
spectral features that can be associated with the OM slope in the VNIR region (Figure 10).
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Although both domains showed spectral features related to Fe oxides, they differed in
the spectral-mineralogical association. Whereas in the field domain, the most dominant
bands were at around 529 and 650 nm and could be assigned to hematite, the laboratory
spectral-based model emphasized the bands at around 495 and 650 nm that can be related
to goethite, and the bands at around 884 that can be associated to hematite. Note that
according Viscarra Rossel and Bahrens [46], absorption around 650 nm can be related to
both hematite and goethite.
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Figure 10. Beta coefficients for the prediction of WIR using the samples of the sandy group with the
resampled data (to the Cubert spectral resolution).

3.2.5. Clayey Dataset in the ASD Spectral Configuration

For the PLSR models that were created to assess the WIR using the clayey dataset,
the spectral data were transformed with the SG first derivative, and six components were
used to calibrate the models. Both laboratory- and field-based models presented excellent
accuracies in the calibration groups (R%c, = 0.99 and 0.89, respectively), as well as in the
validation groups using the full spectral range (VNIR-SWIR) of the ASD (R?y, = 0.81 and
= 0.70, respectively), where the field-based model still presented better results (Table 4).

The laboratory- and field-based models generated using the clayey dataset presented
beta coefficients that in general differed (Figure 11). Both the laboratory- and field-based
models emphasized the visible spectral region up to around 600 nm, but the field-based
model also considered the region up to around 750 nm. These features can be related to
the spectral features of Fe oxides and the OM slope in the VNIR spectral range, especially
in the field-based model [26]. As seen in Figure 11, in the clayey group, the field-based
model mostly took advantage of spectral features at around 1400 nm, which can be caused
by hygroscopic water. On the other hand, the laboratory-based model emphasized spec-
tral features at around 884 nm, which can be assigned to OM, hygroscopic water, or Fe
oxides [26,46]. This gap may be caused by the water-retention properties of OM [59-61]
and by the fact that OM tends to accumulate over the undisturbed soil surface due to
animal and plant biological activity. Once the samples were brought to the laboratory, the
quantitative characteristics of the OM slope in the VNIR spectral range may have declined
because the soil surface had been disturbed. Thus, the laboratory-based spectral model had
to be calibrated from other spectral features. In addition, the laboratory model emphasized
bands related to the carbonate content at 2336 nm.
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Figure 11. Beta coefficients of the PLSR models for the prediction of WIR using the samples of the
clayey group with the ASD spectral resolution.

3.2.6. Clayey Dataset in the Cubert Spectral Configuration

The clayey dataset was resampled to the Cubert UHD-185 spectral configuration. The
reflectance data were preprocessed using the SG first derivative, and six components were
used to generate the PLSR model. Table 5 illustrates the results of the resampled clayey
dataset. The performance obtained in the field was much better than that obtained in the
laboratory for both calibration (R%c,; = 0.66 and 0.47, respectively) and validation groups
(R?y,1 = 0.86 and 0.49, respectively).

In the spectrally resampled clayey dataset, the beta coefficients of the field-based
model emphasized the 482-650 nm spectral range, which can be related to the OM slope in
the VNIR region or to geothite (Fe oxides) (Figure 12). Nevertheless, as the other Fe oxide
spectral features were not as dominant in the field domain, we can assume that the OM
slope was the dominant element in calibrating the field spectral model since OM is present
in the soil surface. The laboratory-based model gave much more importance to all used
spectra (VNIR) in general, with accentuation of the 482-550 nm and 870-902 nm spectral
ranges, which can be attributed to hematite spectral features at around 529, 650, and 884
nm, respectively. Certainly, all of the spectral features at the laboratory level could also be
associated with OM, but as the hematite spectral absorptions were very dominant at this
level, we assume that these contributed more than the OM spectral features because the
sampling procedure destroys the soil surface where the OM content is higher.
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Figure 12. Beta coefficients of the PLSR models for the prediction of WIR using the samples of the
clayey group with the resampled data (to the Cubert spectral resolution).

From these results, it was postulated that field observations are better for predicting
WIR and that splitting the dataset into clayey and sandy soil groups provides better
accuracy. This is because for each texture, the soil surface behaves differently. It is thus
recommended that for spectral prediction of WIR, the soil texture be evaluated in the
field [45], and then an FSSL that is represented by this texture must be executed using
spectral-based models. The explanations for the spectral assignments resulting from the
ASD and Cubert UHD-185 spectral resolutions (VNIR-SWIR and VNIR, respectively) could
be similar. Due to sampling procedures, the quantitative spectral properties of the OM
slope may decrease in the laboratory domain. Therefore, the laboratory-based model
was forced to use different chromophores to estimate WIR. Both hematite and goethite
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are products of different stages of the pedogenesis process, starting in the upper layers
of the soil surface, which are affected by rain, erosion, biological activity, etc. Whereas
goethite is more dominant in the initial stages of soil formation, hematite is generated at
more advanced phases under dry conditions [62]. Therefore, the beta coefficients resulting
from the field- and laboratory-based models demonstrate that soil surface-dependent
properties as well as the aging stage of the soil, are disturbed by the sampling procedure.
Among the resampled datasets, the field-based model of the clayey dataset provided the
best performance and better represented the texture of the Alento study site. Thus, this
spectral-based model was selected for further utilization of the UAV—Cubert hyperspectral
sensor in a spatial domain in the following steps.

3.3. Execution of the Field-Based Model with the Cubert UHD-185 Data

Based on the results of the spectral-based models that demonstrated a strong depen-
dency on soil texture in predicting WIR, we selected the model that was created using the
clayey group (after resampling to the Cubert UHD-185 spectral configuration) for appli-
cation to the UAV hyperspectral data. The result of the spectral-based model’s execution
over the bare soil pixels is shown in Figure 13 where the vegetation and litter pixels were
masked out using the green-red vegetation index [56].
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Figure 13. The predicted WIR values over the exposed soil pixels and the masked pixels that represent
vegetation and/or litter.
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3.3.1. Validation of the UAV Reflectance Calibration and WIR Predictions

The calibration of the UAV reflectance data from the Cubert DN image was de-
scribed in Section 2. The UAV reflectance calibration was validated by measuring several
ground targets with the SoilPRO assembly (see Section 2.3). Figure 14 presents the cali-
brated reflectance of the Cubert within the corresponding reflectance measured in the field.
Figure 14a shows the reference panels, and Figure 14b shows the bare soil targets. These
figures also present the M—ASDS values to judge the similarity between the ground and
UAYV measurements (described in Section 2.5). Low M—-ASDS values suggest a good match
between a spectral pair. As seen in Figure 14a, the spectra were visually well matched, with
low M—-ASDS values ranging from 0 to 0.024 (2.4%) that indicated high spectral similarity
and fair atmospheric correction of the Cubert data. The soil field spectra (Figure 14b) were
also similar to the UAV spectra (in Figure 14b), although in "Alento12", a weak chlorophyll
feature at around 670 nm was observed. We assume that this effect occurred because the
pixel was slightly mixed with canopy, litter, and /or vegetation, while it was measured by
the Cubert sensor as the UAV view (and angle) differed from the SoilPRO perspective in
the field, which used clean soils. Still, all of the soil samples presented M—-ASDS values
below 0.025, which indicate a good match with errors below 2.5% [63]. As seen in Figure 14,
the spectral similarities and the low M—ASDS values presented by the validation panels
and the field samples strongly confirm the reliability of the spectral reflectance extracted
from the Cubert for the entire bare soil of Alento.
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Figure 14. Field samples for validation. Gray line, UAV spectrum; black line, field spectrum.
(a) Validation panels. (b) Validation soil samples.

To quantitatively validate the predictions of the Cubert WIR map, we performed in
situ ground truth measurements over bare soil targets at the Alento study site where the
WIR was measured with the infiltrometer. These samples were not part of the calibration
phase of the selected model. The predicted WIR values presented by the pixels at the
coordinates of these targets were extracted, and the predicted WIR values were plotted
against the WIR field measurements. This plot is shown in Figure 15. Certainly, five soil
samples may not be a robust number to perform an “external” validation test for the UAV
predictions. Due to the vegetation coverage (87%), it was not possible to find more reliable
samples that were bare, exposed to the sun and not part of the calibration group.
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Model Test: UAV
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Figure 15. Predicted water infiltration rate (WIR) of the validation samples using the Cubert UHD-185
sensor in an UAV.

These samples acted more as ground truth samples to account for the trend of the
spectral-based model and the correlation shows quite satisfactory results with the expected
trend. Table 6 summarizes this relationship, with the statistical parameters presented by
the spectral-based model that was executed on the UAV image.

Table 6. Statistical performance of the spectral-based model that was selected to run on the Cubert

reflectance image.

Parameter Value
RPIQ (Val) 2.61
R? (Val) 0.76
RMSE (Val) 0.0002
No. of samples (Val) 5
p-Value (Val) 0.052

482-902 nm
0.00007-0.00014

Spectral range
WIR range (cm/s)

3.3.2. Spatial and Uncertainty Analyses

For a spatial representation of the WIR distribution, we applied the IDW interpolation
method to the 21 field samples in the Alento study site (Figure 16). Nevertheless, as the
map in Figure 16 is based on interpolation of only 21 samples, it was assumed that more
samples are needed to better represent the WIR spatial distribution. Thus, as the bare soil
pixels underwent a WIR estimation using the clayey spectral-based model, we applied a
second IDW interpolation to 100 pixels (from a total of 223,094 bare soil pixels) that were
randomly selected from the respective soil pixels of the spectral-based WIR predictions
(Figure 17).
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Figure 16. IDW interpolation of the measured WIR in the field using the 21 measurement points in the field assuming

no vegetation.
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IDW Interpolation: Predicted WIR
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Figure 17. IDW interpolation of the predicted WIR after execution of the spectral-based model on the exposed soil pixels in

the hyperspectral image.

To verify this assumption, as well as the uncertainty of the spatial dependency of the
WIR, we calculated the Getis-Ord Gi* statistic [35,36] for each sample in both cases:

I.  The WIR measured in situ with the 21 samples (Figure 18)
II.  The predicted WIR in the selected exposed soil pixels, containing 100 samples/pixels

(Figure 19).

As shown in Figure 18, most of the samples that were measured in the field were
classified as non-significant, whereas there was one sample that was classified as a hot
spot with high WIR (erroneously) despite a very low measured WIR. This error might
have been caused by the high WIR values of the neighboring samples, as shown in the
interpolation of Figure 18. On the other hand, in Figure 19, where more samples were
extracted from the spectral-based predictions (100 pixels), higher degrees of confidence
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(>90%) were obtained. This is also noticeable in pixels located in areas with very low
(red) or very high (green) WIR. Certainly, 21 samples are not sufficient to perform a good
interpolation in this study area, and the Cubert WIR image contributed a great deal of
information toward minimizing the uncertainty. As shown in Figure 19, when many more
samples were used with better spatial distribution, a fair identification of hot spots of
both high and low WIR was obtained with high certainty in the Cubert WIR image. This
emphasizes the need for technologies, such as spectral imaging, to enlarge the number of
observations that are well distributed across the exposed soil areas in order to obtain a
more reliable picture of the property in question.

Spatial Uncertainty: Measured WIR
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Figure 18. Spatial uncertainty of the WIR field measurements.
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Spatial Uncertainty: Predicted WIR
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Figure 19. Spatial uncertainty of the predicted WIR.

4. Discussion
4.1. Influence of Sampling Procedures on the Soil Surface

This study was aimed at developing a simple and rapid method to map WIR on a pixel-
by-pixel basis, rather than relying on a few traditional WIR measurements executed in the
field. To that end, soil reflectance spectroscopy was used at the laboratory, field, and aerial
levels. The study was conducted in sequential stages that investigated the discrepancies
between field and laboratory spectral observations using different soil-texture groups.
As expected, all of the field-based models at all levels provided better accuracy than the
laboratory-based ones. The analyzed beta coefficients revealed that the quantitative spectral
properties of clay minerals, Fe oxides, and OM may be lost when the soil samples are
collected for laboratory testing.

This confirmed the assumption that soil sampling is a destructive method that modifies
the field condition, which is doubly important: First, for the WIR measurements, and
second, for the RS view that sees only the upper thin surface layer of the soil. In clayey
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soils, the surface seal is well developed and structured based on clay—clay, clay-OM,
clay-Fe oxide, and clay-CaCOj interactions, all of which are affected by raindrop energy,
whereas this effect is smaller in sandy soils [64]. As accumulated raindrop energy organizes
soil particle sizes in the upper layers of the soil [14,15], bringing the lower-weight particles
to the top, disturbance of the soil crust can result in the replacement of hematite spectral
features with those of others, such as goethite, as seen in the case of the sandy group. On
the other hand, in the clayey group, sampling procedures annulled the contribution of the
OM slope to the VNIR spectral range so that the spectral-based model could detect other
spectral features.

Soil-sampling procedures in the field, which are essential for laboratory spectral
measurements, lead to the loss of spectral features that are relevant to the thin surface
characteristics. Accordingly, the results of this study pinpoint the importance of using
high-quality field spectral information to represent the aerial RS view. This practice is
essential for monitoring sensitive soil surface properties such as WIR. Other relevant soil
surface-dependent properties might include soil water repellency, soil salinity, and soil
biogenic crust status [33].

4.2. The Potential of Soil Surface Reflectance and the SoilPRO Assembly

In all of the datasets, we demonstrated the need for caution in analyzing soil surface-
dependent properties. This emphasizes the capacity of the SoilPRO (or similar) assembly
to derive soil surface reflectance without disturbing the thin soil layer. The SoilPRO not
only preserves the surface condition, it is also unaffected by atmospheric attenuation and
changes in the sun’s angle, resulting in stable and standardized results. As RS means can
only monitor the soil surface (penetrating to around 50 um), it is strongly recommended
that the SoilPRO (or similar) assembly be used for ground-truth measurements as well as
for modeling soil surface-related properties [33].

4.3. Spectral Range and Resolution

As demonstrated in the first part of this study that evaluated the gap between field and
laboratory spectral observations, we obtained better results in the field domain, regardless
of whether the samples were classified as sandy or clayey, even when evaluating a generic
approach for all samples. Moreover, even when evaluating performance in the field and
laboratory domains using different spectral resolutions (ASD and Cubert UHD-185), the
field-based models presented better results. Although a generic model that utilizes all
soil textures can be extracted from the VNIR-SWIR spectral range, dividing the soils into
clayey and sandy groups provided better results. It should be noted that to adapt the
spectral data to the spectral configuration of the Cubert UHD-185, we used only the VNIR
spectral region, which is quite limited in terms of soil spectral fingerprints. The ASD’s
spectral resolution across the entire optical region provides more information by including
the contribution of the SWIR spectral region. It is thus assumed that airborne hyperspectral
imagers that cover the entire VNIR-SWIR spectral range will provide better and more
accurate WIR maps.

4.4. Vegetation Cover

The Alento study site had a lot of vegetation and litter coverage during the Cubert
UHD-185 flight, with approximately 13% bare soil pixels. Even though all of the samples
were collected from bare soil, not all of them were exposed to the UAV sensor’s view
due to the UAV angle perspective and to canopy coverage. Interpolation of the WIR
data over the clean soil pixels provided us with predictions of the WIR under the canopy.
However, the accuracy of these interpolations requires further investigation because soil
cover is one of the main factors controlling water penetration into the soil [65]. As seen
in Figures 16-19, the IDW interpolations of the measured (21 points) and predicted (100
points) WIR values seemed to illustrate a similar spatial distribution of WIR. Moreover,
several hotspots of high and low WIR were identified with high confidence in the inter-
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polation of the 100 predicted values of the selected pixels. Therefore, the predicted WIR
in areas under the canopy may be reasonable, because the interpolation of the predicted
WIR was based on bare soil pixels. It is likely that if the bare soil is exposed to the sensor
view and there is no vegetation, the accuracy will be higher, as all of the pixels can undergo
spectral-based modeling. Nonetheless, vegetation is obviously common in agricultural
fields, and this exercise demonstrated that it is possible to deliver a reliable WIR map by
interpolating the exposed soil pixels.

4.5. Future Studies and Remarks

Although we used a hyperspectral sensor that was limited in its spectral range (VNIR
region), new light hyperspectral sensors that cover the entire VNIR-SWIR region are
emerging. This technology onboard UAV platforms combined with high spatial resolution
capability can improve the WIR mapping results. This is because field spectral-based
models of high resolution (including the SWIR range) that contain more spectral informa-
tion can then be implemented. This direction is not only valid for the WIR property, but
could be aligned with other soil surface properties, such as OM. Further studies might be
executed with larger FSSLs obtained using the SoilPRO assembly or similar techniques,
to cover more soil types from different parts of the world. It should be pointed out that
this case study is only a proof of concept for rapid WIR mapping using field spectroscopy.
Such maps are important for the control of runoff and soil erosion, as well as for increasing
water penetration into the root zone. Once a WIR map can be rapidly generated, the farmer
can use it to destroy the hard soil seals prior to a rain event and, accordingly, obtain less
erosion and save water. To that end, further effort should be made to expand the FSSLs
worldwide and to direct activity to form new FSSLs in parallel to the traditional SSLs,
which are widely available today. The new hyperspectral era of RS technologies may foster
such an idea.

Nevertheless, due to the vegetation coverage, it was not possible to use more than five
reliable samples for the ground truth examination of the WIR values predicted from the
UAV spectral data. Still, despite the high vegetation coverage of the Alento study site, this
work demonstrated the possibility to map the WIR from an UAV platform using bare soil
pixels that were available to the sensor view. This achievement was possible mainly because
we executed careful field reflectance measurements that preserve the surface conditions.
Accordingly, we believe that this work paves the way to improve the monitoring of soil
surface-related properties (and not only WIR) using HRS means onboard UAYV, airborne
and satellite platforms.

5. Conclusions

The results of this study lead us to conclude that several spectral properties were lost
and/or distorted in the laboratory due to the sampling procedure, which disrupted the soil
surface and biased the prediction of the WIR using laboratory measurements as the WIR is
very sensitive to the surface conditions. These discrepancies were mainly manifested in the
clay mineral, OM, and Fe oxide spectral properties. As WIR is a soil surface-dependent
property, spectral-based models benefit more from field than laboratory spectral data in the
assessment of WIR in the soil. Obtaining FSSLs using assemblies such as the SoilPRO can
overcome this problem because they provide (real) field measurements of undisturbed soils
with laboratory quality. Separating the soil samples into clayey and sandy groups provided
better spectral-based models for estimating the WIR values using the field-based models in
all spectral ranges and configurations (ASD and Cubert). Applying the field spectral-based
model to the Cubert-UAV data gave reasonable results that were successfully validated.

Nonetheless, in the future we recommend carrying out similar studies with more
field samples for a deeper examination of the possibility of mapping the WIR using FSSLs
and UAV spectral imaging platforms. Vegetation coverage might be a problem, but after
filtering it out from the image, the Getis-Ord Gi* method identified significant hot/cold
spots of WIR in the study area upon analysis of the UAV data. Further studies based on
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this work should be applied with a sensor that covers the whole optical range with higher
spectral resolutions, and FSSLs should be expanded worldwide, as is already the case for
traditional SSLs, to study soil surface-dependent properties at any site.
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