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ABSTRACT

Automating the systematic monitoring of deforestation in the
Brazilian biomes has become imperative. In this sense, a
promising research field lies upon the exploitation of orbital
imaging based on Synthetic Aperture Radar (SAR) sensors,
since this technology is less affected by cloud cover, allowing
systematic data acquisitions. In addition, the growing avail-
ability of with no charge SAR data products enables investi-
gations on the use of time series extracted from this category
of instruments, paving the way for more sophisticated tempo-
ral analyzes. This work presents the results of a SAR time
series classification model designed to identify clearcut de-
forestation patterns in time, through an Artificial Intelligence
approach known as Recurrent Neural Networks. The classifi-
cation was performed using 5216 samples of Sentinel-1 time
series within the Amazon basin, reaching an overall accuracy
of 96.74%.

Index Terms— Deep Learning, Deforestation, Time Se-
ries, Sentinel-1, SAR

1. INTRODUCTION

Despite the issues concerning cloud cover, the majority of
forest monitoring systems are based on orbital imagery cap-
tured by optical sensors. Examples of such systems are the
Global Forest Watch (GFW) [1], the Program to Calculate
Deforestation in the Amazon (PRODES) and the Near Real
Time Deforestation Detection System (DETER) [2]. This
prevalence is but a practical constraint, once raw SAR im-
agery are historically less prone to easily get transformed into
an Analysis Ready Data product. Nevertheless, in the wake
of the ESA’s Sentinel-1 mission, great advances have been
made to increase the availability of SAR Analisys Ready Data
(SARD) and, since 2015, researchers can rely upon medium

Thanks to the project “Development of systems to prevent forest fires
and monitor vegetation cover in the Brazilian Cerrado” (World Bank Project
#P143185) – Forest Investment Program (FIP)

resolutions SARD products. Beyond that, more freely avail-
able SAR orbital instruments with varying operation bands,
are to come [3].

Even though Sentinel-1 derived products have being made
available at no cost, those still pose some important SAR spe-
cific challenges that need to be addressed. With regard for-
est monitoring, [4] performed a set of successful preprocess-
ing steps in order to tackle two spurious effects that directly
affect the forest backscatter response, namely, speckle noise
and vegetation moisture. The main drawback is, however, the
lack of a classification model capable of taking the temporal
dependencies of time series’ observations into account.

Much of the real world data has a sequential nature in
which the order the records are collected is relevant. In other
words, the optimal decision made by a predictive model,
given an input, may depend on the past inputs that have
already been presented to the model. Recurrent Neural Net-
works (RNR) [5] are a family of Artificial Neural Networks
endowed with the ability to take those dependencies into ac-
count. This is possible thanks to a feedback mechanism that
occurs by the means of a recurrence: a connection between
the network output and its input during the processing step of
the next observation.

This work presents a Deep Learning approach that, given
a stabilized SAR Time Series (TS), is able to recognize tem-
poral patterns within it, considering the underlying statistical
dependencies between the TS observations. An experiment
has been conducted towards discovering of clearcut defor-
estation patterns occurred in the Amazon basin, throughout
the year of 2019, by analysing TS extracted from a Sentinel-1
SARD product hosted in Google Earth Engine (GEE) plat-
form [6]. In the next session the database used in this study
is going to be explained, as well as a brief description of a
deep RNR known as Long Short Term Memory (LSTM) [7]
and how this network has been trained. Then, the outcomes
are going to be explained, followed by a brief discussion. Fi-
nally, the final remarks and the proposed future works will be
exposed.
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2. MATERIALS AND METHODS

The current work used a subset of a larger database created
in [4] as part of an endeavor whose goal is to develop a new
Early Warning System (EWS), intended to monitor Amazon
deforestation in near real time. To this end, [4] randomly
selected points inside two sample spaces within the whole
Amazon basin, tapping into a reliable and refined source of
clearcutting information provided by the projects DETER
[8] and MapBiomas Alertas [9]. For the TS extraction to
take place, 3000 points were sorted inside the “forest dis-
turbances” sample space, all occurred in 2019, and another
3000 points inside the “forest invariant” areas. Following,
the Sentinel-1A VH and VV backscatter intensity values
of the corresponding locations were collected and stored as
multivariate TS. Out of all possible combinations of the pre-
processing routines undertaken in [4], the present work made
use of the TS that suffered only the following transforma-
tions: (i) Local Incidence Angle correction; (ii) Seasonal
stabilization; (iii) Speckle noise filtering.

All the 6000 selected TS cover approximately 3 years
(2017 to 2019) of regularly spaced registries of the Sentinel-
1A with a 12-days gap between them, giving a maximum
length of 92 observations per TS. However, the chosen
database shows inconsistencies between some data points,
what could compromise the proposed temporal analysis. For
instance, many TS show several ”nodata” values throughout
the considered span of time, leading those with less than 80
valid entries to be cutted off. Also, all TS samples that haven’t
values for the two polarization modes (VH+VV) were also
discarded, once the proposed approach depends on bivariate
TS. Finally, TS whose length of not null values diverge be-
tween polarization modes were also discarded in an attempt
to guarantee the temporal alignment between them. After
running these steps, only 5216 (out of the initial 6000) have
remained, but also maintaining the 50% proportion of each
class.

The LSTM, a deep RNR architecture, was employed to
classify the TS samples. It is capable of handling long se-
quences, therefore being able to recognize temporal-polarimetric
patterns into long Remote Sensing TS. In this sense, a LSTM
model was fitted to accomplish the task of recognizing the
presence of a deforestation event in the last third of a 3-
year long Sentinel-1 TS. The idea is that the first two-third
portion will provide the model the information it needs to dis-
criminate between real clearcutting backscatter response and
sources of noise which can get confused with clearcutting,
such as the speckle noise and variations in the forest moisture
due to seasonality or rain cells.

Figure 1 shows a general flowchart that comprises the
steps followed to devise the model that yielded the reported
results. There are three main phases:

1. Further Filtering: After fetching the 6000 TS out of
chosen database, execute the aforementioned filtering

processes to remove the ineligible TS.

2. Sensitivity Analysis: a critical set of procedures con-
ducted in order to get a meaningful Deep Learning
model. Here, the proper network topology must be
found as well as an hyperparameters optimization,
seeking the minimization of the loss function.

3. Performance Evaluation: in this phase, proper evalu-
ation metrics are computed, needed to asses the classi-
fication performance. If metrics meet the project goals,
save the assessed model; else, return to the Sensitivity
Analysis phase to once again fine-tune hyperparameters
and try to improve the overall model performance.

Figure 1: The general workflow accomplished.

After several loops between Sensitivity Analysis and Per-
formance Evaluation phases, the reported network has the fol-
lowing topology structure and hyperparameters:

• Architectural layers:

– One LSTM cell with 256 hidden units.

– A fully connected layer with 128 neurons and
ReLU activation function.

– A fully connected layer with 16 neurons and
ReLU activation function.

– A fully connected layer with 2 neurons and Soft-
max activation function.

• Loss function: Categorical Cross Entropy.

• Optimizer: Adaptive Moment Estimation (Adam) [10].

• Learning rate: 0.000013.

• Batch size: 32.

• Epochs: 2000.
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3. RESULTS AND DISCUSSION

The experiments were carried out into an Ubuntu 20.04 en-
vironment equipped with a quad-core Intel® Core™ i5-3570
3.40 GHz CPU, 16GB RAM and a 6GB/s Sata SSD drive with
1TB. The 2000 training epochs were done without the support
of GPUs, using the Keras framework with Tensorflow 1.14 as
backend. The entire training took 8 hours and 21 minutes to
get finished, even though an early stopping were used to select
the model’s parameters configuration that showed the higher
global accuracy in the validation dataset.

As shown in the diagram (Fig. 1), the train/test dataset
splitting strategy also influences the model’s outcome, and
should be carefully done. The final model were obtained by
shuffling and splitting the 5216 remaining data points into
4694 (90%) for the training set while 522 (10%) were re-
served for the final model testing after the training process.
Once properly fitted, a inference was performed over the 522
testing TS for the evaluation metrics to be computed and for
the model generalization to be assessed. The chosen evalua-
tion metrics are the following:

1. Global accuracy: 0.9674

2. Precision: 0.9588

3. Recall: 0.9708

4. F1-Score: 0.9648

Beyond the good global accuracy, the metrics exhibits a
good balance between commission (approx. 3%) and omis-
sion (approx. 4%) errors, a characteristic that can also be
inferred by the F1-Score index. A good F1-Score index indi-
cates the model’s vocation to perform a classification whose
main objective is to accurately estimate the total area of
the deforested regions, given that the total amount of false-
positive regions are offset by the false-negative ones, whose
total area is similar.

The maximum global accuracy of 95.91% reported in [4]
cannot be directly compared with the same metric reported by
the present study. As the two approaches have different pur-
poses, there are some important differences between the way
the dataset is analysed. For example, the current approach
classify the entire 3-year TS at once while [4] undertake a
single analysis for each observation that falls inside a 4-month
window of the same TS.

The exposed classification approach can be used, for ex-
ample, to generate annual deforestation reporting. The map-
pings produced by such models could help official govern-
ment forest monitoring programs like PRODES to increase
efficiency and reduce costs of operation.

4. CONCLUDING REMARKS

The approach developed is still very incipient and needs fur-
ther investigation regarding operational viability. However,

the good initial results motivate the development of future
works in the same direction. For example, the implementation
of the RNR used in this experiment makes a prediction only
at the end of the entire TS analysis. In other words, the “day”
within the TS where the deforestation detection occurred is
not informed by the model. However, it is possible to adapt
the LSTM architecture and training procedures to be able to
produce an inference for each time step of the input sequence.
This adaptation would make the approach a good candidate to
be incorporated into an EWS.

Another improvement is to pipe the LSTM output to the
input of a Convolutional Neural Network, as done in [11].
In this manner, the spatial coherence could be dramatically
improved, diminishing the salt and peeper effect and making
the deforested areas more semantically meaningful. Yet, it
is also possible to combine the SARD products with optical
ones in order to leverage the best of the two worlds.
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Camila B. Marques, Cesar G. Diniz, Diego Costa, Dye-
den Monteiro, Eduardo R. Rosa, Eduardo Vélez-Martin,
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