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ABSTRACT
The Brazilian Palm Swamps (Veredas) are a vegetation phys-
iognomy of the Cerrado biome. It has a critical importance for
biodiversity and also for groundwater sources conservation.
With the irrigated agriculture intensification, it´s been sig-
nificantly impacted. Mapping this physiognomy is important
to delimit this vegetation type to provide subsides for public
policy and monitoring programs. Pixel-based methods do not
succeed, since the spatial context is important for this phys-
iognomy. Object-based methods are a great potential on this
sense. Deep Learning methods, particularly the convolutional
neural networks (CNN), are increasing considerably as a so-
lution for these challenges. We applied both methods in two
regions of the Cerrado and evaluated the model transferability.
The results are promising, with training model overall accura-
cies higher than 90% for both methods. The CNN performed
better when transferred a different region. We discussed some
advantages and limitations, and pointed out to improvements
that can still be done.

Index Terms— Cerrado, Semantic Segmentation, Peat-
lands, Remote Sensing, Digital Processing Image

1. INTRODUCTION

The Veredas are a specific vegetation physiognomy of the
Cerrado biome and has a great ecological importance for bio-
diversity and also as a regulator of water courses equilib-
rium [1, 2, 3]. With the development of irrigation techniques,
Veredas have been used to build dams for the purpose of ac-
cumulating water to be used in irrigation pivots [4]. Properly

Thanks to the project “Development of systems to prevent forest fires
and monitor vegetation cover in the Brazilian Cerrado” (World Bank Project
P143185) – Forest Investment Program (FIP).

mapping this physiognomy is very important to delimit this
vegetation type in order to provide subsides for informing
and enabling public policies and for monitoring. There are
also findings that show the potential of this physiognomy as
indicator of permanently wet, poorly drained hydromorphic
soils [5].

The most usual methods of wetlands inventory are on-site
field work, visual interpretation of aerial photography and
digital image processing of satellite imagery. The first two
have the disadvantage of a relatively long-time lag between
data acquisition and map production [6]. Remote sensing is
considered the only practicable method for mapping and mon-
itoring wetlands [7]. It has been reported [8] that research is
needed in the field of remote sensing to asses habitats that
entirely fall into wetlands.

Pixel-based mapping methods usually fail with this phys-
iognomy because of spatial context is particularly important
in this case. Veredas consist in an association of other phys-
iognomies [9]. GEOBIA (Geographic Object-based Image
Analysis) techniques appears to have a great potential on this
sense. Moreover, Deep Learning methods, particularly the
convolutional neural networks such as the U-Net, are increas-
ing considerably as a potential solution for mapping this spe-
cific vegetation patterns.

Cerrado vegetation mapping has been already done by
different authors [10, 11, 12]. Recently, [13] showed the po-
tential of mapping the Cerrado vegetation in a detailed level,
applying a hierarchical random forest classification using
spectral-temporal metrics derived from dense optical Landsat
time series combined with different environmental data.

However, those classifications do not take into account
all types of vegetation on the Cerrado. Veredas are usually
not considered on the classifications and usually are included
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under savannah vegetation.
In cases where the objective of the study included the

mapping of Veredas based on remote sensing, the reported
accuracy was low. It is consensual that Landsat-like resolu-
tion is too coarse to capture the spatial pattern of Veredas,
often leading to confusion with Gallery and Riparian forests,
grasslands and savannahs [13].

The objective of this work was to evaluate a traditional
GEOBIA classification method and a Fully Convolutional
Neural Network classification algorithm for mapping Veredas
in two different ecoregions of the Cerrado, and evaluate the
model transferability for a different region.

2. METHODOLOGY

We applied both GEOBIA and Deep Learning strategies for
mapping Veredas in two different ecoregions of the Cer-
rado [14], the ”Chapadão do São Francisco”, in the West of
Bahia state, and ”Basaltos do Paraná”, in the Nortwest of
Minas Gerais (Fig. 1). These ecorregions are relevant for this
physiognomy, and they include the main variations of their
patterns.

To consider the spatial context and the hierarchical struc-
ture in a classification process, GEOBIA techniques are an
useful tool, as it considers neighborhood relationships, tex-
ture, form and compacity, and other contextual attributes
based on segmentation and feature extraction [15]. Multires-
olution Segmentation (MRS) algorithm is an image segmen-
tation approach that aims to minimize the variability of a
segment, relying on the potential of the local variance.

We performed this classification on the Sentinel 2 selected
scenes using the near-infrared, red and green bands with 10
meters of spatial resolution, considering the same weight for
all the bands and with the following empirical parameters:
scale 100; shape 0.1; and compactness 0.5. The “eCogni-
tion” software [16] was used to perform segmentation and to
extract feature from the segments. The object-based metrics
mean, standard deviation and Grey Level Co-occurrence Ma-
trix (GLCM) textures were derived from each band. Shape-
based features such as elliptic fit were also extracted, resulting
in 22 attributes for each segment/object.

We used a field-work database, kindly provided by the
State Environmental Departments of Brazil, to train a Ran-
dom Forest (RF) [17] model and obtained the GEOBIA clas-
sifier in which we empirically determined the parameters mtry
of 5 and ntrees of 500. The “randomForest” package in R
was used for our classification tasks. The final maps were
validated with 30% of the samples, while the other 70% were
used for training. A confusion matrix was calculated, and the
average confusion matrix was used to derive the overall accu-
racy and the class f1-scores for each model.

Deep Neural Networks (DNN), especially the well known
Convolutional Neural Networks (CNN), have shown to be
greatly effective in scene classification and semantic segmen-

tation tasks. This potential comes from their ability of learn-
ing representative contextual features about the images [18].
[19] has imputed to the Deep Neural Networks the responsi-
bility for the major advances in solving some of the hardest
pattern recognition problems, which have resisted the best at-
tempts of the Artificial Intelligence (AI) community for many
years. In this context, the U-Net, firstly proposed by [20],
has demonstrated to be very effective for semantic segmenta-
tion tasks, being widely used for Land Use and Land Cover
mapping applications [18, 21].

The Deep Learning methodology presented in this paper
was developed based in the baseline U-Net architecture im-
plemented by [18], which is available in the DeepGeo pack-
age [22].

To generate the chips for the U-Net training process, we
randomly selected 500 chips of 316x316 pixels from the field-
work database (Fig. 1).

The U-Net parameters were empirically defined as: 50
epochs, batch size of 5 chips, initial learning rate of 0.1, and
using an exponential decay with a rate of 0.991 for the learn-
ing rate, a L2 regularization rate of 0.0005, and the Average
Soft Dice as loss function. Batch normalization was also ap-
plied after all the convolutional layers. Besides the cited pa-
rameters, 6 data augmentation procedures were used in each
chip: 90◦ rotation, 180◦ rotation, 270◦ rotation, flip vertically,
flip horizontally, and flip transpose.
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Fig. 1. Training reference.

3. RESULTS

As presented in Fig. 2 and Table 3, we found that the U-Net
presented better results when transferring the model. This is a
motivating result, since usually deep learning models require
a high number of samples, and in this case, even collecting
samples only in one region, the model presented a good trans-
ferability, with a reasonable promising in a different ecore-
gion, in which the Veredas present different spatial patterns.

Veredas can present different patterns, ranging from wet
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Fig. 2. Reference and results for the training area (a); and reference and results for the different ecoregion area (b).

Reference
Training Area Different Ecoregion

Vereda Other Vereda Other

Mapping Vereda 1,684,658 1,983,119 142,765 743,598
Other 0 27,778,895 1,804,875 31,202,074

Table 1. Confusion Matrices for the GEOBIA mapping.

Reference
Training Area Different Ecoregion

Vereda Other Vereda Other

Mapping Vereda 1,234,075 495,731 1,138,194 6,215,424
Other 450,583 29,266,283 809,446 25,730,248

Table 2. Confusion Matrices for the U-Net mapping.

Training Area Different Ecoregion
Statistic GEOBIA U-Net GEOBIA U-Net
Accuracy 0.94 0.97 0.93 0.79
Sensitivity 1.00 0.73 0.07 0.58
Specificity 0.93 0.98 0.98 0.80
F1-Score 0.63 0.72 0.10 0.24

Table 3. Metrics for the mapping with GEOBIA and U-Net.

meadows to riparian forest and are associated with the pres-
ence of Buriti palms (Mauritia flexuosa) [23]. Even region-
ally, the paths can be presented under different environmental

conditions [2].
We can observe some commission errors, including areas

of agriculture, specifically from irrigated areas. In case of the
analyzed region in the ”Basaltos do Paraná”, we could see that
there was a great inclusion of Riparian and Gallery forests,
what is is still a challenge. [24] have found that in most of the
mapping initiatives, Veredas often cannot be separated from
other riparian formation not classified as wetlands.

The use of auxiliary data can be a solution. [6] have
attained high classification success (< 85%) using Landsat
ETM+ in combination with topographic and soil data.

The use of SAR data and auxiliary data as the vertical dis-
tance to the nearest drainage obtained from HAND algorithm
(Height Above the Nearest Drainage) can also improve the
results for both methods, as showed by [23].
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Amanda S Bezerra, Antônio F Couto Jr, Vinicius Vas-
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