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A B S T R A C T   

Grade estimation is a critical issue in mineral resource evaluation, being extensively investigated by data mining 
techniques. In this paper, a hybrid method composed of back-propagation artificial neural network (BPANN) and 
particle swarm optimization (PSO) algorithms is proposed to solve the grade estimation problem. The PSO al
gorithm is implemented to optimize the BPANN parameters by reducing the effects of a local minimum problem, 
which is one of the critical drawbacks of BPANN. The proposed BPANN-PSO algorithm is validated for Al2O3 
grade estimation in one of Iran’s largest Bauxite deposits. The performance of BPANN-PSO algorithm for grade 
estimation is compared with BPANN and ordinary kriging. The experimental results indicate that the BPANN- 
PSO model is more appropriate for estimating Al2O3 grade with a reasonable error.   

1. Introduction 

The grade block model is a key input to the production planning, 
scheduling, and financial analyses of mines (Sinclair and Blackwell 
2002; Rendu 2014; Kaplan and Topal 2020). Since samples taken from 
deposits are limited in number, this task is usually subjected to esti
mation. Due to the very complex and, sometimes, not completely 
well-understood orebody deposition processes, grade estimation is quite 
a complicated problem (Kapageridis and Denby 1999). Most mining 
software programs offer traditional tools such as the nearest neighbor, 
inverse distance weighting, and geostatistical methods for estimating 
grades. For instance, Kriging is the most common and widely used 
geostatistical approach for grade estimation (Yamamoto 1999). Struc
tural analysis (i.e., calculating the experimental variogram and fitting an 
appropriate model to it) is necessary to use geostatistical models. 
However, performing structural analysis is a challenging task, especially 
if the number of available samples is limited. The effective use of such 
traditional techniques requires assumptions, knowledge, skill, and long 
processing time (Wu and Zhou 1993; Kapageridis and Denby 1999). 
Therefore, the ongoing research is centered on the machine learning 

based methods for grade estimation. Artificial Neural Networks (ANNs) 
(Samanta et al. 2005; Chatterjee et al., 2006; Guo 2010; Li et al., 2010; 
Tahmasebi and Hezarkhani 2010, 2012; Mahmoudabadi et al., 2009; 
Singh et al., 2018), Adaptive Neuro-Fuzzy Inference System (ANFIS) 
(Tahmasebi and Hezarkhani 2010), random forest (Jafrasteh et al. 2016, 
2018), Support Vector Machines (SVM) (Matias et al., 2004; Tenorio 
et al., 2015; Dutta et al., 2010) and combined kNN-ANN methods 
(Kaplan and Topal 2020) are the widely used algorithms. Among the 
others, ANNs are the most studied algorithms for the grade estimation. 
Several works have been published in the literature to investigate the 
effects of using different training algorithms (Samanta et al. 2005, 2006; 
Jafrasteh and Fathianpour 2017; Jafrasteh et al., 2018; Kaplan and 
Topal 2020), optimizing the weights of ANNs through genetic algorithm 
(Mahmoudabadi et al., 2009; Tahmasebi and Hezarkhani 2012), the 
configuration of the input space of ANNs (Kapageridis 2005), using 
wavelet neural network (Li et al., 2010) and neural-fuzzy systems 
(Tahmasebi and Hezarkhani 2010). Despite all these studies, no specific 
conclusion has yet been drawn regarding the preference of ANNs over 
traditional models. Although some researches show better results with 
ANNs (Chatterjee et al., 2006; Dutta et al., 2010; Badel et al., 2011; 
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Jafrastehet al. 2018), others do not report any specific preference in 
comparison with the traditional geostatistical models (Samanta 2002; 
Samanta et al., 2005). 

In ANN architecture, the weighted links and bias values - calculated 
based on the characteristics of input/output data - connect the network 
neurons (Hoseinian et al. 2017, 2018). Among the various types of ANN 
architectures, the back-propagation artificial neural network (BPANN) 
is the most widely used form of ANNs. It minimizes the error at each 
iteration (according to the gradient descent algorithm) and grants the 
best solution. The BPANN optimization begins by setting the vector of 
initial weights and stops according to the stopping criterion. BPANN has 
the universal advantages of self-learning, self-adaptive and nonlinear 
mapping ability (Changwei et al., 2019). Nevertheless, BPANN has 
various shortcomings, for instance, it can easily fall into a local mini
mum and have a slow convergence rate in the learning process (Hosei
nian et al., 2019). To overcome local minima, the authors in (Qi et al., 
2018) showed that the performance of ANN can be improved by using 
optimization of the initial weights and the threshold of the ANN 
applying the particle swarm optimization (PSO) and the genetic algo
rithms (Qi et al., 2018). In this paper, we adopt this idea and optimize 
the ANN weights and bias using the PSO method to promote its quality 
in grade estimation. 

The input space configuration of machine learning-based methods 
defines how the estimated value is approached (Kapageridis 2005). Only 
two types of input space configuration are found in the literature. The 
most popular configuration is the samples’ coordinate in the 2D or 3D 
space (Wu and Zhou 1993; Kapageridis and Denby 1999; Chatterjee 
et al., 2006; Samanta and Bandopadhyay 2009; Dutta et al., 2010; 
Tahmasebi and Hezarkhani 2010, 2012; Abbaszadehet al. 2016; 
Jafrasteh et al., 2018). This configuration considers grade as a function 
of samples’ coordinates and defines the projection from the input co
ordinate space to the grade vectors during training (Kapageridis 2005). 
This input space configuration is successfully applied in the grade esti
mation of various types of deposits. The second strategy considers the 
local variability around each sample. The estimation problem becomes 
finding the relation between surrounding samples (their grades and 
distances to estimation point) and grade of estimation point. This 
strategy could consider the local variability in modeling (Kapageridis 
and Denby 1998). In this research, these configurations are combined to 
consider both the coordinate of the estimation point and local variability 
as the input space configuration. Finally, the performance of models 
trained based on the various configurations is compared. 

2. Data sets 

The layered Jajarm bauxite ore deposit, located 18 km north of 

Jajarm in North Khorasan, has more than 8 km in length and 20 m in 
depth, being the largest bauxite deposit in Iran (Esmaeily et al., 2010). 
The shape of ore suggests that it is Karst-Mediterranean style and bauxite 
reserves are layered-lens shapes with east-west direction. Due to various 
faulting in the area, the ore is divided into several blocks. The “Zu2” 
block is one of them. The total number of 72 exploratory boreholes has 
been drilled in this block to identify the geological, lithological, struc
tural and chemical characteristics of orebody. These drill holes have 
been designed based on the relative distance to outcrop and topography 
conditions. The drilling has been carried out until the footwall of the 
bauxite layer has been intersected. Consequently, the depth of these 
drillholes has been increased with the distance from the bauxite outcrop. 
The deeper is a drill hole, the higher is the cost of drilling. Therefore, in 
the area distant from the outcrop, the number of drillholes has been 
decreased (i.e., spacing in the pattern has been increased). The drilling 
pattern and topography of the site are shown in Fig. 1. Nearby the 
bauxite outcrop, the average drillhole spacing ranges between 15 and 
30 m. In the deeper or less explored areas, the average drillhole spacing 
ranges between 70 and 100 m. Constant profiles of Kaolinite clay, hard 

Fig. 1. Topography condition and drilled exploratory drill holes in Jajarm 
deposit (view direction: Azi 290, dip 5). 

Fig. 2. Histogram of Al2O3.  

Table 1 
Statistical parameters of Al2O3.  

Median 41.62 
Mean 42.53 
Min 25 
Max 63.15 
Standard Deviation 4.73 
Variance 22.46 
CV 0.11 
Skewness 0.62 
Kurtosis 2.49  

Fig. 3. Experimental omnidirectional variogram and the fitted model to it.  
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bauxite, Clayey soft bauxite, and Kaolinitic clay, from top to bottom, can 
be seen in the survey of drill holes, respectively. Since only hard bauxite 
has played a critical role in the alumina production, this lithological 
domain is known as ore deposit. In this paper, the Aluminum oxide 
(Al2O3) grade has been estimated in the hard bauxite domain based on 
362 samples taken from drill cores. Fig. 2 shows the histogram of Al2O3 
grade. Moreover, Table 1 reports the descriptive statistics of Al2O3 grade 
using these samples. Spatial variability has been investigated by fitting a 
spherical model to an experimental omnidirectional variogram of Al2O3 
grade within the domain (Fig. 3). Due to relatively limited number of 
samples, investigation of grade anisotropy is impossible in this study. 

The 3D geological model of the study area has been developed using 
geoscience datasets, including a geological map, geological cross- 
sections, a topography map and drill core samples. Then 3D block 
model has been constructed by filling the geological model with 5m ×
5m × 5m blocks and 2.5 m × 2.5m × 2.5m subblocks. The block model 
consists of 168,564 blocks. 

3. Material and methods 

The PSO was introduced in 1995 by Eberhart and Kennedy (Kennedy 
and Eberhart 1995). It is a robust technique to find an overall optimum 
solution in a multidimensional search space (Esfe et al., 2018; Parso
poulos and Vrahatis 2002; Hajihassani et al., 2018). PSO has several 
advantages over other optimization algorithms, including appropriate 
performance on optimization of a nonlinear function, simplicity and 
easy implementation, and fast convergent (Chen et al., 2011). This al
gorithm has been appropriately used to optimize problems induced by 
social behaviors, such as bird swarm (Trelea 2003). Clustering of in
dividuals is performed in the PSO algorithm for efficiently solving 
optimization problems. First, each individual is considered as one par
ticle. Then, the velocity of each particle is adjusted relatively to the best 

position found by the particle and the best position found by the 
neighborhood. More precisely, the PSO process is performed in the 
following stages: swarm initialization, updating swarm best position, 
calculating velocity for each particle, updating the position of particles, 
estimating with fitness function, and finalizing by a stop decision. Fig. 4 
demonstrates the algorithm flowchart of the PSO. 

This paper proposes a hybrid method (i.e., BPANN-PSO) to solve the 
grade estimation problem, which exploits the PSO algorithm for opti
mization of the network architecture. Fig. 5 shows the applied BPANN- 
PSO method. The initial weight and threshold of the artificial neural 
network are selected as a swarm of particles for starting the PSO process. 
The particle collection makes a swarm. The fitness of particles’ position 
is validated using the mean square error (MSE) on the training set. The 
artificial neural network architecture that gets a higher fitness value will 
be considered as the best position of the swarm. The next swarm is 
produced by considering the position-update of particles according to 
both the best position of the swarm and each particle in history. The 
particle swarm gradually moves to the optimum position of the solution 
until reaching the maximum number of iterations. During the PSO 
process, the position update of particles is performed as following (Qi 
et al., 2018): 

Vt+1
i =wVt

i + c1r1

(
pt

best,i − Xt
i

)
+ c2r2

(
gt

best, i − Xt
i

)
(1)  
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i + Vt+1
i (2)  

where, Vt+1
i and Vt

i are the velocity of particle i at iterations t and t+1, 
respectively, Xt+1

i and Xt
i are the position of particle i at iterations t and 

t+1, respectively; w is the inertia parameter; c1 is the cognitive influence 
parameter; c2 is the social influence parameter; pt

best,i is the best position 
of a particle; gt

best,i is the swarm’s best position; and r1 and r2 are random 
values between 0 and 1. 

The best solution by the PSO algorithm is considered as the initial 
weights and threshold of the BPANN. Afterward, the BPANN is applied 
for network training. 

4. Grade modeling using BPANN-PSO 

To predict the Al2O3 grade, BPANN and BPANN-PSO are applied. The 
dataset consisting of 362 samples is split into two subsets (i.e., train and 
test). A subset of 295 samples - about 80% of the total-is used for training 
and the rest of the samples are used for models’ testing. For building a 
model with good generalization performance, the data set should be 
carefully split between the training and testing datasets. It is important 
to make these sets with 1) the same statistical characteristics, and 2) 
enough spatial distance. The presence of a high spatial correlation be
tween the samples in train and test subsets will lead to over-optimistic 
estimation. To deal with this issue, the trained model should be 

Fig. 4. The PSO algorithm flowchart.  

Fig. 5. Schematic diagram of BPANN-PSO.  
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evaluated based on a test dataset that its samples are not close to the 
samples of the train dataset (Roberts et al., 2017; Pohjankukka et al., 
2017; Hoffimann et al., 2021). To this end, 14 drillholes (about 20% of 
drillholes) were selected based on a trial-and-error procedure, in such a 
way that 1) one drillhole was selected from each part of the region, 2) 
Al2O3 grade in the samples taken from these drillholes has a statistical 
distribution similar to the rest of samples. Statistical parameters of train 
and test datasets are summarized in Table 2. Despite differences in some 
statistical parameters (such as min, max and variances), this combina
tion was the best covering all parts of area. 

The network architecture, as shown in Fig. 6(a), is a BPANN with 
input, hidden and output layers. The network receives ten inputs: the 

coordinates of estimation point (the first three nodes in the input layer 
are the easting, northing and elevation of estimation point (red cycle in 
Fig. 6(b))), the distance between the estimation point and the sur
rounding samples (nodes 4, 6, 8, and 10 of input layer), and the grade of 
the surrounding samples (nodes 5,7,9 and 10 in the input layer). The 
surrounding samples have been selected based on the quadrant search 
algorithm to ensure that one drill hole (or one cluster of samples) does 
not overwhelm the grade estimate and thus induces bias. At the margins 
of the study area, the quadrant search does not find any sample in any of 
the quadrants, thus will generate some missing values. To solve this 
problem, a dynamic search strategy has been used and missing values 
have been replaced by choosing more samples from the filled quadrant. 
The network has two hidden layers. The first and second hidden layer 
nodes are set to 30 and 27 nodes, respectively. The optimum numbers of 
nodes in hidden layers are determined based on the trial-and-error 
method. The output layer has one node providing the estimated grade. 

The size of the swarm and the maximum number of iterations were 
determined to be 300 and 1000 by trial and error during modeling. The 
w, c1 and c2 were selected to be 0.73, 1.5, and 1.5 based on the proposed 
method by Clerc and Kennedy (Clerc and Kennedy 2002; Qi et al., 2018). 
The convergence rate of the algorithm is illustrated in Fig. 7. 

Table 2 
Statistical parameters of train and test datasets.   

Train Test 

Number of Samples 295 67 
Mean 42.44 42.93 
Min 25 35.38 
Max 63.15 52.2 
Var 24.29 14.46 
Median 42.25 43.49 
Lower Quartile 39.1 40.19 
Upper Quartile 45 45.5  

Fig. 6. The configuration of input data for modeling. a) The BPANN architecture for grade modelling, and b) Estimation point (red circle) and selected neighbor 
samples (blue circles) using the octant search algorithm. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version 
of this article.) 

Fig. 7. The optimization process for the objective function in PSO algorithm.  
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5. Results and discussion 

The accuracy of the BPANN-PSO model was evaluated using multiple 
statistical functions such as correlation coefficient (R) and mean squared 
error (MSE). The correlation coefficient between measured and esti
mated grades using the BPANN-PSO model are 0.79 and 0.72 in training 
and testing, respectively (Fig. 8). As can be seen in Fig. 9, the correlation 
coefficients between measured and predicted grades for the training and 
testing by the BPANN model are 1 and -0.09, respectively, which shows 
the overfitting problem in the results. The correlation coefficients and 
the MSE of the BPANN-PSO and BPANN models are summarized in 
Table 3. The R and MSE of testing for the BPANN-PSO model is better 

Fig. 8. The BPANN-PSO model performance to predict the Al2O3 grade in train (left) and test (right) datasets.  

Fig. 9. The BPANN model performance to predict the Al2O3 grade in train (left) and test (right) datasets.  

Table 3 
The values of statistical functions for the models.  

Model Statistical functions  

R  MSE   

Train Test Train Test 

BPANN-PSO 0.79 0.72 8.93 6.85 
BPANN 1 − 0.09 1.3E-15 203 
Ordinary Kriging – 0.32 – 13.60  

Fig. 10. Comparison of real and predicted Al2O3 grade based on the ordinary 
kriging in test dataset. 
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than these values of the BPANN model, indicating the higher perfor
mance of the BPANN-PSO model than BPANN for the Al2O3 grade pre
diction. Although the accuracy of BPANN is higher than BPANN-PSO in 
training, the BPANN-PSO outperforms the BPANN algorithm in testing. 
This indicates the low generalization of the BPANN algorithm. 

In the mining industry, the ordinary Kriging method is known as the 
most popular grade estimation method. Therefore, the performance of 
the ordinary kriging method has been investigated to be compared to the 
performance of BPANN-PSO. The same training and test data split are 

used to compare the kriging algorithm to BPANN-PSO and BPANN. The 
variable has been estimated at test samples based on the training dataset 
and the performance parameters of R and MSE have been calculated. 
The results have been summarized in Table 3. The correlation coefficient 
between measured and estimated grades for ordinary kriging method is 
0.32 in testing (Fig. 10). Table 3 indicates that BPANN-PSO has better 
performance than ordinary kriging method in this case study. 

One of the most common problems with spatial estimators is 
smoothing bias. Smoothing bias can be defined as underestimation of 
high values and overestimation of low values. With smoothing bias, the 
variance of the estimated values is smaller than the variance of the data 
and smaller than the variance of the true values at the estimation lo
cations (Bourgault, 2021). Figs. 8–10 show that the BPANN-PSO, 
BPANN and ordinary kriging estimators are affected by smoothing 
bias. However, BPANN-PSO performs much better in terms of smoothing 
bias compared to ordinary kriging and BPANN. 

The number of surrounding samples is one of the most important 
parameters in defining the input space configuration. To investigate the 
sensitivity of the results to the number of surrounding samples, an 
experiment has been designed. In this experiment, nine various config
urations have been defined by varying this parameter between 0 and 8 
(Table 4). Table 4 summarizes the results of training and validating 
these data configurations by PSO-BPANN. It can be concluded that a 
slight change in the number of surrounding samples will lead to changes 
in the performance of the model. In this experiment, the optimum 
number of surrounding samples is four. This number can be interpreted 
as the result of low grade variability, low thickness of bauxite layer, 
number of available data, and pattern of exploratory drilling. It should 
be mentioned that the optimum number of surrounding samples is case 
dependent and its optimum value should be tunned. 

To evaluate the effect of using proposed configuration (X-Y-Z co
ordinates + neighbor samples configuration and variability), a com
parison has been made with the ordinary configurations based on the 
correlation coefficient and mean square error (MSE) of trained BPANN- 
PSO. Table 5 summarizes the results of using different data configura
tions. Several conclusions can be obtained from the results reported in 
Table 5. First and foremost, it is noticeable that the proposed data 
configuration, which includes both the global trend (by putting coor
dinate of estimation point in the input layer) and local variability around 
estimation point, outperforms using other configurations. The first input 
space configuration takes into account grade as a function of coordinate 
and defines the projection from the input coordinate space to the grade 
vector during training. The second one, however, only considers the 
relation between surrounding samples (their grades and distances to 
estimation point) and the grade of estimation point. 

Finally, the Al2O3 grade has been estimated in the geological block 
model using the trained BPANN-PSO model. For this purpose, co
ordinates of the center of each block have been considered as the co
ordinates of the estimation point (nodes 1,2, and 3 of the input layer in 
Fig. 6). A simple MATLAB script has been developed to find the distances 
between the center of each block and the surrounding samples (nodes 4, 
6, 8, and 10 of the input layer in Fig. 6), and the grade of the surrounding 
samples (nodes 5,7,9 and 10 of the input layer in Fig. 6). The estimated 
block model is shown in Fig. 11. 

6. Conclusions 

This study proposes to integrate BPANN and PSO algorithms for the 
purpose of grade estimation. In the proposed BPANN-PSO model, the 
PSO algorithm is applied to optimize the weights and the threshold of 
BPANN. This integration overcomes the local minima problem of the 
BPANN algorithm. Moreover, this paper proposes a new neural network 
input space configuration to address the generalization problem of the 
BPANN algorithm in the grade estimation task. It includes spatial vari
ability by exploiting the coordinates of the estimation point, the distance 
between the estimation point and the surrounding samples, and the 

Table 4 
Results of the defined scenarios for number of Surrounding samples in input 
space configuration.  

Number of 
Surrounding 
samples in 
input space 
configuration 

Number of 
Dimensions 

Dimensions Correlation 
coefficient 

MSE 

Train Test Train Test 

0 3 X-Y-Z 0.55 0.41 16.9 15.9 
1 5 X-Y-Z of 

estimation 
point +
Grades and 
distances of 
nearest 
sample 

0.54 0.48 16.2 15.2 

2 7 X-Y-Z of 
estimation 
point +
Grades and 
distances of 
2 nearest 
samples 

0.70 0.51 11.73 15.87 

3 9 X-Y-Z of 
estimation 
point +
Grades and 
distances of 
3 nearest 
samples 

0.64 0.33 12.5 26.3 

4 11 X-Y-Z of 
estimation 
point +
Grades and 
distances of 
4 nearest 
samples 

0.79 0.72 8.9 6.8 

5 13 X-Y-Z of 
estimation 
point +
Grades and 
distances of 
5 nearest 
samples 

0.70 0.27 11.9 101.1 

6 15 X-Y-Z of 
estimation 
point +
Grades and 
distances of 
6 nearest 
samples 

0.59 0.25 16.2 37.0 

7 17 X-Y-Z of 
estimation 
point +
Grades and 
distances of 
7 nearest 
samples 

0.71 0.12 12.2 18.8 

8 19 X-Y-Z of 
estimation 
point +
Grades and 
distances of 
8 nearest 
samples 

0.65 0.27 13.4 20.0  
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grade of the surrounding samples as input. The proposed BPANN-PSO 
estimation technique was applied for the Al2O3 grade estimation in a 
dataset acquired from the largest bauxite deposit in Iran. The testing set 
R values of the Al2O3 grade estimation using BPANN-PSO, BPANN and 
ordinary kriging were 0.72, − 0.09, and 0.32, respectively. Additionally, 
the testing set MSE values of the Al2O3 grade estimation using these 
methods were 6.85, 203 and 13,6, respectively The R and MSE values of 
the testing sets in the BPANN-PSO model are less than those in the 
BPANN and ordinary kriging models. This indicates the higher efficiency 
of BPANN-PSO for grade estimation. This study has demonstrated that 
the proposed model could be applied to estimate the grade in the min
eral resource evaluation with a reasonable error. 

Moreover, we performed a comprehensive analysis of the proposed 
input space configuration that considers both the coordinate of the 
estimation point and the surrounding samples. Comparing the models 
trained based on the proposed configuration and the previous ones 
(based on the performance parameters of R and MSE) shows that the 
proposed data configuration outperforms using other configurations. 

Considering the local variability in the input space configuration 
would be effective on the reproduction of spatial statistics. But in this 
research, due to the limited number of samples in the test dataset, 
assessing the reproduction of spatial statistics was impossible. It is 
suggested that in future research this issue be evaluated by selecting a 
case study with a larger number of samples. 

In this manuscript, the workflow is defined based on the quadrant 
search algorithm and the number of surrounding samples is considered 
4. Any change in this parameter could change the performance of the 
method. Optimization of the number of surrounding samples remains as 
future research. 
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